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1. Introduction.

In terms of finite-type submanifolds [3], a well-known theorem of Taka-
hashi [9] says that an n-dimensional, compact submanifold $M$ of $E^{m+1}$ is of
l-type if and only if $M$ is a minimal submanifold of a hypersphere $S^{m}$ of $E^{m+1}$ .
Such a submanifold is always mass-symmetric in $S^{m},$ $i.e.$ , the center of mass of
$M$ is the center of $S^{m}$ in $E^{m+1}$ . Thus, if one chooses the center of $S^{m}$ as the
origin of $E^{m+1}$ , then the position vector $x$ of $M$ has the following form:

(1.1) $x=x_{p}$ , $\Delta x_{p}=\lambda_{p}x_{p}$ ,

where $i_{p}=n/r^{2},$ $r$ is the radius of $S^{m}$ and $\Delta$ is the Laplacian of $M$. Submani-
folds of $S^{m}$ satisfying (1.1) are the simplest finite-type submanifolds. The study
of such submanifolds has attracted many mathematicians for many years.

On the other hand, it was shown in [4] (see, also [3, p. 274]) that if $M$ is
a compact hypersurface of $S^{m}$ such that $M$ is not a small hypersphere; then $M$

has constant mean curvature $\alpha’\neq 0$ and constant scalar curvature $\tau$ if and only
if $M$ is mass-symmetric and of 2-type. In this case, the position vector $x$ of
$M$ in $E^{m+1}$ has the following form:

(1.2) $x=x_{p}+x_{q}$ , $\Delta x_{p}=\lambda_{p}x_{p}$ and $\Delta x_{q}=\lambda_{q}x_{q}$ .

Furthermore, $\alpha’$ and $\tau$ are completely determined by $\{\lambda_{p}, \lambda_{q}\}$ . Applying this
result, we see that all non-minimal, isoparametric hypersurfaces of $S^{m}$ are mass-
symmetric and of 2-type.

Mass-symmetric, 2-type submanifolds of $S^{m}$ are the “simplest” submanifolds
of $E^{m+1}$ next to minimal submanifolds of $S^{m}$ . Many important submanifolds
are known to be of 2-type and are mass-symmetric (cf. [1, 3, 4, 7, 8]). For
instance, it was shown in [8] that any compact, non-totally geodesic, parallel,
Einstein, complex submanifold of complex projective space $CP^{N}$ is of 2-type if
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we regard $CP^{N}$ as a submanifold of a Euclidean space by its first standard
imbedding. The complete classification of mass-symmetric, 2-type submanifolds
of $S^{m}$ is formidably difficult. However, the case of surfaces in $S^{3}$ was done
by the second author (cf. [3, p. 279]). In Section 4, we will solve this problem
for surfaces in $S^{4}$ .

Given an isometric immersion $f:Marrow M’$ of a surface $M$ into a Riemannian
manifold $M’$ , one has the conformal total mean curvature $\tau(f)$ (cf. Section 5).

Surfaces which are critical points of $\tau(f)$ are called stationary. Related to the
Chen-Willmore problem, Weiner asked in [10] whether minimal surfaces of $S^{m}$

are the only stationary, mass-symmetric surfaces of $S^{m}$ ? N. Ejiri constructed
in [5] a counter-example to Weiner’s problem. It is easy to see that Ejiri’s
example is of 2-type.

In this paper, we will study stationary, mass-symmetric, 2-type surfaces of
$S^{m}$ in detail. In particular, we will prove that such surfaces are in fact flat
surfaces which lie fully in $S^{5}$ or in $S^{7}$ . By completely determining the connec-
tion form of such surfaces, we show that such surfaces are obtained by some
doubly-periodic isometric immersions of the Euclidean plane $R^{2}$ into $S^{5}$ or $S^{7}$ .
In the case of $S^{5}$ , a surprising phenomenon occurs. The connection form de-
pends only on the eigenvalue $\lambda_{p}$ which satisfies $2/3<\lambda_{p}<2$ . Furthermore, for
each $\lambda_{p}\in(2/3,4/3$], there is only one possibility for the connection form, while
for each $\lambda_{p}\in(4/3,2)$ there are two possibilities. Moreover, for each such con-
nection form, we can construct a stationary, mass-symmetric, 2-type, flat torus
in $S^{5}$ . Although such a torus is not unique, it comes from a “unique” doubly-
periodic immersion of $R^{2}$ into $S^{5}$ . We also show that the estimate on $\lambda_{p}$ is
best possible.

In the case of $S^{7}$ , the connection form depends on both $\lambda_{p}$ and $\lambda_{q}$ (and de-
pends only on them). Such $\lambda_{p}$ and $\lambda_{q}$ must satisfy $0<\lambda_{p}<2<\lambda_{q}<\infty$ . Further-
more, we can give some concrete examples for this case. More precisely, for
any real number $d\in(2, \infty)$ , there are a real number $c\in(O, 2)$ and a stationary,
mass-symmetric, 2-type flat torus in $S^{7}$ with $(\lambda_{p}, \lambda_{q})=(c, d)$ . For each such pair
$(c, d)$ , the flat torus in $S^{7}$ is obtained from a “unique” doubly-periodic immer-
sion of $R^{2}$ into $S^{7}$ .

This work was done while the first author was a visiting professor at the
Department of Mathematics, Michigan State University. He wishes to thank
the Department for providing him with nice facilities and his colleagues there
for their hospitality.

The authors would like to express their thanks to the referee for his valu-
able suggestions.
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2. Preliminaries.

Let $M$ be a compact Riemannian manifold and $\Delta$ the Laplacian of $M$ acting
on differentiable functions in $C^{\infty}(M)$ . Then $\Delta$ is an elliptic differential operator
and it has an infinite sequence of eigenvalues: $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{k}<\ldots\uparrow\infty$ .
Let $V_{h}=\{f\in C^{\infty}(M)|\Delta f=\lambda_{k}f\}$ be the eigenspace of $\Delta$ with eigenvalue $\lambda_{k}$ .
Then each $V_{k}$ is finite-dimensional. If we define an inner product on $C^{\infty}(M)$

by $(f, g)= \int fgdV$, then the decomposition $\Sigma_{k\geqq 0}V_{k}$ is orthogonal and dense in

$C^{\infty}(M)$ (in $L^{2}$-sense). For each $f\in C^{\infty}(M)$ , let $f_{t}$ be the projection of $f$ into $V_{t}$ .
Then we have the decomposition: $f=\Sigma_{t\geq 0}f_{t}$ (in $L^{2}$-sense).

For an isometric immersion $x;Marrow E^{m+1}$ of a compact Riemannian manifold
$M$ into the Euclidean $(m+1)$-space $E^{m+1}$ , we put $x=(x_{1}, \cdots , x_{m+1})$ , where $x_{A}$ is
the A-th Euclidean coordinate function of $M$. Thus, we may write $x= \sum_{t\geqq 0}x_{t}$

(in $L^{2}$-sense) so that $\Delta x_{t}=\lambda_{t}x_{t}$ for each $t$ . Since $M$ is compact, $x_{0}$ is a constant
vector in $E^{m+1}$ and, moreover, there is a natural number $P$ such that $x_{p}\neq 0$ and
$x=x_{0}+ \sum_{t\geq p}x_{t}$ . If there are infinitely many $x_{t}’ s$ which are nonzero, we put
$q=\infty$ . Otherwise, there is an integer $q\geqq p$ such that

$x=x_{0}+ \sum_{t=p}^{q}x_{t}$ $x_{q}\neq 0$ .

In both cases, we have the following decomposition:

(2.1) $x=x_{0}+ \sum_{t=p}^{q}x_{t}$ (in $L^{2}$-sense).

The submanifold $M$ is said to be of finite type if $q$ is finite. Otherwise,
$M$ is said to be of infinite type. The submanifold $M$ is said to be of $k$-type if
there is exactly $k$ nonzero $x_{t}’ s$ in the decomposition (2.1). The pair $[p, q]$ is
called the order of the submanifold $M[3]$ .

Let $M$ be an n-dimensional submanifold of an m-dimensional Riemannian
manifold $M’$ . We choose a local field of orthonormal frames $e_{1},$

$\cdots$ , $e_{n},$ $\xi_{n+1}$ ,
... , $\xi_{m}$ in $M’$ such that $e_{1},$

$\cdots$ , $e_{n}$ are tangent to $M$. Let $\omega^{1},$ $\cdots$ , $\omega^{n}$ be the dual
frame of $e_{1},$

$\cdots$ , $e_{n}$ . Denote by $\nabla’$ the Riemannian connection of $M’$ . We put
$\nabla’e_{i}=\Sigma\omega_{i}^{j}e_{j}+\Sigma\omega_{i^{r}}\xi_{r}$ and $\nabla’\xi_{r}=\sum\omega_{r}^{i}\xi_{i}+\sum\omega_{r}^{t}\xi_{t},$ $i,$ $j,$ $k=1,$ $\cdots$ , $n;r,$ $s,$ $t=n+1$ ,
... , $m$ . By Cartan’s Lemma, we have

(2.2) $\omega_{i^{r}}=\Sigma h_{ij^{r}}\omega^{j}$ , $h_{ij^{r}}=h_{ji^{r}}$ ,

where $h_{ij^{r}}$ are coefficients of the second fundamental form. The connection
form of $M$ in $M’$ is given by $(\omega_{A^{B}}),$ $A,$ $B=1,$ $\cdots$ , $m$ .

Throughout this Paper, we shall assume that the submanifold $M$ is compact
unless mentioned otherwise.



630 M. BARROS and B. -y. CHEN

3. 2-type submanifolds of hyperspheres.

Let $x:Marrow E^{m+1}$ be an isometric immersion of a compact, n-dimensional
Riemannian manifold $M$ into $E^{m+1}$ . Denote by $\nabla$ and V the Riemannian con-
nections of $M$ and $E^{m+1}$ , respectively. And by $h,$ $A$ and $D$ the second funda-
mental form, the Weingarten map and the normal connection of $M$ in $E^{m+1}$ ,
respectively.

For a fixed vector $a$ in $E^{m+1}$ and vector fields $X,$ $Y$ tangent to $M$, the
formulas of Gauss and Weingarten give

(3.1) $YX\langle H, a\rangle=\langle D_{Y}D_{X}H, a\rangle-\langle\nabla_{Y}(A_{H}X), a\rangle-\langle A_{D_{X}H}Y, a\rangle-\langle h(Y, A_{H}X), a\rangle$ ,

where $H$ is the mean curvature vector of $M$ in $E^{m+1}$ and $\langle, \rangle$ the inner product
of $E^{m+1}$ . Let $e_{1},$

$\cdots$ , $e_{n}$ be an orthonormal local frame field tangent to $M$.
Equation (3.1) implies

(3.2) $\Delta H=\Delta^{D}H+\sum_{i=1}^{n}\{h(e_{i}, A_{H}e_{i})+A_{D_{e_{i}}H_{e_{l}}}+(\nabla_{e_{i}}A_{H})e_{i}\}$ ,

where

(3.3) $\Delta^{D}H=\sum_{i=1}^{n}\{D_{\nabla_{e_{i}}e_{i}}H-D_{e_{i}}D_{e_{i}}H\}$

is the Laplacian of $H$ with respect to $D$ . Regard $\nabla A_{H}$ and $A_{DH}$ as $(1, 2)$-tensors
on $M$ and we set $\overline{\nabla}A_{H}=\nabla A_{H}+A_{DH}$ . Then we have

(3.4) tr $( FA_{H})=\sum_{i=1}^{n}\{(\nabla_{e_{i}}A_{H})e_{i}+A_{D_{e_{i^{H}}e_{i}}}\}$ .

Let $U=$ { $u\in M|H\neq 0$ at $u$ }. Then $U$ is an open subset of $M$. On $U$ we
choose an orthonormal local frame $\xi_{n+1},$ $\cdots$ , $\xi_{m+1}$ normal to $M$ in $E^{m+1}$ so that
$\xi_{n+1}$ is parallel to $H$. Then we have

(3.5) $\sum_{i=1}^{n}h(e_{i}, A_{H}e_{i})=\Vert A_{n+1}\Vert^{2}H+\mathfrak{A}(H)$ ,

where

(3.6) $A_{r}=A_{\xi_{\gamma}}$ , $\Vert A_{n+1}\Vert^{2}=trA_{n+1}^{2}$

and

(3.7) $\mathfrak{A}(H)=\sum_{r=n+2}^{m+1}$ (tr $A_{H}A_{\tau}$) $\xi_{r}$

on $U$ . If $H=0$ at a point $u,$ $\mathfrak{A}(H)$ is defined to be zero. It is clear that (3.5)

and (3.6) hold trivially on $M-U$ . Therefore, we have (3.5) and (3.7) on the
whole submanifold $M$. The vector field $\mathfrak{A}(H)$ is a well-defined vector field
perpendicular to $H$, which is called the allied mean curvature vector of $M$ in
$E^{m+1}$ . From (3.2), (3.4) and (3.5) we get
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(3.8) $\Delta H=\Delta^{D}H+\Vert A_{n+1}\Vert^{2}H+\mathfrak{A}(H)+tr(\overline{\nabla}A_{H})_{\sim}$

Now, assume that $M$ is a submanifold of the unit hypersphere $S_{0^{m}}(1)$ of
$E^{m+1}$ centered at the origin $0$ . Denote by $H’,$ $A’$ and $D’$ the mean curvature
vector, the Weingarten map and the normal connection of $M$ in $S_{0}^{m}(1)$ , respec-
tively. Then we have

(3.9) $H=H’-x$ , $\Delta^{D}H=\Delta^{D}$
‘
$H’$ , $Dx=0$ .

Moreover, for any vector $\eta$ normal to $M$ in $S_{0}^{m}(1)$ , we have $A_{\eta}=A_{\eta}’$ . Let $\xi$

be a unit vector parallel to $H’$ with $H’=\alpha’\xi,$ $\alpha’=\Vert H’\Vert$ . (If $H’=0$ at $u,$ $\xi$ can
be chosen to be an arbitrary unit normal vector of $M$ in $S_{0^{m}}(1).)$ We have the
following.

LEMMA 1 ([3, p. 273]). Let $M$ be an n-dimensional submanifold of $S_{0}^{m}(1)$ in
$E^{m+1}$ . Then we have

(3.10) $\Delta H=\Delta^{D}$
‘
$H’+\mathfrak{A}’(H’)+tr(\overline{\nabla}A_{H})+(\Vert A_{\xi}\Vert^{2}+n)H’-n(\alpha)^{2}x$ ,

where $\mathfrak{A}’(H’)$ is the allied mean curvature vector of $M$ in $S_{0^{m}}(1)$ (which is zero
on { $u\in M|H’=0$ at $u$ }).

We also need the following.

LEMMA 2 ([3, p. 274]). If $M$ is a mass-symmetric, 2-type submanifold of
$S_{0}^{m}(1)$ , then we have

(1) the mean curvature $\alpha’$ is cmsfant which is given by

(3.11) $( \alpha’)^{2}=(1-\frac{\lambda_{p}}{n})(\frac{\lambda_{q}}{n}-1)\neq 0$

and
(2) $tr(5A_{H})=0,0<\lambda_{p}<n<\lambda_{q}<\infty$ .

LEMMA 3 ([4]). Let $M$ be an n-&mensional submanifold of $S_{0}^{m}(1)$ in $E^{m+1}$ .
Then $tr\beta A_{H}$) $=0$ if and only if

(3.12) $ngrad(\alpha’)^{2}+4$ tr $A_{DH’}=0$ .
Lemma 2 implies that the mean curvature $\alpha’=|H’|$ of $M$ in $S_{0^{m}}(1)$ is deter-

mined by the order. In the following, let $dH’$ denote the $E^{m+1}$-valued l-form
defined by $(dH’)(X)=\tilde{\nabla}_{X}H’$ , for $X$ tangent to $M$. Then we have $\Vert dH’\Vert^{2}=$

$\Vert D’H^{f}\Vert^{2}+\Vert A_{H’}\Vert^{2}$ . The following lemma shows that the length of $dH’$ is also
determined by the order of $M$.

LEMMA 4. Let $M$ be a mass-symmetric, 2-type submanifold of $S_{0}^{m}(1)$ in $E^{m+1}$ .
Then we have
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(3.13) $\Vert dH’\Vert^{2}=\{\lambda_{p}+\lambda_{q}-n\}\{n(\lambda_{p}+\lambda_{q})-\lambda_{p}\lambda_{q}-n^{2}\}/n^{2}$ ,

(3.14) $\mathfrak{U}’(H’)=|H’|\sum_{r=n+2}^{m}\{tr(\nabla\omega_{n+1}^{r})-\langle D’\xi, D’\xi_{r}\rangle\}\xi_{r}$ .

PROOF. Let $\xi_{n+1},$ $\cdots$ , $\xi_{m}$ be a local orthonormal normal basis of $M$ in $S_{0}^{m}(1)$

such that $\xi_{n+1}=\xi$ is parallel to $H’$ (this condition holds automatically on
{ $u\in M|H’=0$ at $u$ }). By using Lemma 2 and (3.3), we may find

(3.15) $\Delta^{D}H=\Delta^{D’}H’=\alpha’\sum_{r=n+2}^{m}\{\langle D’\xi, D’\xi_{r}\rangle-tr(\nabla\omega_{n+1}^{r})\}\xi_{r}+\langle D’\xi, D’\xi\rangle H’$ ,

where

(3.16) $tr(\nabla\omega_{n+1}^{r})=\sum_{i=1}^{n}(\nabla_{e_{i}}\omega_{n+1}^{r})(e_{i})$ .

Since $M$ is mass-symmetric and of 2-type in $S_{0}^{m}(1)$ , we have (cf. [3, p. 256])

(3.17) $\Delta H=(\lambda_{p}+\lambda_{q})H+(\lambda_{p}\lambda_{q}/n)x$ .
Combining Lemma 1, Lemma 2, (3.15) and (3.17), we may obtain (3.13) and
(3.14). (Q. E. D.)

REMARK 1. By using Lemma 1, we may prove that there exist no mass-
symmetric, 3-type hypersurfaces with constant mean curvature in a hypersphere
of $E^{n+2}$ .

4. A non-existence theorem.

First, we mention the following [3, p. 279].

THEOREM 1. Let $M$ be a mass-symmetric surface of $S_{0^{3}}(1)$ . Then $M$ is of
2-type if and only if $M$ is the prOduct of two plane crrcles of different ra&i.

The Veronese surface in $S_{0^{4}}(1)$ is a nice example of (mass-symmetric) l-type
surface which lies fully in $S_{0^{4}}(1)$ . In contrast with this, we give the following
Non-existence Theorem.

THEOREM 2. There exist no mass-symmetric, 2-type surfaces which lie fully
in $S_{0^{4}}(1)$ .

PROOF. Assume that $M$ is a mass-symmetric, 2-type surface which lies
fully in $S_{0^{4}}(1)$ . Then we have $\langle D\xi, D\xi_{4}\rangle=0$. Thus, (3.14) reduces to

(4.1) $\mathfrak{U}’(H’)=\alpha’tr(\nabla\omega_{3}^{4})\xi_{4}$ .
Combining (3.7) and (4.1), we obtain

(4.2) $tr(A_{3}A_{4})=tr(\nabla\omega_{3^{4}})$ .
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On the other hand, by using constancy of $\alpha’$ (Lemma 2), Lemmas 2 and 3
imply $trA_{D\xi}=0$. Let $e_{1},$ $e_{2}$ be eigenvectors of $A_{4}$ . Since $trA_{4}=0$ , we may as-
sume that $A_{4}e_{1}=\mu e_{1}$ and $A_{4}e_{2}=-\mu e_{2}$ . Thus by using $trA_{D\xi}=0$ , we find $\mu\omega_{3}^{4}=0$ ,
$i$ . $e.,$ $A_{d\mathfrak{l}}\omega_{3}^{4}=0$. Combining this with (4.2), we obtain $tr(A_{3}A_{4})=0$.

Let $W=$ { $u\in M|A_{4}\neq 0$ at $u$ }. Assume that $W\neq\emptyset$ and $U$ is a connected
component of $W$. Then $U$ is open and $D’\xi_{3}=D’\xi_{4}=0$ . Let $e_{1},$ $e_{2}$ be an ortho-
normal tangent basis on $U$ such that, with respect to $e_{1},$ $e_{2},$ $A_{3}$ and $A_{4}$ are
given by

(4.3) $A_{3}=(\begin{array}{ll}\beta 00 \gamma\end{array})$ , $A_{4}=(\begin{array}{ll}c bb -c\end{array})$ .

Since $tr(A_{3}A_{4})=0,$ $(3.7)$ and (4.3) give $(\beta-\gamma)c=0$. On the other hand, Lemmas
2 and 4 imply $\Vert A_{3}\Vert^{2}\neq 2(\alpha’)^{2}$ . Thus $U$ is not pseudo-umbilical, $i$ . $e.,$ $\beta\neq\gamma$ . Con-
sequently, we have $c=0$. Moreover, since $D’\xi_{8}=D’\xi_{4}=0$ on $U$ , Ricci’s equation
gives $[A_{3}, A_{4}]=0$. Therefore, $b=0$ too. Hence, $W=\emptyset$ . Thus, we have $A_{4}=0$

on $M$. This gives $\omega_{1}^{4}=\omega_{2}^{4}=0$ . By taking exterior differentiation of tbese we
obtain

(4.4) $\beta\omega^{1}\wedge\omega_{3}^{4}=\gamma\omega^{2}\wedge\omega_{3^{4}}=0$ .
Let $G$ denote the Gauss curvature of $M$. Then we have $G=1+\beta\gamma$ . Let $V=$

$\{u\in M|G(u)\neq 1\}$ . Then, on $V,$ $(4.4)$ implies $\omega_{3^{4}}=0,$ $i.e.,$ $D\xi_{3}=0$ . Thus, Lemmas
2 and 4 imply that both $\beta$ and $\gamma$ are constant. Hence, by taking the exterior
differentiation of $\omega_{1}^{3}=\beta\omega^{1}$ and $\omega_{2}^{3}=\gamma\omega^{2}$ , we obtain $\omega_{1^{2}}=0$ . Thus, $G=0$ . So, by
the continuity of $G$ on $M$, we obtain $G\equiv 0$ or $G\equiv 1$ . If $G\equiv 0$ , then by $A_{4}=\omega_{3^{4}}=0$ ,
we conclude that $M$ is in fact a flat surface in a great hypersphere of $S_{0^{4}}(1)$ .
This is a contradiction. Therefore, $G\equiv 1$ on $M$. Hence, $\beta\gamma=0$. Since $\beta+\gamma$ is
constant, $\beta$ and $\gamma$ are both constant. Without loss of generality, we may as-
sume $th\lfloor at\beta=0$ . Since $M$ is of 2-type, $\gamma\neq 0$. Thus, we have $\omega_{1}^{3}=0$ and $\omega_{2^{S}}=\gamma\omega^{2}$ ,
$\gamma\neq 0$. 1By taking exterior differentiation of these equations, we obtain $\omega_{2^{1}}=0$

which implies $G=0$. This is a contradiction. (Q. E. D.)

5. Stationary, 2-type surfaces.

Let $f:Marrow M’$ be an isometric immersion of a surface $M$ into an m-dimen-
sional Riemannian manifold $M’$ . We denote by $\alpha’$ and $R’$ the mean curvature
of $f$ and the sectional curvature of $M’$ with respect to the tangent space of $M$

and define $\tau(f)$ by

(5.1) $\tau(f)=\int_{M}((\alpha’)^{2}+R’)dV$ .

It was proved in [2] that $\tau(f)$ is an invariant under conformal changes of the
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metric of $M’$ (cf. also [3, p. 207]). We call $\tau(f)$ the conformal total mean cur-
vature. The variation of $\tau(f)$ was calculated in [10] (cf. also [3, pp. 213-225]).

When $M’$ is the unit hypersphere $S_{0}^{m}(1)$ of $E^{m+1},$ $f$ is a stationary point of $\tau$

if and only if

(5.2) $\Delta^{D’}H’=-2(\alpha’)^{2}H’+\Vert A_{\xi}\Vert^{2}H’+\mathfrak{A}’(H’)$ ,

where $H’$ is the mean-curvature vector of $M$ in $S_{0^{m}}(1)$ and $H’=\alpha’\xi,$ $\alpha’=|H’$ .
In [5], Ejiri showed that the isometric immersion $f$ from the flat torus

$S^{1}(1)\cross S^{1}(\sqrt{1}/3)$ into $S^{5}$ defined by

$f((x, y),$ $(z, w))=(\sqrt{2/3}x, xz, xw, \sqrt{2/3}y, yz, yw)$

is a mass-symmetric, stationary, non-minimal surface in $S^{5}$ .
It is easy to see that Ejiri’s example is a 2-type surface in $S^{5}$ . In the fol-

lowing, we want to classify stationary, 2-type, mass-symmetric surfaces in $S^{m}$ .
In particular, we shall obtain the following.

THEOREM 3. Let $M$ be a stationary, mass-symmetric, 2-type surface in $S_{0^{m}}(1)$ .
Then $M$ is a flat surface which lies fully in a totally geodesic $S_{0^{5}}(1)$ or in a totally
geodeszc $S_{0^{7}}(1)$ in $S_{0}^{m}(1)$ .

PROOF. We need some lemmas.

LEMMA 5. Let $M$ be a stationary, mass-symmetric, 2-type surface in $S_{0^{m}}(1)$

in $E^{m+1}$ . Then we have
(1) $M$ is an $\mathfrak{U}$ -surface,
(2) $|H’|^{2}=(2-\lambda_{p})(\lambda_{q}-2)/4\neq 0$ ,
(3) $\Vert A_{\xi}\Vert^{2}=\lambda_{p}+\lambda_{q}-2-\lambda_{p}\lambda_{q}/4$ ,
(4) $\Vert D’\xi\Vert^{2}=\lambda_{p}\lambda_{q}/4$ ,
(5) $M$ is not pseudo-umbilical,
(6) $tr(\overline{\nabla}A_{H’})=0$ ,
(7) $tr(\nabla\omega_{3}^{r})=\langle D’\xi, D’\xi_{r}\rangle,$ $r=4,$ $\cdots$ , $m$ .

Conversely, if $M$ is an $\mathfrak{U}$-surface of $S_{0^{m}}(1)$ satisfyng (2), (3), (4), (6), and (7),

then $M$ is a stationary, mass-symmetric 2-type surface in $S_{0^{m}}(1)$ .

PROOF. If $M$ is mass-symmetric and of 2-type in $S_{0}^{m}(1)\subset E^{m+1},$ $\alpha’$ is a
nonzero constant. So, there is a unit normal vector field $\xi$ on $M$ which is
parallel to $H’$ . From Lemma 2 we obtain (2) and (6). Moreover, from Lemma
4 we find

(5.3) $\Vert A_{\xi}\Vert^{2}+\Vert D’\xi\Vert^{2}=\lambda_{p}+\lambda_{q}-2$ .
Since $M$ is stationary, (5.2) holds. Thus, by Lemmas 1 and 2, we find
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(5.4) $\Delta H=2\mathfrak{A}’(H’)+2(\Vert A_{\xi}\Vert^{2}-(\alpha’)^{2}+1)H’-2(\alpha’)^{2}x$ .
On the other hand, since $M$ is mass-symmetric and of 2-type, we also have

(5.5) $\Delta H=(\lambda_{p}+\lambda_{q})H’+(\lambda_{p}\lambda_{q}/2-(\lambda_{p}+\lambda_{q}))x$ .
Thus, by combining (5.4) and (5.5), we obtain (1), (2) and (3). Statement (4)

follows from statement (3) and (5.3). Statement (5) follows from (2) and (3).

Moreover, by aPplying Lemma 4 and (1), we obtain (7). The converse of this
can be easily verified.

We choose $\{e_{1}, e_{2}\}$ which diagonalizes $A_{3}$ . Then we have $h_{11}^{4}=\ldots=h_{11}^{m}=0$

because $M$ is not pseudo-umbilical and it is an $\mathfrak{U}$-surface. From Lemma 5, we
also have $D’\xi\neq 0$. Because $M$ is 2-dimensional, we may assume that $D’\xi$ lies
in the normal subspace spanned by $\xi_{4}$ and $\xi_{5}$ . So, by a suitable choice of
$\xi_{4},$ $\cdots$ , $\xi_{m}$ , we have

$A_{3}=(\begin{array}{ll}\beta 00 \gamma\end{array})$ , $A_{4}=(\begin{array}{ll}0 bb 0\end{array})$ , $A_{6}=(\begin{array}{ll}0 cc 0\end{array})$ ,

(5.6)
$A_{5}=A_{7}=$ $=A_{m}=0$ , $D’\xi_{3}=\omega_{3}^{4}\xi_{4}+\omega_{3}^{5}\xi_{5}$ ,

where $\beta$ and $\gamma$ are unequal constants.

LEMMA 6. Under the $hyPothesis,$ $M$ is flat and $\omega_{1^{2}}=b\omega_{3}^{4}=0$ .
PROOF. Lemmas 2 and 3 imply tr $A_{D’\xi}=0$ . Thus (5.6) gives $b\omega_{3}^{4}=0$ . So,

by taking differentiation of $\omega_{1}^{3}=\beta\omega^{1}$ and $\omega_{2}^{3}=\gamma\omega^{2}$ , and by using (5.6) and struc-
ture equations, we obtain $\omega_{1}^{2}=0$ . From $\omega_{1}^{2}=0$ , we see that $M$ is flat.

If $b\neq 0$ , then Lemma 6 gives $\omega_{3}^{4}=0$ and $D’\xi_{3}$ being perpendicular to the
first normal space. Thus, by choosing $\xi_{3},$ $\cdots$ , $\xi_{m}$ such that the first normal
space is spanned by $\xi_{3}$ and $\xi_{4}$ , we obtain the following case (1). Otherwise,
we have case (2):

Case (1). With respect to the frame field we have

$A_{3}=(\begin{array}{ll}\beta 00 \gamma\end{array})$ , $A_{4}=(\begin{array}{ll}0 bb 0\end{array})$ , $A_{5}=$ $=A_{m}=0$ ,

(5.7)
$D’\xi_{3}=\omega_{3}^{5}\xi_{5}$ , $\omega_{1}^{2}=0$ , $b\neq 0$ ,

or
Case (2). With respect to the frame field, we have

$A_{3}=(\begin{array}{ll}\beta 00 \gamma\end{array})$ , $A_{4}=A_{5}=0$ , $A_{6}=(\begin{array}{ll}0 bb 0\end{array}),$ $A_{7}=$ $=A_{m}=0$ ,

(5.8)
$D’\xi_{3}=\omega_{3}^{4}\xi_{4}+\omega_{3}^{5}\xi_{5}$ , $\omega_{1}^{2}=0$ .
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In both cases, $\beta,$
$\gamma$ and $b$ are constants with $b^{2}=1+\beta\gamma$ .

We consider cases (1) and (2) seParately.

If Case (1) holds, we have $\omega_{1}^{3}=\beta\omega^{1},$ $\omega_{2}^{3}=\gamma\omega^{2},$ $\omega_{1^{4}}=b\omega^{2},$ $\omega_{2}^{4}=b\omega^{1},$ $\omega_{i^{r}}=0$ for
$i=1,2;r=5,$ $\cdots$ , $m$ . Taking differentiation of $\omega_{t^{r}}=0$ , we obtain $\omega_{4}^{r}=0$ , for
$r=6,$ $\cdots$ , $m$ . Thus,

(5.9) $D’\xi_{4}=\omega_{4}^{5}\xi_{5}$ .
We put

(5.10) $\omega_{3}^{5}=\mu_{1}\omega^{1}+\mu_{2}\omega^{2}$ , $\omega_{4}^{5}=\eta_{1}\omega^{1}+\eta_{2}\omega^{2}$ .
Taking exterior differentiation of $\omega_{i^{5}}=0,$ $i=1,2$ , we obtain $\omega_{i^{ff}}\wedge\omega_{3}^{5}+\omega_{i^{4}}\Lambda\omega_{4^{5}}=0$ .
Thus, by aPplying (5.7) and (5.10), we may obtain

(5.11) $\eta_{1}=\beta\mu_{2}/b$ , $\eta_{2}=\gamma\mu_{1}/b$ .
On the other hand, since $\omega_{3}^{4}=0$ , Lemma 5 and (5.10) imply

(5.12) $0=tr(\nabla\omega_{3}^{4})=\mu_{1}\eta_{1}+\mu_{2}\eta_{2}$ .

Combining (5.11) and (5.12) we find $\mu_{1}\mu_{2}=0$. Since $(\mu_{1})^{2}+(\mu_{2})^{2}=\lambda_{p}\lambda_{q}/4$ is a con-
stant, we obtain $\mu_{1}\equiv 0$ or $\mu_{2}\equiv 0$ . Without loss of generality, we may assume
that $\mu_{2}\equiv 0$ . Thus, we get

(5.13) $\omega_{3}^{5}=\mu\omega^{1}\neq 0$ , $\mu^{2}=\lambda_{p}\lambda_{q}/4$ , $\omega_{4}^{5}=(\lambda\mu/b)\omega^{2}$ .
Now, since $\omega_{3}^{r}=0$ for $r=6,$ $\cdots$ , $m$ , Lemma 6 implies $\nabla\omega_{3}^{r}=0$ where we use the
definition of $\nabla\omega_{3}^{r}$ . Thus, by (7) of Lemma 5, (5.7) and (5.13), we obtain

(5.14) $\omega_{5}^{r}(e_{1})=0$ , $r=6,$ $\cdots$ $m$ .
Moreover, by taking exterior differentiation of $\omega_{\theta}^{r}=0$ and using (5.13), we may
find $\omega^{1}\wedge\omega_{5}^{r}=0$. Combining this with (5.14) we find $\omega_{5}^{r}=0$ for $r=6,$ $\cdots$ , $m$ .
Since we already know that $\omega_{3}^{r}=\omega_{4}^{r}=0$ for $r=6,$ $\cdots$ , $m$ , the normal subspace
spanned by $\{\xi_{3}, \xi_{4}, \xi_{5}\}$ is parallel with respect to the normal connection $D’$.
Since the first normal subspace is spanned by $\{\xi_{3}, \xi_{4}\}$ , Therefore, by a reduc-
tion theorem of submanifold [6], we may conclude that in fact $M$ lies in a
totally geodesic $S_{0^{5}}(1)$ of $S_{0^{m}}(1)$ . We summarize these as the following.

LBMMA 7. Let $M$ be a stationary, mass-symmetric, 2-type surface in $S_{0}^{m}(1)$ .
If Case (1) holds, then $M$ lies fully in a totally geodestc 5-sphere $S_{0^{5}}(1)$ of $S_{0^{m}}(1)$ .
Moreover, wzth respect to a suitable orthonormal frame $\{e_{1}, e_{2}, \xi_{3}, \xi_{4}, \xi_{5}\}$ of $M$ in
$S_{0^{5}}(1)$ , we have
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(5.15)
$A_{3}=(\begin{array}{ll}\beta 00 \gamma\end{array})$ , $A_{4}=(\begin{array}{ll}0 bb 0\end{array})$ , $A_{5}=0$ , $\omega_{1}^{2}=0$ , $D’\xi_{3}=\mu\omega^{1}\xi_{5}$ ,

$D’\xi_{4}=(\gamma\mu/b)\omega^{2}\xi_{5}$ , $\beta\gamma+1=b^{2}$ , $\mu^{2}=\lambda_{p}\lambda_{q}/4$ , $b^{2}(\beta-\gamma)+\gamma\mu^{2}=0$ .

The last equation in (5.15) follows from the exterior differentiation of $\omega_{3}^{4}=0$ .
Now, we shall consider Case (2). In this case, we have

$\omega_{1^{2}}=0$ , $\omega_{1}^{3}=\beta\omega^{1}$ , $\omega_{2}^{3}=\gamma\omega^{2}$ , $\omega_{i^{4}}=\omega_{i^{5}}=0$ , $\omega_{1}^{6}=b\omega^{2}$ ,
(5.16)

$\omega_{2}^{6}=b\omega^{1}$ , $\omega_{i^{r}}=0$ , $\omega_{3}^{6}=$ $=\omega_{3}^{m}=0$ , $i=1,2$ , $r=7,$ $\cdots$ , $m$ .
Moreover, we have

(5.17) $\beta\gamma+1=b^{2}$ and $D’\xi_{3}=\omega_{3}^{4}\xi_{4}+\omega_{3}^{5}\xi_{5}\neq 0$ .
Taking exterior differentiation of $\omega_{i^{4}}=\omega_{i^{5}}=0$ and applying(5.17), we obtain

(5.18) $\beta\omega^{1}\wedge\omega_{3}^{5}+b\omega^{2}\wedge\omega_{6}^{\overline{o}}=\gamma\omega^{2}\Lambda\omega_{3}^{6}+b\omega^{1}\Lambda\omega_{6}^{5}=0$ ,

(5.19) $\beta\omega^{1}\wedge\omega_{3}^{4}+b\omega^{2}\wedge\omega_{6}^{4}=\gamma\omega^{2}\Lambda\omega_{3}^{4}+b\omega^{1}\wedge\omega_{6}^{4}=0$ .

If $b=0,$ $(5.17)$ gives $\beta\gamma\neq 0$. Moreover, (5.18) and (5.19) imply $\omega_{3}^{4}=\omega_{3}^{5}=0$ .
This contradicts (5.17). Thus, we see that $b$ is a nonzero constant.

By taking exterior differentiation of $\omega_{t^{r}}=0,$ $r=7,$ $\cdots$ , $m$ , and applying (5.16),

we get

(5.20) $\omega_{6}^{r}=0$ , $r=7,$ $\cdots$ $m$ .
We Put

(5.21) $\omega_{3}^{4}=\alpha_{1}\omega^{1}+\alpha_{2}\omega^{2}$ , $\omega_{3}^{5}=\delta_{1}\omega^{1}+\delta_{2}\omega^{2}$ .
Then by (5.18) and (5.19) we find

(5.22) $\omega_{6}^{4}=(\beta\alpha_{2}/b)\omega^{1}+(\gamma\alpha_{1}/b)\omega^{2}$ ,

(5.23) $\omega_{6}^{5}=(\beta\delta_{2}/b)\omega^{1}+(\gamma\delta_{1}/b)\omega^{2}$ .
Because $\omega_{3}^{6}=0$ , Lemma 5 implies $0=tr(\nabla\omega_{3}^{6})=\langle D’\xi_{3}, D’\xi_{6}\rangle=0$ . Therefore, (5.21),
(5.22) and (5.23) give

(5.24) $\alpha_{1}\alpha_{2}+\delta_{1}\delta_{2}=0$ .
In the following, we may choose $\xi_{4}$ in such a way that

(5.25) $D_{e_{1}}’\xi_{3}=\omega_{3}^{4}(e_{1})\xi_{4}$ , $\delta_{1}=0$ .
Therefore, we obtain

(5.26) $\omega_{3}^{5}=\delta\omega^{2}$ , $\omega_{6}^{5}=(\beta\delta/b)\omega^{1}$
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where $\delta=\delta_{2}$ . Since $\delta_{1}=0,$ $(5.24)$ gives

(5.27) $\alpha_{1}=0$ or $\alpha_{2}=0$ .
If $\alpha_{1}=0$ , we have

(5.28) $D_{e_{1}}’\xi_{3}=0$ .
In this case, we may choose $\xi_{4}$ in such a way that

(5.29) $D’\xi_{3}=\omega_{3}^{4}\xi_{4}$ , $\omega_{3}^{4}=\alpha_{2}\omega^{2}$ .
Then we have $\omega_{3}^{5}=0$. Therefore, by interchanging $\xi_{4}$ and $\xi_{6}$ , we obtain Case
(1). If $\delta=0$ , the same argument holds. Consequently, we obtain the following.

LEMMA 8. If $M$ is not the flat surface in a $S_{0^{5}}(1)$ mentioned in Lemma 7,
then, with respect to a suitable orthonormal frame $\{e_{1}, e_{2}, \xi_{3}, \cdots , \xi_{m}\}$ , we have

$A_{3}=(\begin{array}{ll}\beta 00 \gamma\end{array})$ , $A_{4}=A_{5}=0$ , $A_{6}=(\begin{array}{ll}0 bb 0\end{array})$ , $A_{7}=$ $=A_{m}=0$ ,

(5.30) $\omega_{1}^{2}=0$ , $\omega_{3}^{4}=\alpha_{1}\omega^{1}$ , $\omega_{3}^{5}=\delta\omega^{2}$ , $\omega_{3}^{6}=\cdots=\omega_{3}^{m}=0$ , $\omega_{4}^{6}=-(\gamma\alpha_{1}/b)\omega^{2}$ ,

$\omega_{5}^{6}=-(\beta\delta/b)\omega^{1}$ , $\omega_{6}^{7}=$ $=\omega_{6}^{m}=0$ , $\beta\gamma+1=b^{2}\neq 0$ , $\alpha_{1}\delta\neq 0$ .
Now, we also need the following.

LEMMA 9. Under the hypothesis of Lemma 8, we may choose the frame
$\{e_{1}, e_{2}, \xi_{3}, \cdots , \xi_{m}\}$ in such a way that, in addition to (5.30), we also have

(5.31) $\omega_{4}^{5}=0$ , $\omega_{4}^{r}=\omega_{5}^{r}=0$ for $r=8,$ $m$ ,

(5.32) $\alpha_{1}$ and $\delta$ are constant.

PROOF. Since $A_{4}=0$ , equation of Ricci implies

$0=\langle D_{e_{1}}’D_{e_{2}}’\xi_{6}, \xi_{4}\rangle-\langle D_{e_{2}}’D_{e_{1}}’\xi_{6}, \xi_{4}\rangle$ .
Thus, by (5.30) and constancy of $\beta,$

$\gamma$ and $b$ , we obtain

(5.33) $\gamma e_{1}(\alpha_{1})=\beta\delta\omega_{5}^{4}(e_{2})$ .
Similarly, by using $[A_{5}, A_{6}]=0$ and equation of Ricci, we also have

(5.34) $\beta e_{2}(\delta)=\gamma\alpha_{1}\omega_{4}^{5}(e_{1})$ .
On the other hand, by (5.30), we have

(5.35) $tr(\nabla\omega_{3}^{4})=e_{1}(\alpha_{1})$ , $tr(\nabla\omega_{3}^{5})=e_{2}(\delta)$ .
Thus, by applying statement (7) of Lemma 5 and (5.30), we find
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(5.36) $e_{1}(\alpha_{1})=\delta\omega_{4}^{5}(e_{2})$ , $e_{2}(\delta)=\alpha_{1}\omega_{4}^{5}(e_{1})$ .
Since $M$ is not pseudo-umbilical (Lemma 5) and $\alpha_{1}\delta\neq 0$ (Lemma 8), (5.33), (5.34)

and (5.36) imply

(5.37) $\omega_{4}^{5}=0$ ,

(5.38) $e_{1}(\alpha_{1})=e_{2}(\delta)=0$ .
On the other hand, since $[A_{3}, A_{4}]=[A_{3}, A_{5}]=0$ , the equation of Ricci, (5.30)

and (5.37) imply

(5.39) $e_{2}(\alpha_{1})=e_{1}(\delta)=0$ .
Combining (5.38) and (5.39) and using the constancy of $\beta$ and $\gamma$ , we see that
$\gamma\alpha_{1}$ and $\beta\delta$ are constant.

Now, we want to prove that $\omega_{4}^{r}=\omega_{5}^{r}=0$ for $r=8,$ $\cdots$ , $m$ . Since $\omega_{\epsilon}^{r}=0$ ,
statement (7) of Lemma 5 and (5.30) give

(5.40) $\alpha_{1}\omega_{4}^{r}(e_{1})+\delta\omega_{5}^{\tau}(e_{2})=0$ , $r=7,$ $\cdots$ , $m$ .
On the other hand, from $\omega_{6}^{r}=0,$ $r=7,$ $\cdots$ , $m$ , we find

(5.41) $-\gamma\alpha_{1}\omega_{4}^{\tau}(e_{1})+\beta\delta\omega_{5}^{r}(e_{2})=0$ , $r=7,$ $\cdots$ , $m$ .
Since $(\beta+\gamma)\alpha_{1}\delta\neq 0,$ $(5.40)$ and (5.41) imply

(5.42) $\omega_{4}^{r}(e_{1})=\omega_{5}^{\tau}(e_{2})=0$ , $r=7,$ $m$ .
Thus, we have

(5.43) $D_{e_{1}}’\xi_{4}=-\alpha_{1}\xi_{3}$ , $D_{e_{2}}’\xi_{5}=-\delta\xi_{3}$ .
Now, since $D_{e_{2}}\xi_{4}$ has no component in span $\{\xi_{3}, \xi_{4}, \xi_{5}\}$ , we may choose $\xi_{7}$ in such
a way that we have

(5.44) $D_{e_{2}}’\xi_{4}=\omega_{4}^{6}(e_{2})\xi_{6}+\omega_{4}^{7}(e_{2})\xi_{7}$ .
In this way, we have $\omega_{4}^{8}(e_{2})=$ $=\omega_{4}^{m}(e_{2})=0$ . Combining this with (5.42), we
obtain $\omega_{4}^{8}=\ldots=\omega_{4}^{m}=0$ .

Taking exterior differentiation of $\omega_{3}^{r}=0,$ $r=7,$ $\cdots$ , $m$ and aPplying (5.30),

we obtain

(5.45) $\alpha_{1}\omega_{4}^{r}(e_{2})=\delta\omega_{5}^{r}(e_{1})$ , $r=7,$ $\cdots$ $m$ .
Combining this with $\omega_{4}^{r}=0$ for $r=8,$ $\cdots$ , $m$ , and (5.40), we have $\omega_{5}^{r}=0$ for $r=$

$8,$ $\cdots$ , $m$ . This proves the lemma.

From (5.42), we may put
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(5.46) $\omega_{4}^{7}=\mu_{1}\omega^{2}$ , $\omega_{5}^{7}=\mu_{2}\omega^{1}$ .
Taking exterior differentiation of (5.46) we may obtain

(5.47) $e_{1}(\mu_{1})=e_{2}(\mu_{2})=0$

From (5.45) and (5.46) we $g$et

(5.48) $\alpha_{1}\mu_{1}=\delta\mu_{2}$ .

Since $\alpha_{1}$ and $\delta$ are nonzero constants, (5.47) and (5.48) show that $\mu_{1}$ and $\mu_{2}$ are
constants, too. Since $\alpha_{1}\delta\neq 0,$ $(5.48)$ implies that either $\mu_{1}=\mu_{2}=0$ or $\mu_{1}$ and $\mu_{2}$

are nonzero constants satisfying $\alpha_{1}\mu_{1}=\delta\mu_{2}$ . If $\mu_{1}=\mu_{2}=0$ , we obtain $\omega_{4^{7}}=\omega_{5^{7}}=0$ .
Thus, by applying Lemmas 8 and 9, and equation of Ricci, we find

$\beta\gamma\alpha_{1}\delta=b^{2}\langle D_{e_{1}}’D_{e_{2}}^{\text{m}}\xi_{4}, \xi_{5}\rangle=b^{2}\langle D_{e_{2}}’D_{e_{1}}’\xi_{4}, \xi_{5}\rangle=-\alpha_{1}\delta b^{2}$ .
Since $\beta\gamma+b^{2}=1$ , we have $\alpha_{1}\delta=0$ . This is a contradiction. Consequently, we
conclude that $\mu_{1}$ and $\mu_{2}$ are nonzero constant. Now, taking exterior differentia-
tion of $\omega_{4}^{r}=0$ for $r=8,$ $\cdots,$ $m$ and aPplying Lemmas 11 and 12 and (5.46), we
may obtain $\omega^{2}\wedge\omega_{7}^{r}=0$ for $r=8,$ $\cdots,$ $m$ . Similarly, by taking exterior differentia-
tion of $\omega_{\epsilon^{r}}=0,$ $r=8,$ $\cdots,$ $m$ , we may conclude that $\omega^{1}\Lambda\omega_{7}^{\tau}=0$ . Consequently, we
have $\omega_{7}^{8}=\ldots=\omega_{7}^{m}=0$ . Combining these with (5.30) and (5.31), we see that the
normal subspace $\nu=span\{\xi_{3}, \cdots , \xi_{7}\}$ is parallel with respect to the normal con-
nection $D’$ . Moreover, $\nu$ contains the first normal space span $\{\xi_{3}, \xi_{6}\}$ . Thus,
by a reduction theorem of submanifolds [6], we conclude that $M$ is in fact con-
tained in a totally geodesic 7-sphere $S_{0^{7}}(1)$ of $S_{0^{m}}(1)$ . Furthermore, from the
connection form $(\omega_{A^{B}})$ , $A,$ $B=1,$ $\cdots$ , 8, of $M$ in $S_{0^{m}}(1)$ , we may also conclude
that $M$ lies fully in $S_{0^{7}}(1)$ . This completes the proof of the theorem.

6. Connection form.

Theorem 3 says that if $M$ is a stationary, mass-symmetric, 2-type surface
in $S_{0}^{m}(1)$ , then $M$ is flat and it lies fully in a $S_{0^{5}}(1)$ or $S_{0^{7}}(1)$ . In this section,
we shall determine the connection form of such surfaces.

THEOREM 4. If $M$ is a stationary, mass-symmetric, 2-type surface in $S_{0^{\overline{o}}}(1)$ ,
then $M$ is flat and $2/3<\lambda_{p}<2$ . Moreover, $u\eta th$ respect to an adapted orthonormal
frame field, the connection form is given by (6.1) if $2/3<\lambda_{p}\leqq 4/3$ and given by
(6.1) or (6.2) if $4/3<\lambda_{p}<2$ :



Stationary 2-type surfaces 641

(6.1)

where $c=\lambda_{p}$ is a real number satisfying $2/3<c<2$ , or

(6.2) $( \frac{00}{\frac\omega^{1}-\frac{1}{2}\sqrt{3c-4}\omega^{2},2\sqrt{3c-4}4-c}|\frac{\frac{c-4}{2\sqrt{3c-4}}\omega^{1}\frac{1}{2}\sqrt{c}\omega^{2}0\frac{1}{2}\sqrt{3c-4}\omega^{2}\frac{1}{2}\sqrt{c}\omega^{1}0}{\frac{c}{\sqrt{6c-8}}\omega^{1}-\frac{\sqrt c}{\sqrt 2}\omega^{2}0000\frac{-c}{\sqrt{c8}-\frac{6-\sqrt{c}}{\sqrt{2}}\omega 0}\omega_{2}^{1}}1$

where $c=\lambda_{p}$ is a real number satisfying $4/3<c<2$ .
$F^{)}ROOF$ . Under the hypothesis, Lemma 7 implies

(6.3) $\omega_{1}^{2}=\omega_{1^{5}}=\omega_{2}^{5}=\omega_{3}^{4}=0$ , $\omega_{1}^{3}=\beta\omega^{1}$ , $\omega_{2}^{3}=\gamma\omega^{2}$

(6.4) $\omega_{1^{4}}=b\omega^{2}$ , $\omega_{2}^{4}=b\omega^{1}$ $\omega_{3}^{5}=\mu\omega^{1}$ , $\omega_{4}^{5}=\frac{\gamma\mu}{b}\omega^{2}$ ,

(6.5) $\beta\gamma+1=b^{2}$ , $\mu^{2}=\lambda_{p}\lambda_{q}/4$ , $b^{2}(\beta-\gamma)+\gamma\mu^{2}=0$ .
Moreover, Lemmas 5 and 7 also imply

(6.6) $(\beta+\gamma)^{2}=(2-\lambda_{p})(\lambda_{q}-2)$ ,

(6.7) $\beta^{2}+\gamma^{2}=\lambda_{p}+\lambda_{q}-2-\lambda_{p}\lambda_{q}/4$ .
By using the second equation of (6.5), (6.6) and (6.7) we obtain

(6.8) $2\mu^{2}=(\beta-\gamma)^{2}$ .
Replacing $\xi_{5}$ by $-\xi_{5}$ if necessary, we may assume that
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(6.9) $\sqrt{2}\mu=\beta-\gamma$ .
By using (6.5) and (6.9), we may obtain

(6.10) $\beta=(\gamma^{2}-2)/3\gamma$ , $\mu=-\sqrt{2}(1+\gamma^{2})/3\gamma$ , $b^{2}=(1+\gamma^{2})/3$ .
Replacing $\xi_{4}$ by $-\xi_{4}$ if necessary, we may assume that $b$ is positive, so we
have

(6.11) $b=(1+\gamma^{2})^{1/2}/\sqrt{3}$ .
Substituting the first equation of (6.10) into (6.6) and (6.7) and then solving $\lambda_{q}$

in terms of $\lambda_{p}$ , we may obtain

(6.12) $\lambda_{q}=2\lambda_{p}/(3\lambda_{p}-4)$ or $\lambda_{q}=4\lambda_{p}/(3\lambda_{p}-2)$ .
On the other hand, since $M$ is mass-symmetric in $S_{0^{5}}(1)$ and of 2-type, Theorem
9.1 of Chen [3, p. 307] gives $0<\lambda_{p}<2<\lambda_{q}$ . Thus, by (6.12), we see that the
first equation of (6.12) holds only when $4/3<\lambda_{p}<2$ and the second equation
holds only when $2/3<\gamma_{p}<2$ . Combining this with $(6.3)-(6.7)$ and $(6.9)-(6.11)$ , we
may obtain the theorem. (Q. E. D.)

REMARK 2. Theorem 4 shows that the immersion is rigid.

REMARK 3. In the next section, we will show that both cases of (6.1) and
(6.2) occur and the estimates on $\lambda_{p}$ are best possible.

For a stationary, mass-symmetric, 2-type surface which lies fully in $S_{0^{7}}(1)$ ,
Lemmas 5, 8 and 9 and (5.46), (5.47) give

(6.13) $\omega_{1}^{2}=\omega_{1}^{4}=\omega_{2}^{4}=\omega_{1}^{5}=\omega_{2}^{5}=\rho)_{1^{7}}=\omega_{2^{7}}=\omega_{3}^{6}=\omega_{3}^{7}=\omega_{4}^{5}=\omega_{6}^{7}=0$ ,

(6.14) $\omega_{1}^{3}=\beta\omega^{1}$ , $\omega_{2}^{3}=\gamma\omega^{2}$ , $\omega_{1}^{6}=b\omega^{2}$ , $\omega_{2}^{6}=b\omega^{1}$ ,

(6.15) $\omega_{3}^{4}=\alpha_{1}\omega^{1}$ , $\omega_{3}^{5}=\delta\omega^{2}$ , $\omega_{4}^{6}=-\frac{\gamma\alpha_{1}}{b}\omega^{2}$ , $\omega_{5^{6}}=-\frac{\beta\delta}{b}\omega^{1}$ ,

(6.16) $\omega_{4}^{7}=\mu_{1}\omega^{2}$ , $\omega_{5}^{7}=\mu_{2}\omega^{1}$ ,

(6.17) $\beta\gamma+1=b^{2}$ , $\alpha_{1}\mu_{1}=\delta\mu_{2}$ , $\beta\neq\gamma$ , $\beta+\gamma\neq 0$ ,

(6.18) $(\beta+\gamma)^{2}=(2-\lambda_{p})(\lambda_{q}-2)$ , $\beta^{2}+\gamma^{2}=\lambda_{p}+\lambda_{q}-\frac{1}{4}\lambda_{p}\lambda_{q}$ ,

(6.19) $\alpha_{1}^{2}+\delta^{2}=\frac{1}{4}\lambda_{p}\lambda_{q}$ , $\alpha_{1}\delta b\mu_{1}\mu_{2}\neq 0$ ,

where $\beta,$
$\gamma,$

$b,$ $\alpha_{1},$
$\delta,$

$\mu_{1}$ and $\mu_{2}$ are constants. Moreover, by taking differentia-
tion of $\omega_{3}^{6}=0$ and $\omega_{4}^{5}=0$ , we may also obtain

(6.20) $(\beta-\lambda)b^{2}=\beta\delta^{2}-\gamma\alpha_{1}^{2}$ , $\alpha_{1}\delta b^{2}=\beta\gamma\delta\alpha_{1}+b^{2}\mu_{1}\mu_{2}$ .
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Combining (6.17) and (6.20), we have

(6.21) $( \mu_{1})^{2}=(\frac{\delta}{b})^{2}$ , $( \mu_{2})^{2}=(\frac{\alpha_{1}}{b})^{2}$ .
Without loss of generality, we may choose $\xi_{4},$ $\xi_{5},$ $\xi_{7}$ in such a way that $\alpha_{1},$

$\delta$

and $\mu_{1}$ are positive. Then we have $\mu_{1}=\delta/b$ and $\mu_{2}=\alpha_{1}/b$ . From (6.18) we get
$(\beta-\gamma)^{2}=\lambda_{p}\lambda_{q}/2$ . Furthermore, we have $0<\lambda_{p}<2<\lambda_{q}<\infty$ by Theorem 9.1 of [3,
p. 307]. By interchanging $e_{1}$ and $e_{2}$ and replacing $\xi_{3}$ by $-\xi_{3}$ if necessary, we
may assume that $\beta<\gamma$ and $\beta+\gamma>0$ . In this case, we have $\beta+\gamma=[(2-\lambda_{p})(\lambda_{q}-2)]^{1/2}$ .
From these we have the following.

THEOREM 5. If $M$ is a stationary, mass-symmetric, 2-type surface which lies
fully in $S_{0^{7}}(1)$ , then $M$ is a flat surface; moreover, with resPect to an adaPted
orthonormal frame field, the connection form $(\omega_{A^{B}})$ is given by

(6.22)

where $b,$ $\beta,$
$\gamma,$ $\alpha_{1},$

$\delta$ are constants satisfying

$\beta=(1/2)\sqrt{cd/2}+(1/2)\sqrt{(2-c)(d-2)}$, $\gamma=-(1/2)\sqrt{cd/2}+(1/2)\sqrt{(2-c)(d-2)}$ ,

$\alpha_{1}=(\gamma-\beta)(2+3\beta\gamma-\beta^{2})/2(\beta+\gamma)$ , $\delta=(\beta-\gamma)(2+3\beta\gamma-\gamma^{2})/2(\beta+\gamma)$ ,

$b=\sqrt{1+\beta\gamma}$ ,

for some constants $c=\lambda_{p}$ and $d=\lambda_{q}$ so that $0<c<2<d<\infty$ .
REMARK 4. For any real numbers $c$ and $d$ with $0<c<2<d<\infty$ , the con-

nection form given in Theorem 5 satisfies the structure equations (or integrability
condition). Thus, by Fundamental Theorem of Submanifolds, we see that there
is a “unique” isometric immersion $y$ from $R^{2}$ into $S_{0^{7}}(1)$ whose connection form
is given by (6.22). When $y$ is doubly-periodic, $y$ yields many stationary, mass-
symmetric, 2-type, flat surfaces in $S_{0^{7}}(1)$ with $\lambda_{p}=c$ and $\lambda_{q}=d$ . Theorem 5 also
implies that all stationary, mass-symmetric, 2-type surfaces which lie fully in
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$S_{0^{7}}(1)$ are obtained in this way.

7. Examples.

Let $R^{2}$ be the Euclidean plane with the Euclidean metric. Let $u,$ $v$ and $w$

be real numbers with $u,$ $v>0$ . We define the lattice

(7.1) $\Lambda=\{(2n\pi u, 2m\pi v+2n\pi w)|n, m\in Z\}$ .

The dual lattice of $\Lambda$ is given by

(7.2) $\Lambda^{*}=\{(\frac{h}{2\pi u}-\frac{kw}{2\pi uv},$ $\frac{k}{2\pi v})|h,$ $k\in Z\}$ .

Let $T_{uvw}$ be the flat torus given by $R^{2}/\Lambda$ . Then the spectrum of $T_{uvw}$ is
given by

(7.3) $\{(\frac{h}{u}-\frac{kw}{uv})^{2}+\frac{k^{2}}{v^{2}}|h,$ $k\in z\}$ .

For any nonzero real number $\epsilon$ and two natural numbers $h$ and $\overline{\epsilon}$ satisfying

(7.4) $\epsilon\neq 2h\overline{\epsilon}^{2}/(\overline{\epsilon}^{2}-2h^{2})$ ,

we put

$u=\sqrt{3}\epsilon\overline{\epsilon}/(2\epsilon^{2}+\overline{\epsilon}^{2})^{1/2}$ $v=\overline{\epsilon}/(2\epsilon^{2}+\overline{\epsilon}^{2})^{1/2}$

(7.5)
$w=(h-\epsilon)\overline{\epsilon}/(2\epsilon^{2}+\overline{\epsilon}^{2})^{1/2}$ , $e=\sqrt{2}\epsilon/(2\epsilon^{2}+\overline{\epsilon}^{2})^{1/2}$

and we define an isometric immersion $y$ from $R^{2}$ into $S_{0^{5}}(1)\subset E^{6}$ by

(7.6) $y(s, t)=(v \cos\frac{\epsilon s}{u}$ cos $\frac{t}{v},$ $v \cos\frac{\epsilon s}{u}\sin\frac{t}{v},$ $e$ cos $\frac{\overline{\epsilon}s}{u}$

$v \sin\frac{\epsilon s}{u}\cos\frac{t}{v},$ $v \sin\frac{\epsilon s}{u}\sin\frac{t}{v},$ $e$ sin $\frac{\overline{\epsilon}s}{u})$ .

The immersion $y$ induces an isometric immersion from $T_{uvw}$ into $S_{0^{5}}(1)$ which
is denoted by $x$ . Thus we have

(7.7) $x$ : $T_{uvw}arrow S_{0^{5}}(1)\subset E^{6}$ .
It is easy to see that if $\epsilon=\overline{\epsilon}=h=1$ , then (7.7) gives Ejiri’s example mentioned
in section 5.

PROPOSITION 1. For any nonzero real number $\epsilon$ and two natural numbers $h$

and $\overline{\epsilon}$ satisfying (7.4), the immersion $x:T_{uvw}arrow S_{0^{5}}(1)$ is a stationary, mass-sym-
metric, isometric immersion, where $u,$ $v$ and $w$ are defined by (7.5). Furthermore,
we have
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(a) $x$ is of $l$-type if and only if $\overline{\epsilon}^{2}=4\epsilon^{2}$ , in this case, $\lambda_{p}=2$ .
(b) Otherwise, $x$ is of 2-type uith $\lambda_{p}$ and $\lambda_{q}$ given by

(7.8) $\{\lambda_{p}, \lambda_{q}\}=\{(\frac{\overline{\epsilon}}{u})^{2},$ $( \frac{\epsilon}{u})^{2}+(\frac{1}{v})^{2}\}$ .

PROOF (Outlined). From (7.6) we see that $x$ is an isometric immersion.
The Laplacian of $T_{uvw}$ is given by $\Delta=-\partial^{2}/\partial s^{2}-\partial^{2}/\partial t^{2}$ . Therefore, the coordinate
functions of $x$ are eigenfunctions of $\Delta$ with eigenvalues given by (7.7). From
(7.5) and (7.6) we know that $\lambda_{p}=\lambda_{q}$ if and only if $\overline{\epsilon}^{2}=4\epsilon^{2}$ . In this case, $x$ is of
l-type. Otherwise, $x$ is of 2-type.

By direct, long computation, we may prove that $T_{uvw}$ is an $\mathfrak{U}$-surface of
$S_{0^{5}}(1)$ . Moreover, we may also prove that a mass-symmetric, 2-type, $\mathfrak{U}$-surface
of $S_{0^{m}}(1)$ is stationary if and only if $AH=2(\Vert A_{\xi}\Vert^{2}-2(\alpha’)^{2})H’+2\alpha^{2}H$. So, by a
long, straight-forward computation, we may in fact prove that the immersion $x$

satisfies this equation.

REMARK 5. It is easy to check that $w$ satisfies $w^{2}\leqq(2h^{2}+\overline{\epsilon}^{2})/2$ . If one
chooses $w^{2}\in(0, (2h^{2}+\overline{\epsilon}^{2})/2)$ , then one obtains two non-isometric tori. Otherwise,
if $w=0$ or $w^{2}=(2h^{2}+\overline{\epsilon}^{2})/2$ , one obtains only one torus. Moreover, if $w=0$ , the
torus is defined by a rectangular lattice.

THEOREM 6. We have the following two statements.
(a) For each real number $c$ with $2/3<c\leqq 4/3$ , there is a stationary, mass-

symmetric, 2-type, flat torus in $S_{0}^{5}(1)$ whose connection form is given by (6.1).

(b) For each real number $c$ with $4/3<c<2$ , there are two stationary, mass-
symmetric, 2-type, flat tori in $S_{0^{5}}(1)$ whose connection forms are given by (6.1) and
(6.2) respectively.

PROOF. Consider the stationary, mass-symmetric, 2-type, flat torus in $S_{0^{5}}(1)$

(with $\overline{\epsilon}^{2}\neq 4\epsilon^{2}$ ) given by (7.7). According to (7.5) and (7.8), we have

(7.9) $\{\lambda_{p}, \lambda_{q}\}=\{\frac{2}{3}+\frac{1}{3\epsilon^{2}},$ $\frac{4}{3}+\frac{8}{3}\epsilon^{2}\}$ .

Given a real number $c$ with $2/3<c<2$ , we consider the following equation

(7.10) $c= \lambda_{p}=\frac{2}{3}+\frac{1}{3\epsilon^{2}}$ .

The only thing we need to prove is that the range of $\epsilon^{2}$ is $($ 1/4, $\infty)$ . One notices
that for any fixed natural numbers $h$ and $\overline{\epsilon},$ $\epsilon$ depends on $w$ continuously over
the domain. For instance, consider the case $h=\overline{\epsilon}=1$ , we have

(7.11) $\epsilon=\{1+w(3-2w^{2})^{1/2}\}/(1-2w^{2})$ , or $\epsilon=\{1-w(3-2w^{2})^{1/2}\}/(1-2w^{2})$ .
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In this case, the range of $w$ is $(- \frac{\sqrt{6}}{2},$ $\frac{\sqrt{6}}{2})-\{1\}$ (with $w^{2}=3/2$ corresponding

to the 1-type case). Now, it is not difficult to see that the range of $\epsilon^{2}$ is
$($ 1/4, $\infty)$ .

If $4/3<c<2$ , we may also consider the equation

(7.12) $c= \lambda_{p}=\frac{4}{3}+\frac{8}{3}\epsilon^{2}$ .

By a similar argument we may see that the range of $\epsilon^{2}$ is $(0,1/4)$ . (Q. E. D.)

REMARK 6. From the Fundamental Theorem of Submanifolds, we see that
for any $c\in(2/3,4/3$], there is an isometric immersion $y$ from $R^{2}$ into $S_{0^{5}}(1)$

whose connection form is given by (6.1). Such immersions are unique up to
rigid motions. According to Theorem 6, for such $c$ , there is a flat torus $T_{c}$ in
$S_{0^{5}}(1)$ whose connection form is also given by (6.1). Thus, if we lift the immer-
sion $x$ of $T_{c}$ up to its universal covering $R^{2}$ , we obtain an isometric immersion
$\overline{x}$ from $R^{2}$ into $S_{0^{5}}(1)$ . Since $y$ and $\overline{x}$ have the same connection form, they
only differ by a rigid motion. Consequently, the immersion $y$ is doubly-periodic.
For $c\in(4/3,2)$ , we have two isometric immersions $y_{1},$ $y_{2}$ from $R^{2}$ into $S_{0}^{5}(1)$

whose connection forms are given by (6.1) and (6.2), respectively. Theorem 6
implies that $y_{1}$ and $y_{2}$ are both doubly-periodic. From these, we conclude that
all stationary, mass-symmetric, 2-type surfaces in $S_{0^{5}}(1)$ are always obtained in
this way.

In Remark 4, we know that a stationary, mass-symmetric, 2-type surface
which lies fully in $S_{0^{7}}(1)$ is obtained by a doubly-periodic isometric immersion
of $R^{2}$ into $S_{0^{7}}(1)$ whose connection form is given by (6.22). In the following,
we give some concrete examples of such surfaces in $S_{0^{7}}(1)$ .

Recall that for any real numbers $u,$ $v$ and $w$ with $u,$ $v>0$ , we have a flat
torus $T_{uvw}$ . Given four natural numbers $(n, m,\overline{n},\overline{m})$ , we Put

(7.13) $\epsilon=n-\frac{mw}{v}$ , $\overline{\epsilon}=\overline{n}-\frac{\overline{m}w}{v}$ .

We define an isometric immersion $y$ from $R^{2}$ into $S_{0^{7}}(1)\subset E^{8}$ by

(7.14) $y(s, t)=(c_{1} \cos\frac{\epsilon s}{u}\cos\frac{mt}{v},$ $c_{1} \cos\frac{\epsilon s}{u}\sin\frac{mt}{v}$ ,

$c_{1} \sin\frac{\epsilon s}{u}\cos\frac{mt}{v}$ , $c_{1} \sin\frac{\epsilon s}{u}$ sin $\frac{mt}{v}$

$c_{d}9 \cos\frac{\overline{\epsilon}s}{u}\cos\frac{\overline{m}t}{v}$ , $c_{2} \cos\frac{\overline{\epsilon}s}{u}\sin\frac{\overline{m}t}{v}$ ,

$c_{2}$ sin $\frac{\overline{\epsilon}s}{u}\cos\frac{\overline{m}t}{v}$ , $c_{2}$ sin $\frac{\overline{\epsilon}s}{u}\sin\frac{\overline{m}t}{v})$ ,
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where $c_{1}$ and $c_{2}$ are two real numbers satisfying

(7.15) $c_{1^{2}}+c_{2^{2}}=1$ , $c_{1^{2}}\overline{\epsilon}^{2}+c_{2^{2}}\epsilon^{2}=u^{2}$ , $c_{1^{2}}m^{2}+c_{2^{2}}\overline{m}^{2}=v^{2}$ .
The immersion $y$ induces an isometric immersion from $T_{uvw}$ into $S_{0^{7}}(1)\subset E^{8}$

which is denoted by $x$ . Thus we have

(7.16) $x$ : $T_{uvw}arrow S_{0^{7}}(1)\subset E^{8}$ .
By using an argument similar to that of Proposition 1, we may prove the

following.

PROPOSITION 2. If $v^{2}(\overline{\epsilon}^{2}-\epsilon^{2})\neq u^{2}(m^{2}-\overline{m}^{2})$ , then the immersion $x;T_{uvw}arrow$

$S_{0^{7}}(1)$ is a mass-symmetric, 2-type, isometric immerston with

(7.17) $\{\lambda_{p}, \lambda_{q}\}=\{(\frac{\epsilon}{u})^{2}+(\frac{m}{v})^{2}$ , $( \frac{\overline{\epsilon}}{u})^{2}+(\frac{\overline{m}}{v})^{2}\}$ .

Moreover, $T_{uvw}$ is an $\mathfrak{U}$-surface of $S_{0^{7}}(1)$ . Furthermore, the immersion $x$ is sta-
tionary if and only if the following equation holds:

(7.18) $2c_{1}^{2}[( \frac{\epsilon}{u})^{2}-(\frac{m}{v})^{2}]^{2}+2c_{2^{2}}[(\frac{\overline{\epsilon}}{u})^{2}-(\frac{\overline{m}}{v})^{2}]^{2}=\lambda_{p}\lambda_{q}$ .

We also need the following.

PROPOSITION 3. Let $[p, q]$ be the order of a stationary immersion given by
(7.16). Then we have

(a) $2/3<\lambda_{p}<2$ ,
(b) if $2/3<\lambda_{p}\leqq 4/3$ , then $\lambda_{q}>4\lambda_{p}/(3\lambda_{p}-2)$ , and
(c) if $4/3<\lambda_{p}<2$ , then $2\lambda_{p}/(3\lambda_{p}-4)>\lambda_{q}>4\lambda_{p}/(3\lambda_{p}-2)$ .
PROOF. Follows from (7.15), (7.18) and the fact $0<\lambda_{p}<2<\lambda_{q}$ of [3, p. 307].

Given two real numbers $c$ and $d$ with $0<c<2<d<\infty$ , we put

$F(c, d)=c-\{cd(c-2)/2(2-d)\}^{1/2}$ ,
(7.19)

$G(c, d)=d+\{cd(c-2)/2(2-c)\}^{1/2}$ .
LEMMA 10. For any $d\in(2, \infty)$ and any rational number $r\neq 0$ , there is a $c\in$

$(2/3,2)$ such that $G(c, d)=r^{2}F(c, d)$ .

PROOF. Under the hypothesis, it is easy to see that there is a $c\in(O, 2)$

satisfying $G=r^{2}F$. Because $G$ is positive, $F$ is also positive. Thus, we obtain
$c\in(2/3,2)$ .

By using Lemma 10, (7.13), (7.16) and (7.20), we obtain the following.

THEOREM 7. For any $d\in(2, \infty)$ , there is a stationary, mass-symmetric,
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2-type, flat torus in $S_{0^{7}}(1)$ such that $\lambda_{q}=d$ and whose connection form is given by
(6.22).
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