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\S 1. Introduction.

Let $S$ be the set consisting of all compact bordered Riemann surfaces. For
$\overline{S}$ in $S$, we denote its interior and its border by $S$ and $\partial S$ , respectively. Let
us denote by $P(\geqq 0)$ the genus of $\overline{S}$ and by $q(\geqq 1)$ the number of boundary
components of S. We set

$N=2p+q-1$ .
Furthermore we denote by $A(S)$ the set of all functions which are analytic in
$S$ and continuous on $\overline{S}$ . It forms a Banach space with the supremum norm

$\Vert f\Vert=\sup_{z\in S}|f(z)|$ .

For $\overline{S}$ and $\overline{S}’$ in $S$ , let $L(A(S), A(S’))$ denote the set of all continuous invertible
linear mappings of $A(S)$ onto $A(S’)$ . It is shown by Rochberg [6] that $L(A(S)$ ,
$A(S’))$ is nonvoid if $S$ and $S’$ are homeomorphic. We set

$c(T)=\Vert T\Vert\Vert T^{-1}\Vert$

for $T$ in $L(A(S), A(S’))$ . We have always

$c(T)\geqq 1$ ,

and if $T1=1$ , we see that

$1\leqq\Vert T\Vert\leqq c(T)$ , $1\leqq\Vert T^{-1}\Vert\leqq c(T)$

and that
$c(T)^{-1}\Vert f\Vert\leqq\Vert Tf\Vert\leqq c(T)\Vert f\Vert$

for all $f$ in $A(S)$ . The above inequality implies that in the case $T1=1,$ $T$ is
an isometry if and only if the value $c(T)$ attains its minimum 1. Therefore the
value log $c(T)$ is considered to be the quantity representing the deviation of $T$

from isometries. This quantity was first studied by Banach and Mazur for more
general cases (cf. [2]). It is well known that if there exists an isometry $T$ in
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$L(A(S), A(S’))$ with $T1=1$ , then there exists a conformal mapping $\phi$ of $S’$ onto
$S$ such that $T$ is induced by $\phi$ , namely

$Tf=f\circ\phi$

for all $f$ in $A(S)$ (cf. [4]).

In order to investigate deformations of the Banach space $A(S)$ , we introduce
a space consisting of isomorphisms of $A(S)$ . We now fix an element $\overline{S}_{0}\in S$ and
denote by $L(S_{0})$ the set of all $T\in L(A(S_{0}), A(S))$ with $T1=1$ for all SES that
are homeomorphic to $\overline{S}_{0}$ . For $T_{1}$ and $T_{2}$ in $L(S_{0})$ , we say that $T_{1}$ is equivalent
to $T_{2}$ , if $T_{2^{\circ}}T_{1}^{-1}$ is an isometry. This defines an equivalence relation in $L(S_{0})$ .
We denote by $X(S_{0})$ the set of all equivalence classes $[T]$ for all $T\in L(S_{0})$ .
We define a function $d(\cdot, \cdot)$ in $\mathcal{L}(S_{0})\cross \mathcal{L}(S_{0})$ as follows;

$d([T_{1}], [T_{2}])=\log c(T_{2}\circ T_{1}^{-1})$

for $[T_{1}]$ and $[T_{2}]\in \mathcal{L}(S_{0})$ . We can easily see that it is well defined independ-
ently of choices of representatives $T_{1}$ and $T_{2}$ and that it defines a metric on
$\mathcal{L}(S_{0})$ . Thus $X(S_{0})$ is a metric space. When we take another $\overline{S}_{1}\in S$ which is
homeomorphic to $\overline{S}_{0}$ , we can similarly define the metric space $X(S_{1})$ . Obviously
$\mathcal{L}(S_{1})$ is isometric to $\mathcal{L}(S_{0})$ . Hence the metric space $\mathcal{L}(S_{0})$ is determined inde-
pendently of choices of $S_{0}$ . The purpose of the present paper is to investigate
the local and topological structure of the space $\mathcal{L}(S_{0})$ , which describes slight
changes of deformations of $A(S)$ by linear isomorphisms. In \S 4 we construct a
continuous mapping of a neighborhood $\mathcal{U}$ of every point of $X(S_{0})$ into the
reduced Teichm\"uller space $T^{\#}(S_{0})$ . By using this mapping we can resolve an
element of $\mathcal{U}$ , namely a slight deformation of $A(S)$ into a slight deformation of
$S$ in $T^{\#}(S_{0})$ and a linear automorphism of $A(S)$ which is very close to the
identity. This is our main result, which is proved in \S 6.

\S 2. Some results on almost isometries.

We state here certain continuity properties on almost isometries, that is,
linear isomorphisms $T$ with $c(T)$ very close to 1. They were proved by Roch-
berg.

THEOREM 1. For every $\epsilon>0$ there exists a constant $d>1$ having the follow-
ing property:

For $\overline{S},\overline{S}’\in S$ and for every $T\in L(A(S), A(S’))$ satisfying $c(T)<d$ and $T1=1$ ,
there exists a homeomorphism $h$ of $\partial S$ onto $\partial S’$ such that

$|f(z)-(Tf)(h(z))|\leqq\epsilon\Vert f\Vert$

for all $z\in\partial S$ and for all $f\in A(S)$ (cf. [7]).
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The following theorems express in a natural form how close almost iso-
metries are to an isomorphism induced by a conformal mapping. Theorem 2 is
a corollary to Theorem $A’$ in [5], and Theorem 3 is a result which was im-
plicitly contained in the proof of Proposition 5 and Theorem 3 in [7].

THEOREM 2. For every $\epsilon>0$ and for $\overline{S}\in S$ , there exists a constant $d>1$

having the following property:

If $T\in L(A(S), A(S))$ satisfies $c(T)<d$ and $T1=1$ , then there exists a unique
conformal automorphism $\phi$ of $S$ such that

$\Vert Tf-f\circ\phi\Vert\leqq\epsilon\Vert f\Vert$

for all $f\in A(S)$ .
THEOREM 3. Let $\overline{S}$ be fixed in S. Then, for every $\epsilon>0$ and for every rela-

tively compact subdomain $D$ of $S$ , there exists a constant $d>1$ having the follow-
ing property:

If $T\in L(A(S), A(S’))$ satisfies $c(T)<d$ and $T1=1$ for $\overline{S}’\in S$ , then there exis $ts$

a quasiconformal mapping $w$ of $S$ onto $S’$ such that its maximal dilatation $K(w)$

is le $ss$ than $1+\epsilon$ and
$|f(z)-(Tf)(w(z))|\leqq\epsilon\Vert f\Vert$

for all $z\in D$ and for all $f\in A(S)$ .
PROOF. Let $\epsilon>0$ and relatively compact subdomain $D$ of $S$ be arbitrarily

given. Then, by the same argument as the proof of Proposition 5 and Theorem
3 in [7], we can choose a constant $d>1$ such that if $T\in L(A(S), A(S’))$ satisfies
$c(T)<d$ and $T1=1$ for $\overline{S}’\in s$ there exist a relatively compact subdomain $R$ of
$S$ and a homeomorphism $w$ of $S$ onto $S’$ satisfying the following conditions:

(i) $D$ is a subdomain of $R$ . The boundary of $R$ consists of a finite num-
ber of analytic contours and the set $\overline{S}\backslash R$ is a union of a finite number of annuli
$A_{1},$ $\cdots$ $A_{m}$ .

(ii) For a finite number of parametric disks $D_{1},$ $\cdots$ , $D_{n}$ in $S,$ $w$ is con-
formal in $\overline{R}\backslash \bigcup_{i=1}nD_{i}$ .

(iii) $w$ is quasiconformal in $D_{i}(i=1, \cdots n)$ and in $A_{i}(i=1, \cdots , m)$ .
(iv) $K(w)<1+\epsilon$ .
(v) $|f(z)-(Tf)(w(z))|\leqq\epsilon\Vert f\Vert$ ,

for all $z \in\overline{R}\backslash \bigcup_{i=1}nD_{i}$ and for all $f\in A(S)$ .
For $z_{0}\in D_{i},$ $z_{1}\in\partial D_{i}$ and $f\in A(S)$ , we have

$|f(z_{0})-(Tf)(w(z_{0}))|\leqq|f(z_{0})-f(z_{1})|+|f(z_{1})-(Tf)(w(z_{1}))|$

$+|(Tf)(w(z_{1}))-(Tf)(w(z_{0}))|$ .
Since all functions $f/\Vert f\Vert$ and $(Tf)/\Vert f\Vert$ for $f\in A(S)$ are uniformly bounded,
they are equicontinuous on every compact subset. Hence, if we choose before-
hand sufficiently small $D_{i}$ $(i=1, \cdots , n)$ , then the first and the last terms of the
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right side of the above inequality are less than $\epsilon\Vert f\Vert$ . Furthermore, by (v), the
second term is also less than $\epsilon\Vert f\Vert$ . Hence we obtain

$|f(z_{0})-(Tf)(w(z_{0}))|\leqq 3\epsilon\Vert f\Vert$

for all $f\in A(S)$ . Therefore we may say that (v) holds for all $z\in\overline{R}$ , consequently

for all $z\in D$ , and for all $f\in A(S)$ .

\S 3. The reduced Teichm\"uller space.

Let $\overline{S}_{0}$ be fixed. If SES is homeomorphic to $\overline{S}_{0}$ , there exists a quasi-
conformal mapping $w$ of $S_{0}$ onto $S$ . We consider a pair $(S, w)$ . We say that
two pairs $(S_{1}, w_{1})$ and $(S_{2}, w_{2})$ are equivalent, if there exists a conformal maPp-

ing $\phi$ of $S_{1}$ onto $S_{2}$ which is homotopic to $w_{2}\circ w_{1}^{-1}$ . We denote by $[S, w]$ the
equivalence class of $(S, w)$ . The set of all equivalence classes is denoted by
$T^{\#}(S_{0})$ . For two pairs $(S_{1}, w_{1})$ and $(S_{2}, w_{2})$ , there exists a unique quasiconformal
mapping $w_{0}$ whose maximal dilatation is the smallest in the family consisting
of all homeomorphisms of $S_{1}$ onto $S_{2}$ homotopic to $w_{2}\circ w_{1}^{-1}$ . Then we set

$\rho([S_{1z}w_{1}], [S_{2}, w_{2}])=\log K(w_{0})$ ,

where $K(w_{0})$ is the maximal dilatation of $w_{0}$ . This quantity does not depend
on choices of representatives $(S_{1}, w_{1})$ and $(S_{2}, w_{2})$ . It defines a metric on $T\#(S_{0})$ ,

which is called the Teichm\"uller metric. The metric space $T^{*}(S_{0})$ is called the
reduced Teichm\"uller space of $S_{0}$ .

We consider $m=\mu(z)d\overline{z}/dz$ , a differential of type $(-1,1)$ on a Riemann sur-
face $S$ , where $\mu(z)$ is a measurable function. Such a differential form is called
a Beltrami differential on $S$ . If

$\Vert m\Vert=\sup_{z\in S}|\mu(z)|<1$ ,

a Riemannian metric
$ds=|dz+\mu(z)d\overline{z}|$

on $S$ defines a new conformal structure on $S$ as is well known. This new Rie-
mann surface is denoted by $S^{m}$ . The identity mapping of $S$ onto itself is a
quasiconformal mapping of $S$ onto $S^{m}$ , which is denoted by $w^{m}$ , and it satisfies
locally the Beltrami differential equation

$w_{\overline{z}}=\mu w_{z}$ .
Let $[S_{1}, w_{1}]\in T^{*}(S_{0})$ be an arbitrary point. The following fact is well

known. There exists a $(3N-3)$-tuple $m=(m_{1}, \cdots , m_{3N-3})$ of Beltrami differentials
on $S_{1}$ such that every point $[S, w]$ in a neighborhood of $[S_{1}, w_{1}]$ is equal to
$[S_{1}^{a\cdot m}, w^{a\cdot m}]$ , where $a=(a_{1}, \cdots , a_{3N-3})$ is a point of Euclidean space $R^{3N-}$ and
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$a\cdot m=a_{1}m_{1}+\cdots+a_{3N-3}m_{3N-3}$ .
We call $m=(m_{1}, \cdots , m_{3N-3})$ a Beltrami basis on $S_{1}$ . The mapping

$a=(a_{1}, \cdots a_{3N- 3})-[S_{1}^{a\cdot m}, w^{a\cdot m}]$

is a homeomorphism of a neighborhood of the origin of $R^{3N-3}$ onto a neighbor-
hood of $[S_{1}, w_{1}]\in T\#(S_{0})$ . If we consider $(a_{1}, \cdots , a_{3N-3})$ local coordinates in the
neighborhood of $[S_{1}, w_{1}]$ , a real analytic structure is defined in $T^{\#}(S_{0})$ . More-
over $T^{\#}(S_{0})$ is homeomorphic to $R^{3N-3}$ (cf. [3]). We can construct a Beltrami
basis $m=(m_{1}, \cdots , m_{3N-3})$ so that $m_{i}$ is infinitely differentiable in the real sense
and the support of $m_{i}$ is a compact subset of $S_{1}$ for $i=1,$ $\cdots$ , $3N-3$ (cf. Prop. 6
in [6]).

\S 4. The construction of a mapping $\Phi$ of $\mathcal{L}(S_{0})$ into $T^{\#}(S_{0})$ .
Suppose that $\overline{S}_{0}$ and $\overline{S}_{0}^{*}$ in $S$ are homeomorphic. Let $T_{0}$ be an element of

$L(A(S_{0}), A(S_{0}^{*}))$ satisfying $T_{0}1=1$ , and let $w_{0}$ be a quasiconformal mapping of
$S_{0}$ onto $S_{0}^{*}$ . We consider the point $[S_{0}^{*}, w_{0}]$ in the reduced Teichm\"uller space
$T^{\#}(S_{0})$ . By using Theorem 3, for every $\epsilon>0$ and relatively compact subdomain
$D_{0}$ of $S7$ , there exists a constant $d>1$ having the following property: If $T\in$

$L(A(S_{0}), A(S))$ satisfies $c(T\circ T_{0}^{-1})<d$ and $T1=1$ , where SES is homeomorphic to
$\overline{S}_{0}$ , then there exists a quasiconformal mapping $w$ of $S_{0}^{*}$ onto $S$ such that $K(w)$

$<1+\epsilon$ and
$|f(z)-(T\circ T_{0}^{-1}f)(w(z))|\leqq\epsilon\Vert f\Vert$

for all $z\in D_{0}$ and for all $f\in A(S_{0}^{*})$ . We now define a mapping $\Phi$ as follows;

$\Phi(T)=(S, w\circ w_{0})$ .
In order to prove that $\Phi$ defines a mapping of a neighborhood of $[T_{0}]\in \mathcal{L}(S_{0})$

into $T^{*}(S_{0})$ , we must show the following fact. There exist a positive number
$\epsilon_{0}$ and a relatively compact subdomain $D_{0}$ of $S_{0}^{*}$ such that for every $\epsilon$ with
$0<\epsilon<\epsilon_{D}|$

’ for some $d>1$ and for any two equivalent isomorphisms $T,$ $T’\in L(S_{0})$

satisfying $c(T\circ T_{0}^{-1})<d,$ $c(T’\circ T_{0}^{-1})<d$ and $T1=1,$ $T’1=1,$ $\Phi(T)$ and $\Phi(T’)$ defined
as above are equivalent, namely $\Phi(T)=(S, w\circ w_{0})$ defines a point $[S, w\circ w_{0}]$ of
$T^{\#}(S_{0})$ for $[T]\in \mathcal{L}(S_{0})$ .

If it were not true, then there exist the following sequences:
(i) $\epsilon_{n}>0$ such that $\epsilon_{n}arrow 0$ ,
(ii) relatively compact subdomains $D_{n}$ of $S_{0}^{*}$ which exhaust $S_{0}^{*}$ ,
(iii) $d_{n}>1$ such that $d_{n}arrow 1$ ,
(iv) $S_{n},\overline{S}_{n}’\in S$ which are homeomorphic to $\overline{S}_{0}^{*}$ ,
(v) $T_{n}\in L(A(S_{0}), A(S_{n})),$ $T_{n}’\in L(A(S_{0}), A(S_{n}’))$ with $T_{n}1=1$ , $T\text{\’{n}} l=1$ ,

and
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(vi) quasiconformal mappings $w_{n}$ of $S_{0}^{*}$ onto $S_{n},$ $w_{n}’$ of $S_{0}^{*}$ onto $S_{n}’$ , satisfy-
ing the conditions

(1) $c(T_{n}\circ T_{0}^{-1})<d_{n}$ , $c(T_{n}’\circ T_{0}^{-1})<d_{n}$ ,

(2) $T_{n}$ is equivalent to $T_{n}’$ ,

(3) $K(w_{n})<1+\epsilon_{n}$ , $K(w_{n}’)<1+\epsilon_{n}$ ,

(4) $\{|f(z)-(T_{n}\circ T_{0}^{-1}f)(w_{n}(z))||f(z)-(T_{n^{Q}}’T_{0}^{-1}f)(w_{n}(z))|\leqq\epsilon_{n}||f||\leqq\epsilon_{n}||f||$

for all $z\in D_{n}$ and for all $f\in A(S_{0}^{*})$ , and

(5) $\Phi(T_{n})\neq\Phi(T_{n}’)$ ,

namely $(S_{n}, w_{n}\circ w_{0})$ is not equivalent to $(S_{n}’, w_{n^{o}}w_{0})$ .
By the condition (2), there exists a conformal mapping $\phi_{n}$ of $S_{n}’$ onto $S_{n}$

such that

(6) $T_{n^{\circ}}(T_{n}’)^{-1}f=f\circ\phi_{n}^{-1}$

for all $f\in A(S_{n}’)$ . We set
$\omega_{n}=\phi_{n}\circ w_{n}’$ .

Then, the condition (5) implies that $w_{n}$ is not homotopic to $\omega_{n}$ . By the condi-
tion (3), we note that

(7) $K(\omega_{n})=K(w_{n}’)<1+\epsilon_{n}$ .
Furthermore it follows from (6) and (4) that

(8) $|f(z)-(T_{n}\circ T_{0}^{-1}f)(\omega_{n}(z))|=|f(z)-[(T_{n}\circ T_{n}^{\gamma-1})\circ(T_{n}’\circ T_{0}^{-1})f](\omega_{n}(z))|$

$=|f(z)-[(T_{n}’\circ T_{0}^{-1}f)\circ\phi_{n}^{-1}](\phi_{n^{o}}w_{n}’(z))|$

$=|f(z)-(T_{n}’\circ T_{0}^{-1}f)(w_{n}’(z))|$

$\leqq\epsilon_{n}\Vert f\Vert$

for all $z\in D_{n}$ and for all $f\in A(S_{0}^{*})$ .
From now on, we use the method of uniformization. Let $\overline{S}$ be in $S$ . The

universal covering surface of $S$ are conformally equivalent to the unit disk
$U=\{|\tilde{z}|<1\}$ in the complex plane. Hence we may consider $U$ the universal
covering surface of $S$ and denote by $\Gamma$ the group of cover transformations of
$U$ over S. $\Gamma$ is a finitely generated Fuchsian group of the second kind and $S$

can be identified with the orbit space $U/\Gamma$ so that the natural projection $\pi;U$

$arrow U/\Gamma$ is analytic. A function $f\in A(S)$ determines a unique function $f$ on $U$

such that $f=f\circ\pi$ on $U$ . It satisfies $f\circ\gamma=f$ on $U$ for every $\gamma\in\Gamma$. We denote
by $A(U, \Gamma)$ the set of such functions $\tilde{f}$ for all $f\in A(S)$ . It forms a Banach
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space with the supremum norm. Evidently, $\Vert f\Vert=\Vert f\Vert$ for $f\in A(S)$ . Let $\overline{S}’$ be
another element of $S,$ $\Gamma’$ be a Fuchsian group such that $S’=U/\Gamma’$ and $\pi’$ be
the projection of $U$ onto $U/\Gamma’$ . For $T\in L(A(S), A(S’))$ we define a continuous
linear isomorphism $\tilde{T}$ of $A(U, \Gamma)$ onto $A(U, \Gamma’)$ by

$Tf=(Tf)^{\sim}$

for all $f\in A(U, \Gamma)$ . Evidently, $\Vert T\Vert=\Vert T\Vert$ .
Let $\Gamma_{0}$ and $\Gamma_{n}$ be the Fuchsian groups which represent $S_{0}^{*}$ and $S_{n}$ , respec-

tively;
$S_{0}^{*}=U/\Gamma_{0}$ , $S_{n}=U/\Gamma_{n}$ .

We denote by $\tilde{w}_{n}$ a mapping of $U$ onto itself which satisfies
$\pi_{n}\circ\tilde{w}_{n}=w_{n}\circ\pi_{0}$

where $\pi_{0}$ ; $Uarrow U/\Gamma_{0}$ and $\pi_{n}$ : $Uarrow U/\Gamma_{n}$ are the projections. Then,

$\Gamma_{n}=\tilde{w}_{n}\circ\Gamma_{0^{\circ}}\tilde{w}_{n}^{-1}$ .
Without loss of generality, we may assume that

(9) $\tilde{w}_{n}(0)=0$ , $\tilde{w}_{n}(1)=1$ .
We consider the normal polygon of $\Gamma_{n}$ with the center at the origin, which is
denoted by $P_{n}$ . We denote by $\tilde{\omega}_{n}$ a mapping of $U$ onto itself which satisfies

$\pi_{n^{o}}ij_{n}=\omega_{n}\circ\pi_{0}$

and

(10) $\tilde{\omega}_{n}(0)\in\overline{P}_{n}$ .
We note that

(11) $\Gamma_{n}=\tilde{w}_{n}\circ\Gamma_{0^{o}}\tilde{w}_{n}^{-1}=\tilde{\omega}_{n}\circ\Gamma_{0}\circ\tilde{\omega}_{n}^{-1}$

Since $\tilde{w}_{n}$ is a quasiconformal mapping of $U$ onto itself satisfying $\tilde{w}_{n}(0)=0$, we
can symmetrically extend it to the whole complex plane. Hence we may con-
sider $\tilde{w}_{n}$ a quasiconformal mapping of the complex plane onto itself. The
mappings $\tilde{w}_{n}$ form a normal family in the complex plane, because $K(\tilde{w}_{n})=K(w_{n})$

and (3) implies that $\{K(\tilde{w}_{n})\}$ is bounded. Hence we may assume that $\{\tilde{w}_{n}\}$

converges uniformly on $\overline{U}$. Similarly, we may assume that $\{\tilde{w}_{\overline{n}}^{1}\}$ converges
uniformly on $\overline{U}$. Since (3) implies $K(\tilde{w}_{n})arrow 1$ , by noting (9), we see that the
limit function of $\{\tilde{w}_{n}\}$ is a conformal automorphism of $U$ which fixes $0$ and 1,
namely the identity mapping. Similarly, the limit function of $\{\tilde{w}_{n}^{-1}\}$ is the
identity mapping. Therefore

(12) $\lim_{narrow\infty}\tilde{w}_{n}=id$ , $\lim_{narrow\infty}\tilde{w}_{n}^{-1}=id$

uniformly on $\overline{U}$. For brevity, we set
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$T_{n}^{*}=T_{n}\circ T_{0}^{-1}$

It follows from (4) and (8) that

(13) $|f(\tilde{z})-(\hat{T}_{n}^{*}f)(\tilde{w}_{n}(\tilde{z}))|\leqq\epsilon_{n}\Vert f|$

and

(14) $|f(\tilde{z})-(T_{n}^{*}\tilde{f})(\tilde{\omega}_{n}(\tilde{z}))|\leqq\epsilon_{n}\Vert f\Vert$

for all $\tilde{z}\in\hat{D}_{n}$ and for all $P\in A(U,\dot{\Gamma}_{0})$ , where $D_{n}$ is the inverse image of $D_{n}$

under $\pi_{n}$ . We fix $f\in A(U, \Gamma_{0})$ arbitrarily. Since, by using (1), we have

$|1^{T_{n}^{*}}$fll $=\Vert T_{n}^{*}f\Vert\leqq\Vert T_{n}^{*}\Vert\Vert f\Vert\leqq c(T_{n}^{*})\Vert f\Vert\leqq d_{n}\Vert f\Vert$

the functions $\hat{T}_{n}^{*}f$ are uniformly bounded. Hence we may assume that $\{T_{n}^{*}f\}$

converges uniformly on every compact subset of $U$ . We see from (12) and (13)

that the limit function of $\hat{T}_{n}^{*}f$ is equal to 7. We have thus obtained that

(15)
.

$\lim_{narrow}\hat{T}_{n}^{*f=f}$

uniformly on every compact subset of $U$ for every $f\in A(U, \Gamma_{0})$ .
We can find a function of $A(S_{0}^{*})$ which has a simple zero at $\zeta=\pi_{0}(0)$ and

has no zeros in $\overline{S}_{0}^{*}$ except $\zeta$ (cf. [7]). Let us denote this function by $f_{\zeta}$ . By
setting $f=f_{(}$ in (14), we obtain

$|f_{\zeta}(2)-(\tilde{T}_{n}^{*}f_{\zeta})((i)_{n}(\tilde{z}))|\leqq\epsilon_{n}\Vert\tilde{f}_{\zeta}\Vert$

for all $\tilde{z}\in\hat{D}_{n}$ . Since $\tilde{f}_{\zeta}(0)=0$ ,

$|(\hat{T}_{n}^{*}f_{(})(\tilde{\omega}_{n}(0))|\leqq\epsilon_{n}\Vert f_{\zeta}\Vert$ .
Hence

(16) $\lim_{narrow\infty}(\hat{T}_{n}^{*}f_{\zeta})(\tilde{\omega}_{n}(0))=0$ .

Now we fix a number $r_{0}$ with $0<r_{0}<1$ such that $\tilde{f}_{\zeta}$ has no zeros on $|\tilde{z}|=r_{0}$ ,

and set
$C_{n}=\pi_{n}(\overline{P}_{n}\cap\{|\tilde{z}|=r_{0}\})$ , $R_{n}=\pi_{n}(\overline{P}_{n}\cap\{r_{0}<|\tilde{z}|<1\})$ .

If $r_{0}$ is sufficiently close to 1, $C_{n}$ is a union of several loops on $S_{n}$ and $R_{n}$ is a
union of several ring domains on $S_{n}$ whose boundary consist of $C_{n}$ and a com-
ponent of $\partial S_{n}$ . Since $f_{(}$ has no zeros on $\overline{S}_{0}^{*}$ except $\zeta$ , we can choose an $r_{0}$

sufficiently close to 1 and a sufficiently small $\delta>0$ such that

(17) $|f_{\zeta}(z)|\geqq\delta$

on $\overline{R}_{n}$ , consequently
$|\tilde{f}_{\zeta}(\tilde{z})|\geqq\delta$

for all $\tilde{z}\in\overline{P}_{n}\cap\{r_{0}\leqq|\tilde{z}|\leqq 1\}$ . Therefore we obtain
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$|(T_{n}^{*}f_{\zeta})(\tilde{z})|\geqq\delta/2$

on $|\tilde{z}|=r_{0}$ , that is,

(18) $|(T_{n}^{*}f_{\zeta})(z)|\geqq\delta/2$

on $C_{n}$ for all sufficiently large $n$ . Because, by (15), $\hat{T}_{n}^{*}\tilde{f}_{(}$ converges to $\tilde{f}_{\zeta}$ uni-
formly on $|\tilde{z}|=r_{0}$ . On the other hand, by Theorem 1, there exists a homeo-
morphism $h_{n}$ of $\partial S_{0}^{*}$ onto $\partial S_{n}$ such that

$|f_{\zeta}(z)-(T_{n}^{*}f_{\zeta})(h_{n}(z))|\leqq\epsilon_{n}\Vert f_{\zeta}\Vert$

for all $z\in\partial S_{0}^{*}$ . Hence

(19) $|(T_{n}^{*}f_{\zeta})(z)-f_{\zeta}(h_{n}^{-1}(z))|<\delta/2$

on $\partial S_{n}$ for all sufficiently large $n$ . Consequently, by using (17),

(20) $|(T_{n}^{*}f_{(})(z)|\geqq|f_{\zeta}(h_{n}^{-1}(z))|-\delta/2\geqq\delta/2$

on $\partial S_{n}$ for all sufficiently large $n$ . It follows from (19) and (20) that the change
of argument of $T_{n}^{*}f_{(}$ around $\partial S_{n}$ is the same as that of $f_{\zeta}$ around $\partial S_{0}^{*}$ for every
sufficiently large $n$ . Therefore, by the argument principle, $T_{n}^{*}f_{\zeta}$ has the same
number of zeros as $f_{(}$ , namely exactly one zero in $S_{n}$ for every sufficiently
large $n$ . Since $\hat{T}_{n}^{*}\tilde{f}_{(}$ converges to $\tilde{f}_{\zeta}$ uniformly on every compact subset of $U$ ,
Hurwitz’s theorem shows us that $\tilde{T}_{n}^{*}\tilde{f}_{(}$ has a zero in a neighborhood $\Delta$ of $\tilde{z}=0$

for every sufficiently large $n$ . Since $P_{n}$ converges to the normal polygon of $\Gamma_{0}$

with the center at the origin, we can choose $\Delta$ so that

$\Delta\subset\bigcap_{n=1}^{\infty}P_{n}$ .

Hence $\tilde{T}_{n}^{*;_{\zeta}}$ has no zeros in $P_{n}\cap\{r_{0}\leqq|\tilde{z}|\leqq 1\}$ , that is, $T_{n}f_{\zeta}$ has no zeros in $R_{n}$

for every sufficiently large $n$ . Then, by using (18) and (20), the minimum
principle guarantees that

$|(T_{n}^{*}f_{\zeta})(z)|\geqq\delta/2$

in $R_{n}$ , namely

(21) $|(\tilde{T}_{n}^{*}\tilde{f}_{\zeta})(\hat{z})|\geqq\delta/2$

in $P_{n}\cap\{r_{0}\leqq|\tilde{z}|\leqq 1\}$ .
By (10), (16) and (21) we see that the sequence $\{\tilde{\omega}_{n}(0)\}$ has no accumulating

points on $|\tilde{z}|=1$ . Consequently, there exists a number $r_{1}$ with $0<r_{1}<1$ such
that

(22) $|_{ci)_{n}}(0)|<r_{1}$

for all $n$ . On the other hand, the mappings $\tilde{\omega}_{n}$ form a normal family, for (7)
implies that $\{K(\tilde{\omega}_{n})\}$ is bounded. Accordingly, we may assume that $\{\tilde{\omega}_{n}\}$ con-
verges uniformly on every compact subset of $U$ . The limit function
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$\alpha=\lim_{narrow\infty}\tilde{\omega}_{n}$

is not a constant, for (22) holds for every $n$ . Since (7) implies that $K(\tilde{\omega}_{n})arrow 1$ ,
$a$ is a conformal automorphism of $U$ , consequently it is a M\"obius transforma-
tion. By considering the limit of (14) as $narrow\infty$ , we obtain

$\tilde{f}(\alpha(\tilde{z}))=f(\tilde{z})$

in $U$ for all $f\in A(U, \Gamma_{0})$ . If $\alpha\not\in\Gamma_{0}$ , then there is a $\tilde{z}_{0}\in U$ such that

$\pi_{0}(\alpha(2_{0}))\neq\pi_{0}(\tilde{z}_{0})$ .
Since $A(S_{0}^{*})$ separates points on $S_{0}^{*}$ , there exists a function $f\in A(S_{0}^{*})$ such that

$f(\pi_{0}(\alpha(\tilde{z}_{0})))\neq f(\pi_{0}(\tilde{z}_{0}))$ ,
namely

$\tilde{f}(\alpha(\tilde{z}_{0}))\neq I^{(\sim_{u}}\simeq\wedge$

This is a contradiction. Therefore we krow
$\alpha\in\Gamma_{0}$

Now we set
$\chi_{n}(\gamma)=\tilde{w}_{n}^{-1}\circ\tilde{\omega}_{n}\circ\gamma\circ\tilde{\omega}_{n}^{-1}\circ\tilde{w}_{n}$

for every $\gamma\in\Gamma_{0}$ . By noting (11) we see that $\chi_{n}$ is an automorphism of $\Gamma_{0}$ .
Since (12) implies that

$\lim_{narrow\infty}\tilde{w}_{n}^{-1_{o_{(}}}i\}_{n}=\alpha$

we obtain
$\lim_{narrow\infty}\chi_{n}(\gamma)=\alpha\circ\gamma^{o}\alpha^{-1}$

for all $\gamma\in\Gamma_{0}$ . Hence, by the discontinuity of $\Gamma_{0}$ ,

\langle 23) $\chi_{n}(\gamma)=\alpha\circ\gamma^{O}\alpha^{-1}$

for every $\gamma\in\Gamma_{0}$ and for every sufficiently large $n$ , because $\chi_{n}(\gamma)\in\Gamma_{0}$ and
$\alpha\circ\gamma^{\circ}\alpha^{-1}\in\Gamma_{0}$ . Since $\Gamma_{0}$ is finitely generated, we can choose a number $n_{0}$ inde-
pendent of $\gamma\in\Gamma_{0}$ such that (23) holds for every $n$ with $n\geqq n_{0}$ and for every
$\gamma\in\Gamma_{0}$ . Therefore

$\tilde{w}_{n}^{-1}\circ\tilde{\omega}_{n}\circ\gamma\circ\tilde{\omega}_{n}^{-1_{O}}\tilde{w}_{n}=\alpha\circ\gamma^{o}\alpha^{-1}$

for every $\gamma\in\Gamma_{0}$ and for every $n$ with $n\geqq n_{0}$ . This implies that $w_{n}^{-1}\circ\omega_{n}$ is
homotopic to the identity mapping of $S_{0}^{*}$ , namely $w_{n}$ is homotopic to $\omega_{n}$ for
every $n$ with $n\geqq n_{0}$ . This contradicts the before mentioned fact that $w_{n}$ is not
homotopic to $\omega_{n}$ for every $n$ . Thus we have proved that $\Phi(T)=(S, w\circ w_{0})$

defines a point $[S, w\circ w_{0}]$ of $T^{\#}(S_{0})$ for $[T]\in X(S_{0})$ . Therefore we obtain a
mapping $\Phi$ of a neighborhood of $[T_{0}]\in \mathcal{L}(S_{0})$ into $T^{\#}(S_{0})$ .
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\S 5. Some properties of the mapping $\Phi$ .
We use the same notations as in the previous section. Let $\mathcal{U}$ be the neigh-

borhood of $[T_{0}]$ in which the mapping $\Phi$ is defined. $\mathcal{U}$ consists of all $[T]\in$

$\mathcal{L}(S_{0})$ satisfying
$d([T], [T_{0}])<\log d$ .

Then, for every $[T]\in \mathcal{U}$ , we see that

$\rho(\Phi([T]), \Phi([T_{0}]))=\rho([S, w\circ w_{0}], [S_{0}^{*}, w_{0}])$

$\leqq\log K(w)$

$<\log(1+\epsilon)$ .
This implies that $\Phi$ is continuous at $[T_{0}]$ . In order to prove the continuity of
$\Phi$ at another point $[T_{1}]\in \mathcal{U}([T_{1}]\neq[T_{0}])$ , we consider the mapping $\Phi_{1}$ of a
neighborhood $\mathcal{U}_{1}(\subset \mathcal{U})$ of $[T_{1}]$ which is defined in the same way as used in
defining $\Phi$ . We can show that $\Phi=\Phi_{1}$ in $\mathcal{U}_{1}$ if $\mathcal{U}$ and $\mathcal{U}_{1}$ are sufficiently small.
Indeed, if $\Phi\neq\Phi_{1}$ in any small neighborhood $\mathcal{U}_{1}$ of $[T_{1}]$ for any small neigh-
borhood $\mathcal{U}$ of $[T_{0}]$ , there exists a sequence $[T_{n}^{*}]$ converging to $[T_{0}]$ such that

$\Phi([T_{n}^{*}])\neq\Phi_{1}([T_{n}^{*}])$ .
Then, we can derive a contradiction by the same argument as in the previous
section. Since $\Phi_{1}$ is continuous at $[T_{1}],$ $\Phi$ is also continuous at $[T_{1}]$ . Hence
$\Phi$ is continuous in $\mathcal{U}$ .

Next we prove that $\Phi$ is a mapping of $\mathcal{U}$ onto a neighborhood $\mathfrak{N}$ of
$[S_{0}^{*}, w_{0}]$ . We take an $\epsilon$ with $0<\epsilon<\epsilon_{0}$ and a $d$ with $d>1$ as before. Let $\mathcal{U}$ be
the neighborhood of $[T_{0}]$ consisting of all $[T]$ such that $d([T], [T_{0}])<\log d$ ,
and Iet $\mathfrak{N}$ be the neighborhood of $[S_{0}^{*}, w_{0}]$ consisting of all $[S, w]\in T^{\#}(S_{0})$

such that

(24) $\rho([S, w], [S_{0}^{*}, w_{0}])<\log(1+\epsilon)$ .
We fix an arbitrary point $[S, w]\in \mathfrak{N}$ . We may assume that

$K(w\circ w_{0}^{-1})<1+\epsilon$ ,

because (24) means that there exists a quasiconformal mapping $\phi$ of $S_{0}^{*}$ onto $S$

homotopic to $w\circ w_{0}^{-1}$ satisfying
$K(\phi)<1+\epsilon$ .

As we mentioned in \S 3, we choose a Beltrami basis

$m=(m_{1}, m_{3N-3})$

on $S_{0}^{*}$ such that each $m_{i}$ is infinitely differentiable in the real sense and the
support of $m_{i}$ is a compact subset of $S_{0}^{*}$ for every $i$ with $1\leqq i\leqq 3N-3$ . If $\epsilon$ is
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sufficiently small, there is an $\eta>0$ such that

$[S, w\circ w_{\overline{0}}^{1}]=[(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}]$

holds as a point of $T\#(S_{0}^{*})$ for some $\alpha\in R^{3N-3}$ with $|a|<\eta$ . Then,

(25) $[S, w]=[(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}\circ w_{0}]$

holds as a point of $T^{\#}(S_{0})$ . Since every Beltrami differential $m_{i}$ of $m$ has a
compact support in $S_{0}^{*}$ , $w^{a\cdot m}$ is conformal in some neighborhood of $\partial S$ . Let
$\gamma_{1},$

$\cdots$ , $\gamma_{N}$ be smooth contours in $(S_{0}^{*})^{a\cdot m}$ which form a homology basis on $(S_{0}^{*})^{a\cdot m}$ .
We denote by $P_{i}(\omega)$ the period of a closed differential $\omega$ along $\gamma_{i}$ , that is,

$P_{i}( \omega)=\int_{\gamma_{i}}\omega$

for every $i$ with $1\leqq i\leqq N$. Let $\omega_{1},$
$\cdots$ , $\omega_{N}$ be a basis of the space of analytic

Schottky differentials on $(S_{0}^{*})^{a\cdot m}$ satisfying

$P_{i}(\omega_{j})=\delta_{ij}$ $(i, j=1, \cdots N)$

(cf. [1]). Let $z_{0}$ be a point of $(S_{0}^{*})^{a\cdot m}$ . We now construct an isomorphism
$T^{a\cdot m}\in L(A(S_{0}^{*}), A((S_{0}^{*})^{a\cdot m}))$ as follows. For $f\in A(S_{0}^{*})$ , let us denote by $f_{1}$ the
unique harmonic function on $(S_{0}^{*})^{a\cdot m}$ with boundary values $f\circ(w^{a\cdot m})^{-1}$ . We set

$\theta=(df_{1}+i^{*}df_{1})/2$ .
It is an analytic differential on $(S_{0}^{*})^{a\cdot m}$. For $z\in(S_{0}^{*})^{a\cdot m}$ we set

(26) $(T^{a\cdot m}f)(z)=f((w^{a\cdot m})^{-1}(z_{0}))+ \int_{z_{0}}^{z}\{\theta-\sum_{j=1}^{N}P_{i}(\theta)\omega_{j}\}$ .

Since the integrand is exact, the integral is independent of the path. It was proved
that $T^{a\cdot m}$ is a continuous and invertible linear mapping of $A(S_{0}^{*})$ onto $A((S_{0}^{*})^{a\cdot m})$ ,
namely, $T^{a\cdot m}\in L(A(S_{0}^{*}), A((S_{0}^{*})^{a\cdot m}))$ (cf. [6]). We note that $T^{a\cdot m}1=1$ . If we set

$T=T^{a\cdot m}\circ T_{0}$ ,

$T$ is in $L(A(S_{0}), A((S_{0}^{*})^{a\cdot m}))$ . We can make $K(w^{a\cdot m})$ close to 1, consequently we
can make $\rho([(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}\circ w_{0}], [S_{0}^{*}, w_{0}])$ close to $0$ by choosing a sufficiently
small $\eta>0$ . Hence, by using the same argument as the proof of Proposition 8
in [6] we can deduce that if we choose a sufficiently small $\eta>0$ for every $\epsilon_{1}>0$

(27) $|f(z)-(T^{a\cdot m}f)(w^{a\cdot m}(z))|\leqq\epsilon_{1}\Vert f\Vert$

for all $z\in S_{0}^{*}$ , for all $f\in A(S_{0}^{*})$ and for all $a$ with $|a|<\eta$ By setting $\epsilon_{1}=\sqrt{d}-1$ ,
(27) yields

$\Vert T^{a\cdot m}f\Vert\leqq\sqrt{d}\Vert f\Vert$ , $\Vert(T^{a\cdot m})^{-1}f\Vert\leqq\sqrt{d}\Vert f\Vert$ ,

consequently
$c(T\circ T_{0}^{-1})=c(T^{a\cdot m})=$ I $T^{a\cdot m}\Vert\Vert(T^{a\cdot m})^{-1}\Vert<d$
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if we choose a sufficiently small $\eta>0$ . Then we see that $[T]\in \mathcal{U}$ , and by the
definition of $\Phi$ and (25) we obtain

$\Phi([T])=[(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}\circ w_{0}]=[S, w]$ .
Therefore $\Phi$ is a mapping of $\mathcal{U}$ onto $\mathfrak{N}$ .

REMARK. $\Phi$ is not injective. To show this, we take the identity mapping
$I\in L(A(S_{0}), A(S_{0}))$ . Then we see that

$\Phi([I])=$ [ $S_{0}$ , id].

For $\epsilon>0$, Theorem 2 guarantees the existence of a $d>1$ having the following
property: If $T\in L(A(S_{0}), A(S_{0}))$ satisfies $c(T)<d$ and $T1=1$ , then there exists
a unique conformal automorphism $\phi$ of $S_{0}$ such that

$|f(z)-(Tf)(\phi(z))|\leqq\epsilon\Vert f\Vert$

for all $z\in S_{0}$ and for all $f\in A(S_{0})$ . However, there exists a $T\in L(A(S_{0}), A(S_{0}))$

which is not an isometry and satisfies $c(T)<d$ and $T1=1$ . Then, $[T]\neq[I]$ and
by the definition of $\Phi$ we have

$\Phi([T])=[S_{0}, \phi]=$ [ $S_{0}$ , id] $=\Phi([I])$ .
Hence $\Phi$ is not injective.

We now look for the inverse image of an arbitrary point $[S_{1}, w_{1}]\in \mathfrak{N}$ under
$\Phi$ . There is a $[T_{1}]\in \mathcal{U}$ such that $\Phi([T_{1}])=[S_{1}, w_{1}]$ . We may assume $T_{1}\in$

$L(A(S_{0}), A(S_{1}))$ . Since $c(T_{1}\circ T_{0}^{-1})<d$ , by Theorem 3, for every $\epsilon>0$ there exists
a quasiconformal mapping $w_{1}’$ of $S_{0}^{*}$ onto $S_{1}$ such that $K(w_{1}’)<1+\epsilon$ and

$|f(z)-(T_{1}\circ T_{0}^{-1}f)(w_{1}’(z))|\leqq\epsilon\Vert f\Vert$

for all $z$ in a relatively compact subset $D_{0}$ of $S_{0}^{*}$ and for all $f\in A(S_{0}^{*})$ . Then,
by the definition of $\Phi$ ,

$\Phi([T_{1}])=[S_{1}, w_{1}’\circ w_{0}]=[S_{1}, w_{1}]$ .
We take an element $[T]\in \mathfrak{N}$ such that

$\Phi([T])=[S_{1}, w_{1}]$ .
Let $T$ be in $L(A(S_{0}), A(S))$ . Similarly, for every $\epsilon>0$ , there exists a quasi-
conformal mapping $w$ of $S_{0}^{*}$ onto $S$ such that $K(w)<1+\epsilon$ and

$|f(z)-(T\circ T_{\overline{0}}^{1}f)(w(z))|\leqq\epsilon\Vert f\Vert$

for all $z\in D_{0}$ and for all $f\in A(S_{0}^{*})$ . Then,

$\Phi([T])=[S, w\circ w_{0}]=[S_{1}, w_{1}’\circ w_{0}]$ .
Hence there is a conformal mapping $\phi$ of $S_{1}$ onto $S$ such that $\phi$ is homotopic
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to $w\circ(w_{1}’)^{-1}$ . Let us denote by $T_{\phi}$ the isometry in $L(A(S_{1}), A(S))$ induced by $\phi$ ,
that is,

$T_{\phi}f=f\circ\phi^{-1}$

for all $f\in A(S_{1})$ . We set
$T’=T_{\phi}^{-1}\circ T\circ T_{1}^{-1}$ .

Then, $T’\in L(A(S_{1}), A(S_{1}))$ and $[T’\circ T_{1}]=[T]$ . Moreover,

$c(T’)=c(T\circ T_{1}^{-1})\leqq c(T\circ T_{0}^{-1})c(T_{1}\circ T_{0}^{-1})<d^{2}$ ,

that is, $c(T’)$ is close to 1.
Conversely, we take a $T’\in L(A(S_{1}), A(S_{1}))$ with $c(T’)<d$ . By Theorem 2,

for every $\epsilon>0$ , there exists a conformal automorphism $\phi$ of $S_{1}$ such that

$|g(z)-(T’g)(\phi(z))|\leqq\epsilon\Vert g\Vert$

for all $z\in S_{1}$ and for all $g\in A(S_{1})$ . Hence

$|f(z)-(T’\circ T_{1}\circ T_{0}^{-1}f)(\phi\circ w_{1}’(z))|$

$\leqq|f(z)-(T_{1^{\circ}}T_{0}^{-1}f)(w_{1}’(z))|+|(T_{1^{\circ}}T_{\overline{0}}^{1}f)(w_{1}’(z))-(T’(T_{1}\circ T_{0}^{-1}f))(\phi(w’(z)))|$

$\leqq\epsilon\Vert f\Vert+\epsilon\Vert T_{1}\circ T_{0}^{-1}f\Vert$

$\leqq\epsilon(1+d)\Vert f\Vert$

for all $z\in D_{0}$ and for all $f\in A(S_{0}^{*})$ . Therefore, by the definition of $\Phi$ , we see
that

$\Phi([T’\circ T_{1}])=[S_{1}, \phi\circ w_{1}’\circ w_{0}]=[S_{1}, w_{1}’\circ w_{0}]=[S_{1}, w_{1}]$ .
Thus we can conclude that if we choose a $d>1$ sufficiently close to 1, the in-
verse image $\Phi^{-1}([S_{1}, w_{1}])$ is the set of $[T’\circ T_{1}]$ such that $T’\in L(A(S_{1}), A(S_{1}))$

and $c(T’)<d$ . Particularly, $\Phi^{-1}([S_{0}^{*}, w_{0}])$ is the set of $[T’\circ T_{0}]$ such that $T’\in$

$L(A(S_{0}^{*}), A(S_{0}^{*}))$ and $c(T’)<d$ .

\S 6. Main theorem.

From the fact stated in the previous section we can conjecture the following
theorem. It means that a slight deformation of $A(S)$ is composed of a slight
deformation of $S$ in the reduced Teichm\"uller space and a linear automorphism
of $A(S)$ which is very close to the identity. It is our aim to prove this theorem.

THEOREM. Supp0se that $\overline{S}_{0}$ and $\overline{S}_{0}^{*}\in S$ are homeomorphic and that $S_{0}^{*}$ has no
conformal automorphisms except the identity mapping. Let $T_{0}$ be an arbitrary
element of $L(A(S_{0}), A(S_{0}^{*}))$ and $[S_{0}^{*}, w_{0}]$ be a point of the reduced Teichmuller
space $T^{\#}(S_{0})$ , where $w_{0}$ is a quasicmfomal mapping of $S_{0}$ onto $S_{0}^{*}$ . Furthemore
we denote by $J\zeta$ the subsbt of $X(S_{0}^{*})$ conststing of all equivalence classes of elements
of $L(A(S_{0}^{*}), A(S_{0}^{*}))$ . Then there exist a neighborhood $\mathcal{U}$ of $[T_{0}]$ in $X(S_{0}),$ $a$



Banach space of analytic functions 439

neighborhood $\mathfrak{N}$ of $[S_{0}^{*}, w_{0}]$ in $T^{\#}(S_{0})$ and a neighborhood $\mathcal{V}$ of the equivalence
class [I] of the identity $I\in L(A(S_{0}^{*}), A(S_{0}^{*}))$ in $X(S_{0}^{*})$ such that $\mathcal{U}$ is homeomorphic
to the direct product $\mathfrak{N}\cross(J\zeta\cap \mathcal{V})$ .

PROOF. We use the same notations as before. In the previous section we
proved that $\Phi$ is a mapping of a neighborhood $\mathcal{U}$ of $[T_{0}]$ onto a neighborhood

$\mathfrak{N}$ of $[S_{0}^{*}, w_{0}]$ . For every $[T]\in \mathcal{U}$ with $T\in L(A(S_{0}), A(S))$ , we set

$\Phi([T])=[S, w]$ ,

where $w$ is a quasiconformal mapping of $S_{0}$ onto $S$ . We choose a Beltrami
basis $m=(m_{1}, \cdots , m_{3N-3})$ on $S_{0}^{*}$ such that $m_{i}$ is infinitely differentiable in the
real sense and the support of $m_{i}$ is a compact subset of $S_{0}^{*}$ for every $i$ with
$1\leqq i\leqq 3N-3$ . Then there exists a unique $a=(a_{1}, \cdots , a_{3N-3})$ about the origin of
$R^{3N-3}$ such that (25) holds. Accordingly, there exists a conformal mapping $\phi$

of $S$ onto $(S_{0}^{*})^{a\cdot m}$ such that $\phi\circ w$ is homotopic to $w^{a\cdot m}\circ w_{0}$ . We define

(28) $\Psi(T)=(T_{\phi}\circ T\circ T_{\overline{0}}^{1})^{-1}\circ T^{a\cdot m}$ ,

where $T_{\phi}$ is the isometry induced by $\phi$ and $T^{a\cdot m}$ is the isomorphism defined by
(26). We note that $\Psi(T)\in L(A(S_{0}^{*}), A(S_{0}^{*}))$ and

$c(\Psi(T))\leqq c(T_{\phi})c(T\circ T_{0}^{-1})c(T^{a\cdot m})<d^{2}$ .

We now take another $T’\in L(A(S_{0}), A(S’))$ such that $[T’]\in \mathcal{U}$ and

$\Phi([T’])=[S’, w’]=[(S_{0}^{*})^{a’\cdot m}, w^{a’\cdot m}\circ w_{0}]$

for a unique $a’$ about the origin of $R^{3N-3}$ . Let $\phi^{f}$ be a conformal mapping of
$S’$ onto $(S_{0}^{*})^{a’\cdot m}$ such that $\phi’\circ w’$ is homotopic to $w^{a’\cdot m_{\circ}}w_{0}$ . Then

$\Psi(T’)=(T_{\phi}, \circ T’\circ T_{0}^{-1})^{-1_{o}}T^{a’\cdot m}$ .
Suppose that $[T]=[T’]$ . This implies that $T’\circ T^{-1}$ is induced by a conformal
mapping. Hence

(29) $[T_{\phi}\circ T\circ T_{\overline{0}}^{1}]=[T_{\phi’}\circ T’\circ T_{0}^{-1}]$ .
Since $\Phi([T])=\Phi([T’])$ , namely $[S, w]=[S’, w’]$ , we see that $a=a’$ . By as-
sumption, $S_{0}^{*}$ has no conformal automorphisms except the identity. Since $a$ is
close to the origin, $(S_{0}^{*})^{a\cdot m}$ is known to have the same property. It follows
from (29) that

(30) $T_{\phi}\circ T\circ T_{\overline{0}}^{1}=T_{\phi’}\circ T’\circ T_{\overline{0}^{1}}$ .

Because $(T_{\phi’}\circ T’\circ T_{0}^{-1})\circ(T_{\phi}\circ T\circ T_{0}^{-1})^{-1}$ is induced by a conformal automorphism of
$(S_{0}^{*})^{a\cdot m}$ , namely the identity mapping. Hence
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(31) $(T_{\phi}\circ T\circ T_{0}^{-1})^{-1}\circ T^{a\cdot m}=(\circ$ $i.e$ . $\Psi(T)=\Psi(T’)$ .
Thus $\Psi$ is well defined in $\mathcal{U}$ by (28), that is,

$\Psi([T])=[(T_{\phi}\circ T\circ T_{0}^{-1})^{-1}\circ T^{a\cdot m}]$ .
We denote by $j\zeta$ the subset of $\mathcal{L}(S_{0}^{*})$ consisting of all equivalence classes of
elements of $L(A(S_{0}^{*}), A(S_{0}^{*}))$ and denote by $\mathcal{V}$ the neighborhood of [I] in $X(S_{0}^{*})$

consisting of all $[T]$ with $T\in L(A(S_{0}^{*}), A(S_{0}^{*}))$ such that $c(T)<d^{2}$ . We have
shown that $\Psi$ is a mapping of $\mathcal{U}$ into $Jt\cap \mathcal{V}$ . We now define a new mapping
$\sigma$ of $\mathcal{U}$ into the direct product $\mathfrak{N}\cross(c\chi\cap \mathcal{V})$ by

$\sigma([T])=(\Phi([T]), \Psi([T]))$ .

If $\sigma([T])=\sigma([T’])$ , then $\Phi([T])=\Phi([T’])$ and $\Psi([T])=\Psi([T’])$ . Hence, as
shown before, we have $a=a’$ and we obtain (30) from (31). Therefore we see
that $[T]=[T’]$ , namely $\sigma$ is injective. In order to prove that $\sigma$ is surjective,
we represent every element $[S, w]$ of $\mathfrak{N}$ in the form of (25). Let

$([S, w], [T])=([(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}\circ w_{0}], [T])$

be an arbitrary element of $\mathfrak{N}\cross(cf\zeta\cap \mathcal{V})$ , where $T\in L(A(S_{0}^{*}), A(S_{0}^{*}))$ and $c(T)<d^{2}$ .
By Theorem 2, if $\epsilon>0$ is given,

\langle 32) $|f(z)-(T^{-1}f)(z)|\leqq\epsilon\Vert f\Vert$

for all $z\in S_{0}^{*}$ and for all $f\in A(S_{0}^{*})$ . If we set

(33) $\tau*=T_{\phi}^{-1}\circ T^{a\cdot m}\circ T^{-1}\circ T_{0}$ ,

then $T^{*}\in L(A(S_{0}), A(S))$ and

$c(T^{*})\leqq c(T^{a\cdot m})c(T\circ T_{0}^{-1})<d^{2}$ .
We obtain from (28) and (33)

$\Psi([T^{*}])=[T]$ .
Moreover it follows from (27) and (32) that if $\epsilon>0$ is given,

$|f(z)-(T^{*}\circ T_{0}^{-1}f)(\phi^{-1}\circ w^{a\cdot m}(z))|$

$=|f(z)-(T_{\phi}^{-1}\circ T^{a\cdot m}\circ T^{-1}f)(\phi^{-1_{o}}w^{a\cdot n}(z))|$

$=|f(z)-(T^{a\cdot m}\circ T^{-1}f)(w^{a\cdot m}(z))|$

$=|f(z)-(T^{-1}f)(z)|+|(T^{-1}f)(z)-(T^{a\cdot m}(T^{-1}f))(w^{a\cdot m}(z))|$

$\leqq\epsilon\Vert f\Vert+\epsilon\Vert T^{-1}f\Vert$

$\leqq\epsilon(1+\Vert T^{-1}\Vert)\Vert f\Vert$
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for all $z\in S_{0}^{*}$ and for all $f\in A(S_{0}^{*})$ . Hence, by the definition of $\Phi$ , we obtain

$\Phi([T^{*}])=[S, \phi^{-1}\circ w^{a\cdot \mathfrak{n}}\circ w_{0}]=[(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}. w_{0}]$ .
Therefore

$\sigma([T^{*}])=([(S_{0}^{*})^{a\cdot m}, w^{a\cdot m}\circ w_{0}], [T])$ ,

that is, $\sigma$ is surjective.
In order to prove that $\sigma$ is continuous, we must show that $\Psi$ is continuous.

Let $[T]$ be an arbitrary element of $\mathcal{U}$ . We set

$\Phi([T])=[S, w]=[(S_{0}^{*})^{a\cdot m}, w^{a\cdot m_{o}}w_{0}]$ .
It is sufficient to show that

(34) $\lim_{narrow\infty}c(\Psi(T_{n})\circ\Psi(T)^{-1})=1$

for every sequence $[T_{n}]\in \mathcal{U}$ satisfying

(35) $\lim_{narrow\infty}c(T_{n}\circ T^{-1})=1$ .
Let us set

$\Phi([T_{n}])=[S_{n}, w_{n}]$ .

Then there exist a unique $a_{n}\in R^{3N-3}$ such that

$[S_{n}, w_{n}]=[(S_{0}^{*})^{a_{n}\cdot m}, w^{a_{n}\cdot m_{o}}w_{0}]$

and a conformal mapping $\phi_{n}$ of $S_{n}$ onto $(S_{0}^{*})^{a_{n}\cdot m}$ such that $\phi_{n}\circ w_{n}$ is homotopic
to $w^{a_{n}\cdot m_{\circ}}w_{0}$ . Since $\Phi$ is continuous, (35) implies that $\Phi([T_{n}])=[S_{n}, w_{n}]$

converges to $\Phi([T])=[S, w]$ . Hence we know that $a_{n}arrow a$ . As we defined $\Psi$

by (28),
$\Psi(T_{n})=(T_{\phi_{n}}\circ T_{n}\circ T_{\overline{0}}^{1})^{-1}\circ T^{a_{n}\cdot m}$ .

Hence we obtain

(36) $\Psi(T_{n})\circ\Psi(T)^{-1}=(T_{\phi_{n}}\circ T_{n}\circ T_{0}^{-1})^{-1_{Q}}T^{a_{n}\cdot m}\circ(T^{a\cdot m})^{-1}\circ T_{\phi}\circ T\circ T_{0}^{-1}$

$=(T_{0}^{*})^{-1}\circ T_{n}^{*}\circ T_{0}^{*}$

where
$T_{0}^{*}=T\circ T_{0}^{-1}\in L(A(S_{0}^{*}), A(S))$

and
$T_{n}^{*}=T\circ T_{n}^{-1}\circ T_{\phi_{n}}^{-1}\circ T^{a_{n}\cdot m_{\circ}}(T^{a\cdot m})^{-1_{Q}}T_{\phi}\in L(A(S), A(S))$ .

We note that

(37) $c(T_{n}^{*})\leqq c(T_{n^{o}}T^{-1})c(T^{a_{n}\cdot m_{o}}(T^{a\cdot m})^{-1})$ .
Since $a_{n}arrow a$ , by the same argument as the proof of Proposition 8 in [6], we
can show that
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$\lim_{narrow\infty}c(T^{a_{n}\cdot m_{o}}(T^{a\cdot m})^{-1})=1$ .

Hence it follows from (35) and (37) that

(38) $\lim_{narrow\infty}c(T_{n}^{*})=1$ .

Since $S$ has no conformal automorphisms except the identity mapping we
see from (38) and Theorem 2 that

$\lim_{nr}\frac{\Vert T_{n}^{*}f-f\Vert}{\Vert f\Vert}=0$

uniformly for $f\in A(S)$ . Consequently

$\lim_{narrow\infty}\frac{\Vert(T_{n}^{*}\circ T_{0}^{*})f-T_{0}^{*}f\Vert}{||f\Vert}=0$

uniformly for $f\in A(S_{0}^{*})$ . Hence, by the continuity of $(T_{0}^{*})^{-1}$ ,

$\lim_{narrow\infty}\frac{\Vert((T_{0}^{*})^{-1}\circ T_{n}^{*}\circ T_{0}^{*})f-f\Vert}{\Vert f\Vert}=0$

uniformly for $f\in A(S_{0}^{*})$ . This implies that

$\lim_{narrow\infty}\Vert(T_{0}^{*})^{-1}\circ T_{n}^{*}\circ T_{0}^{*}\Vert=1$ .

Similarly,
$\lim_{nr}||(T_{0}^{*})^{-1_{\circ}}(T_{n}^{*})^{-1}\circ T_{0}^{*}\Vert=1$ .

Hence
$\lim_{narrow\infty}c((T_{0}^{*})^{-1}\circ T_{n}^{*}\circ T_{0}^{*})=1$ .

Therefore (34) follows from (36).

Conversely, by the same argument as above, we can prove that (35) follows
from (34), namely the inverse mapping $\sigma^{-1}$ is continuous. Thus $\sigma$ is a homeo-
morphism of $\mathcal{U}$ onto $\mathfrak{N}\cross(JC\cap \mathcal{V})$ . Our proof has been completed.
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