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\S 1. Introduction.

Let $x=(x_{1}, \cdots , x_{d})\in R^{d}$ be the variable in $R^{d}$ and let us put $\partial=(\partial_{1}, \cdots , \partial_{d})$

where $\partial_{j}=\partial/\partial x_{j}$, $j=1,$ $\cdots$ , $d$ . For a multi-index $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{d})\in N^{d}$ , $N=$

$\{0,1, 2, \}$ we set $(x\cdot\partial)^{\alpha}=(x_{1}\partial_{1})^{a_{1}}\cdots(x_{d}\partial_{d})^{\alpha_{d}}$ . Let $\lambda\in C^{d}$ be given and fixed.
Then we shall study the characterization of divergent formal solutions $u(x)$ of
the form $u(x)=x^{\lambda}\Sigma_{\eta\in N}av_{\eta}x^{\eta}/\eta!$ of the equation

(1.1) $P(x ; x \cdot\partial)u\equiv(\sum_{|\alpha|=m}a_{\alpha}(x\cdot\partial)^{\alpha}+\sum_{|\beta|\leqq m-\sigma}b_{\beta}(x)(x\cdot\partial)^{\beta})u(x)=f(x)x^{\lambda}$

where $\sigma\geqq 1$ is an integer, $m\in N$ and $a_{\alpha}’ s$ are complex constants. We assume
that the function $b_{\beta}(x)$ is analytic at the origin and that $f(x)$ is a given
analytic function.

For ordinary differential equations of Fuchs type ( $i$ . $e$ . $d=1$ in (1.1)) we
know that all formal solutions of Equation (1.1) converge. Nevertheless, in
the case $d\geqq 2$ we often get divergent formal solutions of Equation (1.1) if the
coefficients satisfy certain conditions (cf. [3], [9]). In fact there exist equations
with infinite-dimensional kernel and those with small denominators. Typical
examples are the equations $(x_{1}\partial_{1}-\tau x_{2}\partial_{2})u=f(x)$ where $\tau$ is a positive rational
and irrational number respectively. By using elementary facts of diophantine
analysis we can show that there exists an irrational $\tau>0$ and an entire function
$f(x)$ such that the equation for this $\tau$ and $f(x)$ has a formal solution
$u(x)= \sum u_{\eta}x^{\eta}$ with the estimate $|\eta|!^{s}/|u_{\eta}|arrow 0$ as $|\eta|arrow\infty$ for $s=1,2,$ $\cdots$ In
this case the formal solution has bad behavior. Even for these simple examples
the criterion which distinguishes such bad equations from good ones can only
be expressed by the number-theoretical properties of $\tau$, and is not simple. Hence
if we are to study formal solutions of more general equations in the analytic
category we need very delicate and complicated arguments (cf. [8], [9]). It is
an interesting problem to give a meaning to such divergent solutions and to
study whether this phenomenon is peculiar to analytic solutions or also occurs
for $C^{\infty}$-solutions.
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Instead of considering formal solutions in the analytic category we consider
then in the $C^{\infty}$ one. Then the situation is very simple. Namely we can show
that every formal solution is the asymptotic expansion of some smooth solution.
Moreover, if the formal solution converges then the corresponding smooth
solution turns to be analytic. We remark that the results here are independent
of the diophantine properties of parameters in the individual equation. We
also remark that we can extend this result for equations with some irregularity
in the lower order terms.

The author would like to express his sincere thanks for the referee who
gave the author many useful suggestions.

\S 2. Notations and results.

Let us expand the functions $b_{\beta}(x)$ in (1.1) into Taylor series, $b_{\beta}(x)=$

$\sum_{\gamma}b_{\beta.\gamma}x^{\gamma}/\gamma!$ and denote by $\Gamma_{0}$ the smallest closed convex cone with vertex at
the origin which contains all $\gamma’ s$ such that $b_{\beta.\gamma}\neq 0$ for some $\beta$ . We define
$p(\eta)$ by

(2.1) $P(\eta)=$ $\sum_{|\alpha|=m}a_{a}\eta^{a}+$
$\sum$ $b_{\beta}(O)\eta^{\beta}$ ,

$1\beta|\xi m-\sigma$

and denote the m-th homogeneous part of $P(\eta)$ by $p_{m}(\eta)$ .
We assume

(A.1) $p_{m}$ is hyperbolic with respect to all $\omega\in\Gamma_{0}$ , that is, $p_{m}(\xi+i\omega)\neq 0$ for all
$\xi+i\omega\in R^{d}+i(\Gamma_{0}\backslash \{0\})$ .
Here, if $\Gamma_{0}$ is empty we assume that $P_{m}(\eta)$ is hyperbolic with respect to some
$\omega\in R^{d},$ $\omega>0$ .

Let us take $\omega(\in\Gamma_{0})$ such that $p_{m}$ is hyperbolic with respect to $\omega$ and let
$\xi\in R^{d},$ $|\xi|=1$ . We expand $p_{m}(\tau\omega+\xi)$ in the ascending power of $t$ ,

$p_{m}(\tau\omega+\xi)=\tau^{\sigma}L_{\xi}(\omega)+O(\tau^{\sigma+1})$

where $L_{\xi}(\omega)\not\equiv O$ and $\sigma\equiv\sigma(\xi)$ is the multiplicity of the localization of $p_{m}$ at $\xi$ .
Then we assume
(A.2) $\sigma(\xi)\leqq\sigma$ for all $\xi\in R^{d},$ $|\xi|=1$ .

Note that the condition (A.2) corresponds to Levi’s condition.

(A.3) $p_{m}(\omega)\neq 0$ for any $\omega=(\omega_{1}, \cdots , \omega_{d}),$ $|\omega|=1$ such that $\omega_{j}\geqq 0,$ $j=1,$ $\cdots$ , $d$ and
that $\omega_{\nu}=0$ for some $\nu,$

$1\leqq\nu\leqq d$ .
Now our main result is

THEOREM 2.1. SuppOse that the conditions (A. $1$ ) $\sim(A.3)$ are satisfied. More-
over suPpose that Equation (1.1) has a formal solution \^u $(x)=x^{\lambda} \sum_{\eta\in N}a\tilde{v}_{\eta}x^{\eta}/\eta 1$ .
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Then there exists a $v(x)\in C^{\infty}(R^{d})$ such that $u(x)\equiv v(x)x^{\lambda}$ satisfies Equation (1.1)

in some neighborhood of the origin and that, for $k=0,1,2,$ $\cdots$ ,

(2.2) $v(x)-\Sigma\tilde{v}_{\eta}x^{\eta}/\eta!=O(|x|^{k+1})$ as $|x|arrow 0$ .
$t\eta I\leqq k$

REMARK 2.1. The proof of Theorem 2.1 and Lemma 3.1 also yields that
if the formal sum $\tilde{u}(x)x^{-\lambda}$ converges in some neighborhood of the origin then
the function $v(x)$ is equal to this sum in some neighborhood of the origin,
hence, is analytic.

REMARK 2.2. We remark that the condition (A.3) does not follow from
the conditions (A.1) and (A.2) by a linear change of variables in general. In
order to show this, let us consider the case $d=2$ . First we note that the
differentiation in Equation (1.1) has the form $x_{j}\partial_{j}$ . It is not difficult to see
that linear transforms which preserve $x_{j}\partial_{j}$ are nothing but the products of two
transforms, a scaling of the coordinates, $x_{j}=r_{j}y_{j},$ $j=1,2$ for some $r_{j}\neq 0$ and
the permutation in the variables. Now let us consider the operator

$p(x\cdot\partial)=x_{1}\partial_{1}x_{2}\partial_{2}(x_{1}\partial_{1}-2x_{2}\partial_{2})(2x_{1}\partial_{1}-x_{2}\partial_{2})+x_{1}x_{2}((x_{1}\partial_{1})^{3}+(x_{2}\partial_{2})^{3})$ .
We can easily see that $\Gamma_{0}=\{t(1,1);t>0\}$ . This operator satisfies (A.1) and
(A.2) and does not satisfy (A.3) (cf. Corollary 2.2 which follows). The same
properties hold for operators obtained from the above one by the linear change
of variables preserving $x_{j}\partial_{j},$ $j=1,2$ . Hence we have the assertion.

REMARK 2.3. We can extend Theorem 2.1 to the case where the formal
solution $\tilde{u}(x)$ contains a polynomial of log $x_{j},$ $j=1,$ $\cdots$ , $d$ . Such formal solutions
really appear if we apply the well-known Frobenius’ method in the theory of
ordinary differential equations to (1.1) in case $p(\eta+\lambda)$ vanishes for some $\eta\in N^{d}$ .
We can show that the terms in the formal solution not containing logarithmic
factors are characterized as in Theorem 2.1 and the terms containing a
logarithmic factor of $x_{j}$ ($j=1,$ $\cdots$ , d) are of the form $\Pi_{j}(\log x_{j})^{\nu_{j}}\cross(analytic$

functions of $x$ ). Hence Theorem 2.1 can be extended to this case.

It is possible to consider more general formal solutions $\tilde{u}(x)$ admitting all
negative powers of $x;\tilde{u}(x)=x^{\lambda}\Sigma_{\eta\in Z}av_{\eta}x^{\eta}/\eta!$ . In order to avoid the terms
containing logarithmic factors, and for the sake of simplicity we assume that
$p(k+\lambda)\neq 0$ for all $k\in Z^{d}$ . Then we can show that if $\tilde{u}(x)$ is a formal solution
of Equation (1.1) it follows that $v_{\eta}=0$ for all $\eta\in Z^{d}\backslash N^{d}$ . Hence studying these
formal solutions is reduced to the former case. This fact is proved by the
straightforward computations using the method of indeterminate coefficients.
So we omit the proof.
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REMARK 2.4. Suppose that $\lambda=0$ . Then Theorem 2.1 implies that if Equation
(1.1) has a divergent formal solution it has a smooth but non-analytic solution.
This implies; if the operator $P(x;x\cdot\partial)$ in (1.1) is analytic-hypoelliptic then all
formal solutions of (1.1) converge. The converse is not true since the function
$v(x)$ in Theorem 2.1 is not unique in general. For example the operator
$P(x\cdot\partial)=\Pi_{j}(x_{1}\partial_{1}-\tau_{j}x_{2}\partial_{2}+c_{j})$ has a solution $v(x)\in C_{0}^{\infty}(R^{2}),$ $v\neq 0,$ $P(x\cdot\partial)v=0$ such
that $v(x)$ is flat on $x_{1}=0$ and $x_{2}=0$ for appropriately chosen constants $c_{j}$ and
$\tau_{j}>0$ .

In the case $d=2$ the assumptions in Theorem 2.1 are very simple. We
state it as a corollary.

COROLLARY 2.2. SuPpose that $d=2$ and that the following con&tiom are
satisfied.
(2.3) $p_{m}(\omega)\neq 0$ for $\omega=(1,0)$ and $(0,1)$ .
(2.4) $p_{m}(\omega)\neq 0$ for all $\omega\in\Gamma_{0}$ and all roots of the equation $p_{m}(z, 1)=0$ are real
with $multipli\alpha ties$ smaller than $\sigma$ .
Then we have the same assertion as in Theorem 2.1.

PROOF. It is clear that the condition (2.3) is equivalent to (A.3) and that
(2.4) to (A.1) and (A.2). $q.e.d$ .

REMARK 2.5. We can extend Corollary 2.2 for equations with some irreg-
ularity in the lower terms. Namely we consider the equation

(2.5) $( \sum_{|\alpha|=m}a_{\alpha}(x\cdot\partial)^{a}+\sum_{|\beta|\leq m-\sigma}b_{\beta}(x)\partial^{\beta})u(x)=f(x)x^{\lambda}$

where $b_{\beta}(x)$ is analytic at the origin and $d=2$ .
In order to state our result we introduce some notations. Let us define

$b_{\beta,\gamma}$ by $b_{\beta.\gamma}=(\partial_{x}^{\gamma}b_{\beta})(0)$ for $|\beta|\leqq m-1$ , and set $b_{a.\alpha}=a_{a}$ for $|\alpha|=m$ . We define
the set $M_{P}$ by $M_{p}=$ { $\gamma-\beta_{i}b_{\beta.\gamma}\neq 0$ for some $\beta$ and $\gamma$ }, and denote by $\Gamma_{0}$ the
smallest closed convex cone with vertex at the origin which contains $M_{P}$ . We
note that, for Equation (1.1), this definition of $\Gamma_{0}$ agrees with the former one.
Now we assume
(C.1) $\Gamma_{0}$ is a proper cone, $i.e$ . contains no straight line and there exists a
vector $\theta=(\theta_{1}, \theta_{2})\in\Gamma_{0}$ such that $\theta_{1}>0,$ $\theta_{2}>0$ .

We note that Equation (1.1) satisfies (C.1). Moreover, if we freeze some
variable and consider it as the equation of $(d-1)$ independent variables it still
satisfies (C.1). Nevertheless Equation (2.5) satisfying (C.1) does not possess
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this property. Namely it may appear an irregular-singular type equation. This
simple difference makes the situation difficult.

We determine the integers $n_{1}$ and $\tilde{n}_{1}$ respectively by $n_{1}=- \min\{\eta_{1} ; \eta\in M_{P}\}$

and $\tilde{n}_{1}=\min\{\eta_{2} ; \eta\in M_{P}, \eta_{1}=-n_{1}\}$ where $\eta=(\eta_{1}, \eta_{2})$ , and $n_{2}$ and $\tilde{n}_{2}$ by exchang-
ing the parts of $\eta_{1}$ and $\eta_{2}$ in the definitions of $n_{1}$ and $\tilde{n}_{1}$ respectively. Next
we determine the integer $\tilde{m}_{1}$ by $\tilde{m}_{1}=\max\{|\beta|$ ; $\gamma-\beta\in M_{P},$ $\gamma_{1}-\beta_{1}=-n_{1},$ $b_{\beta.\gamma}\neq 0$

for some $\beta$ and $\gamma$ }, and $\tilde{m}_{2}$ by replacing $\beta_{1},$
$\gamma_{1}$ and $n_{1}$ respectively by $\beta_{2},$

$r_{2}$

and $n_{2}$ . Then we assume

(C.2) $b_{\beta.\gamma}\neq 0$ for $(\beta, \gamma)=$ (( $n_{1}$ , rk $1^{-n_{1})},$ $(0,\tilde{m}_{1}-n_{1}+\tilde{n}_{1})$ )

and $((\tilde{m}_{2}-n_{2}, n_{2}),$ $(\tilde{m}_{2}-n_{2}+\tilde{n}_{2},0))$ .
Note that for Equation (1.1) with $d=2$ we may suppose that $n_{1}=\tilde{n}_{1}=\tilde{n}_{2}=n_{2}=0$ ,
$\tilde{m}_{1}=\tilde{m}_{2}=m$ . Hence (C.2) is equivalent to (2.3). Then we have

THEOREM 2.3. SuPpose that $d=2$ and that the con&tions (C.1), (C.2) and
(2.4) are satisfied. Then we have the same assertion as in Theorem 2.1 for the
equation (2.5).

This theorem is proved, in principle, by the same method as for the proof
of Theorem 2.1. But, technically, there are some difficulties which are caused
by the effect of the lower terms of Equation (2.5). The main point is the
modification of the proof of Lemma 3.1 which is possible in the case $d=2$ (cf.

Remark 3.1).

\S 3. Proof of the main theorem.

We prePare two lemmas.

LEMMA 3.1. Assume that Equation (1.1) has a formal solution $\tilde{u}(x)$ given in
Theorem 2.1 and that the condition (A.3) is satisfied. Then there exists a
$w(x)\in C_{0}^{\infty}(R^{a})$ and a neighborhood $V$ of the origin such that the function
$P(x;x\cdot\partial)(x^{\lambda}w(x))-x^{\lambda}f(x)$ is flat on $V\cap\{x\in R^{d} ; x_{j}=0\}$ for $j=1,$ $\cdots$ , $d$ .

PROOF. We divide the proof into two steps.
Step1. We set $\tilde{v}(x)=x^{-\lambda}\tilde{u}(x)$ and rewrite $\tilde{v}(x)$ as follows.

(3.1) $\tilde{v}(x)=\sum_{j=0}^{\infty}(x_{1}\cdots x_{d})^{j}\{\sum_{k=1}^{d}\tilde{v}_{j.k}(x)\}$

where $\tilde{v}_{j,k}(x)$ does not contain the variable $x_{k}$ . In fact we define $\tilde{v}_{0.1}(x)$ as all
powers of $\chi$ in $\tilde{v}(x)$ which do not contain $x_{1}$ . Next we define $\tilde{v}_{0.2}(x)$ as those
in $v(x)-V_{0,1}(x)$ not containing $x_{2}$ . It is easy to see that $\tilde{v}-\tilde{v}_{0.1}=O(x_{1})$ and that
$\tilde{v}-\tilde{v}_{0.1}-\tilde{v}_{0.2}=O(x_{1}x_{2})$ . Hence, by the same way we can define $\tilde{v}_{0,k}(x)$ not
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containing $x_{k}$ ( $k=1,$ $\cdots$ , d) such that $\tilde{v}(x)-\Sigma_{k=0}^{d}\tilde{v}_{0.k}(x)=O(x_{1}\cdots x_{a})$ . By
repeating this procedure we get (3.1).

Next we shall show that the formal sums $\tilde{v}_{j.k}(x)$ ($J^{=0},1,$ $\cdots$ ; $k=1,$ $\cdots$ , d)

converge and represent analytic functions $v_{j.k}(x)$ of $x$ in some neighborhood of
the origin independent of $j$ and $k$ , and that, for $\nu=0,1,$ $\cdots$ ,

(3.2) $f(x)-P_{\lambda}( \sum_{j=0}^{\nu}(x_{1}\cdots x_{d})^{j}\sum_{k=1}^{d}v_{j.k}(x))=O((x_{1}\cdots x_{d})^{v+1})$

where $P_{\lambda}=x^{-\lambda}Px^{\lambda}$ . Note that $P_{\lambda}(x;x\cdot\partial)=P(x;x\cdot\partial+\lambda)$ .
For the proof let us calculate the equations which the $\tilde{v}_{j.k}$ satisfy. We

note that $P(x^{\lambda}\tilde{v})=x^{\lambda}P_{\lambda}\tilde{v}$ . Hence $\tilde{v}(x)$ is the formal solution of the following
equation

(3.3) $P_{\lambda}\tilde{v}(x)=f(x)$ .

Putting $x_{1}=0$ in (3.3) we get, from (3.1) and the definition of $P$

(3.4) $P_{\lambda}(0, x’ ; x’\cdot\partial’)\tilde{v}_{0.1}(x’)=f(0, x’)$

where $x=(x_{1}, x’)$ and $\partial’=(\partial_{2}, \cdots , \partial_{a})$ . It follows from (A.3) and the result of
Kashiwara-Kawai-Sj\"ostrand [7] that the formal solution $\tilde{v}_{0.1}(x’)$ converges in
some neighborhood of the origin. Moreover, by the results of Zerner [11] it is
defined and analytic in some neighborhood of the origin depending only on $f(x)$

and the equation $P_{\lambda}$ . We can easily see that $f(x)-P_{\lambda}v_{0.1}(x)=O(x_{1})$ .
Next we consider the equation $P_{\lambda}w=f(x)-P_{\lambda}v_{0.1}(x)$ . If we set $x_{2}=0$ in

this equation we get a similar equation to (3.4). We can easily see that this
seduced equation has the formal solution $\tilde{v}_{0.2}(x)$ . Hence, by the same argument
as above $\tilde{v}_{0.2}(x)$ converges in some neighborhood of the origin depending only
on $f(x)$ and $P_{\lambda}$ . Denoting this function by $v_{0.2}(x)$ we can easily verify that
$f(x)-P_{\lambda}(v_{0,1}+v_{0,2})=O(x_{1}x_{2})$ . By the same way we can easily see that the
formal sum $\tilde{v}_{0.k}(x)(1\leqq k\leqq d)$ converges in some neighborhood of the origin
depending only on $f(x)$ and $P_{\lambda}$ . Denoting these functions by $v_{0.k}(x)(1\leqq k\leqq d)$ ,
we can easily verify (3.2) with $v=0$ .

Now suppose that the formal sums $\tilde{v}_{k.j}$ $(j=1, \cdots , d;k\leqq\nu)$ converge and
represent analytic functions $v_{k.j}(x)$ in some neighborhood of the origin inde-
pendent of $k$ and $j$ , and that the condition (3.2) is satisfied for some $\nu\geqq 0$ . We
write the left-hand side of (3.2) in the form $(x_{1}\cdots x_{d})^{\nu+1}g(x)$ . It follows from
(3.1), (3.2) and (3.3) that the formal sum $\tilde{v}_{\nu+1.1}$ satisfies the equation

(3.5) $P_{\lambda}(O, x’ ; x\cdot\partial+arrow e(\nu+1))\tilde{v}_{\nu+1,1}(x’)=g(0, x’)$

where $\vec{e}=(1, \cdots , 1)$ . We note that this equation has the same form as the
equation (3.4). Hence, by the same arguments as above the formal sum $\tilde{v}_{\nu+1.1}(x’)$
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converges and is analytically continued to some $v_{\nu+1.1}(x’)$ . By the same argu-
ments as for $\tilde{v}_{0.k}$ we can easily see that the formal sums $\tilde{v}_{\nu+1,k}$ ( $k=1,$ $\cdots$ , d)

converge and satisfy (3.2) with $\nu$ replaced by $v+1$ .
Step2. We shall give a meaning to the formal sum (3.1). For simplicity

we set $t=x_{1}’\cdot\cdot x_{d}$ . Let $B_{r}(r>0)$ be a ball centered at the origin such that all
$v_{j.k}’ s$ are defined and bounded on $B_{r}$ . Let $\phi(s)\in C_{0}^{\infty}(R^{1})$ be such that $\phi\equiv 1$ in
a neighborhood of the origin and $\phi\equiv 0$ for $|s|\geqq 1$ . For $j=0,1,2,$ $\cdots$ , we
define $\rho_{j}$ by

(3.6) $\rho_{j}=\max_{x\in B_{r}}\sum_{k=1}^{d}|v_{j.k}(x)|$ ,

and define $\phi_{j}(t)\equiv\phi_{j}(x_{1}\cdots x_{d})$ by $\phi_{j}(t)=\phi(te\rho_{j}^{2/J})$ in case $\rho_{j}^{1/j}$ is not bounded as
$jarrow\infty$ and, by $\phi_{j}(t)\equiv 1$ if otherwise. Now we define $w(x)\in C_{0}^{\infty}(R^{d})$ by

(3.7) $w(x)= \sum_{j=0}^{\infty}t^{j}\phi_{j}(t)\sum_{k=1}^{d}v_{f.k}(x)$

We note that if $\rho_{j}^{1/j}$ is bounded when $jarrow\infty$ the right-hand side of (3.6) converges
and is analytic in some neighborhood of the origin. It is equal to the original
sum. If otherwise, noting that $|t|\leqq e^{-1}\rho_{j}^{-2/j}$ on the support of $\phi_{j}(t)$ we get,
from (3.7),

$| \sum_{k.j}t^{j}\phi_{j}(t)v_{j.k}(x)|\leqq\sum_{j}e^{-j}\rho_{j}^{-2}|\sum_{k}v_{j.k}(x)|\leqq\sum_{j}e^{-j}\rho_{j}^{-1}<\infty$ .

Hence the right-hand side of (3.7) converges on $B_{r}$ . Moreover, by using the
Cauchy’s formula for $v_{j.k}$ we can easily show that it converges with respect
to the $C^{\infty}$ topology.

In order to prove that the function $P(x^{\lambda}w)-f(x)x^{\lambda}$ is flat, let us consider
$f-P_{\lambda}w$ where $P_{\lambda}=x^{-\lambda}Px^{\lambda}$ . Let $\nu$ be an integer. Then it follows from (3.7)

that

(3.8) $f-P_{\lambda}w= \{f-P_{\lambda}(\sum_{j=0}^{\nu}\sum_{k}t^{j}v_{j.k})\}+P_{\lambda}(\sum_{j\Rightarrow 0}^{\nu}t^{j}(\phi_{j}(t)-1)\sum_{k}v_{j,k})$

$+P_{\lambda}( \sum_{j=\nu+1}^{\infty}t^{j}\phi_{j}(t)\sum_{k}v_{j,k})$ .

The first term in the right-hand side of (3.8) is $O(t^{\nu+1})$ by (3.2). The second
term vanishes identically since $\phi_{j}(t)\equiv 1$ if $|t|$ is sufficiently small. The function
in the parenthesis of the third term is $O(t^{\nu+1})$ . Since the operator $P_{\lambda}$ preserves
the Power of $x$ in view of the definition of $P$ we see that the third term is
$O(t^{\nu+1})$ . Therefore we have that $f-P_{\lambda}w=O(t^{\nu+1})$ . Since $\nu$ is arbitrary we
have proved Lemma 3.1.
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REMARK 3.1. If we assume (C.2) instead of (A.3) then the assertion of
Lemma 3.1 is true for the equation (2.5). The proof is done as follows.

We first construct a $u_{0}(x)\in C_{0}^{\infty}(R^{2})$ such that the Taylor expansion of $u_{0}(x)$

at the origin is equal to the formal solution $\tilde{u}$ . This implies that the function
$P_{\lambda}u_{0}-f$ is flat at the origin. Next we determine smooth functions $\tilde{v}_{j.1}(x_{1})$ and
$\tilde{v}_{j.2}(x_{2})(j=0, 1, )$ such that they are flat at the origin and that the formal
sum $\tilde{v}(x)$ dePned by (3.1) with $d=2$ satisfies that $P_{\lambda}\tilde{v}+P_{\lambda}u_{0}-f(x)=O((x_{1}x_{2})^{\nu})$

for $\nu=1,2,$ $\cdots$ Under the assumption (C.2) we can show that this yields a
system of ordinary differential equations of Fuchs type for $\tilde{v}_{j.1}$ and $\tilde{v}_{j.2}$

$(j=0, 1, )$ with the inhomogeneous part, $C^{\infty}$ and flat at the origin. Hence we
can determine $\tilde{v}_{j.1}$ and $\tilde{v}_{j.2}$ as desired. Once we can determine $\tilde{v}(x)$ the proof
of the remaining part is the same to that of Lemma 3.1.

Next we shall construct a fundamental solution $K(x;\zeta)$ for the operator
$P_{\lambda}$ in the Mellin’s sense where $\zeta$ is a parameter. Let $\tilde{\Gamma}_{0}$ be the component of
the set $\{\omega\in R^{d} ; p_{m}(\omega)\neq 0\}$ containing $\Gamma_{0}$ . Then we consider the equation

(3.9) $P_{\lambda}(x;x\cdot\partial)(x^{-\zeta}K(x;\zeta))\equiv P(x;x\cdot\partial+\lambda)(x^{-\zeta}K(x;\zeta))=x^{-\zeta}$

where $-\zeta=\omega+i\xi\in\tilde{\Gamma}_{0}\backslash \{0\}+iR^{cl}$ . We then have

LEMMA 3.2. SuppOse that the conditions (A.1) and (A.2) are satisfied. Then
there exist $\omega_{0}>0$ and a neighborhood $V_{0}$ of the origin such that if $(x, \zeta)\in X_{0}\equiv$

$\{(x, \zeta);x\in V_{0}, \zeta\in-\tilde{\Gamma}_{0}\backslash \{0\}+iR^{d}, |{\rm Re}\zeta|\geqq\omega_{0}\}$ there exists a solution $K(x;\zeta)$ of
Equation (3.9). Moreover, for each $a\in N^{d}$ the function $\partial_{x}^{a}K(x;\zeta)$ is holomorPhic
and bounded when $(x, \zeta)\in X_{0}$ and ${\rm Re}\zeta\in-\Gamma_{2}^{o}$ where $\Gamma_{2}\subset\tilde{\Gamma}_{0}$ is any closed convex
cone whose interior is not empty.

PROOF OF LEMMA 3.2. We divide the proof into two steps.
Step1. First we note that under the hyperbolicity (A.1) the cone $\tilde{\Gamma}_{0}$ is

convex open cone. Let $p(\eta)$ be given by (2.1) and let $\Gamma_{1}(\Gamma_{g^{o}}\supset\Gamma_{1}\supseteqq\Gamma_{0})$ be a
closed convex cone in $\tilde{\Gamma}_{0}$ whose interior is not empty. Then we shall show
that there exist constants $C_{0}>0$ and $C_{1}>0$ independent of $\eta$ such that

(3.10) $|p(\eta+\lambda)|\geqq C_{0}(|\eta+\lambda|+1)^{m-\sigma}$

for all $\eta\in\Gamma_{1}\backslash \{0\}+iR^{a}$ such that $|{\rm Re}\eta|\geqq C_{1}$ . In order to prove this we write

(3.11) $p(\eta+\lambda)=|\eta+\lambda|^{m}p_{m}(\eta+\lambda/|\eta+\lambda|)+p_{\sigma}(\eta+\lambda)$

where $P_{\sigma}(\eta+\lambda)$ is the polynomial of $\eta+\lambda$ with $degree\leqq m-\sigma(\leqq m-1)$ . We
set $t=|{\rm Re}\eta+\lambda|/|\eta+\lambda|,$ $\omega=({\rm Re}\eta+\lambda)/|{\rm Re}\eta+\lambda|,$ $\xi=({\rm Im}\eta+\lambda)/|\eta+\lambda|$ . Then we
have that $(\eta+\lambda)/|\eta+\lambda|=t\omega+i\xi$ and that $\omega\in\Gamma_{2}\backslash \{0\}$ for some sufficiently large
$C_{1}>0$ since ${\rm Re}\eta\in\Gamma_{1}$ and $\Gamma_{1}\subset\Gamma_{2}^{o}$ .
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Recalling the definition of $\tilde{\Gamma}_{0}$ in the introduction of Lemma 3.2 and by
using [Corollary 12.4.5; 4] we have that $p_{m}$ is hyperbolic with respect to $\tilde{\Gamma}_{0}$ .
Hence we have (A.1) with $\Gamma_{0}$ replaced by $\tilde{\Gamma}_{0}$ . Noting that $p_{m}$ is homogeneous
this implies that $p_{m}(\eta+\lambda/|\eta+\lambda|)\neq 0$ if $\eta$ satisfies that $|t|\geqq t_{0}>0$ for some $t_{0}>0$ .
Hence we get (3.10) from (3.11) by taking $C_{1}$ sufficiently large. Therefore we
assume that $|t|<t_{0}$ for small $t_{0}$ . Similarly we may assume that $\xi$ is in a small
neighborhood of some $\xi_{0}$ such that $p_{m}(\xi_{0})=0$ .

Let $\omega\in\Gamma_{2}$ . Then we factor $p_{m}(\tau\omega+\xi)$ as a polynomial of $\tau$

(3.12) $p_{m}( \tau\omega+\xi)=p_{m}(\omega)\prod_{1}^{m}(\tau+\lambda_{k}(\omega;\xi))$ .

We note that $\lambda_{k}(\omega;\xi)$ is real-valued and continuous in $\omega$ and $\xi$ in case $\omega\in\tilde{\Gamma}_{0}$

and $\xi$ is real. In view of the definition of $\omega$ and $\xi$ we shall estimate the term
$|p_{m}(it\omega+\xi)|$ when $\omega$ and $\xi$ range over the set $\{\omega;|\omega|=1, \omega\in\Gamma_{2}\}\cross\{\xi;\epsilon_{1}\leqq|\xi|\leqq 1\}$

where $\epsilon_{1}$ is some positive constant. Let $\sigma=\sigma(\xi_{0})$ be the multiplicity of the
localization of $p_{m}$ at $\xi_{0}$ and let $L_{\xi_{0}}(\omega)$ be the localization polynomial (cf. (A.2)).

By the assumption (A.1) and by the well-known fact for hyperbolic polynomials
the polynomial $L_{\xi_{0}}(\omega)$ is hyPerbolic with respect to $\tilde{\Gamma}_{0}$ (cf. [Lemma 3.42; 1]).

Especially we have that $L_{\xi_{0}}(\omega)\neq 0$ for $\omega\in\tilde{\Gamma}_{0}$ . Comparing this with the expres-
sion (3.12) we see that there exist at least $m-\sigma$ of $\lambda_{k}(\omega;\xi_{0})s$ which do not
vanish for $\omega\in\tilde{\Gamma}_{0}$ . For the sake of simplicity let us assume this holds for
$k=1,$ $\cdots$ , $m-\sigma$ . By the continuity of $\lambda_{k}(\omega;\xi)$ the quantities $|\lambda_{k}(\omega;\xi)|$ ,
$k=1,$ $\cdots$ , $m-\sigma$ are bounded from below by some constant $C(\xi_{0})$ when $\omega$ ranges
over the compact set $\omega\in\Gamma_{2},$ $|\omega|=1$ and $\xi$ in some neighborhood $U(\xi_{0})$ of $\xi_{0}$ .
On the other hand since $|p_{m}(\omega)|\geqq C_{2}$ for $\omega\in\Gamma_{2}$ with some $C_{2}>0$ we obtain,
from (3.12) with $\tau=it$,

$|p_{m}(it\omega+\xi)|\geqq C_{2}|t|^{\sigma}C(\xi_{0})^{m-\sigma}$ for all $\xi\in U(\xi_{0})$ and all $\omega\in\Gamma_{2},$ $|\omega|=1$ .

Next we move $\xi_{0}$ in the compact set $\epsilon_{1}\leqq|\xi_{0}|\leqq 1$ and make the same esti-
mates. Since this set is compact we can cover it by the finite number of
$U(\xi^{j})s$ where $\epsilon_{1}\leqq|\xi^{j}|\leqq 1$ . Let $C_{3}$ be the smallest of all $C(\xi^{j})$ and take $t_{0}$ so
small that $t_{0}\leqq C_{3}$ . Then we have

$|p_{m}(it\omega+\xi)|\geqq C_{2}C_{3}^{m-\sigma}|t|^{\sigma}$ , $\omega\in\Gamma_{2},$ $|\omega|=1,$ $\epsilon_{1}\leqq|\xi|\leqq 1$

where $\sigma$ is the largest multiplicity of $\sigma(\xi)$ . In view of the definition of $t,$ $\omega$

and $\xi$ this implies (3.10).

Step2. We wish to determine $K(x;\zeta)$ in the form

(3.13) $K(x;\zeta)=$
$\sum_{\gamma\in\Gamma_{0\cap}N^{d}}$

$K_{\gamma}x^{\gamma}/\gamma!$ .
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Now we substitute the expansions of $K(x;\zeta)$ and $b_{\beta}(x),$ $b_{\beta}(x)= \sum_{\nu}b_{\beta.\nu}x^{\nu}/\nu!$ into
(3.9) and compare the coefficients of $x^{\gamma-\zeta}$ . This yields the recurrence formula

(3.14) $p(\gamma-\zeta+\lambda)K_{\gamma}+$
$\sum_{\gamma=\nu+\delta.\gamma\neq\delta}$

$b_{\beta.\nu}K_{\delta}(\delta-\zeta+\lambda)^{\beta}\gamma!/(\nu!\delta!)=\delta_{\gamma.0}$

$|\beta|<m$

where $\delta_{\gamma.0}$ denotes the Kronecker’s delta. Since ${\rm Re}(\gamma-\zeta)\in\Gamma_{1}\backslash \{0\}$ and ${\rm Re}(\gamma-\zeta)$

$\geqq{\rm Re}(-\zeta)$ by definition it follows from (3.10) that $P(\gamma-\zeta+\lambda)$ does not vanish if
we take $|{\rm Re}\zeta|$ sufficiently large. Hence we can determine $K_{\gamma}$ inductively by
(3.14).

In order to show that the formal sum (3.13) converges we note that
$|(\delta-\zeta+\lambda)^{\beta}|\leqq(|\gamma|+|\zeta|+|\lambda|)^{m-1}$ . On the other hand, since $\gamma\geqq 0,$ $-{\rm Re}\zeta\geqq 0$ we
have that $|\gamma-\zeta|\geqq C_{4}(|\gamma|+|\zeta|)$ where $C_{4}>0$ is independent of $\gamma$ and $\zeta$ . Hence,
by (3.10) with $\eta=\gamma-\zeta$ and (3.14) we can easily show that the formal sum
converges in some neighborhood $V$ of the origin. Moreover we can easily see
that the convergence is uniform with respect to $\zeta$ such that ${\rm Re}\zeta\in-\Gamma_{1}\backslash \{0\}$ ,
$|{\rm Re}\zeta|\geqq\omega_{0}$ if we take $\omega_{0}>0$ sufficiently large. $q.e.d$ .

REMARK 3.2. We cannot drop the assumptions (A.1) and (A.2) in Lemma
3.2 in general. In fact, if there exists a solution $K(x;\zeta)$ of (3.9) we have
(3.14). By setting $\gamma=0$ in (3.14) we have that $p(-\zeta+\lambda)K_{0}=1$ , which implies
that $p(-\zeta+\lambda)\neq 0$ for ${\rm Re}\zeta\in-\tilde{\Gamma}_{0},$ $|{\rm Re}\zeta|$ large, which is nothing but the hyper-
bolicity (A.1). Similarly it is not difficult to construct an operator $P$ not
satisfying (A.2) such that Equation (3.9) has a solution $K(x;\zeta)$ which is not
uniformly bounded in $\zeta$ when ${\rm Re}\zeta\in-\tilde{\Gamma}_{0},$ $|{\rm Re}\zeta|$ large.

PROOF OF THEOREM 2.1. Let us take the neighborhood $U$ of the origin so
small that Lemmas 3.1 and 3.2 are valid, and let $w(x)$ be the function given
by Lemma 3.1. We take a $\phi_{0}(x)\in C_{0}^{\infty}(R^{d})$ such that supp $\phi_{0}\subset U$ and $\phi_{0}\equiv 1$ in a
neighborhood of the origin, and set $g(x)=\phi_{0}(x)(x^{\lambda}f(x)-P(x, x\cdot\partial)(x^{\lambda}w))$ . Then
the function $g(x)$ is flat on the hyperplanes $x_{j}=0(j=1, \cdots , d)$ , and has
compact support.

Let $\hat{g}(\zeta)$ be the Mellin transform of $g(x)$ ;

(3.15) $\hat{g}(\zeta)=\int_{R_{+}^{d}}g(x)x^{\zeta-e}dx$ , $e=(1, \cdots , 1)$ .

We can easily see that $\hat{g}(\zeta)$ is an entire function of $\zeta$ and rapidly decreasing
as ${\rm Im}\zeta$ tends to infinity while ${\rm Re}\zeta$ remains bounded. The inversion formula
is given by

(3.16) $g(x)=(2 \pi i)^{-d}\int_{\omega+tR^{d}}\hat{g}(\zeta)x^{-\zeta}d\zeta$ , $x_{1}>0,$ $\cdots$ , $x_{d}>0$
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where $\zeta=\omega+i\xi$ and $\omega$ is a fixed vector. These formulas follow from the well-
known inversion formulas of the Fourier-Laplace transform by the change of
variables $xarrow e^{t}$ .

Now it follows from the definition of $\tilde{\Gamma}_{0}$ that the cone $-\tilde{\Gamma}_{0}$ contains an
open cone $\Gamma_{1}$ such that $\theta_{j}>0,$ $j=1,$ $\cdots$ , $d$ for every $\theta=(\theta_{1}, \cdots , \theta_{a})\in\Gamma_{1}$ . Let
$K(x;\zeta)$ be the function given by Lemma 3.2, and set

(3.17) $w_{1}(x)=(2 \pi i)^{-d}\int_{\omega+iR^{d}}K(x;\zeta)\hat{g}(\zeta)x^{-\zeta}d\zeta$

where $\zeta=\omega+i\xi$ and $\omega$ is a vector in $\Gamma_{1}\backslash \{0\}$ such that $|\omega|\geqq\omega_{0}$ . Then it follows
from Lemma 3.2 and (3.16) that $w_{1}(x)$ is smooth in the domain { $x=(x_{1}, \cdots , x_{d})$ ;
$0<x_{j}<\epsilon_{0},$ $j=1,$ $\cdots$ , $d$ } for some $\epsilon_{0}>0$ , and satisfies the equation $Pw_{1}=g$ there.
Moreover, by the Cauchy’s integral formula we see that the integral (3.17) is
independent of $\omega$ in $\Gamma_{1}\backslash \{0\},$ $|\omega|\geqq\omega_{0}$ . Hence, by taking $\omega$ so large in $\Gamma_{1}$ we
may assume that the factor $x^{-\zeta}$ in the integrand of (3.17) can be divided by
arbitrarily large power of $x$ . This implies that $w_{1}(x)$ is flat on $x_{j}=0,$ $j=1,$ $\cdots$ , $d$ .
Hence the function $w_{1}(x)$ is smooth and satisfies that $Pw_{1}=g$ in $x_{j}\geqq 0,$ $j=1,$ $\cdots$ , $d$ .

In order to construct the solution of the equation $Pw_{1}=g$ in the sector
$\{x;\epsilon(k)x_{k}\geqq 0, k=1, \cdots , d\}$ where $\epsilon(k)=1$ or $-1$ , we make the linear change
of variables $x_{k}arrow-x_{k}$ for $k$ such that $\epsilon(k)=-1$ . Since such transformation
preserves the monomial $x_{k}\partial_{k}$ we can reduce the problem to the above case,
and construct the solution in each sector. We split the neighborhood of the
origin into the sum of such sectors, and construct the solution in each sector.
Then, by patching up these solutions we obtain a smooth solution of the
equation $Pw_{1}=g$ in some neighborhood of the origin because all these solutions
are flat on $x_{j}=0,$ $j=1,$ $\cdots$ , $d$ . We denote this solution by $w_{1}(x)$ , and set
$v(x)=w(x)+x^{-\lambda}w_{1}(x)$ . Then, in view of the definition of $g(x)$ and Lemma 3.1
we can easily see that the function $v(x)$ has the property as desired. This
ends the proof of Theorem 2.1. $q.e.d$ .
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