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§0. Introduction.

The property of specification plays an important role in classifying the
class of invariant probability measures preserved under a homeomorphism (see
K. Sigmund [10, 11] and the author [4]). In B. Marcus introduced the
notion of almost weak specification weaker than that of specification by using
toral automorphisms.

The purpose of this paper is to prove that every automorphism of a compact
metric abelian group is ergodic under the Haar measure if and only if it satisfies
almost weak specification (Corollary| of [Theorem II).

Let X be a compact metric space with metric d and ¢ be a homeomorphism
from X onto itself. Then ¢ satisfies almost weak specification if for every ¢>0
there is a function M.: Z*—Z* (Z* denotes the set of non-negative integers)
with M(n)/n—0 as n—oo such that for every £=1 and £ points x,, -, x,€X
and for every sequence of integers a,<b,<a,<b, <+ <a,<bh, with a;—b;., =
M. (b;—a;) (2<i< k), there isan x= X with d(¢™x, 6™x)<e (a;:<n<b;, 1Zi<k).
A homeomorphism satisfies weak specification if it has the property of almost
weak specification with some constant function M,. It is clear from definition
that if (X, o) satisfies almost weak specification, then it is topologically mixing.
Almost weak specification is preserved under direct products and homeomorphic
images. A shift of compact metric state space satisfies almost weak specifica-
tion ((21.2), [67).

Hereafter let X be a compact metric abelian group and ¢ be an automor-
phism of X. G denotes the dual group of X. Define the dual automorphism 7
of G by (rg)x)=g(ox)(geCG, x=X). Group operations of X and G will be
denoted by addition. If X is connected, then G is torsion free (i.e., ng+0 for
all 0#g=G and 0#nsZ). When X is connected, (X, ¢) is said to satisfy
condition (A) if for every 0#+g&G there is 0#p(x)=Z[x] (Z[x] denotes the
ring of polynomials with integral coefficients) such that p(y)g=0, and (X, o) is
said to satisfy condition (B) if one has p(y)g+#0 for every 0#+g<G and 0+ p(x)
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eZ[x].

(L.1) ([1], Theorem 2). Let X be a group as above; then X splits into a
sum X=X,+X,+ X, of o-invariant subgroups (¢(X;)=X,, i=1, 2, 3) such that (i)
X, is totally disconnected, (ii) X, is connected and (X,, o) satisfies condition (A),
and (iii) X, 7s connected and (X,, @) satisfies condition (B). If in particular (X, o)
1s ergodic under the Haar measure, then X; (i=1, 2, 3) can be chosen such that
(X:, o) is ergodic under the Haar measure.

(L.2) Let {X,}nzo be a sequence of o-invariant subgroups such that X=X,D
XiD - DN\nz20 Xn=1{0} and assume that for n=1, (X/X,, o) satisfies almost weak
specification. Then (X, o) satisfies almost weak specification.

Indeed, define an invariant metric d, on X/ X, (n=1) by
do(x+Xs, y+X) =minex, d(x, y+2) (x, yEX).

Take and fix €>0. Choose n=1 with diam(X,)<e/2. Since (X/X,, o) satisfies
almost weak specification, there is a function M.\ : Z+—Z* with M2 (m)/m
—0 as m—oo such that for every £=1, k points x,, .-+, x, <X, and a sequence of
integers a,<b;, < - <ap<b, with a;—b;., =M% (b;—a;) (2<i<Pk), thereis an x&
X with dn(c/x+X,, ¢7x;+X,)<¢e/2 (a:Xj<b;, 1Zi< k). Obviously d(e’x, a7x;)
Sda(oix+X,, 0/x;+ X)) +diam(X,) <6 (a:=7<bh;, 1=i<k). Letting M. =M%
for simplicity, we can easily check that (X, o) satisfies almost weak specification.

(L.3) Let X, be as in (L.1). If (X,, a) is ergodic under the Haar measure,
then it satisfies almost weak specification.

This follows from the proof of ([1], Lemma 9) together with (L.2).

(L.4) ([2], Theorem 3). Let X, be asin (L.1). If (X,, o) is ergodic under
the Haar measure, then it satisfies almost weak spectfication.

Let X be as above. Then X is said to be solenoidal if X is connected
and finite dimensional. Clearly every finite-dimensional torus is solenoidal.

(L.5) ([1], Lemma 8). Let X, be as in (L.1). Then there is a sequence
Xg = Xz.o D X2_1 D A D nf;OXZ'n = {0}‘

of c-invariant subgroups such that each X,/ X,  is solenoidal.

This follows from the proof of Lemma 8 in [1].

For the following statements (L.6)~(L.14), let X be »-dimensional solenoidal.
Since rank(G)=r< and G is torsion free, there exists an into isomorphism
¢: G—Q" (Q" denotes the vector space over @), so that 7=ge7.¢" is extended
to @ and further to R™. We denote again by 7 the extension to R".
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(L.6) ([3], p. 83, (P.2)). Under the above notations there are a homomorphism
¢: R"—>X and a totally disconnected subgroup F such that (i) ¢er=a-¢, (ii) X
=¢(R")+F, and further (iii) there is a small closed neighborhood U of 0 in R™
such that J(UYNF={0} and UXF is homeomorphic to (U)-+F and U)+F is a
closed neighborhood of 0 in X (we write (UYDF for such a neighborhood {H(U)
+F).

(L.7) (3], p. 87, (P.8)). Let F be as in (L.6). Then F contains subgroups
F-Y,F*, and H such that (i) o¢(H)=H, (ii) F-Do¢ *F D - D0 "F-={0},
(iii) F*DeF*D - D\30"F*={0}, and (iv) F=F " F*PH.

Let (R7, 1) be a lifting system of (X, ¢) by ¢. Then R" splits into a direct
sum R =E*@PE*PE® of y-invariant subspaces E*, E*, and E° such that the
eigenvalues of 7,,, have modulus>1, the eigenvalues of 7, modulus<l and
the eigenvalues of 7,,. modulus one. We call (R", 7) hyperbolic if E°={0};1i.e.,
R™"=FE*@®E*. If E¢#{0}, by using Jordan’s normal form in the real field for
(E°, 1) the subspace EF° splits into a finite direct sum E‘=E®“PE: D - QE* of
subspaces of E° satisfying the following three conditions; (a) for 0=/<Fk, the
dimension of E¢ is 1 or 2,

70 TIO'- O

(b) TlEc: 1"’[}:
0 .

T

where 7;: E‘%—E‘ is an isometry under some norm |-|., of E‘ and each I;:
Eci—Eci-1 ig either a zero-map or a map corresponding to the identity matrix.
We call that (R", ) has central spin if E°+ {0} and each I,: E“—E°‘-1is a
zero-map. If (R7, 7) has central spin, then each E¢ is y-invariant. Let [ denote
the identity map of R". For every m>0, the eigenvalues of [—7™ on E‘ are
1—2" where 2;’s are eigenvalues of 7. It is easily proved that there is a
constant ¢y such that [(I—7r™)xlle,<cu|1—A7]l|x]lc; (x€E%, m>0). We define
a norm ||l of E¢ by |x|.=maXocice{lx*]c;} (x=2x"+ - +x*EED .- DE°R).

There are 0<4,<1 and norms || ||, and || || on E* and E°® respectively such
that [[7"x][.< A% x|l (<0, x€E*) and [[1"x[;<4}]x]. (n=0, x€E®). Define a
norm || | on R" by

HXH = max{“xu”u: ”xsnh “xch} (x:xu'}’xs‘i‘xcEEu@Es@Ec)
and define a metric d, on R” by
do(x, )= llx—yl (x, yER").

(L.8) ([3], p. 89, (P.10)). There is a,>Q such that (i) for e=(0, a.], B(e)
={xER"; do(x, 0)<e} splits into a direct sum B(e)=B"(e)DB*(e)PDBe) where
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B*“(e)=B(e)NE?, B¥e)=B(e)N\E*® and B%e)=B(e)NE°, (ii) B(a,)PF-BHF*PH is
a closed neighborhood of 0 in X.

(L.9) ([3], p. 89, (P.11) and p. 90, (P.12)). There is an invariant metric d
on X and a positive number a, with a,<a, such that (i) for e=(0, a,], W(e)=
{xeX; d(x, 0)<e} is expressed as W(e)=W4(e)DW?*(e)PW (e) where W*(e)=
W(e)N{¢pB*(e)DF "}, Wi(e)=W(e)"\{PpB*(e)BF*} and W(e)=W(eN{¢pB(e)DH },
and (ii) for e=(0, a,] W(e)N\H is a subgroup of H and there is an n=0 such that
W(NF-=¢""F~ and W(e)\F*=¢"F* and wmoreover that W(e)\F~=a¢ "F~
and W(e)NF*=c¢"F".

(L.10) (3], p. 90, (P.13)). There is 0<A,<1 such that for e=(0, a] and
x=x"+x+xSWHe)PW(e)PW(e) the following hold (i) d(x,0)=max{d(x*,0),
d(x®, 0), d(x¢, 0)}, (ii) d(o™x, 0)<A3™d(x, 0) (xeW¥(e), n<0), (iii) d(e¢"x, 0)=
Ad(x, 0) (x€W(e), n=0), and (iv) d(c™x, 0)=d(x, 0) (xeW(e)N\H, nc Z).

X is said to have property () if G is finitely generated under 7; i.e., there
is a finite set A4 in G such that G=gp| J°.774 (the notation gp E means the
subgroup generated by a set E). We say (X, ¢) is hyperbolic if (X, ¢) has
property (x) and (R", ) is hyperbolic, and we say (X, ¢) has central spin if either
(R7, v) is hyperbolic and X does not have property (), or (R", 7) has central
spin.

(L.11) (3], p. 91, (P.14)). Assume that (X, o) is ergodic under the Haar
measure. Then W¥*(a,)+ {0} and W*(a,)+ {0}.

(L.12) For e=(0, a,], the following hold :

(1) o 'W¥e) T W*(4e),

(ii) oW(e) T W?3(Ae),

(iii) oW%e) =W<e) if (X, ¢) has central spin,

(iv) W%(e), Wi(e), and W*(e) are symmetric sets at 0 in X.

(i) and (ii) are the consequences of (L.10). (iii) follows from the definition
of central spin together with (L.10). (iv) is clear from the definition.

For ¢=(0, a,], put K(e)=W?(e)PW(e)\H) and Wi(e)={x=ae"W*(); x+
W(e)Tao™WH(e)} (n=1). Then we have the following:

(L.13) For every e<=(0, a,],

(i) oK(e) C K(e),

(ii) K(e)XDpB(e) = W*(e)DW (e),

(iii) Wile) CoWi(e) CWii(e)  (nzl).

(L.14) Assume that either (X, @) is hyperbolic, or ergodic and has central
spin. Then, for every e<(0, 2a,/3) there is M=M(e)>0 such that for every n
=M, Wi(e)+K(e)P¢B(e)=X.
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From the proof (Step 1.2.1) of ([3], Proposition 1.2), for every e=(0, 2a,/3)
there is M=M(e)>0 such that for every n=M and x=X, Wie)N(x-+K(&)D
¢B(e))+ @. Since K(e)DPB(e)=W*(e)PWe) is symmetric, we have xEW3(e)
+K(e)DYB(e).

(L.15) Assume that (X, ¢) is ergodic; then there exists a finite Sequence
X=XDX, D DX, DX:1={0} of o-invariant subgroups such that each X; is
connected and either (X;/Xi.1, @) is hyperbolic or ergodic and has central spin.

By ([3], Theorem 3), there is a finite sequence X=X,DX,D - DX, DXz
={0} of g-invariant subgroups such that each X, is connected and (X;/Xisi, o)
satisfies weak specification. By ([3], Theorems 1 and 2), if (X;/ Xy, o) satisfies
weak specification, then (X;/X,.,, ¢) is either hyperbolic or ergodic and has
central spin.

(L.16) For s=1, (a,, -, as)=R® and N=1, there is an integer n with 1<
n=<N?® such that |na;—m;| <l/N(Q<i<s) for some (m,y, -, m)EZ°,

This is shown as follows. For every 1<n<N° there is (m{™, ---, m{™)eZ*
such that na;—m{™ [0, 1) (1<i<s). If there is an n with 1<n<N°® such that
for every 1<i<s, na;—m{™<[0, 1/N), (L.16) holds. For otherwise, we can
find # and v with 1Su<v<N°® and j; with 0<7;<N—1 such that for 1=</<s,
ua;—m™, va,—m{™<5;/N, (j:+1)/N). Put n=v—u and m;=m{»—m{* (1=¢
<s). Then we have |na;—m;|<l/N(1£i<s).

§1. Results.
The following is the main result of our paper.

THEOREM 1. Let X be a solenoidal group and ¢ be an automorphism of X.
Then (X, o) is ergodic (under the Haar measure) if and only if (X, o) satisfies
almost weak specification.

Theorem 1 derives the following.

COROLLARY. Let X be a compact metric abelian group and g be an automor-
phism of X. Then (X, a) is ergodic (under the Haar measure) if and only if
(X, o) satisfies almost weak specification. '

If we established Theorem 1, then the corollary is shown as follows. Clearly
(X, o) is ergodic if (X, ¢) satisfies almost weak specification. Assume that (X, )
is ergodic. Then X splits into a sum X=X,4+X,+ X, of ¢-invariant subgroups
with the notation of (L.1). And so (X,, ¢) satisfies almost weak specification
by (1.4), and (X, o) satisfies almost weak specification by (L.3). Use (L.5) for
(X, ). Then there is a sequence X,=X; ¢DX; 1D - D\n2o Xz, n={0} of o-
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invariant subgroups such that each X,/X, , is solenoidal. Since (X,, o) is
ergodic, each (X,/X, ., 0) is ergodic. By [Theorem 1, (X./X: ., 6) satisfies
almost weak specification. Since the product system (X;XX:XX;, 6XaXa)
satisfies almost weak specification, (X, ¢) satisfies almost weak specification.

§2. Proof of Theorem 1.

As before let (G, 7) be the dual of (X, ¢). Since X is solenoidal, we have
rank(G)=dim(X)=r<e. Then X is expressed as

X = §(E*QE*QE)+{F-DF*DH}.
We prepare a sequence of lemmas leading to the proof of [Theorem 1.

LEMMA 1. If E°#{0} and a=dim(E°®), then |y"x|.<(n+1)*" x| (xESE",
n=0).

Proor. E¢ splits into a finite direct sum E°=E°%® .- HE*% of 1 or 2-
dimensional subspaces which satisfy (a) and (b) in §2. For xcE%d .- QE°*
and for n=0, 77,.x splits into 77, x=x%+ - +x} with x}€E% (1<i<k). By
(b) we get [[x7[e,<x77 e, + 12351 sy, 0=i=<k—1, n=0) and [[x}[c,=[xlc, (n
=0). It is checked that for every n=0, ||x7].,<(n+1)**|| x|l (1=i<k). Indeed,
%30, <!x], when n=0. Assume that the inequality is true for n—1. Then
N2l SNx7 oA 1275k S n* x| n* Y x ]l = (n+1) | x]l. for 0=<i<k—1.
Since £=a—1, the conclusion is obtained.

LEMMA 2. Assume that (X, @) is either hyperbolic or ergodic and has central
spin. Then for every (0, a,/3) there is a sequence {N.n)}5-, of non-negative
integers such that N{n?)/n—0 as n—oo for all p=1, and Wi(e)+K(e)DpB(e/n)
DPB(e) for n=1 and m=N(n).

Proor. If (R7, 7) is hyperbolic (i.e., E°={0}), by putting N.(n)=0 for ec<
(0, @/3) and n=1, the lemma holds. '

It only remains to prove the lemma for the case when (R7", 7) has central
spin. To see this, use (L.14). Then there is M>0 such that W¥(e)+K(e)P
¢B%(e)D¢pB2¢). Since a=dim(E®), we can find points ¢, -+, t,&B%3e) such
that {¢,, -+, ¢4} is linearly independent over R and
2.1) o) € Wh(e)+K(e) (1=i<a).

Since 7 has central spin, 7 is an isometry on (E¢, ||-||.). By Dirichlet’s theorem
there is L>0 such that

1
2

(2.2) IE—Dzxle = s lxlle  (x€E9)

where I denotes the identity map.



Ergodic group automorphisms 347

Since 7 is aperiodic (by ergodicity of @), yX—I is one-to-one and so for some
¢ with 0<p<1/2

(2.3) IrF=Dxle > plixlle  (x€E°).

Notice that {(y2—1I)"t;; 1<i<a}(n>>0) is linearly independent over R. Define
A={s€E°; s=>%_,at;, a;.€Z, 1=<i<a} and put d=min{|s|.; 0=s=A}. Then
by

(2.4) ©™0 < min{||t||,; 0#te@t—I)"A} (n>0).

Since O@=(rL—I)"ANB%3¢e/2) is non-trivial, every element of @ is expressed
as =%, n;(yE—I)"t;. Put C,=2%(3ae/20)* and C.;=p*. Then we have the
following Step 1.

Step 1. Siml=ccr  (»nz2).
Indeed, put c¢,=3ae/20pu™. For t€O (t=3%_,n:(r*—1)"t,), if we have
(2.5) [n:] < (c.+D*  (1=i<a),

then zhlinilga(cn+1)a=a2%=,(j.)cagclc';.

We must prove (2.5) to get Step 1. Assume that n,=(c,+1)® for some n=2
and t=3%_,n;(y*—I)";=60. We write s=a—1 and put a;=n;+,/n, (1=<i<a—
1=s). Choose NeN with ¢,<N=c¢,+1. Then by (L.16) we get an integer
m, with 1Zm,<N%™' such that |m,n;/n,—m;| <1/N<ci* for 2=<7/<a and for
some (m,, -, my)EZ %Y. Since m;#0, we get 0#m;(y“—I)"t; and since t=31%_,
ni(yE—1)"t;, my(r*—1I)"t; and since t=3%_, n,(r*—1I)"t;,

JI;mi(TL——I)"till = H;f‘_,mi(7L~I)"ti~(m1/n1)tllc+H(ml/nl)tllc
< ;c;‘H(TL—I)”L-Hc+(m1/n1)lltllc-

Since t=B%3e/2), clearly |t||.=<3e/2. Since ||GE—1I)"t:.<(1/2™)|t:| (by
and m,/n,<cy* (because m;<N®! and n,>N?%), we have |Z;m;E—I)"].<
op"/2"4-0pu™/a<op™ (because a=2 by ergodicity). Comparing this inequality
with we have =0, which is impossible. Therefore n,<(c,-+1)*. Repeat
the same argument for #n;. Then we get n;=<(c,+1)® for 1=:/<a.

To get the conclusion of [Lemma 2, we prepare the following Step 2.

Step 2. Let ¢ be as in (L.6). For every n=2, we can find D(n), C(n)eZ*
such that sup, D(n)/n<oco, C(n)<D(n) and for every m=D(n)

Wi(e)+K(e) D a“W{(r:—I1)"ANB(3e/2)} .

Indeed, let A, be as in (L.10) and let C, and C, be as in Step 1. Choose
positive integers D,, D,(n) satisfying D,=—(logi,) 'logC, and D.(n)=
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—n(log A)"'log2C,, and put C(n)=D,+D,(n) for n=2. Fix n=2 and take t=
(G E—I"ANB%3e/2). Since t = 3%_, ny(r*—I)*t;, we can easily calculate

s* =0 3 n =Dt )= 2 nil(0"— 1) e Pt
A (PN rircad s
_igln,jgo(].)o W),

Since >%¢_,|n:|<C,C%(by Step 1) and 2’}=0<7]2.):2”, and since W%(e)ToW4(e)

and K(e)DoK(e), we have gZi*¢M{(t )= gt C™Wy(e)+K(e) for 0=7<n and
1<i<a, and so a’® ()=l Ji4- ', where
Ju =Wi(e)+ - +Wi(e) and J' = K(e)+ - +K(e).
,
C,(2Cy)" C,2C,)"

By (L.12, i) we get o C™W4e)C WH*A§™e) = W¥(e/(C,(2C)™)), and so
g COWYL(e)+a S MW (e)To®W*(e/(C(2C,)™)). Therefore =™ [ +a - C™W¥(¢)
Co"Wu(e), i.e., JaCW4%icmy(e). Since e "Wi(e)CTWi(e)(n=m) by (L.13, iii),
we have gl ™ JOCWY ., nicany(e). Using (L.12, ii), we get o™ J'C K (e).
Put D(n)=M+Ln+2C(n) for n=2. Then from the above facts, we have
g’ ® Pty eWi(e)+ K(e) for every m=D(n)(n=2). The conclusion of Step 2 is
obtained.

Now we are ready to prove the lemma. Let J(n) bz the integer part of
(log2)~*(log3a+logn)+1 for n=2. Since |#;].<3e, by (2.2) we have ||(7E—
1™t || <e/an. Remark that E°=span{(y*—I1)’™¢;; 1<i<a} for n=2. For
fixed n=2, x<E° is expressed as x=>%(a;+n)GE—I) ™t where a;<[0, 1)
and n;€Z. Recall that A={s€E°®; s=>%n,t;, m;=Z,1<i{<a}. Then we have

(2.6) Jx=sle < S eGP —IY ™l < e/n,

SE(TLIII}EI(W.)
and so {PE—I)Y ™ ANBY((1+1/n)e)}+B%(e/n)DBe). This follows from the
fact that for every x=B%e) there is t(yX—1)"™ A such that ||x—?].<e/n (by
(2.6), and then te(y*—IY™ANBY((1+1/n)e). Let C(n) be asin Step 2. Then
aCIMOG{(yE—I) ™ ANBY(3e/2)+B(e/n)} DPB(e). From this and Step 2, we
have Wi (e)+K(e)P¢B(e/n)DPB(e) for m=D(J(n)). We put N.(n)=D(J(n))
for =2 and in particular N.(1)=N,(2). Since J(n?)/n—0 as n—oo for all p=1
and sup, D(n)/n<oo (by Step 2), clearly N.(n?)/n—0 as n—co for all p=1. The
proof of is completed.

LEMMA 3. Assume that (X, ) is either hyperbolic or ergodic and has central
spin. Then for every (0, 2a,/3), there is a sequence {M.n)}s-, of positive
integers such that for p=1 M (n?)/n—0 as n—oo and for all n=1 and m=Mn)

Wi(e)+K(e)PgpB(e/n) = X.
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PrRooF. Take and fix e=(0, 2a,/3). From (L.14) we have W¥%(e/2)+K(e/2)
P¢PB(e/2)=X for some M=M(e/2)>0. Let {N.(n)}5., be as in Lemma 2.
Then for m=N,(n),

3.1) Wi(e/2)+K(e/2)} + {Wi(e/2)+K(e/2)BPB(e/n)} = X

by Lemma 2. Let 2,=(0, 1) be as before, N be an integer with A3 >2 and put
M.(n)=N-+max{M, N,;(n)}. Clearly M. (n?)/n—0 as n—co for all p=1. Since
c"WH(e)DW¥(e), we have Wi (e/2)+Wh(e/2)CWE . y(e) for all m=1. From [3.1)
we have X=WZ4(e)+K(e)PPB(e/n) for m=M.(n).

LEMMA 4. If (X, o) is ergodic, then for every e<(0, a,/3), there is a func-
tion Lo: Z¥—Z™" such that for p=1, L{(n?)/n—0 as n—co and such that for n
=1, m=L(n) and x, yX there is z=y+K(e)PPB(e/(n+1)) such that z-+
WH(e)To™{x+Wu(e)}.

ProOOF. Since X is solenoidal, there are n,>0 and a sequence X=X,DX,
D s DXpyp-1DX,={0} of ¢-invariant subgroups which satisfy all the conditions
of (L.15). Take and fix ¢=(0, @,]. For 0=i<n,—1 we put W¥(e),=Wi(e)NX;
for n=1, K(e);=K(e)NX; and ¢B(e);=¢B(e)NX;. Since (X;/X;41, 0) is either
hyperbolic, or ergodic and has central spin, we can use for (X;/Xi41, 0).
Then there is a sequence {M P (n)}%., of positive integers such that for p=1,
M (n?)/n—0 as n—oo, and for m=MS P (n)

Wi(e)i+K(e)iDpB(e/n)i+Xiyy = Xi.
Then for n=1 and m=M.% (n+1)
4.1) Wi(e/no)i+K(e/no)DPpB(e/ni(n+1))i+Xir, = X;.

Choose C>0 with A3°>n, and put L.(n)=C-+max{MS, (n+1); 0=i=n,}
for n=1. Clearly L.(n?)/n—0 as n—oo for all p=1. Since aW¥(e/n,) DW*(¢),
we have Wi(e) DWW _o(e/ny); for m=L.(n). It is clear that K(e)D3%*
K(e/no); and ¢B(e/(n+1)D21%" ¢B(e/(n+1));, and so by

Wh(e)-+K(e)DPB(e/(n+1))

- ;::::) (W _c(e/no)i+Kle/no)D¢PB(e/(n+1):} =X.

Hence for n=0, m=L.(n) and x, y= X, there is zey+K(e)P¢PB(e/(n+1)) with
z+Whe)To™{x+W¥e)} since X=o™x+Wh(e)+K(e)DPB(e/(n+1))=>y and
K(e)D¢B(e/(n+1)) is symmetry (by (L.12, iv)).

Now we are ready to prove [[heorem 1l
PROOF OF THEOREM 1. Let e=(0, 2a,/3) and L.: Z*—Z* as in
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With the notation a=dim(E°¢), we define a function M,: Z*—Z* by M.(n)=
L.(n% (n=1). Clearly M. n)/n—0 as n—oo, and for every n>0, m=M.(n) and
x, yeX, there is z€y+K(e)PPB(e/(n+1)*) with z+Wi(e)Te™{x-+W*(e)} (by
Lemma 4). Applying Lemma 1, we get 7°B%(e/(n-+1)*)CB(e(z+1)*"1/(n+1)%)
for 720, so that for 0<i<n

1) o'z € 0iy+ o' K(e)PPB(e(G+1)*"/(n+1)*) C o*y+K(e)PPBe(e).

For every k=1, x,, -+, x,€X and a sequence of integers a,=<b,< -+ <a,
<b, with a;—b;., =M.(b;—a;) 2<i<k). Letting z,=0¢%x,, we can find a
sequence of k—1 points z,, ---, z, such that for 1=:<k—1, z;,=0%+1x;-+-K(e)
@¢’Bc(5/(bi+1_ai+1+l)a) and zy+W¥(e)Co®i+17%{g% %iz;++ W*(e)}. This is
easily obtained using (1). We now have for 1=/<k—1,

0% {z; 0 QT DWW (e)} D g~ %i+t{z, +W¥(e)}

D 0'—0'“'1{Zi+1+0'_(b“'l-ai'*‘l)Wu(s)},
which yields

f:\a““i{ziJra“”i‘“i’W“(e)} = g% {z,+ 0o CemrW(e)}.

Take a point x from the last set. Then for a;<;7<b; (1Zi<k) we get
gix € gi-%iz;+ g~ i OWL(g)
C o/x; {07 *i(K(e)PPB((j—a:+1)*e/(b;—a;+1)*)Po~Ci-*dW(e)}.

This shows that (X, ¢) satisfies almost weak specification.
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