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Introduction.

In this note, we shall consider only topological actions. For a closed
aspherical manifold M, it is well known that if a compact connected Lie group
G acts on M effectively, then G is a toral group T® with s<rank of the center
z2(z(M)) of the fundamental group =, (M) of M (Theorem 5.6 in [4]). In [5],
it was conjectured that if M is a closed aspherical manifold, then

(1) =z(m,(M)) is finitely generated, say of rank %,

(2) there exists a toral group T* acting effectively on M.

These have been verified in many cases. For examples, if M is a smooth
manifold admitting a Riemannian metric with non-positive sectional curvature or
if M is a nilmanifold, then (1) and (2) hold (see [10]).

In this note, we shall prove the following

THEOREM A. The conjectures (1) and (2) hold for aspherical manifold of type
I'\G/K, where G is a connected non-compact Lie group, K a maximal compact
subgroup of G and I' a torsion free discrete uniform subgroup of G.

THEOREM B. The conjectures (1) and (2) hold for a compact homogeneous
aspherical manifold G/H, where G is a connected non-compact Lie group and H a
closed subgroup of G.

In this note, we shall use the following notations;

1. Z, R and C denote the ring of integers, the field of real numbers and
the field of complex numbers, respectively.

2. G denotes the universal covering of a Lie group G and =: G—G the
covering projection.

3. G° denotes the identity component of a Lie group G.

4. z(G) denotes the center of a group G.

5. Lie group is assumed to be connected unless the contrary is stated.
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1. Preliminaries.

Let G be a simply connected non-compact Lie group. Then it is well known
that G is a semi-direct product of a simply connected semisimple subgroup S
and its radical R. Thus every element of G is uniquely written as a product
rs (r&R, s&S) and the product of r,s; and r7,s, is given by (r,s,)(7:5:)=
715:7,87'8:S, and we have the following split exact sequence;

1—R—G=S—1.

A
Let I" be a torsion free discrete uniform subgroup of G and K a maximal com-
pact subgroup of G. It is easy to show that K is semisimple and RNK=1.
Since I' is torsion free, I’ K=1. When one considers the manifold I'NG/K, it
is sufficient to consider the case when S contains no compact normal factors.
We list some lemmas which are needed in the sequel.

LEMMA 1 (Corollary 8.28 in [11]). (1) I's=I'\R is a discrete uniform sub-
group of R.
(2) pI) is a discrete uniform subgroup of S.

LEMMA 2 (Corollary 5.18 in [11]). Let G be a semisimple Lie group without
compact normal subgroup and H a closed subgroup with the property (S) (e.g. G/H
has a finite tnvariant measure). Then the centralizer of H in G is equal to z(G).
In partibular, z(H) is contained in z(G).

LEMMA 3 (Theorems 2.1 and 2.11 in [11]). (1) Let N be a simply connected
nilpotent Lie group and I' a closed uniform subgroup of N. Then there are no
proper connected closed subgroups of N containing I.

(2) Let N and V be two nilpotent simply connected groups and let H be a
uniform subgroup of N. Then any continuous homomorphism f: H—V can be ex-
tended in a unique manner to a continuous homomorphism f: N—V.

LEMMA 4 (Theorem 1.1 of Chap. VI in [9]). Let g be a non-compact semi-
simple Lie algebra over R and g=k+p a Cartan decomposition of g. Suppose
(G, K) is any pair associated with (g, 0), where O(T+X)=T—X (X€p, TEk)is
an involutive automorphism of g. Then we have

(1) K is connected, closed and contains z(G),

(2) K is compact if and only if z(G) is finite.

LEMMA 5 (Theorem 2.3 in Section 2 in Chap. IV in [13]). Let (G, K) be the
pair asin Lemma 4. Then K is its own normalizer and the centralizer Co(K) of
K in G is z(K).

LEMMA 6. Let G be a semistmple Lie group and = : G—G the universal cover-
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ing. Then z(é) is equal to ©'(z(G)).

PrROOF. Let x&x~'(2(G)) and consider the continuous map ¢, : G—G defined
by c.(¥)=xyx~'y~'. Since m(xyx 'y ')=1, Imc,EKerw. Kerz being discrete,
cz(é)-:—l and hence xyx~'y~'=1, which implies xe.z(@). Conversely let xEZ(é).
Then n(x)=z(G), which implies x=x"'(z(G)). Q.E.D.

LEMMA 7. Let G be a non-compact simple Lie group. Suppose 2(5) is not
finite. Then we have

@) z(CN?) s contained as a lattice in a subgroup L of 5, which 1s isomorphic
to R, and

(2) Let K be a maximal compact subgroup of G. Then L is contained in the
centralizer of K in G.

PrOOF. The following arguments are due to Chap. VI, VI, X in [9]. Since
2(5) is not finite, G is PSL(2, R) (or its finite covering group), SU(p, q), SO*(2n),
Sp(n, R), SO2, q), E;, or E,. Let K be a subgroup of G such that the pair
(G, K) has the property of Lemmas 4 and 5. Then G/K is an irreducible
Hermitian space and z(K) is SO(2). It follows from Lemma 6 that z(G) is con-
tained in L==n"'(z(K)), which is isomorphic to R. This proves (1). It follows
from arguments in Chap. X in [9] (see pp. 451-455 in [9]) that =~'(K) is iso-
morphic to KX R, where K is a maximal compact subgroup of G. Since z2(K)=
ce(K), we have m(xyx ')=n(y) for every y=K and x= L. This implies that the
image of the continuous map c: Ex L—G defined by c¢(y, x)=xyx"'y~! is con-
tained in Kerx. Since Kerz is discrete and KX L is connected, we have
¢(y, x)=1. This completes the proof of Lemma 7. Q.E.D.

We shall recall some results about solvable Lie groups. Let R be a simply
connected solvable Lie group and /" a discrete uniform subgroup of R. It is
well known that there is an exact ssquence

1 N R R 1,

where N is the nilradical of R. It is easy to see that there is a ssquence of
subgroups of R;

N:RogR1g“‘gRs:R
such that R;;;= R;xR; (semidirect product), where R;=R. In the following,
we write the addition of R multiplicatively. Define I';=I"N\R;, zi-y=2(I")N\I"i_,
and p;: R,—R; the natural projection. Put I'y=1", and zy=z,, We may write
an element of R; in the form;
NX Xp o Xy = nf[x,- (neN, x,=R;).

We have the following
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LemMA 8. (1) I'; is a discrete uniform subgroup of R;.
(2) pIy) is a discrete uniform subgroup of R..

This follows from the standard arguments about Lie group theory (see

Chap. 3 in and [11]).

LEMMA 9. Let N be a simply connected nilpotent Lie group and I'y is a
discrete uniform subgroup of N. Suppose z(I'y)=Z". Then there exists a sub-
group N, of N which is isomorphic to R™ and contains z(I'y) as a lattice.

This follows from

LEMMA 10. Let R be a simply connected solvable Lie group, I' a discrete
uniform subgroup of R, N the nilradical of R and N, the subgroup of N which
has the property in Lemma 9 for I' y=NN1I" and z2(I"YN\['y. Then we have rx=xr
for every r<l’ and x=N..

Proor. Consider the inner automorphism ¢, : R—R. Since zUI')N'ySz(I"),
we have z(I" )Ny S NN\ (Ny). It follows from a result in (Lemma 2.4
in [11]) that NeyNc,(Ny) is connected and hence Ny, (No)=N,, which implies
¢ (No)=N,. Q.E.D.

LEMMA 11. (1) Let I' be a group satisfying the exact sequence,

1 VA r Z:i— 1.

Then there exists a simply connected solvable Lie group R and a closed subgroup
D of R such that =(R/D)=1I".

(2) Let I'yR and D be as above. Assume z(I') is not trivial. Then there
exist closed subgroups D, and D, of R which satisfy

i) D:<D and D,/D}=zT")=2ZF,

ii) D,/D? is isomorphic to R*
and

iii) z(I') is contained in D,/D? as a lattice.

ProoF. The following arguments are due to [1] (Chap. I, Section 5 in [I]).
(1) The arguments in (see p. 245) show that there exists a commutative
diagram in which the horizontal sequences are exact;

1— 2t —T — 2z¢ —1

1 l !
1— Z'QC —> e —> Z° —1
! l {

1— Z!QC —> R —> Z’QR — 1.

Let D be the subgroup of R generated by the image of I' and the subgroup I
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of Z*XC consisting of purely imaginary vectors. Then D is closed in R and
n(R/D)=D/D°=D/I=TI".

(2) Let D, be the subgroup of R generated by z(/") and I. z(I") satisfies
the following exact sequence;

1 VA z(I) VAS 1.
It is easy to construct the following commutative diagram;

l— ZY — z(I') — Z¥ —1

1 - v
1—Z'"QR— Z*QR — Z* QR — 1
l ! l

1— 2Z'Q®C—> R —Z"QR—1,

where z(I")=Z*. Now let D, be the subgroup of R generated by Z*QR and I.
Then D,/D}=RF* and z(I") is a lattice of D,/D\. Q.E.D.

Now we shall consider M=I'"G/K, where G is a non-simply connected
non-compact Lie group, K a maximal compact subgroup and /" a torsion free
discrete uniform subgroup of G. Let #: G—G be the universal covering of G.
Then Ker n=xn,(G)=n,(K)=Z"XF, where F is a finite abelian group. Since
K=r-%(K) is the universal covering of K, K=R"xK, where K is a simply con-
nected compact semisimple Lie group. Put I'=z-'(I").

We have the following

LEMMA 12. Z" and F are central subgroups of G.

This follows from the fact that =,(G) is a central subgroup of G. Let
G=R:§ be the Levi-decomposition of G. Define G*, §*, I'**, K* and K* by
( Y*=()/F. Clearly G=R-58* is the Levi-decomposition of G*. We have the
following

LEMMA 13. f*f\gk*g" =Z"  for every geé*.

Proor. Consider the following commutative diagram in which every hori-
zontal sequence is exact.

1— Zr— gK*gt — gKg'—1

! 1 !
1—2Zr— G* — G —1
7 1 T

e Zrs [* — T —1

where g=n*(g), n*: G*—G the homomorphism induced by z. Since ['* and I
are torsion free and gKg' is compact, I *NgK*g-! is equal to Z". Q.E.D.
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LEMMA 14. (1) I'NG/K is homeomorphic to I*\G*/K*,

(2) The natural map q: G*/K*—G*/K* is a principal R'=K*/K*-bundle.

(3) The map q induces a map §: f*\é*/l?*af*\é*/ﬁ* which is a principal
T7=Z~K*/K*-bundle.

Proor. We omit the proof of (1) and (2). It is clear that ¢ is a fiber
bundle with typical fiber (I'*N\K*)\NK*/K*=Z~K*/K*. Consider Z~K*/K* as
an r-dimensional torus 7" and define a T7-action on [™*\G*/K* by the formula;

(ZTkK*)([*gK*) = gk K*.

The well-definedness follows from the fact that K* <JK* and The
action is free. In fact,

(ZTh k¥ [*gK*) = '*gK* = gk 'K* = ['*gK* = gh7' = xgk’
(k'eK*, xeI'™)
x =gki'k'"'gt & [*NgK*g.
It follows from that we have k7'=g 'xgk’e Z"K*, which implies that

Z'k,K*=1 in Z~\K*/K* It is clear that the orbit space of [™*\G*/K* by
Z\Kx/K* is T'*\G*/K*. Q.E.D.

2. The proof of Theorem A when G is simply connected.

In this section, we shall prove Theorem A when G is simply connected.
As in Section 1, let G=R-S be the Levi-decomposition and p: G—S the projec-
tion. We have the following exact sequence;

1 ‘FR F ‘j)(f’)—»l.

It follows from this exact sequence that we have the following exact sequence;
1l— z(I'N\g — z(I") — p(z(I")) —> 1.

It is clear that z(I")N['rS2(I'r) and p(z(I"))Sz(p(I")). Since Iz is poly-Z group
(see [11]), 2(I")NI'x is also a poly-Z group and hence finitely generated. It
follows from a result in (Corollary 5.18 in [11]) that z(p(I")) is finitely
generated abelian group and hence isomorphic to Z* for some integer k. We
have the following

ProOPOSITION 15. (1) The map G—RXS; g=rs—(r, s) is a homeomorphism.

(2) The map f,: G/K—RX(S/K); rsK—(r, sK) is a homeomorphism.

(3) The natural map I'eNG/K—I'\G/K is a regular covering map with the
group p(I") of covering transformations and hence I'NG/K=p(I')N(I'e\G/K).

(4) The map g:I'p"G/K—I'zg"R)X(S/K); I'grsK—([gr, sK) is a homeo-
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morphism.

Since these are proved immediately, we shall omit the proof.
Define the action of p(I") on (I'x\R)X(S/K) by

(LCrrs)(Igry, s.K) = (I'grsris7?, s, K).

Then the map g is p(I')-equivariant (note the action of p(I")=I"p\I" on I'x\G/K
is given by (I'rrs)(I"'zgK)=I"grsgK). In fact,

(LrrsXg(l'gr15:K)) = (Uprs) g1y, 1K) = (Lprsris™, ss,.K) = g(Trrs)(rris:K)).
It follows that we have the following
PROPOSITION 16. I'NG/K is homeomorphic to p(I" )WN(I'eNR)X(S/K)).

Now we shall define a maximal toral action on N=I\G/K. We devide the
definition into two steps.

The first step; Let z(I')N"R=Z". We define an action of T" on ['z\R,
which is compatible with the action p(I").

The second step; Let p(z(l"))=Z™. We define an action of T™XT" on
I'\G/K.

1. The first step. Let R be a simply connected solvable Lie group and I”
a torsion free discrete uniform subgroup of R. As noted above, we have an
exact sequence;

1—>N—R—>R —>1,

where N is the nilradical of R. First consider the case of s=1. We have the
following commutative diagram;

1—I'y— I' — pI") —1

) T T
11— zy —z(I") —> pz(I")) —> 1.

By the same arguments as in Propositions [0 and [[6, we have the following

PROPOSITION 17. (1) The map g: 's\NR—I'y,\N)XR; I'ynx—I"yn, x) is
a homeomorphism.

(2) The natural map I'yNR—I"\R is a regular covering map with the group
p(I) of covering transformations and hence I'NR=p(I")N(I"y\R).

(38) Define an action of p(I")=I'y\NI" on (I' yNN)XR by the formula;

I ynx)L yn,xy) = (I ynxnyx7t, xx,).

Then this is well defined and induces a homeomorphism h: I'NR=p(I' NIy \N)
X R).
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It follows from there exists a subgroup N, of N such that
(i) N, €& R* (u=rank zy)
and
(ii)) zy & N, as a lattice.
Now we define an action of T*=zy\N, on I'\R.
(1) Define an action of T% on (I'y~N)XR by the formula;

(zyn) " yny, x) = L"ynny, x).

This action is easily proved to be well defined and effective.
(2) This action is commutative with the action of p(I”). In fact, we have

(I wynx)((zyn: )T yna, x2)) = (I ynx)I " yninz, x2)

= ([ ynxmngx™, xx,) = (I ynxnx " xx.x71, xx2)

= (["ynnxnyx™", xx,) (see
= (zyn)L ynxnx~?, xx,) (see Lemma 10)

= (Zan)((FNnx)(FNnZ: X2)).

It follows from (1) and (2) that we have defined an action of 7% on I'\R.
It is clear that p(z(I"))=Z or 1. When p(z(I"))=Z, define A=pz(I"))QR.
Then A/p(z(I"))=T*'. We can define an action of T*XT! on I'\R as follows.
(1) Define an action of T*xXA on (I'yNN)XR by the formula;

(zym, x)(Fan, X)) = (I ynx,, x1x7h).

This action is proved easily to be well defined and effectively.
(2) Define an action of T*XA on I'y\R by the formula;

(ZNn7 x)(Fany xl) - FNnnlxlx_l.
This is well defined. In fact,

FNnZXQ:Fanxl = NyXy = n'nlxl (H,EFN)
= mexex P =nn'nxx i = ninngxx ! (by Lemma 9)
= (zyn, )Ly, x2) = I yntpx, = I'ynn,x™
= (zyn, x) ynix1).
(3) The homeomorphism g: I'yNR—(I'y"N)XR is (T*X A)-equivariant. In
fact,
glzyn, x) " ynix))) = g ynmyx,x71) = (I ynny, x,x7%)
= (zymn, x)(Fan, x1) = (zyn, x)(g(Fanxl>> .

It follows from (1) and (3) that the action of T“XA on I'y\R is effective.

(4) The action of T*X A on I'y\R is commutative with the action of p(I")
=['y\I". To prove this, we need the following lemma;
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LEMMA 18. xmx~'=mn, for every xp(l') and n,EN,.

PrROOF. This follows from and the following commutative diagram ;

l1—I'y—— I' — p(I") —1
T T 7
1l— zy —z(I") — p(z(l)) —> 1. Q.E.D.
Now we shall prove the assertion (4).

(Iynx)((zyny, 20 wnox5)) = (U ynx)(Iynanyx,x7")

= I ynxnnexsx7t = I ynnixn, x ' xx,x7° (by
= [ ynmxnx xx,x7" (by
= (zyny, x)((Lynx)("ynzxs)).

(5) The group p(z(I")) acts trivially on p(I' )N 'y\R). In fact, denote an
element of p(I")N(I'y\R) by [I"ynx]. Recall m[I ynxl=[1 ynxm=] (me p(z(I")))
=[I'ynm 'x] (R is abelian). Since p(nm *n~'m)=1, we have nm ‘n‘m=z<l"y
and hence nm='=zm™'n. Thus we have [ ynm *x]=[1 ym 'nx]=[L ym I ynx)]
=[I"ynx].

Next we shall consider the general case. Recall the exact sequence;

1 N R R’ 1.

As noted in Section 1, we have a sequence of subgroups of R;
N:R0CR1C"'CR3:R

such that R;=R;,_,XR; (R,=R).

As in Section 1, we define I';=I'N\R;, z;-;=z(";)N\[";-; and p,;: Ri—R;. If
e;=rank p,(z(I';)), then we define A;=p(z(l"))QR. Clearly p.(z(['))NA;=T"
By the same arguments as in the case of s=1, we have the following;

PROPOSITION 19. (1) [ NRis1 = pimi(l i) NN Risy).
(2) '™ NRiwy = (' NR)XRyss.
3) s NRivy = DTt N NRY X Risy).

Assume [',\R; admits an action of T*XT4X --- XT%, where T“=zy N,
and T%=p(z(I;)NA; (¢;#0), induced by the action of T*XA%X --- X A% on
(I'i.NR;_;)XR; given by the formula;

i 1 i-1
(zyn, M x )L i-m 1L y;, 2) = ianm I y;x57, 2x0).
If we regard I';)NR; as p,(I")N(I";_,\R;), the above action is given by the formula;
(zan, M) oimi I y) = Tioimmy I1 y x50

Now we define an action of T*X A% X -+ X A%+1 on (I";\NR;)X R;+, by the formula;
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(%) (zyn, iff x) mlflyj, )= innlfijx;‘, 2X7h).

We should prove that this action is commutative with the action of pi4(L141)
="'\ on (I'NR;))X R4, given by the formula;

(%) (Lo 1T yXTina X125, w) = (Tim X1 9;9i0me 1 2,97h, Yinw).
We note the following

PROPOSITION 20.

(©) oIy neTlz) = Tt T 501 902050+ 30 Dy2e,
where n;€N, v;, z;€ER; and (ﬁyj)nzzné(ﬁyj).

(2) For every j=1,2, -, i and k=7, x;ye=2yrx;, Where x;E A;, y2E pe(l"3).

Proor. (1) follows from direct computations and (2) follows from the fact
that the action of p.(I",) on z(I';) and hence the action of p,(z(I";)) induced by
conjugation is trivial.

Now the proof of the commutativity of (x) and (xx) is as follows; Put
Virri=Yj+1 Ve Vi and Z;= ¥ ;41259551

(zxn, I1 xj)((l“znlﬁlyj)(ﬂnzﬁzj, w))

= (zwn, iff xj)(l"inll'iIyjymnzlilzjyzh, Vit1W)

= (zwn, iifx;)(l’mxnéf‘.[yjf[?j, Vi1 W)

= (anxnéﬁlyjym,izjyﬁl-mx}lyﬁiﬂl, VierWXitr)
= (I, 11 yiX(znn, ﬁx;)(FinszZf, w)).

We shall omit the proofs of the well-definedness, effectivity and triviality of the
restriction of (¥%) to p;+:(z(I"s+1)). Thus we have defined an action of T*Xx A%
X -+ X A%+, By induction, we have completed the first step.

2. The second step. We shall define a maximal toral action on I'\G/K,
where G=R-S. Consider the case when S contains no normal factor J, where
U is one of groups listed in Then, since z(p(I")) is discrete,
rank z(I)=rank ('gNz(I")). Put rank ({'zN\z(I"))=Fk. By the arguments at the
first step, a k-dimensional toral group T*=T*XxT%X --- XT* acts on I';\R as
follows;

(%) (ewn, LT e I y5) = Danm, T y,x7%,

where [x;] denotes an element of Z\A%. Note that if ¢;=0 then x,=1. Define
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an action of T% on (I'R\R)X(S/K) by

() (e, T2 DT rns 1y, wK) = (Canm 119550, wk).

It is easy to show that this action is well defined and effective. The com-
mutativity with the action of p(I”) follows from the same arguments at the first
step and the following lemma.

LEMMA 21. (1) wxp~'=x; for every x;€A; and ve pI').
(2) vn=nv for every neN, and ve p(l’).

PRrROOF. This follows from the fact that the action of p(I7) on z(/") by con-
jugation is trivial and Q.E.D.

Thus we have defined an action of T* on I'\G/K.

In general, S is decomposed into a product S;X A, where A is a product of
U, where U is one of groups listed in and S, contains no factors of
these groups. Then we have p(z(["))=Z*XF (F is a finite abelian group). It
follows from results in Section 1 that there exists a subgroup R* of A which
contains Z* as a lattice.

Let T*=T*XTaX --- XT* denote the toral group in the case of A=1.
Define an action of T*XR® on I'x\G/K by the formula;

(zxm, ﬁ[xj], ulTemy T zpK) = Fxnnlﬁzjx}‘vu“K,

where u=R* In the following, we omit the index s in f[ This is well
defined ; in fact,

IeniT1zv" = Fen Il zv
= nillzp’ = rm Tl zow (relg, wek)
= nmIIzjx5%v'u™! = nn 1z x5 'u™?
= nrm [1zowx;'u~
=rom [ z;x5'vwut  (by
= (zwn, L2 eIl 20) = (zyn, L0201 T12507).
Next define an action of T*XR?* on (I'zNR)X(S/K) by the formula;
(zwn, TLLx;), VX Rni 125, sK) = (Uenmi XL 2250, sv™'K).

It is easy to see that this is well defined. The homeomorphism g: I's\G/K—
(CeNR)X(S/K) is (T*xX R®*)-equivariant. In fact, we have

1

g((zyn, TILx,], ) 'rni M1 2;8K)) = gl gnmy T 2527 07 K)
= (Fpnmy X1 2z;x7%, s K) = (zyn, TI0x;], v)(g(l rn:I12;5K)).

It can also be proved that the action of T*XR® on (I's\R)X(S/K) is effective.
In fact, assume (zyn, II[x;1, v)"gn,T1z;, sK)=("gn,, T1z;, sK) for every
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(I'gny, 1125, sK). Then we have n,I1z,=rnn, [1z;x5' and s=sv™'w (weK, rel'y)
and hence v=weR*"K=1. If we choose n,[lz;=1, then »n]Ix;'=1 and
nll x;'€zy XTI pi(z('g)) which implies (zyn, II[x;])=1. This proves that the
action of T*XR* on I';"G/K is effective. Moreover the action is commutative
with the action of p(I"). In fact,

(zyn, TILx,], (e, I y;u) L gn.11z,wK))
= (zyn, I [x;], Y g I yun, 11 z;u " 'uwkK)
= (zyn, I1[x;], V)L gnns I y; T uzu " 'uwk)

: s-1
= (zyn, IIx;1, V)T rnins Il ¥;941.525 541, ¥ sZsuwK)
(NOte Yjt1,s=Yj+1 " Vs, Z;=UZ;U"")

s—1
= (Lpnmuns X1 ¥ 4152550, sX5' Y25 x5 uwv ' K)
= (L"gnnyns T y; T u(z;x 3 u" uwv ™ K) (note that ux;=x;u)
= (en, I y;u)(zyn, I1Lx;], v){ 'rn.112;wK)).

It follows that T*XR® acts on p(I')N(I'zNG/K). We shall prove that Z* acts
trivially on p(I' NI 'e\G/K). Let element of p(I')NI'z\G/K) be written as
[([gnIlz;wK]. Recall m[I'enIlz;wK]=[IrnIlz;wm™'] for me Z®. Since meZ*
Cz(p(IM)Cz(S), wm*=m 'wand hence wehave m[ [ gn [l z;wK]=[1"rI1z;m 'wK].
Because p((nIlz;)m ' (nIlz;)'m)=1, we have (nIlz;)m '(nIlz;)'‘m=z<["yp and
hence [[gnllzm ‘wK]=[Igm ' (n1lz, )jwK]=[I'gnIlz;wK]. This implies that
T % T® acts on I'N\G/K effectively. Thus we have proved Theorem A when
G is simply connected.

3. The proof of Theorem A when G is not simply connected.

In this section, we shall prove Theorem A when G is not simply connected.
We use the same notations as in Section 1. As noted in Section 1, 6*:ﬁ-§*,
BNS*=1 and K* is a maximal compact subgroup of G* Then the same
arguments as in Section 2 show that z(f*):z(nl(f*\é*/l?*)) is finitely generated,
say of rank &’ and I™*\G*/K* admits an action of T*. Note that z(I"*)=
Z7xz(I"). In fact, as noted in Section 1, we have an exact sequence;

l—Z'— % — [ —1,

where Z™ is a central subgroup of I['*. It follows that z(I"*)=Z"xz(I"). As
noted above, f*\é*/f?* admits an action of T*X7T". It is easy to see that the
restriction of the acton of T*XTT™ to T" coincides with the principal action of
T~ on [**\G*/K*. This implies that I"*\G*/K* admits an action of T*. Thus
we have completed the proof of Theorem A.



Maximal toral action 641

4. The proof of Theorem B.

Let M=G/H be a compact aspherical manifold. When G is not simply con-
nected, let G be the universal covering of G. Then G/H is homeomorphic to
5/1r“(H ). Thus it is sufficient to consider the case when G is simply connected.
Therefore any maximal compact subgroup K of G is simply connected and
semisimple. Let N be the subgroup that acts trivially on G/H. Then NCH
and N is normal in G. Since only a torus among the compact connected Lie
group can act effectively on G/H, K is contained in N. Now we have G/H=
(G/N)/(H/N), so we can assume that N=1, and hence K=1. This means G is
homeomorphic to R" for some n. Thus if dim H=0, then M is a manifold of
type of I'N\G/K. Hence Theorem B holds. Next we assume dim H>0. The
following facts are known (see [8]).

1. H° is solvable.

2. Let F=NgH"), H=F'H and G,=H{/(H'"\H®). Then G/H, is homeo-
morphic to a torus 7" and we have a fiber bundle; G,/[''—G/H—G/H,,
where [',=(H{NH)/(HNH)".

3. G, is simply connected.

Since G/H, is aspherical and dim H{>0, HY is also solvable and hence G, is
solvable. It follows from a result in (Proposition 3.10 in [11]) that I, is
poly-Z group. It follows from 2 that we have the following exact sequence;

l1— [y — H/H*— H,/H} — 1,

where H,/H¢=Z". I\ being a poly-Z group, H/H® is also poly-Z group. In
other words, M is a closed aspherical manifold with poly-Z fundamental group.
If dim M=+3, 4, then Theorem B follows from a result in (see Chap. 5 in
[10]).

Now we shall consider the case when dim M=3 or 4.

In his paper ([16], [17]), V.V. Gorvatsevich has determined all 3 or 4-
dimensional homogeneous manifolds. They are given as follows;

1. Torus T2 or T

2. SL@, R/, I': a lattice.

3. (SL@, R)/I")XS.

4. Solvmanifolds.
Since Theorem B holds for manifolds of type (1), (2) and (3). It is sufficient to
consider only manifold M=R/D, where R is a simply connected solvable Lie
group and D a closed subgroup of R. Let N be the nilradical of R. Then we
have a fiber bundle

(#) ND/D— R/D—— R/ND
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where ND/N=N/NND and R/ND is a torus (see [2]). It follows that we have
the following exact sequence of fundamental groups;

(*) 1— NND/(NN\D)* — D/D* — D/NND — 1, where D/NND=2".

LEMMA 22. (1) If dim R/D=3, then the sequence (x) is given by 1—>Z'—
D/ D" Z3—1, where t+s=3.

(2) If dim R/D=4 and s>1, then (%) is given by 1-Z*—~>D/D"—Z*—>1, where
t+s=4.

This follows immediately from the fact that the fiber N/NND is a circle,
or 2-dimensional torus.

First we shall consider the case when dim R/D=3 or 4 and s=2. Put
I'=D/D°. It follows from that there exists a simply connected
solvable Lie group S and a closed subgroup C of S such that =,(S/C)=I" and
that if z(/")#1, then there exist closed subgroups C, and C, of S which satisfy

1) C,<C and C.,/C'=z(I"),

2) C,/C'’=R* (k=rankz(I")),
and

3) z(I") is contained in C,/C° as a lattice.

Consider the toral group T*=(C,/C%/(C,/C%=C,/C,. Define an action of
Tk on S/C by (xC)(yC)=yx~'C. To show that this is well defined, we need
the following

LEMMA 23. We have x~*yxy'eC® for every y=C and x<C.,.

PROOF. Consider the homomorphism ¢, : S—S defined by c,(s)=ysy~'. This
homomorphism leaves C and C° invariant, and hence ¢, induces an automorphism
¢,: C/C*—=C/C’ Since C,/C° is the center of C/C° ¢, is the identity. Let
¢,(C,) be denoted by C;. Then ¢, induces an automorphism C,/C°—Cj}/C°.
Both C,/C° and Cj/C°® contain C,/C° as a lattice. It follows from
that C,/C° and C;/C°® are equal, and ¢,: C,/C°—C,/C® is the identity. This
implies ¢,(xC°)=yxy 'C°=xC° and hence x~'yxy (" Q.E.D.

COROLLARY. yx'=x"'y (mod C) for every y=C and x<C,.

Now we can show that the action of 7% on S/C defined above is well
defined as follows.

x.Ci = x,C, = X9 = X1X (xECl) = (xzclx_yC) = yx—lelc
= yx7'x '2C (z€C) = yx7'x7'C = (x,C)(3C).

310 = 2:.C, = ¥, =39 (y€C) = (xC.)(9.C) = y,x7'C
= y,9x7'C = y,x7'C = (xC)(:C).

This action is effective. In fact, assume (xC,)(yC)=yC for every y. Then we
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have yx*C=yC and hence x=CNC,, which implies xC,=C,.

Since two solvmanifolds with isomorphic fundamental group are homeomorphic
(see [2]), R/D and S/C are homeomorphic and hence R/D admits a maximal
toral action.

Lastly we shall consider the case when dim R/D=4, s=1 and N/(NN\D) is
not a torus. The natural action of N on R/D (x(rD)=rx"'D) has the unique
orbit type N/(NND) of dimension 1. It is well known that M is homeomorphic
to RXZN/(NND)), where Z acts on RX(N/(NND)) as follows;

n(, x(NND)) = (v—n, h*(x(NND))).

where h:N/(NND)->N/(NN\D) is an N-equivariant homeomorphism, i.e.
AMx(NNDY)=xx3'(NND), xo=Nxy(NND) (=the normalizer of NN\D in N). Put
NND=K. Note that K°=NND° Consider the exact sequence of the funda-
mental groups of (#);

a
1 T ‘FﬁZ 1,

where I'=D/D° and #=K/K°. Since K is a closed uniform subgroup of N, K°

is a normal subgroup of N to Theorem 2.3 in [11]). Hence it follows
from a result in (see the table 1 in [12]) that # is isomorphic to (ZX Z)X 4Z,

where ¢: Z—Aut(ZX Z); 1—»((1) Ii) It can be easily shown that the center z(w)
X

is given by z(z):{(o)eZXZ} (note that we may assume k£=0).

We shall consider the special case in which #N\z(I")=z(x), in other words,
B(z(m))=1. It follows from Lemma 11| that there exist closed subgroups N, and
N, of N such that

(i) M;C K and N,/K°=Z = z(I")N~.

(i) K°C N,, N;/K°= R and N,/K° is a lattice of N,/K°.

Consider the action of T*=(N,/K®%/(N,/K®=N,/N, on N,/K defined by (n,N,)
(nK)=nn;'K. We show that this action is compatible with homeomorphism .
In fact, we have

(nND(h(xK)) = (n.N)(xx3t K) = xx3'n;' K and
h({(n.N)(xK)) = h(xn3'K) = xn3' x5 K.

It follows from the following lemma that we have x,n,x3'n3'e K, which implies
that h is equivariant under the action of T

LEMMA 24. n3'xenex3i'€ K for every n,&N,.

ProoF. Consider the homomorphism ¢, : K/K°—K/K° defined by c.,(RK®)
=xokx3'K°. Clearly ¢, induces the identity on N,/K°. Since cz(N,/K®) and
N,/K° contain N,/K° as a lattice, it follows from that ¢,, is the
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identity on N,/K° in other words, x,n3'K°=n,K° for every n,=N,. Q.E.D.

Next we shall consider the general case; i.e. Bz(z))=Z. Let Bz(I")=
n,ZCZ. Define an action of R on RX,(N/K) by the formula;

t{x, nK] = [x+t, nK],

where [x, nK] denotes the orbit of (x, nK). It is easy to see that this action is

well defined. It is also proved that B(z(I"))=n,Z is the ineffective kernel of
this action. In fact, we have

nolx, nK]=[x+n,, nK] =[x, nxPoK].

The following lemma shows that [x, nx?0K =[x, nK], which implies that the
group R/n,Z acts on RXz(N/K).

LEMMA 25. [x, nxPK]=[x, nK].
PrOOF. Consider the following commutative diagram;
l1— o — I — Z —1
Il A
N
1— z(INr — z(I") — Bz(I")) — 1.
Il
NneZ
Because the lower exact sequence is central, n,Z acts on z(/")N\=x trivially, i.e.

no(n K)=n,x}K°=n,K°. In particular, we have x7;"°K°=K" and hence x3°K°
=K". Q.E.D.

It is not difficult to show that the action of R/n,Z is commutative with the
action of 7' and (R/n,Z)XT"! acts on RX;(N/K). Thus M=RX,(N/K) admits
a maximal torus action. This completes the proof of Theorem B.

ACKNOWLEDGMENT : The author would like thank Prof. F. Raymond and the
referee for their valuable suggestions.

References

[1] L. Auslander, An exposition of the structure of solvmanifolds, Part I; Algebraic
theory, Bull. Amer. Math. Soc., 79 (1973), 227-261.

[2] L. Auslander and R.H. Szczarba, Vector bundles over tori and non-compact solvmani-
folds, Amer. J. Math., 97 (1975), 260-281.

[37] N. Bourbaki, Groupes et algebres de Lie, Chap. 1, 2 et 3, Herman, Paris, 1968.

[47] P.E.Conner and F. Raymond, Actions of comapct Lie groups on aspherical mani-
folds, Topology of manifolds, Proc. Inst. Univ. of Geogia, Athens, 1970, pp. 227-264.

[6] —————, Deforming homotopy equivalences to homeomorphisms in aspherical mani-
folds, Bull. Amer. Math. Soc., 83 (1977), 36-85.



[6]
(7]
[8]
[9]
(10]

(11]
[12]

[13]

Maximal toral action 645

V.V. Gorbatsevich, Three dimensional homogeneous spaces, Sibirsk Mat. Zh., 18
(1977), 280-293; English Transl. in Siberian Math. J., 18 (1977).

, The classification of four dimensional compact homogeneous spaces,
Uspekhi Mat. Nauk, 32 (1977), no. 2, (1984), 207-208, (Russian).
—_— ,  On aspherical homogeneous spaces, Mat. Sb., 100 (1974), 248-265, (Rus-
sian).
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic
Press, New York, 1978.
K.E. Lee and F. Raymond, Geometric realization of group extension by the Seifert
construction, Contemp. Math., 36 (1985), 367-425.
M.S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972.
F. Raymond and T. Vasques, 3-manifolds whose universal covering are Lie groups,
Topology Appl., 12 (1981), 161-179.
O. Loos, Symmetric spaces I, Benjamin, New York, 1969.

Tsuyoshi WATABE

Department of Mathematics
Faculty of Science,

Niigata University,

Niigata

Japan



	Introduction.
	THEOREM A. ...
	THEOREM B. ...

	1. Preliminaries.
	2. The proof of Theorem ...
	3. The proof of Theorem ...
	4. The proof of Theorem ...
	References

