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Introduction.

In this note, we shall consider only topological actions. For a closed
aspherical manifold $M$, it is well known that if a compact connected Lie group
$G$ acts on $M$ effectively, then $G$ is a toral group $T^{s}$ with $s\leqq rank$ of the center
$z(\pi_{1}(M))$ of the fundamental group $\pi_{1}(M)$ of $M$ (Theorem 5.6 in [4]). In [5],

it was conjectured that if $M$ is a closed aspherical manifold, then
(1) $z(\pi_{1}(M))$ is finitely generated, say of rank $k$ ,
(2) there exists a toral group $T^{k}$ acting effectively on $M$.
These have been verified in many cases. For examples, if $M$ is a smooth

manifold admitting a Riemannian metric with non-positive sectional curvature or
if $M$ is a nilmanifold, then (1) and (2) hold (see [10]).

In this note, we shall prove the following

THEOREM A. The cmjectures (1) and (2) hold for asPhencal mamfold of tyPe
$\Gamma\backslash G/K$, where $G$ is a connected non-compact Lie group, $K$ a maximal compact
subgroup of $G$ and $\Gamma$ a torston free &screte umform subgroup of $G$ .

THEOREM B. The conjectures (1) and (2) hold for a compact homogeneous
asphencal mamfold $G/H$, where $G$ is a connected non-compact Lie group and $H$ a
closed subgroup of $G$ .

In this note, we shall use the following notations;
1. $Z,$ $R$ and $C$ denote the ring of integers, the field of real numbers and

the field of complex numbers, respectively.
2. $\tilde{G}$ denotes the universal covering of a Lie group $G$ and $\pi:\tilde{G}arrow G$ the

covering projectlon.
3. $G^{0}$ denotes the identity component of a Lie group $G$ .
4. $z(G)$ denotes the center of a group $G$ .
5. Lie group is assumed to be connected unless the contrary is stated.
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1. Preliminaries.

Let $G$ be a simply connected non-compact Lie group. Then it is well known
that $G$ is a semi-direct product of a simply connected semisimple subgroup $S$

and its radical $R$ . Thus every element of $G$ is uniquely written as a product
$rs$ $(r\in R, s\in S)$ and the product of $r_{1}s_{1}$ and $r_{2}s_{2}$ is given by $(r_{1}s_{1})(r_{2}s_{2})=$

$r_{1}s_{1}r_{2}s_{1}^{-1}s_{1}s_{2}$ and we have the following split exact sequence;

$1 arrow Rarrow G\frac{arrow p}{i}Sarrow 1$ .

Let $\Gamma$ be a torsion free discrete uniform subgroup of $G$ and $K$ a maximal com-
pact subgroup of $G$ . It is easy to show that $K$ is semisimple and $R\cap K=1$ .
Since $\Gamma$ is torsion free, $\Gamma\cap K=1$ . When one considers the manifold $\Gamma\backslash G/K$, it
is sufficient to consider the case when $S$ contains no compact normal factors.
We list some lemmas which are needed in the sequel.

LEMMA 1 (Corollary 8.28 in [11]). (1) $\Gamma_{R}=\Gamma\cap R$ is a discrete uniform sub-
group of $R$ .

(2) $p(\Gamma)$ is a discrete umform subgroup of $S$ .
LEMMA 2 (Corollary 5.18 in [11]). Let $G$ be a semisrmple Lie group without

compact normal subgroup and $H$ a closed subgroup with the property (S) $(e.g$ . $G/H$

has a fimte invariant measure). Then the centralizer of $H$ in $G$ is equal to $z(G)$ .
In particular, $z(H)$ is contained in $z(G)$ .

LEMMA 3 (Theorems 2.1 and 2.11 in [11]). (1) Let $N$ be a simply connected
nilp0tent Lie group and $\Gamma$ a closed umform subgroup of N. Then there are no
pr0per connected closed subgroups of $N$ contaimng $\Gamma$.

(2) Let $N$ and $V$ be two mlpotent $\alpha mply$ connected groups and let $H$ be a
umform subgroup of N. Then any continuous homomorphism $f:Harrow V$ can be ex-
tended in a umque manner to a continuous homomorphsm $f;Narrow V$.

LEMMA 4 (Theorem 1.1 of Chap. VI in [9]). Let $\underline{g}$ be a non-compact semi-
srmple Lie algebra over $R$ and $\underline{g}=k+\underline{p}$ a Cartan decomposttion of $\underline{g}$ . Supp0se
$(G, K)$ is any pair associated with $(\underline{g}, \theta)$ , where $\theta(T+X)=T-X(X\in\underline{p}, T\in k)$ is
an involutive automorphjsm of $\underline{g}$ . Then we have

(1) $K$ is connected, closed and contains $z(G)$ ,
(2) $K$ is compact if and only if $z(G)$ is fimte.
LEMMA 5 (Theorem 2.3 in Section 2 in Chap. IV in [13]). Let $(G, K)$ be the

pajr as in Lemma 4. Then $K$ is its own normalizer and the centralizer $C_{G}(K)$ of
$K$ in $G$ is $z(K)$ .

LEMMA 6. Let $G$ be a semisrmple Lie group and $\pi:\tilde{G}arrow G$ the umversal cover-
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$ing$ . Then $z(\tilde{G})$ is equal to $\pi^{-1}(z(G))$ .
PROOF. Let $x\in\pi^{-1}(z(G))$ and consider the continuous map $c_{X}$ : $\tilde{G}arrow\tilde{G}$ defined

by $c_{x}(y)=xyx^{-1}y^{-1}$ . Since $\pi(xyx^{-1}y^{-1})=1,$ ${\rm Im} c_{x}\subseteqq Ker\pi$ . Ker $\pi$ being discrete,
$c_{x}(\tilde{G})=1$ and hence $xyx^{-1}y^{-1}=1$ , which implies $x\in z(\tilde{G})$ . Conversely let $x\in z(\tilde{G})$ .
Then $\pi(x)\in z(G)$ , which implies $x\in\pi^{-1}(z(G))$ . Q. E. D.

LEMMA 7. Let $G$ be a non-compact nmPle Lie group. SuPpose $z(\tilde{G})$ is not
fimte. Then we have

(1) $z(\tilde{G})$ is contained as a lattice in a subgroup $L$ of $\tilde{G}$ , which is isomorphic
to $R$ , and

(2) Let $\overline{K}$ be a manmal comPact subgroup of G. Then $L$ is contained in the
centralizer of $\overline{K}$ in $\tilde{G}$ .

PROOF. The following arguments are due to Chap. VI, vm, X in [9]. Since
$z(\tilde{G})$ is not finite, $G$ is $PSL(2, R)$ (or its finite covering group), $SU(p, q),$ $SO^{*}(2n)$ ,
$Sp(n, R)$ , $SO_{0}(2, q)$ , $E_{6}$ , or $E_{7}$ . Let $K$ be a subgroup of $G$ such that the pair
$(G, K)$ has the property of Lemmas 4 and 5. Then $G/K$ is an irreducible
Hermitian space and $z(K)$ is $SO(2)$ . It follows from Lemma 6 that $z(G)$ is con-
tained in $L=\pi^{-1}(z(K))$ , which is isomorphic to $R$. This proves (1). It follows
from arguments in Chap. X in [9] (see pp. 451-455 in [9]) that $\pi^{-1}(K)$ is iso-
morphic to $\overline{K}\cross R$ , where $\overline{K}$ is a maximal compact subgroup of $\tilde{G}$ . Since $z(K)=$

$c_{G}(K)$ , we have $\pi(xyx^{-1})=\pi(y)$ for every $y\in\overline{K}$ and $x\in L$ . This implies that the
image of the continuous map $c:\overline{K}\cross Larrow\tilde{G}$ defined by $c(y, x)=xyx^{-1}y^{-1}$ is con-
tained in Ker $\pi$ . Since Ker $\pi$ is discrete and $\overline{K}\cross L$ is connected, we have
$c(y, x)=1$ . This completes the proof of Lemma 7. Q. E. D.

We shall recall some results about solvable Lie groups. Let $R$ be a simply
connected solvable Lie group and $\Gamma$ a discrete uniform subgroup of $R$ . It is
well known that there is an exact $S^{\simeq}.quence$

$1arrow Narrow Rarrow R^{s}arrow 1$ ,

where $N$ is the nilradical of $R$ . It is easy to see that there is a sequence of
subgroups of $R$ ;

$N=R_{0}\subseteqq R_{1}\subseteqq\ldots\subseteqq R_{s}=R$

such that $R_{i+1}=R_{i}\rangle\triangleleft R_{i}$ (semidirect product), where $R_{i}=R$ . In the following,
we write the addition of $R$ multiplicatively. Define $\Gamma_{i}=\Gamma\cap R_{i}$ , $Zi- l=z(\Gamma_{i})(\eta\Gamma_{i-1}$

and $p_{i}$ : $R_{i}arrow R_{i}$ the natural projection. Put $\Gamma_{N}=\Gamma_{0}$ and $z_{N}=z_{0}$ . We may write
an element of $R_{i}$ in the form;

$nx_{1}x_{2}\cdots x_{i}=n\square ^{i}x_{j}$
$(n\in N, x_{j}\in R_{j})$ .

We have the following
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LEMMA 8. (1) $\Gamma_{i}$ is $a$ &screte umform subgroup of $R_{i}$ .
(2) $p_{i}(\Gamma_{i})$ is a discrete umform subgroup of $R_{i}$ .
This follows from the standard arguments about Lie group theory (see

Chap. 3 in [3] and [11]).

LEMMA 9. Let $N$ be a simply connected mlpotent Lie group and $\Gamma_{N}$ is a
discrete uniform subgroup of N. Supp0se $z(\Gamma_{N})=Z^{n}$ . Then there exists a sub-
group $N_{0}$ of $N$ wh2ch is isomorphic to $R^{n}$ and contains $z(\Gamma_{N})$ as a lattice.

This follows from Lemma 3.

LEMMA 10. Let $R$ be a srmply connected solvable Lie group, $\Gamma$ a discrete
umform subgroup of $R,$ $N$ the mlra&cal of $R$ and $N_{0}$ the subgroup of $N$ which
has the pr0perty in Lemma 9 for $\Gamma_{N}=N\bigcap_{1}\Gamma$ and $z(\Gamma)\cap\Gamma_{N}$ . Then we have $rx=xr$

for every $r\in\Gamma$ and $x\in N_{0}$ .
PROOF. Consider the inner automorphism $c_{r}$ : $Rarrow R$ . Since $z(\Gamma)\cap\Gamma_{N}\subseteqq z(\Gamma)$ ,

we have $z(\Gamma)\cap\Gamma_{N}\subseteqq N_{0}\cap c_{r}(N_{0})$ . It follows from a result in [11] (Lemma 2.4
in [11]) that $N_{0}\cap c_{r}(N_{0})$ is connected and hence $N_{0}\cap c_{r}(N_{0})=N_{0}$ , which implies
$c_{r}(N_{0})=N_{0}$ . Q. E. D.

LEMMA 11. (1) Let $\Gamma$ be a group satisfying the exact sequence;

$1arrow Z^{t}arrow\Gammaarrow Z^{s}arrow 1$ .
Then there exists a simply connected solvable Lie group $R$ and a closed subgroup
$D$ of $R$ such that $\pi_{1}(R/D)=\Gamma$.

(2) Let $\Gamma,$ $R$ and $D$ be as above. Assume $z(\Gamma)$ is not trivial. Then there
exist closed subgroups $D_{1}$ and $D_{2}$ of $R$ which satisfy

i) $D_{1}\triangleleft D$ and $D_{1}/D_{1}^{0}=z(\Gamma)=Z^{k}$ ,
ii) $D_{2}/D_{1}^{0}$ is isomorphic to $R^{k}$

and
iii) $z(\Gamma)$ is contained in $D_{2}/D_{1}^{0}$ as a lattice.

PROOF. The following arguments are due to [1] (Chap. $m$ , Section 5 in [1]).
(1) The arguments in [1] (see p. 245) show that there exists a commutative

diagram in which the horizontal sequences are exact;

$1arrow$ $Z^{t}$ $arrow\Gammaarrow$ $Z^{s}$ $arrow 1$

$1arrow Z^{t}\otimes C\downarrowarrow\Gamma_{C}\downarrowarrow$ $Z^{s}\downarrow$

$arrow 1$

$1arrow Z^{t}\otimes C\downarrowarrow R\downarrowarrow Z^{s}\otimes R\downarrowarrow 1$ .

Let $D$ be the subgroup of $R$ generated by the image of $\Gamma$ and the subgroup $I$
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of $Z^{t}\cross C$ consisting of purely imaginary vectors. Then $D$ is closed in $R$ and
$\pi_{1}(R/D)=D/D^{0}=D/I=\Gamma$ .

(2) Let $D_{1}$ be the subgroup of $R$ generated by $z(\Gamma)$ and I. $z(\Gamma)$ satisfies
the following exact sequence;

$1arrow Z^{t’}arrow z(\Gamma)arrow Z^{s’}arrow 1$ .
It is easy to construct the following commutative diagram;

$1arrow$ $Z^{t’}$ $arrow z(\Gamma)arrow$ $Z^{\theta’}$ $arrow 1$

$1 arrow Z^{t’}\bigotimes_{\downarrow}R\downarrowarrow Z^{k}\bigotimes_{\downarrow}R\downarrowarrow Z^{S’}\bigotimes_{\downarrow}R\downarrowarrow 1$

$1arrow Z^{t’}\otimes Carrow$ $R$ $arrow Z^{s’}\otimes Rarrow 1$ ,

where $z(\Gamma)=Z^{k}$ . Now let $D_{2}$ be the subgroup of $R$ generated by $Z^{k}\otimes R$ and $I$ .
Then $D_{2}/D_{1}^{0}=R^{k}$ and $z(\Gamma)$ is a lattice of $D_{2}/D_{1}^{0}$ . Q. E. D.

Now we shall consider $M=\Gamma\backslash G/K$, where $G$ is a non-simply connected
non-compact Lie group, $K$ a maximal compact subgroup and $\Gamma$ a torsion free
discrete uniform subgroup of $G$ . Let $\pi:\tilde{G}arrow G$ be the universal covering of $G$ .
Then Ker $\pi=\pi_{1}(G)=\pi_{1}(K)\cong Z^{r}\cross F$, where $F$ is a finite abelian group. Since
$\tilde{K}=\pi^{-1}(K)$ is the universal covering of $K,\tilde{K}\cong R^{r}\cross\overline{K}$, where $\overline{K}$ is a simply con-
nected compact semisimple Lie group. Put $\tilde{\Gamma}=\pi^{-1}(\Gamma)$ .

We have the following

LEMMA 12. $Z^{r}$ and $F$ are central subgroups of $G$ .
This follows from the fact that $\pi_{1}(G)$ is a central subgroup of $\tilde{G}$ . Let

$\tilde{G}=\tilde{R}Q\tilde{S}$ be the Levi-decomposition of $\tilde{G}$ . Define $\tilde{G}^{*},\tilde{S}^{*},\tilde{\Gamma}^{*},\tilde{K}^{*}$ and $\overline{K}^{*}$ by
$($ $)^{*}=()/F$. Clearly $\tilde{G}=R\circ\tilde{S}^{*}$ is the Levi-decomposition of $\tilde{G}^{*}$ . We have the
following

LEMMA 13. $\tilde{\Gamma}^{*}\cap g\tilde{K}^{*}g^{-1}=Z^{r}$ for every $g\in\tilde{G}^{*}$ .
PROOF. Consider the following commutative diagram in which every hori-

zontal sequence is exact.

$1arrow Z^{r}arrow g\tilde{K}^{*}g^{-1}arrow\overline{g}K\overline{g}^{-1}arrow 1$

$\downarrow$ $\downarrow$ $\downarrow$

$1arrow Z^{r}arrow$ $\tilde{G}^{*}$

$arrow$ $G$ $arrow 1$

$1arrow Z^{r}\uparrowarrow$ $\tilde{\Gamma}^{*}\uparrow$ $\Gamma\uparrow$

$arrow 1$

where $\overline{g}=\pi^{*}(g),$ $\pi^{*}:$ $\tilde{G}^{*}arrow G$ the homomorphism induced by $\pi$ . Since $\tilde{\Gamma}^{*}$ and $\Gamma$

are torsion free and $\overline{g}K\overline{g}^{-1}$ is compact, $\tilde{\Gamma}^{*}\cap g\tilde{K}^{*}g^{-1}$ is equal to $Z^{r}$ . Q. E. D.
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LEMMA 14. (1) $\Gamma\backslash G/K$ is homeomorphic to $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/K*$ .
(2) The natural map $q:\tilde{G}^{*}/\overline{K}^{*}arrow\tilde{G}^{*}/\tilde{K}^{*}$ is a pnnczpal $R^{r}=\tilde{K}^{*}/\overline{K}^{*}$-bundle.
(3) The map $q$ induces a map $\tilde{q}:\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}arrow\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\tilde{K}^{*}$ which is a pmnupal

$T^{r}=Z^{r}\backslash \tilde{K}^{*}/\overline{K}^{*}$-bundle.

PROOF. We omit the proof of (1) and (2). It is clear that $\tilde{q}$ is a fiber
bundle with typical fiber $(\tilde{\Gamma}^{*}\cap K^{*})\backslash \tilde{K}^{*}/\overline{K}^{*}=Z^{r}\backslash \tilde{K}^{*}/\overline{K}^{*}$ . Consider $Z^{r}\backslash \tilde{K}^{*}/\overline{K}^{*}$ as
an r-dimensional torus $T^{r}$ and define a $T^{r}$-action on $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}$ by the formula;

$(Z^{r}k\overline{K}^{*})(\tilde{\Gamma}^{*}g\overline{K}^{*})=\tilde{\Gamma}^{*}gk^{-1}\overline{K}^{*}$ .
The well-definedness follows from the fact that $\overline{K}^{*}\triangleleft\tilde{K}^{*}$ and Lemma 12. The
action is free. In fact,

$(Z^{r}k_{1}\overline{K}^{*})(\tilde{\Gamma}^{*}g\overline{K}^{*})=\tilde{\Gamma}^{*}g\overline{K}^{*}\Rightarrow\tilde{\Gamma}^{*}gk^{-1}\overline{K}^{*}=\tilde{\Gamma}^{*}g\overline{K}^{*}\Rightarrow gk_{1}^{-1}=xgk’$

$(k’\in\overline{K}^{*}, x\in\tilde{\Gamma}^{*})$

$x=gk_{1}^{-1}k^{;-1}g^{-1}\in\tilde{\Gamma}^{*}\cap g\tilde{K}^{*}g^{-1}$ .
It follows from Lemma 13 that we have $k_{1}^{-1}=g^{-1}xgk’\in Z^{r}\overline{K}^{*}$ , which implies that
$Z^{r}k_{1}\overline{K}^{*}=1$ in $Z^{r}\backslash \tilde{K}^{*}/\overline{K}^{*}$ . It is clear that the orbit space of $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}$ by
$Z^{r}\backslash \tilde{K}^{*}/\overline{K}^{*}$ is $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\tilde{K}^{*}$ . Q. E. D.

2. The proof of Theorem A when $G$ is simply connected.

In this section, we shall prove Theorem A when $G$ is simply connected.
As in Section 1, let $G=R\circ S$ be the Levi-decomposition and $p;Garrow S$ the projec-
tion. We have the following exact sequence;

$1arrow\Gamma_{R}arrow\Gammaarrow p(\Gamma)arrow 1$ .
It follows from this exact sequence that we have the following exact sequence;

$1arrow z(\Gamma)\cap\Gamma_{R}arrow z(\Gamma)arrow p(z(\Gamma))arrow 1$ .
It is clear that $z(\Gamma)\cap\Gamma_{R}\subseteqq z(\Gamma_{R})$ and $p(z(\Gamma))\subseteqq z(p(\Gamma))$ . Since $\Gamma_{R}$ is poly-Z group
(see [11]), $z(\Gamma)\cap\Gamma_{R}$ is also a poly-Z group and hence finitely generated. It
follows from a result in [11] (Corollary 5.18 in [11]) that $z(P(\Gamma))$ is finitely
generated abelian group and hence isomorphic to $Z^{k}$ for some integer $k$ . We
have the following

PROPOSITION 15. (1) The map $Garrow R\cross S;g=rsarrow(r, s)$ is a homeomorphism.
(2) The map $f_{1}$ : $G/Karrow R\cross(S/K);rsKarrow(r, sK)$ is a homeomorphjsm.
(3) The natural map $\Gamma_{R}\backslash G/Karrow\Gamma\backslash G/K$ is a regular covenng maP with the

group $p(\Gamma)$ of covenng transfomations and hence $\Gamma\backslash G/K\cong P(\Gamma)\backslash (\Gamma_{R}\backslash G/K)$ .
(4) The maP $g:\Gamma_{R}\backslash G/Karrow(\Gamma_{R}\backslash R)\cross(S/K);\Gamma_{R}rsKarrow(\Gamma_{R}r, sK)$ is a homeo-
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morphism.

Since these are proved immediately, we shall omit the proof.
Define the action of $p(\Gamma)$ on $(\Gamma_{R}\backslash R)\cross(S/K)$ by

$(\Gamma_{R}rs)(\Gamma_{R}r_{1}, s_{1}K)=(\Gamma_{R}rsr_{1}s^{-1}, ss_{1}K)$ .
Then the map $g$ is $p(\Gamma)$-equivariant (note the action of $p(\Gamma)\cong\Gamma_{R}\backslash \Gamma$ on $\Gamma_{R}\backslash G/K$

is given by $(\Gamma_{R}rs)(\Gamma_{R}gK)=\Gamma_{R}rsgK)$ . In fact,

$(\Gamma_{R}rs)(g(\Gamma_{R}r_{1}s_{1}K))=(\Gamma_{R}rs)(\Gamma_{R}r_{1}, s_{1}K)=(\Gamma_{R}rsr_{1}s^{-1}, ss_{1}K)=g((\Gamma_{R}rs)(\Gamma_{R}r_{1}s_{1}K))$ .
It follows that we have the following

PROPOSITION 16. $\Gamma\backslash G/K$ is homeomorphic to $p(\Gamma)\backslash ((\Gamma_{R}\backslash R)\cross(S/K))$ .

Now we shall define a maximal toral action on $N=\Gamma\backslash G/K$. We devide the
definition into two steps.

The first step; Let $z(\Gamma)\cap R=Z^{n}$ . We define an action of $T^{n}$ on $\Gamma_{R}\backslash R$ ,

which is compatible with the action $p(\Gamma)$ .
The second step; Let $p(z(\Gamma))=Z^{m}$ . We define an action of $T^{m}\cross T^{n}$ on

$\Gamma\backslash G/K$.
1. The first step. Let $R$ be a simply connected solvable Lie group and $\Gamma$

a torsion free discrete uniform subgroup of $R$ . As noted above, we have an
exact sequence;

$1arrow Narrow R-$ $R^{s}arrow 1$ ,

where $N$ is the nilradical of $R$ . First consider the case of $s=1$ . We have the
following commutative diagram;

$11arrow z_{N}arrow\Gamma_{N}\uparrowarrow z(\Gamma)arrow\Gamma\uparrowarrow p(z(\Gamma))arrow p(\Gamma)\uparrowarrow 1arrow 1$

.
By the same arguments as in Propositions 15 and 16, we have the following

PROPOSITION 17. (1) The map $g:\Gamma_{N}\backslash Rarrow(\Gamma_{N}\backslash N)\cross R;\Gamma_{N}nxarrow(\Gamma_{N}n, x)$ is
a homeomorplusm.

(2) The natural map $\Gamma_{N}\backslash Rarrow\Gamma\backslash R$ is a regular covering map with the group
$p(\Gamma)$ of covering transformations and hence $\Gamma\backslash R\cong p(\Gamma)\backslash (\Gamma_{N}\backslash R)$ .

(3) Define an action of $p(\Gamma)\cong\Gamma_{N}\backslash \Gamma$ on $(\Gamma_{N}\backslash N)\cross R$ by the formula;

$(\Gamma_{N}nx)(\Gamma_{N}n_{1}x_{1})=(\Gamma_{N}nxn_{1}x^{-1}, xx_{1})$ .

Then this is well defined and induces a homeomorphusm $h:\Gamma\backslash R\cong p(\Gamma)\backslash ((\Gamma_{N}\backslash N)$

$\cross R)$ .
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It follows from Lemma 9 there exists a subgroup $N_{0}$ of $N$ such that
(i) $N_{0}\subseteqq R^{u}(u=rankz_{N})$

and
(ii) $z_{N}\subseteqq N_{0}$ as a lattice.

Now we define an action of $T^{u}=z_{N}\backslash N_{0}$ on $\Gamma\backslash R$ .
(1) Define an action of $T^{u}$ on $(\Gamma_{N}\backslash N)\cross R$ by the formula;

$(z_{N}n)(\Gamma_{N}n_{1}, x)=(\Gamma_{N}nn_{1}, x)$ .

This action is easily proved to be well defined and effective.
(2) This action is commutative with the action of $p(\Gamma)$ . In fact, we have

$(\Gamma_{N}nx)((z_{N}n_{1})(\Gamma_{N}n_{2}, x_{2}))=(\Gamma_{N}nx)(\Gamma_{N}n_{1}n_{2}- 1x_{2})$

$=(\Gamma_{N}nxn_{1}n_{2}x^{-1}, xx_{2})=(\Gamma_{N}nxn_{1}x xx_{2}x^{-1}, xx_{2})$

$=(\Gamma_{N}n_{1}nxn_{2}x^{-1}, xx_{2})-1$
(see Lemma 9)

$=(z_{N}n_{1})(\Gamma_{N}nxn_{2}x , xx_{2})$ (see Lemma 10)
$=(z_{N}n_{1})((\Gamma_{N}nx)(\Gamma_{N}n_{2}, x_{2}))$ .

It follows from (1) and (2) that we have defined an action of $T^{u}$ on $\Gamma\backslash R$ .
It is clear that $p(z(\Gamma))=Z$ or 1. When $p(z(\Gamma))=Z$, define $A=p(z(\Gamma))\otimes R$.

Then $A/p(z(\Gamma))=T^{1}$ . We can define an action of $T^{u}\cross T^{1}$ on $\Gamma\backslash R$ as follows.
(1) Define an action of $T^{u}\cross A$ on $(\Gamma_{N}\backslash N)\cross R$ by the formula;

$(z_{N}n, x)(\Gamma_{N}n_{1}, x_{1})=(\Gamma_{N}nx_{1}, x_{1}x^{-1})$ .
This action is proved easily to be well defined and effectively.

(2) Define an action of $T^{u}\cross A$ on $\Gamma_{N}\backslash R$ by the formula;

$(z_{N}n, x)(\Gamma_{N}n_{1}, x_{1})=\Gamma_{N}nn_{1}x_{1}x^{-1}$ .

This is well defined. In fact,

$\Gamma_{N}n_{2}x_{2}=\Gamma_{N}n_{1}x_{1}\Rightarrow n_{2}x_{2}=n’n_{1}x_{1}$ $(n’\in\Gamma_{N})$

$\Rightarrow nn_{2}x_{2}x^{-1}=nn’n_{1}x_{1}x^{-1}=n’nn_{1}x_{1}x^{-1}$ (by Lemma 9)
$\Rightarrow(z_{N}n, x)(\Gamma_{N}n_{2}, x_{2})=\Gamma_{N}nn_{2}x_{2}=\Gamma_{N}nn_{1}x^{-1}$

$=(z_{N}n, x)(\Gamma_{N}n_{1}x_{1})$ .
(3) The homeomorphism $g:\Gamma_{N}\backslash Rarrow(\Gamma_{N}\backslash N)\cross R$ is $(T^{u}\cross A)$-equivariant. In

fact,

$g((z_{N}n, x)(\Gamma_{N}n_{1}x_{1}))=g(\Gamma_{N}nn_{1}x_{1}x^{-1})=(\Gamma_{N}nn_{1}, x_{1}x^{-1})$

$=(z_{N}n, x)(\Gamma_{N}n_{1}, x_{1})=(z_{N}n, x)(g(\Gamma_{N}n_{1}x_{1}))$ .
It follows from (1) and (3) that the action of $T^{u}XA$ on $\Gamma_{N}\backslash R$ is effective.

(4) The action of $T^{u}\cross A$ on $\Gamma_{N}\backslash R$ is commutative with the action of $p(\Gamma)$

$\cong\Gamma_{N}\backslash \Gamma$. To prove this, we need the following lemma;
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LEMMA 18. $xn_{1}x^{-1}=n_{1}$ for every $x\in p(\Gamma)$ and $n_{1}\in N_{0}$ .
PROOF. This follows from Lemma 3 and the following commutative diagram;

$11arrow z_{N}arrow\Gamma_{N}\uparrowarrow z(\Gamma)arrow\Gamma\uparrowarrow p(z(\Gamma))arrow p(\Gamma)\uparrowarrow 1arrow 1$

. Q. E. D.

Now we shall prove the assertion (4).

$(\Gamma_{N}nx)((z_{N}n_{1}, x_{1})(\Gamma_{N}n_{2}x_{2}))=(\Gamma_{N}nx)(\Gamma_{N}n_{1}n_{2}x_{2}x_{1}^{-1})$

$=\Gamma_{N}nxn_{1}n_{2}x_{2}x_{1}^{-1}=\Gamma_{N}nn_{1}xn_{2}x^{-1}xx_{2}x_{1}^{-1}$ (by Lemma 18)

$=\Gamma_{N}n_{1}nxn_{2}x^{-1}xx_{2}x_{1}^{-1}$ (by Lemma 10)

$=(z_{N}n_{1}, x_{1})((\Gamma_{N}nx)(\Gamma_{N}n_{2}x_{2}))$ .

(5) The group $p(z(\Gamma))$ acts trivially on $p(\Gamma)\backslash (\Gamma_{N}\backslash R)$ . In fact, denote an
element of $p(\Gamma)\backslash (\Gamma_{N}\backslash R)$ by $[\Gamma_{N}nx]$ . Recall $m[\Gamma_{N}nx]=[\Gamma_{N}nxm^{-1}](m\in p(z(\Gamma)))$

$=[\Gamma_{N}nm^{-1}x]$ ($R$ is abelian). Since $p(nm^{-1}n^{-1}m)=1$ , we have $nm^{-1}n^{-1}m=z\in\Gamma_{N}$

and hence $nm^{-1}=zm^{-1}n$ . Thus we have $[\Gamma_{N}nm^{-1}x]=[\Gamma_{N}m^{-1}nx]=[(\Gamma_{N}m^{-1})(\Gamma_{N}nx)]$

$=[\Gamma_{N}nx]$ .
Next we shall consider the general case. Recall the exact sequence;

$1arrow Narrow Rarrow R^{s}arrow 1$ .

As noted in Section 1, we have a sequence of subgroups of $R$ ;

$N=R_{0}\subset R_{1}\subset\ldots\subset R_{s}=R$

such that $R_{i}=R_{i- 1}\rangle\triangleleft R_{i}(R_{i}=R)$ .
As in Section 1, we define $\Gamma_{i}=\Gamma\cap R_{t},$ $z_{i-1}=z(\Gamma_{i})\cap\Gamma_{i-1}$ and $p_{i}$ : $R_{i}arrow R_{i}$ . If

$e_{i}=rankp_{i}(z(\Gamma_{i}))$ , then we define $A_{i}=p_{i}(z(\Gamma_{i}))\otimes R$ . Clearly $p_{i}(z(\Gamma_{i}))\backslash A_{i}=T^{1}$ .
By the same arguments as in the case of $s=1$ , we have the following;

PROPOSITION 19. (1) $\Gamma_{i+1}\backslash R_{\iota+1}\cong p_{i+1}(\Gamma_{i+1})\backslash (\Gamma_{t}\backslash R_{i+1})$ .
(2) $\Gamma_{i}\backslash R_{i+1}\cong(\Gamma_{i}\backslash R_{i})\cross R_{i+1}$ .
(3) $\Gamma_{i+1}\backslash R_{i+1}\cong p_{i+1}(\Gamma_{i+1})\backslash ((\Gamma_{i}\backslash R_{i})\cross R_{i+1})$ .
Assume $\Gamma_{i}\backslash R_{i}$ admits an action of $T^{u}\cross T^{e_{1}}\cross\cdots\cross T^{e_{i}}$ , where $T^{u}=z_{N}\backslash N_{0}$

and $T^{e_{j}}=p(z(\Gamma_{j}))\backslash A_{j}(e_{j}\neq 0)$ , induced by the action of $T^{u}\cross A^{e_{1}}\cross\cdots\cross A^{e_{i}}$ on
$(\Gamma_{i- 1}\backslash R_{i-1})\cross R_{i}$ given by the formula;

$(z_{N}n, \Pi^{i}x_{j})(\Gamma_{\ell-1}n_{1}\Pi^{i}y_{j}, z)=(\Gamma_{i-1}nn_{1}\Pi^{i- 1}y_{f}x_{j}^{-1}, zx_{i})$

If we regard $\Gamma_{i}\backslash R_{i}$ as $p_{l}(\Gamma_{i})\backslash (\Gamma_{\ell-1}\backslash R_{i})$ , the above action is given by the formula;

$(z_{N}n, \Pi^{i}x_{j})(\Gamma_{i- 1}n_{1}\Pi^{i}y_{j})=\Gamma_{i- 1}nn_{1}\Pi^{i}y_{j}x_{j}^{-1}$

Now we define an action of $T^{u}\cross A^{e_{1}}\cross\cdots\cross A^{e_{i+1}}$ on $(\Gamma_{i}\backslash R_{i})\cross R_{i+1}$ by the formula;
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$(*)$
$(z_{N}n, \Pi^{l+1}x_{j})(\Gamma_{i}n_{1}\Pi^{i}y_{j}, z)=(\Gamma_{i}nn_{1}\Pi^{i}y_{j}x_{j}^{-1}zx_{i+1}^{-1})$ .

We should prove that this action is commutative with the action of $p_{i+1}(\Gamma_{i+1})$

$\cong\Gamma_{i}\backslash \Gamma_{i+1}$ on $(\Gamma_{i}\backslash R_{i})\cross R_{i+1}$ given by the formula;

$(**)$
$(\Gamma_{\ell^{n_{1}\Pi y_{j})(\Gamma_{i}n_{2}\Pi z_{j}}}^{i+1i}, w)=(\Gamma_{i}^{ii}n_{1}\Pi y_{j}y_{i+1}n_{2}\Pi z_{j}y_{i+1}^{-1}, y_{i+1}w)$ .

We note the following

PROPOSITION 20.

(1) $(\Gamma_{i}^{iii-1}n_{1}\Pi y_{j})(\Gamma_{i}n_{2}\Pi z_{j})=\Gamma_{i}n_{1}n_{2}’\Pi(y_{j}(y_{j+1}\cdots y_{i})z_{j}(y_{j+1}\cdots y_{i})^{-1})y_{i}z_{t}$ ,

where $n_{t}\in N,$ $y_{j},$ $z_{j}\in R_{j}$ and $(\square ^{i}y_{j})n_{2}=n_{2}’(\square ^{i}y_{j})$ .
(2) For every $j=1,2,$ $\cdots$ , $i$ and $k\geqq j,$ $x_{f}y_{k}=y_{k}x_{j}$ , where $x_{j}\in A_{j},$ $y_{k}\in p_{k}(\Gamma_{k})$ .

PROOF. (1) follows from direct computations and (2) follows from the fact
that the action of $p_{k}(\Gamma_{k})$ on $z(\Gamma_{j})$ and hence the action of $p_{k}(z(\Gamma_{k}))$ induced by
conjugation is trivial.

Now the proof of the commutativity of $(*)$ and $(**)$ is as follows; Put
$y_{j+1,i}=y_{j+1}y_{j+2}\cdots y_{i}$ and $\overline{z}_{j}=y_{j+1}z_{j}y_{j+1}^{-1}$ .

$(z_{N}n, \Pi^{i+1}x_{j})((\Gamma_{i}n_{1}\Pi^{i+1}y_{j})(\Gamma_{i}n_{2}\Pi^{i}z_{j}w))$

$=(z_{N}n, \Pi^{i+1}x_{j})(\Gamma_{i}n_{1}\Pi^{i}y_{j}y_{i+1}n_{2}\Pi^{i}z_{j}y_{i+1}^{-1}y_{i+1}w)$

$=(z_{N}n, \Pi^{i+1}x_{j})(\Gamma_{i}n_{1}n_{2}’\Pi^{i}y_{j}\Pi^{i}\overline{z}_{j}y_{i+1}w)$

$=(\Gamma_{i}^{i-1}nn_{1}n_{2}’\Pi y_{j}y_{j+1,i}\overline{z}_{j}y_{j+1.i}^{-1}x_{j}^{-1}y_{i}\overline{z}_{i}x_{i}^{-1}, y_{i+1}wx_{\ell+1}^{-1})$

$=(\Gamma_{i}^{i+1i+1i}n_{1}\Pi y_{j})((z_{N}n, \Pi x_{j})(\Gamma_{i}n_{2}\Pi z_{j}, w))$ .

Wc shall omit the proofs of the well-definedness, effectivity and triviality of the
restriction of $(**)$ to $p_{i+1}(z(\Gamma_{i+1}))$ . Thus we have dePned an action of $T^{u}\cross A^{e_{1}}$

$\cross\cdots\cross A^{e_{i+1}}$ . By induction, we have completed the first step.

2. The second step. We shall define a maximal toral action on $\Gamma\backslash G/K$,
where $G=R\circ S$ . Consider the case when $S$ contains no normal factor $\tilde{U}$ , where
$U$ is one of groups listed in Lemma 7. Then, since $z(p(\Gamma))$ is discrete,
rank $z(\Gamma)=rank(\Gamma_{R}\cap z(\Gamma))$ . Put rank $(\Gamma_{R}\cap z(\Gamma))=k$ . By the arguments at the
first step, a k-dimensional toral group $T^{k}=T^{u}\cross T^{e_{1}}\cross\cdots\cross T^{e_{s}}$ acts on $\Gamma_{R}\backslash R$ as
follows;

$(*)$ ($z_{N}n$ , II $[x_{j}]$ )$(\Gamma_{R}n_{1}\Pi^{8}^{l}y_{j})=\Gamma_{R}nn_{1}\Pi y_{j}x_{j}^{-1}$ ,

where $[x_{j}]$ denotes an element of $Z\backslash A_{j}^{e_{j}}$ . Note that if $e_{j}=0$ then $x_{j}=1$ . Define
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an action of $T^{k}$ on $(\Gamma_{R}\backslash R)\cross(S/K)$ by

$(**)$ $(z_{N}n, \Pi^{*}[x_{f}])(\Gamma_{R}n_{1}\square ^{*}y_{j}, wK)=(\Gamma_{R}nn_{1}\Pi^{l}y_{j}x_{j}^{-1}, wK)$ .
It is easy to show that this action is well defined and effective. The com-
mutativity with the action of $p(\Gamma)$ follows from the same arguments at the first
step and the following lemma.

LEMMA 21. (1) $vx_{j}v^{-1}=x_{j}$ for every $x_{j}\in A_{j}$ and $v\in p(\Gamma)$ .
(2) $vn=nv$ for every $n\in N_{0}$ and $v\in p(\Gamma)$ .
PROOF. This follows from the fact that the action of $p(\Gamma)$ on $z(\Gamma)$ by con-

jugation is trivial and Lemma 3. Q. E. D.

Thus we have defined an action of $T^{k}$ on $\Gamma\backslash G/K$.
In general, $S$ is decomposed into a product $S_{1}\cross A$ , where $A$ is a product of

$\tilde{U}$ , where $U$ is one of groups listed in Lemma 7 and $S_{1}$ contains no factors of
these groups. Then we have $p(z(\Gamma))=Z^{a}\cross F$ ($F$ is a finite abelian group). It
follows from results in Section 1 that there exists a subgroup $R^{a}$ of $A$ which
contains $Z^{a}$ as a lattice.

Let $T^{k}=T^{u}\cross T^{e_{1}}\cross\cdots\cross T^{e_{S}}$ denote the toral group in the case of $A=1$ .
Define an action of $T^{k}\cross R^{a}$ on $\Gamma_{R}\backslash G/K$ by the formula;

$(z_{N}n, \Pi^{|}[x_{j}], u)(\Gamma_{R}n_{1}\square ^{*}z_{j}vK)=\Gamma_{R}nn_{1}\Pi^{l}z_{j}x_{j}^{-1}vu^{-1}K$

where $u\in R^{a}$ . In the following, we omit the index $s$ in $\prod^{s}$ This is well
defined; in fact,

$\Gamma_{R}n_{1}’\Pi z_{j}’v’=\Gamma_{R}n_{1}\Pi z_{j}v$

$\Rightarrow n_{1}’\Pi z_{j}’v’=rn_{1}\Pi z_{j}vw$ $(r\in\Gamma_{R}, w\in K)$

$\negarrow nn_{1}’\Pi z_{j}’x_{j}^{-1}v’u^{-1}=nn_{1}’\Pi z_{j}’v’x_{j}^{-1}u^{-1}$

$=nrn_{1}\Pi z_{j}vwx_{j}^{-1}u^{-1}$

$=rnn_{1}\Pi z_{j}x_{j}^{-1}vwu^{-1}$ (by Lemma 7)

$\Rightarrow(z_{N}n, \Pi[x_{j}])(\Gamma_{R}n_{1}\Pi z_{j}v)=(z_{N}n, \Pi[x_{j}])(\Gamma_{R}n_{1}’\Pi z_{j}’v’)$ .
Next define an action of $T^{k}\cross R^{a}$ on $(\Gamma_{R}\backslash R)\cross(S/K)$ by the formula;

$(z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{1}\Pi z_{j}, sK)=(\Gamma_{R}nn_{1}\Pi z_{j}x_{j}^{-1}, sv^{-1}K)$ .
$lt$ is easy to see that this is well defined. The homeomorphism $g:\Gamma_{R}\backslash G/Karrow$

$(\Gamma_{R}\backslash R)\cross(S/K)$ is $(T^{k}\cross R^{a})$-equivariant. In fact, we have

$g((z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{1}\Pi z_{j}sK))=g(\Gamma_{R}nn_{1}\Pi z_{j}x_{j}^{-1}sv^{-1}K)$

$=( \Gamma_{R}nn_{1}\prod z_{j}x_{j}^{-1}, sv^{-1}K)=(z_{N}n, \prod[x_{j}], v)(g(\Gamma_{R}n_{1}\prod z_{j}sK))$ .
It can also be proved that the action of $T^{k}\cross R^{a}$ on $(\Gamma_{R}\backslash R)\cross(S/K)$ is effective.
In fact, assume $(z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{1}\Pi z_{j}, sK)=(\Gamma_{R}n_{1}, \Pi z_{j}, sK)$ for every
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$(\Gamma_{R}n_{1}, \Pi z_{j}, sK)$ . Then we have $n_{1}\Pi z_{j}=rnn_{1}\Pi z_{j}x_{j}^{-1}$ and $s=sv^{-1}w(w\in K, r\in\Gamma_{R})$

and hence $v=w\in R^{a}\cap K=1$ . If we choose $n_{1}\Pi z_{j}=1$ , then $rn\Pi x_{j}^{-1}=1$ and
$n\Pi x_{f}^{-1}\in z_{N}\cross\Pi p_{i}(z(\Gamma_{R}))$ which implies $(z_{N}n, \Pi[x_{j}])=1$ . This proves that the
action of $T^{k}\cross R^{a}$ on $\Gamma_{R}\backslash G/K$ is effective. Moreover the action is commutative
with the action of $p(\Gamma)$ . In fact,

$(z_{N}n, \Pi[x_{j}], v)((\Gamma_{R}n_{1}\Pi y_{j}u)(\Gamma_{R}n_{2}\Pi z_{j}wK))$

$=(z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{1}\Pi y_{j}un_{2}\Pi z_{j}u^{-1}uwK)$

$=(z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{1}n_{2}’\Pi y_{j}\Pi uz_{j}u^{-1}uwK)$

$=(z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{1}n_{2}’\Pi^{s-1}y_{j}y_{j+1,s}\overline{z}_{j}y_{j+1,s}^{-1}y_{s}\overline{z}_{s}uwK)$

(note $y_{j+1.s}=y_{j+1}\cdots y_{s},\overline{z}_{j}=uz_{j}u^{-1}$ )

$=(\Gamma_{R}nn_{1}n_{2}’\Pi^{s- 1}y_{j}y_{j+1,s}\overline{z}_{j}y_{j+1,s}^{-1}x_{j}^{-1}y_{s}\overline{z}_{s}x_{s}^{-1}uwv^{-1}K)$

$=(\Gamma_{R}nn_{1}n_{2}’\Pi y_{j}\Pi u(z_{j}x_{j}^{-1})u^{-1}uwv^{-1}K)$ (note that $ux_{f}=x_{f}u$ )

$=(\Gamma_{R}n_{1}\Pi y_{j}u)((z_{N}n, \Pi[x_{j}], v)(\Gamma_{R}n_{2}\Pi z_{j}wK))$ .

It follows that $T^{k}\cross R^{a}$ acts on $p(\Gamma)\backslash (\Gamma_{R}\backslash G/K)$ . We shall prove that $Z^{a}$ acts
trivially on $p(\Gamma)\backslash (\Gamma_{R}\backslash G/K)$ . Let element of $p(\Gamma)\backslash (\Gamma_{R}\backslash G/K)$ be written as
$[\Gamma_{R}n\Pi z_{j}wK]$ . Recall $m[\Gamma_{R}n\Pi z_{j}wK]=[\Gamma_{R}n\Pi z_{j}wm^{-1}]$ for $m\in Z^{a}$ . Since $m\in Z^{a}$

$\subset z(p(\Gamma))\subset z(S),$ $wm^{-1}=m^{-1}w$ and hence we have $m[\Gamma_{R}n\Pi z_{j}wK]=[\Gamma_{R}\Pi z_{j}m^{-1}wK]$ .
Because $p((n\Pi z_{j})m^{-1}(n\Pi z_{j})^{-1}m)=1$ , we have $(n\Pi z_{j})m^{-1}(n\Pi z_{j})^{-1}m=z\in\Gamma_{R}$ and
hence $[ \Gamma_{R}n\prod z_{j}m^{-1}wK]=[\Gamma_{R}m^{-1}(n\prod z_{j})wK]=[\Gamma_{R}n\prod z_{j}wK]$ . This implies that
$T^{k}\cross T^{a}$ acts on $\Gamma\backslash G/K$ effectively. Thus we have proved Theorem A when
$G$ is simply connected.

3. The proof of Theorem A when $G$ is not simply connected.

In this section, we shall prove Theorem A when $G$ is not simply connected.
We use the same notations as in Section 1. As noted in Section 1, $\tilde{G}^{*}=\tilde{R}\cdot\tilde{S}^{*}$ ,
$\tilde{R}\cap\tilde{S}^{*}=1$ and $\overline{K}^{*}$ is a maximal compact subgroup of $\tilde{G}^{*}$ . Then the same
arguments as in Section 2 show that $z(\tilde{\Gamma}^{*})=z(\pi_{1}(\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}))$ is finitely generated,
say of rank $k’$ and $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}$ admits an action of $T^{k’}$ Note that $z(\tilde{\Gamma}^{*})\cong$

$Z^{r}\cross z(\Gamma)$ . In fact, as noted in Section 1, we have an exact sequence;

$1arrow Z^{r}arrow\tilde{\Gamma}^{*}arrow\Gammaarrow 1$ ,

where $Z^{r}$ is a central subgroup of $\tilde{\Gamma}^{*}$ . It follows that $z(\tilde{\Gamma}^{*})\cong Z^{r}\cross z(\Gamma)$ . As
noted above, $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}$ admits an action of $T^{k}\cross T^{r}$ . It is easy to see that the
restriction of the acton of $T^{k}\cross T^{r}$ to $T^{r}$ coincides with the principal action of
$T^{r}$ on $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\overline{K}^{*}$ . This implies that $\tilde{\Gamma}^{*}\backslash \tilde{G}^{*}/\tilde{K}^{*}$ admits an action of $T^{k}$ . Thus
we have completed the proof of Theorem A.
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4. The proof of Theorem B.

Let $M=G/H$ be a compact aspherical manifold. When $G$ is not simply con-
nected, let $\tilde{G}$ be the universal covering of $G$ . Then $G/H$ is homeomorphic to
$\tilde{G}/\pi^{-1}(H)$ . Thus it is sufficient to consider the case when $G$ is simply connected.
Therefore any maximal compact subgroup $K$ of $G$ is simply connected and
semisimple. Let $N$ be the subgroup that acts trivially on $G/H$. Then $N\subset H$

and $N$ is normal in $G$ . Since only a torus among the compact connected Lie
group can act effectively on $G/H,$ $K$ is contained in $N$. Now we have $G/H=$

$(G/N)/(H/N)$ , so we can assume that $N=1$ , and hence $K=1$ . This means $G$ is
homeomorphic to $R^{n}$ for some $n$ . Thus if dim $H=0$ , then $M$ is a manifold of
type of $\Gamma\backslash G/K$. Hence Theorem $B$ holds. Next we assume dim $H>0$ . The
following facts are known (see [8]).

1. $H^{0}$ is solvable.
2. Let $F=N_{G}(H^{0}),$ $H_{1}=F^{0}H$ and $G_{1}=H_{1}^{0}/(H_{1}^{0}\cap H^{0})$ . Then $G/H_{1}$ is homeo-

morphic to a torus $T^{n}$ and we have a fiber bundle; $G_{1}/\Gamma_{1}arrow G/Harrow G/H_{1}$ ,
where $\Gamma_{1}=(H_{1}^{0}\cap H)/(H_{1}^{0}\cap H)^{0}$ .

3. $G_{1}$ is simply connected.
Since $G/H_{1}$ is aspherical and dim $H_{1}^{0}>0,$ $H_{1}^{0}$ is also solvable and hence $G_{1}$ is
solvable. It follows from a result in [11] (Proposition 3.10 in [11]) that $\Gamma_{1}$ is
poly-Z group. It follows from 2 that we have the following exact sequence;

$1arrow\Gamma_{1}arrow H/H^{0}arrow H_{1}/H_{1}^{0}arrow 1$ ,

where $H_{1}/H_{1}^{0}=Z^{n}$ . $\Gamma_{1}$ being a poly-Z group, $H/H^{0}$ is also poly-Z group. In
other words, $M$ is a closed aspherical manifold with poly-Z fundamental group.
If dim $M\neq 3,4$ , then Theorem $B$ follows from a result in [10] (see Chap. 5 in
[10]).

Now we shall consider the case when dim $M=3$ or 4.
In his paper ([16], [17]), V. V. Gorvatsevich has determined all 3 or 4-

dimensional homogeneous manifolds. They are given as follows;
1. Torus $T^{3}$ or $T^{4}$ .
2. $SL(2\sim, R)/\Gamma$, $\Gamma$ : a lattice.
3. $(SL(2, R)/\Gamma)\cross S^{1}\sim$ .
4. Solvmanifolds.

Since Theorem $B$ holds for manifolds of type (1), (2) and (3). It is sufficient to
consider only manifold $M=R/D$ , where $R$ is a simply connected solvable Lie
group and $D$ a closed subgroup of $R$ . Let $N$ be the nilradical of $R$ . Then we
have a fiber bundle

$(\#)$ $ND/Darrow R/Darrow R/ND$
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where $1VD/N=N/N\cap D$ and $R/ND$ is a torus (see [2]). It follows that we have
the following exact sequence of fundamental groups;

$(*)$ $1arrow N\cap D/(N\cap D)^{0}arrow D/D^{0}arrow D/N\cap Darrow 1$ , where $D/N\cap D=Z^{s}$ .
LEMMA 22. (1) If dim $R/D=3$ , then the sequence $(*)$ is given by $1arrow Z^{t}arrow$

$D/D^{0}arrow Z^{s}arrow 1$ , where $t+s=3$ .
(2) If dim $R/D=4$ and $s>1$ , then $(*)$ is given by $1arrow Z^{t}arrow D/D^{0}arrow Z^{s}arrow 1$ , where

$t+s=4$ .

This follows immediately from the fact that the fiber $N/N\cap D$ is a circle,
or 2-dimensional torus.

First we shall consider the case when dim $R/D=3$ or 4 and $s\geqq 2$ . Put
$\Gamma=D/D^{0}$ . It follows from Lemma 11 that there exists a simply connected
solvable Lie group $S$ and a closed subgroup $C$ of $S$ such that $\pi_{1}(S/C)=\Gamma$ and
that if $z(\Gamma)\neq 1$ , then there exist closed subgroups $C_{1}$ and $C_{2}$ of $S$ which satisfy

1) $C_{1}\triangleleft C$ and $C_{1}/C^{0}=z(\Gamma)$ ,
2) $C_{2}/C^{0}=R^{k}(k=rankz(\Gamma))$ ,

and
3) $z(\Gamma)$ is contained in $C_{2}/C^{0}$ as a lattice.
Consider the toral group $T^{k}=(C_{2}/C^{0})/(C_{1}/C^{0})=C_{2}/C_{1}$ . Define an action of

$T^{k}$ on $S/C$ by $(xC_{1})(yC)=yx^{-1}C$ . To show that this is well defined, we need
the following

LEMMA 23. We have $x^{-1}yxy^{-1}\in C^{0}$ for every $y\in C$ and $x\in C_{2}$ .
PROOF. Consider the homomorphism $c_{y}$ : $Sarrow S$ defined by $c_{y}(s)=ysy^{-1}$ . This

homomorphism leaves $C$ and $C^{0}$ invariant, and hence $c_{y}$ induces an automorphism
$\overline{c}_{y}$ : $C/C^{0}arrow C/C^{0}$ . Since $C_{1}/C^{0}$ is the center of $C/C^{0},\overline{c}_{y}$ is the identity. Let
$c_{y}(C_{2})$ be denoted by $C_{2}’$ . Then $c_{y}$ induces an automorphism $C_{2}/C^{0}arrow C_{2}’/C^{0}$ .
Both $C_{2}/C^{0}$ and $C_{2}’/C^{0}$ contain $C_{1}/C^{0}$ as a lattice. It follows from Lemma 3
that $C_{2}/C^{0}$ and $C_{2}’/C^{0}$ are equal, and $\overline{c}_{y}$ : $C_{2}/C^{0}arrow C_{2}/C^{0}$ is the identity. This
implies $\overline{c}_{y}(xC^{0})=yxy^{-1}C^{0}=xC^{0}$ and hence $x^{-1}yxy^{-1}\in C^{0}$ . Q. E. D.

COROLLARY. $yx^{-1}=x^{-1}y(mod C)$ for every $y\in C$ and $x\in C_{2}$ .
Now we can show that the action of $T^{k}$ on $S/C$ defined above is well

defined as follows.

$x_{1}C_{1}=x_{2}C_{1}\Rightarrow x_{2}=x_{1}x(x\in C_{1})\Rightarrow(x_{2}C_{1})(yC)=yx^{-1}x_{1}^{-1}C$

$=yx_{1}^{-1}x^{-1}zC(z\in C^{0})=yx_{1}^{-1}x^{-1}C=(x_{1}C_{1})(yC)$ .
$y_{1}C_{1}=y_{2}C_{1}\Rightarrow y_{2}=y_{1}y(y\in C)\Rightarrow(xC_{1})(y_{2}C)=y_{2}x^{-1}C$

$=y_{1}yx^{-1}C=y_{1}x^{-1}C=(xC_{1})(y_{1}C)$ .

This action is effective. In fact, assume $(xC_{1})(yC)=yC$ for every $y$ . Then we
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have $yx^{-1}C=yC$ and hence $x\in C\cap C_{2}$ , which implies $xC_{2}=C_{1}$ .
Since two solvmanifolds with isomorphic fundamental group are homeomorphic

(see [2]), $R/D$ and $S/C$ are homeomorphic and hence $R/D$ admits a maximal
toral action.

Lastly we shall consider the case when dim $R/D=4,$ $s=1$ and $N/(N\cap D)$ is
not a torus. The natural action of $N$ on $R/D(x(rD)=rx^{-1}D)$ has the unique
orbit type $N/(N\cap D)$ of dimension 1. It is well known that $M$ is homeomorphic
to $Rx_{Z}(N/(N\cap D))$ , where $Z$ acts on $R\cross(N/(N\cap D))$ as follows;

$n(v, x(N\cap D))=(v-n, h^{n}(x(N\cap D)))$ .
where $h:N/(N\cap D)arrow N/(N\cap D)$ is an N-equivariant homeomorphism, $i$ . $e$ .
$h(x(N\cap D))=xx_{0}^{-1}(N\cap D),$ $x_{0}\in N_{N}(N\cap D)$ ( $=the$ normalizer of $N\cap D$ in $N$ ). Put
$N\cap D=K$ . Note that $K^{0}=N\cap D^{0}$ . Consider the exact sequence of the funda-
mental groups of $(\#)$ ;

$1arrow\piarrow^{\alpha}\Gammaarrow Zarrow 1$
,

$\beta$

where $\Gamma=D/D^{0}$ and $\pi=K/K^{0}$ . Since $K$ is a closed uniform subgroup of $N,$ $K^{0}$

is a normal subgroup of $N$ (Corollary to Theorem 2.3 in [11]). Hence it follows
from a result in [12] (see the table 1 in [12]) that $\pi$ is isomorphic to $(Z\cross Z)x_{\phi}Z$,

where $\phi:Zarrow Aut(Z\cross Z);1arrow(\begin{array}{ll}l k0 1\end{array})$ . It can be easily shown that the center $z(\pi)$

is given by $z(\pi)=\{(\begin{array}{l}x0\end{array})\in Z\cross z\}$ (note that we may assume $k\neq 0$).

We shall consider the special case in which $\pi\cap z(\Gamma)=z(\pi)$ , in other words,
$\beta(z(\pi))=1$ . It follows from Lemma 11 that there exist closed subgroups $N_{1}$ and
$N_{2}$ of $N$ such that

(i) $N_{1}\subset K$ and $N_{1}/K^{0}=Z=z(\Gamma)\cap\pi$ .
(ii) $K^{0}\subset N_{2},$ $N_{2}/K^{0}=R$ and $N_{1}/K^{0}$ is a lattice of $N_{2}/K^{0}$ .

Consider the action of $T^{1}=(N_{2}/K^{0})/(N_{1}/K^{0})=N_{2}/N_{1}$ on $N_{2}/K$ defined by $(n_{2}N_{1})$

$(nK)=nn_{2}^{-1}K$. We show that this action is compatible with homeomorphism $h$ .
In fact, we have

$(n_{2}N_{1})(h(xK))=(n_{2}N_{1})(xx_{0}^{-1}K)=xx_{0}^{-1}n_{2}^{-1}K$ and
$h((n_{2}N_{1})(xK))=h(xn_{3}^{-1}K)=xn_{2}^{-1}x_{0}^{-1}K$ .

It follows from the following lemma that we have $x_{0}n_{2}x_{0}^{-1}n_{2}^{-1}\in K$, which implies
that $h$ is equivariant under the action of $T^{1}$ .

LEMMA 24. $n_{2}^{-1}x_{0}n_{2}x_{0}^{-1}\in K$ for every $n_{2}\in N_{2}$ .

PROOF. Consider the homomorphism $c_{x_{0}}$ : $K/K^{0}arrow K/K^{0}$ defined by $c_{x_{0}}(kK^{0})$

$=x_{0}kx_{0}^{-1}K^{0}$ . Clearly $c_{x_{0}}$ induces the identity on $N_{1}/K^{0}$ . Since $c_{x_{0}}(N_{2}/K^{0})$ and
$N_{2}/K^{0}$ contain $N_{1}/K^{0}$ as a lattice, it follows from Lemma 3 that $c_{x_{0}}$ is the
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identity on $N_{2}/K^{0}$ , in other words, $x_{0}n_{2}^{-1}K^{0}=n_{2}K^{0}$ for every $n_{2}\in N_{2}$ . Q. E. D.

Next we shall consider tbe general case; $i$ . $e$ . $\beta(z(\pi))=Z$. Let $\beta(z(\Gamma))=$

$n_{0}Z\subset Z$. Define an action of $R$ on $R\cross z(N/K)$ by the formula;

$t[x, nK]=[x+t, nK]$ ,

where $[x, nK]$ denotes the orbit of $(x, nK)$ . It is easy to see that this action is
well defined. It is also proved that $\beta(z(\Gamma))=n_{0}Z$ is the ineffective kernel of
this action. In fact, we have

$n_{0}[x, nK]=[x+n_{0}, nK]=[x, nx_{0}^{n_{0}}K]$ .
The following lemma shows that $[x, nx_{0}^{n_{0}}K]=[x, nK]$ , which implies that the
group $R/n_{0}Z$ acts on $R\cross z(N/K)$ .

LEMMA 25. $[x, nx_{0}^{n_{0}}K]=[x, nK]$ .

PROOF. Consider the following commutative diagram;

1– $\pi$ $arrow$ $\Gamma$ $arrow$ $Z$ $arrow 1$

$K/K^{0}||$
$\uparrow$ $\uparrow$

$1arrow z(\Gamma)\cap\pi\uparrowarrow z(\Gamma)arrow\beta(z(\Gamma))arrow 1$ .
$n_{0}Z|1$

Because the lower exact sequence is central, $n_{0}Z$ acts on $z(\Gamma)\cap\pi$ trivially, $i$ . $e$ .
$n_{0}(n_{1}K^{0})=n_{1}x_{0}^{n_{0}}K^{0}=n_{1}K^{0}$ . In particular, we have $x_{0}^{-n_{0}}K^{0}=K^{0}$ and hence $x_{0}^{n_{0}}K^{0}$

$=K^{0}$ . Q. E. D.

It is not difficult to show that the action of $R/n_{0}Z$ is commutative with the
action of $T^{1}$ and $(R/n_{0}Z)\cross T^{1}$ acts on $Rx_{Z}(N/K)$ . Thus $M=R\cross Z(N/K)$ admits
a maximal torus action. This completes the proof of Theorem B.
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