The almost weak specification property for ergodic group automorphisms of abelian groups

By Masahito DATEYAMA

(Received May 2, 1988) (Revised April 7, 1989)

§ 0. Introduction.

The property of specification plays an important role in classifying the class of invariant probability measures preserved under a homeomorphism (see K. Sigmund [10, 11] and the author [4]). In [7] B. Marcus introduced the notion of almost weak specification weaker than that of specification by using toral automorphisms.

The purpose of this paper is to prove that every automorphism of a compact metric abelian group is ergodic under the Haar measure if and only if it satisfies almost weak specification (Corollary of Theorem 1).

Let X be a compact metric space with metric d and σ be a homeomorphism from X onto itself. Then σ satisfies almost weak specification if for every $\varepsilon > 0$ there is a function $M_{\varepsilon} \colon \mathbf{Z}^+ \to \mathbf{Z}^+ (\mathbf{Z}^+)$ denotes the set of non-negative integers) with $M_{\varepsilon}(n)/n \to 0$ as $n \to \infty$ such that for every $k \ge 1$ and k points $x_1, \dots, x_k \in X$ and for every sequence of integers $a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$ with $a_i - b_{i-1} \ge M_{\varepsilon}(b_i - a_i)$ ($2 \le i \le k$), there is an $x \in X$ with $d(\sigma^n x, \sigma^n x_i) \le \varepsilon$ ($a_i \le n \le b_i$, $1 \le i \le k$). A homeomorphism satisfies weak specification if it has the property of almost weak specification with some constant function M_{ε} . It is clear from definition that if (X, σ) satisfies almost weak specification, then it is topologically mixing. Almost weak specification is preserved under direct products and homeomorphic images. A shift of compact metric state space satisfies almost weak specification ((21.2), [6]).

Hereafter let X be a compact metric abelian group and σ be an automorphism of X. G denotes the dual group of X. Define the dual automorphism γ of G by $(\gamma g)(x)=g(\sigma x)$ $(g\in G, x\in X)$. Group operations of X and G will be denoted by addition. If X is connected, then G is torsion free (i. e., $ng\neq 0$ for all $0\neq g\in G$ and $0\neq n\in \mathbb{Z}$). When X is connected, (X,σ) is said to satisfy condition (A) if for every $0\neq g\in G$ there is $0\neq p(x)\in \mathbb{Z}[x]$ ($\mathbb{Z}[x]$ denotes the ring of polynomials with integral coefficients) such that $p(\gamma)g=0$, and (X,σ) is said to satisfy condition (B) if one has $p(\gamma)g\neq 0$ for every $0\neq g\in G$ and $0\neq p(x)$

 $\in \mathbf{Z}[x].$

- (L.1) ([1], Theorem 2). Let X be a group as above; then X splits into a sum $X=X_1+X_2+X_3$ of σ -invariant subgroups ($\sigma(X_i)=X_i$, i=1, 2, 3) such that (i) X_1 is totally disconnected, (ii) X_2 is connected and (X_2 , σ) satisfies condition (A), and (iii) X_3 is connected and (X_3 , σ) satisfies condition (B). If in particular (X_3 , σ) is ergodic under the Haar measure, then X_i (i=1, 2, 3) can be chosen such that (X_i , σ) is ergodic under the Haar measure.
- (L.2) Let $\{X_n\}_{n\geq 0}$ be a sequence of σ -invariant subgroups such that $X=X_0\supset X_1\supset \cdots \supset \bigcap_{n\geq 0}X_n=\{0\}$ and assume that for $n\geq 1$, $(X/X_n,\sigma)$ satisfies almost weak specification. Then (X,σ) satisfies almost weak specification.

Indeed, define an invariant metric d_n on X/X_n $(n \ge 1)$ by

$$d_n(x+X_n, y+X_n) = \min_{z \in X_n} d(x, y+z) \qquad (x, y \in X).$$

Take and fix $\varepsilon > 0$. Choose $n \ge 1$ with $\operatorname{diam}(X_n) < \varepsilon/2$. Since $(X/X_n, \sigma)$ satisfies almost weak specification, there is a function $M_{\varepsilon/2}^{(n)} : \mathbb{Z}^+ \to \mathbb{Z}^+$ with $M_{\varepsilon/2}^{(n)}(m)/m \to 0$ as $m \to \infty$ such that for every $k \ge 1$, k points $x_1, \dots, x_k \in X$, and a sequence of integers $a_1 \le b_1 < \dots < a_k \le b_k$ with $a_i - b_{i-1} \ge M_{\varepsilon/2}^{(n)}(b_i - a_i)$ $(2 \le i \le k)$, there is an $x \in X$ with $d_n(\sigma^j x + X_n, \sigma^j x_i + X_n) \le \varepsilon/2$ $(a_i \le j \le b_i, 1 \le i \le k)$. Obviously $d(\sigma^j x, \sigma^j x_i) \le d_n(\sigma^j x + X_n, \sigma^j x_i + X_n) + \operatorname{diam}(X_n) \le \varepsilon$ $(a_i \le j \le b_i, 1 \le i \le k)$. Letting $M_{\varepsilon} = M_{\varepsilon/2}^{(n)}$ for simplicity, we can easily check that (X, σ) satisfies almost weak specification.

(L.3) Let X_3 be as in (L.1). If (X_3, σ) is ergodic under the Haar measure, then it satisfies almost weak specification.

This follows from the proof of ([1], Lemma 9) together with (L.2).

(L.4) ([2], Theorem 3). Let X_1 be as in (L.1). If (X_1, σ) is ergodic under the Haar measure, then it satisfies almost weak specification.

Let X be as above. Then X is said to be *solenoidal* if X is connected and finite dimensional. Clearly every finite-dimensional torus is solenoidal.

(L.5) ([1], Lemma 8). Let X_2 be as in (L.1). Then there is a sequence

$$X_2 = X_{2,0} \supset X_{2,1} \supset \cdots \supset \bigcap_{n \ge 0} X_{2,n} = \{0\}$$

of σ -invariant subgroups such that each $X_2/X_{2.n}$ is solenoidal.

This follows from the proof of Lemma 8 in [1].

For the following statements (L.6)~(L.14), let X be r-dimensional solenoidal. Since $\operatorname{rank}(G)=r<\infty$ and G is torsion free, there exists an into isomorphism $\varphi\colon G\to Q^r$ (Q^r denotes the vector space over Q), so that $\bar{\tau}=\varphi\circ \gamma\circ \varphi^{-1}$ is extended to Q^r and further to R^r . We denote again by γ the extension to R^r .

(L.6) ([3], p. 83, (P.2)). Under the above notations there are a homomorphism $\psi \colon \mathbf{R}^r \to X$ and a totally disconnected subgroup F such that (i) $\psi \circ \mathbf{\gamma} = \boldsymbol{\sigma} \circ \psi$, (ii) $X = \psi(\mathbf{R}^r) + F$, and further (iii) there is a small closed neighborhood U of 0 in \mathbf{R}^r such that $\psi(U) \cap F = \{0\}$ and $U \times F$ is homeomorphic to $\psi(U) + F$ and $\psi(U) + F$ is a closed neighborhood of 0 in X (we write $\psi(U) \oplus F$ for such a neighborhood $\psi(U) + F$).

(L.7) ([3], p. 87, (P.8)). Let F be as in (L.6). Then F contains subgroups F^{-1} , F^+ , and H such that (i) $\sigma(H)=H$, (ii) $F^-\supset \sigma^{-1}F^-\supset \cdots \supset \bigcap_0^\infty \sigma^{-n}F^-=\{0\}$, (iii) $F^+\supset \sigma F^+\supset \cdots \supset \bigcap_0^\infty \sigma^n F^+=\{0\}$, and (iv) $F=F^-\oplus F^+\oplus H$.

Let (\mathbf{R}^r, γ) be a lifting system of (X, σ) by ϕ . Then \mathbf{R}^r splits into a direct sum $\mathbf{R}^r = E^u \oplus E^s \oplus E^c$ of γ -invariant subspaces E^u , E^s , and E^c such that the eigenvalues of $\gamma_{|E^u}$ have modulus>1, the eigenvalues of $\gamma_{|E^s}$ modulus<1 and the eigenvalues of $\gamma_{|E^c}$ modulus one. We call (\mathbf{R}^r, γ) hyperbolic if $E^c = \{0\}$; i.e., $\mathbf{R}^r = E^u \oplus E^s$. If $E^c \neq \{0\}$, by using Jordan's normal form in the real field for (E^c, γ) the subspace E^c splits into a finite direct sum $E^c = E^{c_0} \oplus E^{c_1} \oplus \cdots \oplus E^{c_k}$ of subspaces of E^c satisfying the following three conditions; (a) for $0 \leq i \leq k$, the dimension of E^{c_i} is 1 or 2,

$$\gamma_{|_{E^c}} = \begin{pmatrix} \gamma_0 & I_0 & 0 \\ \gamma_1 & \ddots & 0 \\ 0 & \gamma_k \end{pmatrix}$$

where $\gamma_i \colon E^{c_i} \to E^{c_i}$ is an isometry under some norm $\|\cdot\|_{c_i}$ of E^{c_i} and each $I_i \colon E^{c_i} \to E^{c_{i-1}}$ is either a zero-map or a map corresponding to the identity matrix. We call that (\mathbf{R}^r, γ) has central spin if $E^c \neq \{0\}$ and each $I_i \colon E^{c_i} \to E^{c_{i-1}}$ is a zero-map. If (\mathbf{R}^r, γ) has central spin, then each E^{c_i} is γ -invariant. Let I denote the identity map of \mathbf{R}^r . For every m>0, the eigenvalues of $I-\gamma^m$ on E^{c_i} are $1-\lambda_i^m$ where λ_i 's are eigenvalues of $\gamma_{|E^{c_i}|}$. It is easily proved that there is a constant $c_{(i)}$ such that $\|(I-\gamma^m)x\|_{c_i} < c_{(i)} \|1-\lambda_i^m\|_{x_{i-1}} (x \in E^{c_i}, m>0)$. We define a norm $\|\cdot\|_c$ of E^c by $\|x\|_c = \max_{0 \le i \le k} \{\|x^i\|_{c_i}\}$ $(x=x^0+\cdots+x^k \in E^{c_0} \oplus \cdots \oplus E^{c_k})$.

There are $0<\lambda_0<1$ and norms $\|\ \|_u$ and $\|\ \|_s$ on E^u and E^s respectively such that $\|\gamma^n x\|_u \le \lambda_0^n \|x\|_u$ $(n \le 0, x \in E^u)$ and $\|\gamma^n x\|_s \le \lambda_0^n \|x\|_u$ $(n \ge 0, x \in E^s)$. Define a norm $\|\ \|$ on \mathbb{R}^r by

$$||x|| = \max\{||x_u||_u, ||x_s||_s, ||x_c||_c\}$$
 $(x = x_u + x_s + x_c \in E^u \oplus E^s \oplus E^c)$

and define a metric d_0 on \mathbf{R}^r by

$$d_0(x, y) = ||x-y|| \quad (x, y \in \mathbf{R}^r).$$

(L.8) ([3], p. 89, (P.10)). There is $\alpha_1 > 0$ such that (i) for $\varepsilon \in (0, \alpha_1]$, $B(\varepsilon) = \{x \in \mathbb{R}^r : d_0(x, 0) \le \varepsilon\}$ splits into a direct sum $B(\varepsilon) = B^u(\varepsilon) \oplus B^s(\varepsilon) \oplus B^c(\varepsilon)$ where

- $B^u(\varepsilon)=B(\varepsilon)\cap E^s$, $B^s(\varepsilon)=B(\varepsilon)\cap E^s$ and $B^c(\varepsilon)=B(\varepsilon)\cap E^c$, (ii) $B(\alpha_1)\oplus F^-\oplus F^+\oplus H$ is a closed neighborhood of 0 in X.
- (L.9) ([3], p. 89, (P.11) and p. 90, (P.12)). There is an invariant metric d on X and a positive number α_0 with $\alpha_0 < \alpha_1$ such that (i) for $\varepsilon \in (0, \alpha_0]$, $W(\varepsilon) = \{x \in X; d(x, 0) \le \varepsilon\}$ is expressed as $W(\varepsilon) = W^u(\varepsilon) \oplus W^s(\varepsilon) \oplus W^c(\varepsilon)$ where $W^u(\varepsilon) = W(\varepsilon) \cap \{\psi B^u(\varepsilon) \oplus F^-\}$, $W^s(\varepsilon) = W(\varepsilon) \cap \{\psi B^s(\varepsilon) \oplus F^+\}$ and $W^c(\varepsilon) = W(\varepsilon) \cap \{\psi B^c(\varepsilon) \oplus H\}$, and (ii) for $\varepsilon \in (0, \alpha_0]$ $W(\varepsilon) \cap H$ is a subgroup of H and there is an $n \ge 0$ such that $W(\varepsilon) \cap F^- = \sigma^{-n} F^-$ and $W(\varepsilon) \cap F^+ = \sigma^n F^+$.
- (L.10) ([3], p. 90, (P.13)). There is $0 < \lambda_0 < 1$ such that for $\varepsilon \in (0, \alpha_0]$ and $x = x^u + x^s + x^c \in W^u(\varepsilon) \oplus W^s(\varepsilon) \oplus W^c(\varepsilon)$ the following hold (i) $d(x, 0) = \max\{d(x^u, 0), d(x^s, 0), d(x^c, 0)\}$, (ii) $d(\sigma^n x, 0) \le \lambda_0^{-n} d(x, 0)$ ($x \in W^u(\varepsilon), n \le 0$), (iii) $d(\sigma^n x, 0) \le \lambda_0^{-n} d(x, 0)$ ($x \in W^s(\varepsilon), n \ge 0$), and (iv) $d(\sigma^n x, 0) = d(x, 0)$ ($x \in W^c(\varepsilon) \cap H, n \in Z$).

X is said to have property (*) if G is finitely generated under γ ; i. e., there is a finite set Λ in G such that $G = \operatorname{gp} \bigcup_{-\infty}^{\infty} \gamma^{j} \Lambda$ (the notation $\operatorname{gp} E$ means the subgroup generated by a set E). We say (X, σ) is hyperbolic if (X, σ) has property (*) and (\mathbf{R}^{r}, γ) is hyperbolic, and we say (X, σ) has central spin if either (\mathbf{R}^{r}, γ) is hyperbolic and X does not have property (*), or (\mathbf{R}^{r}, γ) has central spin.

- (L.11) ([3], p. 91, (P.14)). Assume that (X, σ) is ergodic under the Haar measure. Then $W^u(\alpha_0) \neq \{0\}$ and $W^s(\alpha_0) \neq \{0\}$.
 - (L.12) For $\varepsilon \in (0, \alpha_0]$, the following hold:
 - (i) $\sigma^{-1}W^u(\varepsilon) \subset W^u(\lambda_0\varepsilon)$,
 - (ii) $\sigma W^s(\varepsilon) \subset W^s(\lambda_0 \varepsilon)$,
 - (iii) $\sigma W^c(\varepsilon) = W^c(\varepsilon)$ if (X, σ) has central spin,
 - (iv) $W^u(\varepsilon)$, $W^s(\varepsilon)$, and $W^c(\varepsilon)$ are symmetric sets at 0 in X.
- (i) and (ii) are the consequences of (L.10). (iii) follows from the definition of central spin together with (L.10). (iv) is clear from the definition.

For $\varepsilon \in (0, \alpha_0]$, put $K(\varepsilon) = W^s(\varepsilon) \oplus (W^c(\varepsilon) \cap H)$ and $W_n^u(\varepsilon) = \{x \in \sigma^n W^u(\varepsilon); x + W^u(\varepsilon) \subset \sigma^n W^u(\varepsilon)\}$ ($n \ge 1$). Then we have the following:

- (L.13) For every $\varepsilon \in (0, \alpha_0]$,
- (i) $\sigma K(\varepsilon) \subset K(\varepsilon)$,
- (ii) $K(\varepsilon) \oplus \phi B^{c}(\varepsilon) = W^{s}(\varepsilon) \oplus W^{c}(\varepsilon)$,
- (iii) $W_n^u(\varepsilon) \subset \sigma W_n^u(\varepsilon) \subset W_{n+1}^u(\varepsilon)$ $(n \ge 1)$.
- (L.14) Assume that either (X, σ) is hyperbolic, or ergodic and has central spin. Then, for every $\varepsilon \in (0, 2\alpha_0/3)$ there is $M = M(\varepsilon) > 0$ such that for every $n \ge M$, $W_n^u(\varepsilon) + K(\varepsilon) \oplus \psi B(\varepsilon) = X$.

From the proof (Step 1.2.1) of ([3], Proposition 1.2), for every $\varepsilon \in (0, 2\alpha_0/3)$ there is $M=M(\varepsilon)>0$ such that for every $n \ge M$ and $x \in X$, $W_n^u(\varepsilon) \cap (x+K(\varepsilon) \oplus \psi B^c(\varepsilon)) \neq \emptyset$. Since $K(\varepsilon) \oplus \psi B^c(\varepsilon) = W^s(\varepsilon) \oplus W^c(\varepsilon)$ is symmetric, we have $x \in W_n^u(\varepsilon) + K(\varepsilon) \oplus \psi B^c(\varepsilon)$.

(L.15) Assume that (X, σ) is ergodic; then there exists a finite sequence $X = X_0 \supset X_1 \supset \cdots \supset X_n \supset X_{n+1} = \{0\}$ of σ -invariant subgroups such that each X_i is connected and either $(X_i/X_{i+1}, \sigma)$ is hyperbolic or ergodic and has central spin.

By ([3], Theorem 3), there is a finite sequence $X=X_0\supset X_1\supset \cdots \supset X_n\supset X_{n+1}$ = {0} of σ -invariant subgroups such that each X_i is connected and $(X_i/X_{i+1}, \sigma)$ satisfies weak specification. By ([3], Theorems 1 and 2), if $(X_i/X_{i+1}, \sigma)$ satisfies weak specification, then $(X_i/X_{i+1}, \sigma)$ is either hyperbolic or ergodic and has central spin.

(L.16) For $s \ge 1$, $(a_1, \dots, a_s) \in \mathbb{R}^s$ and $N \ge 1$, there is an integer n with $1 \le n \le N^s$ such that $|na_i - m_i| < 1/N (1 \le i \le s)$ for some $(m_1, \dots, m_s) \in \mathbb{Z}^s$.

This is shown as follows. For every $1 \le n \le N^s$ there is $(m_1^{(n)}, \cdots, m_s^{(n)}) \in \mathbb{Z}^s$ such that $na_i - m_i^{(n)} \in [0, 1)$ $(1 \le i \le s)$. If there is an n with $1 \le n \le N^s$ such that for every $1 \le i \le s$, $na_i - m_i^{(n)} \in [0, 1/N)$, (L.16) holds. For otherwise, we can find u and v with $1 \le u < v \le N^s$ and j_i with $0 \le j_i \le N - 1$ such that for $1 \le i \le s$, $ua_i - m_i^{(n)}$, $va_i - m_i^{(n)} \in [j_i/N, (j_i + 1)/N)$. Put n = v - u and $m_i = m_i^{(v)} - m_i^{(u)}$ $(1 \le i \le s)$. Then we have $|na_i - m_i| < 1/N$ $(1 \le i \le s)$.

§ 1. Results.

The following is the main result of our paper.

THEOREM 1. Let X be a solenoidal group and σ be an automorphism of X. Then (X, σ) is ergodic (under the Haar measure) if and only if (X, σ) satisfies almost weak specification.

Theorem 1 derives the following.

COROLLARY. Let X be a compact metric abelian group and σ be an automorphism of X. Then (X, σ) is ergodic (under the Haar measure) if and only if (X, σ) satisfies almost weak specification.

If we established Theorem 1, then the corollary is shown as follows. Clearly (X, σ) is ergodic if (X, σ) satisfies almost weak specification. Assume that (X, σ) is ergodic. Then X splits into a sum $X=X_1+X_2+X_3$ of σ -invariant subgroups with the notation of (L.1). And so (X_1, σ) satisfies almost weak specification by (1.4), and (X_3, σ) satisfies almost weak specification by (L.3). Use (L.5) for (X_2, σ) . Then there is a sequence $X_2=X_2, 0 \supset X_2, 1 \supset \cdots \supset \bigcap_{n\geq 0} X_2, n=\{0\}$ of σ -

invariant subgroups such that each $X_2/X_{2,n}$ is solenoidal. Since (X_2, σ) is ergodic, each $(X_2/X_{2,n}, \sigma)$ is ergodic. By Theorem 1, $(X_2/X_{2,n}, \sigma)$ satisfies almost weak specification. Since the product system $(X_1 \times X_2 \times X_3, \sigma \times \sigma \times \sigma)$ satisfies almost weak specification, (X, σ) satisfies almost weak specification.

§ 2. Proof of Theorem 1.

As before let (G, γ) be the dual of (X, σ) . Since X is solenoidal, we have $\operatorname{rank}(G) = \dim(X) = r < \infty$. Then X is expressed as

$$X = \phi(E^u \oplus E^s \oplus E^c) + \{F^- \oplus F^+ \oplus H\}.$$

We prepare a sequence of lemmas leading to the proof of Theorem 1.

LEMMA 1. If $E^c \neq \{0\}$ and $a = \dim(E^c)$, then $\|\gamma^n x\|_c \leq (n+1)^{a-1} \|x\|_c$ ($x \in E^c$, $n \geq 0$).

PROOF. E^c splits into a finite direct sum $E^c = E^{c_0} \oplus \cdots \oplus E^{c_k}$ of 1 or 2-dimensional subspaces which satisfy (a) and (b) in § 2. For $x \in E^{c_0} \oplus \cdots \oplus E^{c_k}$ and for $n \ge 0$, $\gamma_{iE^c}^n x$ splits into $\gamma_{iE^c}^n x = x_0^n + \cdots + x_k^n$ with $x_i^n \in E^{c_i}$ $(1 \le i \le k)$. By (b) we get $\|x_i^n\|_{c_i} \le \|x_i^{n-1}\|_{c_i} + \|x_{i+1}^{n-1}\|_{c_{i+1}}$ $(0 \le i \le k-1, n \ge 0)$ and $\|x_k^n\|_{c_k} = \|x_k^0\|_{c_k}$ $(n \ge 0)$. It is checked that for every $n \ge 0$, $\|x_i^n\|_{c_i} \le (n+1)^{k-i} \|x\|_c$ $(1 \le i \le k)$. Indeed, $\|x_i^0\|_{c_i} \le \|x\|_c$ when n=0. Assume that the inequality is true for n-1. Then $\|x_i^n\|_{c_i} \le \|x_i^{n-1}\|_{c_i} + \|x_{i+1}^{n-1}\|_{c_i} \le n^{k-i} \|x\|_c + n^{k-i-1} \|x\|_c \le (n+1)^{k-i} \|x\|_c$ for $0 \le i \le k-1$. Since $k \ge a-1$, the conclusion is obtained.

LEMMA 2. Assume that (X, σ) is either hyperbolic or ergodic and has central spin. Then for every $\varepsilon \in (0, \alpha_0/3)$ there is a sequence $\{N_{\varepsilon}(n)\}_{n=1}^{\infty}$ of non-negative integers such that $N_{\varepsilon}(n^p)/n \to 0$ as $n \to \infty$ for all $p \ge 1$, and $W_m^u(\varepsilon) + K(\varepsilon) \oplus \psi B^c(\varepsilon/n) \oplus \psi B^c(\varepsilon)$ for $n \ge 1$ and $m \ge N_{\varepsilon}(n)$.

PROOF. If (\mathbf{R}^r, γ) is hyperbolic (i.e., $E^c = \{0\}$), by putting $N_{\varepsilon}(n) = 0$ for $\varepsilon \in (0, \alpha_0/3)$ and $n \ge 1$, the lemma holds.

It only remains to prove the lemma for the case when (\mathbf{R}^r, γ) has central spin. To see this, use (L.14). Then there is M>0 such that $W^u_M(\varepsilon)+K(\varepsilon)\oplus \psi B^c(\varepsilon)\supset \psi B^c(2\varepsilon)$. Since $a=\dim(E^c)$, we can find points $t_1, \dots, t_a\in B^c(3\varepsilon)$ such that $\{t_1, \dots, t_a\}$ is linearly independent over \mathbf{R} and

(2.1)
$$\phi(t_i) \in W_M^u(\varepsilon) + K(\varepsilon) (1 \le i \le a).$$

Since γ has central spin, γ is an isometry on $(E^c, \|\cdot\|_c)$. By Dirichlet's theorem there is L>0 such that

(2.2)
$$\|(\gamma^{L} - I)x\|_{c} \leq \frac{1}{2} \|x\|_{c} \quad (x \in E^{c})$$

where I denotes the identity map.

Since γ is aperiodic (by ergodicity of σ), $\gamma^L - I$ is one-to-one and so for some μ with $0 < \mu < 1/2$

Notice that $\{(\gamma^L - I)^n t_i; 1 \le i \le a\}(n > 0)$ is linearly independent over \mathbf{R} . Define $A = \{s \in E^c; s = \sum_{i=1}^a a_i t_i, a_i \in \mathbf{Z}, 1 \le i \le a\}$ and put $\delta = \min\{\|s\|_c; 0 \ne s \in A\}$. Then by (2.3)

(2.4)
$$\mu^n \delta < \min\{\|t\|_c; \ 0 \neq t \in (\gamma^L - I)^n A\} \quad (n > 0).$$

Since $\Theta = (\gamma^L - I)^n A \cap B^c(3\varepsilon/2)$ is non-trivial, every element of Θ is expressed as $t = \sum_{i=1}^a n_i (\gamma^L - I)^n t_i$. Put $C_1 = 2^a a (3a\varepsilon/2\delta)^a$ and $C_2 = \mu^{-a}$. Then we have the following Step 1.

Step 1.
$$\sum_{i=1}^{a} |n_i| \le C_1 C_2^n \quad (n \ge 2).$$

Indeed, put $c_n=3a\varepsilon/2\delta\mu^n$. For $t\in\Theta$ $(t=\sum_{i=1}^a n_i(\gamma^L-I)^n t_i)$, if we have

$$(2.5) |n_i| \leq (c_n+1)^a (1 \leq i \leq a),$$

then
$$\sum_{i=1}^{a} |n_i| \le a(c_n+1)^a = a \sum_{i=1}^{a} {a \choose i} c_n^j \le C_1 C_2^n$$
.

We must prove (2.5) to get Step 1. Assume that $n_1 \ge (c_n+1)^a$ for some $n \ge 2$ and $t = \sum_{i=1}^a n_i (\gamma^L - I)^n t_i \in \Theta$. We write s = a - 1 and put $a_i = n_{i+1}/n_1$ ($1 \le i \le a - 1 = s$). Choose $N \in \mathbb{N}$ with $c_n < N \le c_n + 1$. Then by (L.16) we get an integer m_1 with $1 \le m_1 \le N^{a-1}$ such that $|m_1 n_i/n_1 - m_i| < 1/N < c_n^{-1}$ for $2 \le i \le a$ and for some $(m_2, \dots, m_a) \in \mathbb{Z}^{a-1}$. Since $m_1 \ne 0$, we get $0 \ne m_i (\gamma^L - I)^n t_i$ and since $t = \sum_{i=1}^a n_i (\gamma^L - I)^n t_i$, $m_i (\gamma^L - I)^n t_i$ and since $t = \sum_{i=1}^a n_i (\gamma^L - I)^n t_i$,

$$\begin{split} \| \sum_i m_i (\gamma^L - I)^n t_i \| & \leq \| \sum_i m_i (\gamma^L - I)^n t_i - (m_1/n_1) t \|_c + \| (m_1/n_1) t \|_c \\ & < \sum_i c_n^{-1} \| (\gamma^L - I)^n t_i \|_c + (m_1/n_1) \| t \|_c \,. \end{split}$$

Since $t \in B^c(3\varepsilon/2)$, clearly $||t||_c \le 3\varepsilon/2$. Since $||(\gamma^L - I)^n t_i||_c < (1/2^n)||t_i||$ (by (2.3)) and $m_1/n_1 < c_n^{-1}$ (because $m_1 < N^{a-1}$ and $n_1 > N^a$), we have $||\sum_i m_i (\gamma^L - I)^n t_i||_c < \delta \mu^n/2^n + \delta \mu^n/a < \delta \mu^n$ (because $a \ge 2$ by ergodicity). Comparing this inequality with (2.4), we have t = 0, which is impossible. Therefore $n_1 \le (c_n + 1)^a$. Repeat the same argument for n_i . Then we get $n_i \le (c_n + 1)^a$ for $1 \le i \le a$.

To get the conclusion of Lemma 2, we prepare the following Step 2.

Step 2. Let ϕ be as in (L.6). For every $n \ge 2$, we can find D(n), $C(n) \in \mathbb{Z}^+$ such that $\sup_n D(n)/n < \infty$, C(n) < D(n) and for every $m \ge D(n)$

$$W_m^u(\varepsilon)+K(\varepsilon)\supset \sigma^{C(n)}\psi\{(\gamma^L-I)^nA\cap B^c(3\varepsilon/2)\}$$
.

Indeed, let λ_0 be as in (L.10) and let C_1 and C_2 be as in Step 1. Choose positive integers D_1 , $D_2(n)$ satisfying $D_1 \ge -(\log \lambda_0)^{-1} \log C_1$ and $D_2(n) \ge$

 $-n(\log \lambda_0)^{-1}\log 2C_2$, and put $C(n)=D_1+D_2(n)$ for $n\geq 2$. Fix $n\geq 2$ and take $t\in (\gamma^L-I)^nA\cap B^c(3\varepsilon/2)$. Since $t=\sum_{i=1}^a n_i(\gamma^L-I)^nt_i$, we can easily calculate

$$\begin{split} \boldsymbol{\sigma}^{C(n)} \boldsymbol{\psi}(t) &= \boldsymbol{\sigma}^{C(n)} \boldsymbol{\psi} \Big(\sum_{i=1}^{a} n_i (\boldsymbol{\gamma}^L - I)^n t_i \Big) = \sum_{i=1}^{a} n_i ((\boldsymbol{\sigma}^L - I)^n \boldsymbol{\sigma}^{C(n)} \boldsymbol{\psi}(t_i) \\ &= \sum_{i=1}^{a} n_i \sum_{j=0}^{n} \binom{n}{j} \boldsymbol{\sigma}^{L_{j+C(n)}} \boldsymbol{\psi}(t_i) \,. \end{split}$$

Since $\sum_{i=1}^{n} |n_i| \leq C_1 C_2^n$ (by Step 1) and $\sum_{j=0}^{n} {n \choose j} = 2^n$, and since $W_M^u(\varepsilon) \subset \sigma W_M^u(\varepsilon)$ and $K(\varepsilon) \supset \sigma K(\varepsilon)$, we have $\sigma^{Lj+C(n)} \psi(t_i) \in \sigma^{Ln+C(n)} W_M^u(\varepsilon) + K(\varepsilon)$ for $0 \leq j \leq n$ and $1 \leq i \leq a$, and so $\sigma^{C(n)} \psi(t) \in \sigma^{Ln+C(n)} J_M^0 + J^1$, where

$$J_{\mathtt{M}}^{0} = \underbrace{W_{\mathtt{M}}^{u}(\varepsilon) + \cdots + W_{\mathtt{M}}^{u}(\varepsilon)}_{C_{1}(2C_{2})^{n}} \quad \text{and} \quad J^{1} = \underbrace{K(\varepsilon) + \cdots + K(\varepsilon)}_{C_{1}(2C_{2})^{n}}.$$

By (L.12, i) we get $\sigma^{-C(n)}W^u(\varepsilon) \subset W^u(\lambda_0^{C(n)}\varepsilon) = W^u(\varepsilon/(C_1(2C_2)^n))$, and so $\sigma^{-C(n)}W^u_M(\varepsilon) + \sigma^{-C(n)}W^u(\varepsilon) \subset \sigma^M W^u(\varepsilon/(C_1(2C_2)^n))$. Therefore $\sigma^{-C(n)}J^0_M + \sigma^{-C(n)}W^u(\varepsilon) \subset \sigma^M W^u(\varepsilon)$, i.e., $J^0_M \subset W^u_{M+C(n)}(\varepsilon)$. Since $\sigma^{n-m}W^u_m(\varepsilon) \subset W^u_n(\varepsilon)$ ($n \ge m$) by (L.13, iii), we have $\sigma^{Ln+C(n)}J^0_M \subset W^u_{M+Ln+2C(n)}(\varepsilon)$. Using (L.12, ii), we get $\sigma^{C(n)}J^1 \subset K(\varepsilon)$. Put D(n)=M+Ln+2C(n) for $n \ge 2$. Then from the above facts, we have $\sigma^{C(n)}\psi(t) \in W^u_m(\varepsilon)+K(\varepsilon)$ for every $m \ge D(n)$ ($n \ge 2$). The conclusion of Step 2 is obtained.

Now we are ready to prove the lemma. Let J(n) be the integer part of $(\log 2)^{-1}(\log 3a + \log n) + 1$ for $n \ge 2$. Since $||t_i||_c < 3\varepsilon$, by (2.2) we have $||(\gamma^L - I)^{J(n)}t_i|| < \varepsilon/an$. Remark that $E^c = \operatorname{span}\{(\gamma^L - I)^{J(n)}t_i; 1 \le i \le a\}$ for $n \ge 2$. For fixed $n \ge 2$, $x \in E^c$ is expressed as $x = \sum_{i=1}^{a} (a_i + n)(\gamma^L - I)^{J(n)}t_i$ where $a_i \in [0, 1)$ and $a_i \in \mathbb{Z}$. Recall that $A = \{s \in E^c; s = \sum_{i=1}^{a} n_i t_i, n_i \in \mathbb{Z}, 1 \le i \le a\}$. Then we have

$$\min_{s \in (\gamma^{L} - I)^{J(n)}_{A}} \|x - s\|_{c} < \sum_{i=1}^{a} a_{i} \|(\gamma^{L} - I)^{J(n)} t_{i}\|_{c} < \varepsilon/n,$$

and so $\{(\gamma^L-I)^{J(n)}A\cap B^c((1+1/n)\varepsilon)\}+B^c(\varepsilon/n)\supset B^c(\varepsilon)$. This follows from the fact that for every $x\in B^c(\varepsilon)$ there is $t\in (\gamma^L-I)^{J(n)}A$ such that $\|x-t\|_c<\varepsilon/n$ (by (2.6), and then $t\in (\gamma^L-I)^{J(n)}A\cap B^c((1+1/n)\varepsilon)$. Let C(n) be as in Step 2. Then $\sigma^{c(J(n))}\psi\{(\gamma^L-I)^{J(n)}A\cap B^c(3\varepsilon/2)+B^c(\varepsilon/n)\}\supset \psi B^c(\varepsilon)$. From this and Step 2, we have $W^u_m(\varepsilon)+K(\varepsilon)\oplus \psi B^c(\varepsilon/n)\supset \psi B^c(\varepsilon)$ for $m\geq D(J(n))$. We put $N_\varepsilon(n)=D(J(n))$ for $n\geq 2$ and in particular $N_\varepsilon(1)=N_\varepsilon(2)$. Since $J(n^p)/n\to 0$ as $n\to\infty$ for all $p\geq 1$ and $\sup_n D(n)/n<\infty$ (by Step 2), clearly $N_\varepsilon(n^p)/n\to 0$ as $n\to\infty$ for all $p\geq 1$. The proof of Lemma 2 is completed.

LEMMA 3. Assume that (X, σ) is either hyperbolic or ergodic and has central spin. Then for every $\varepsilon \in (0, 2\alpha_0/3)$, there is a sequence $\{M_{\varepsilon}(n)\}_{n=1}^{\infty}$ of positive integers such that for $p \ge 1$ $M_{\varepsilon}(n^p)/n \to 0$ as $n \to \infty$ and for all $n \ge 1$ and $m \ge M_{\varepsilon}(n)$

$$W_m^u(\varepsilon)+K(\varepsilon)\oplus \phi B^c(\varepsilon/n)=X.$$

PROOF. Take and fix $\varepsilon \in (0, 2\alpha_0/3)$. From (L.14) we have $W_M^u(\varepsilon/2) + K(\varepsilon/2) \oplus \phi B^c(\varepsilon/2) = X$ for some $M = M(\varepsilon/2) > 0$. Let $\{N_{\varepsilon}(n)\}_{n=1}^{\infty}$ be as in Lemma 2. Then for $m \ge N_{\varepsilon/2}(n)$,

$$(3.1) \{W_M^u(\varepsilon/2) + K(\varepsilon/2)\} + \{W_m^u(\varepsilon/2) + K(\varepsilon/2) \oplus \phi B^c(\varepsilon/n)\} = X$$

by Lemma 2. Let $\lambda_0 \in (0, 1)$ be as before, N be an integer with $\lambda_0^{-N} > 2$ and put $M_{\varepsilon}(n) = N + \max\{M, N_{\varepsilon/2}(n)\}$. Clearly $M_{\varepsilon}(n^p)/n \to 0$ as $n \to \infty$ for all $p \ge 1$. Since $\sigma^N W^u(\varepsilon) \supset W^u(\varepsilon)$, we have $W_m^u(\varepsilon/2) + W_m^u(\varepsilon/2) \subset W_{m+N}^u(\varepsilon)$ for all $m \ge 1$. From (3.1) we have $X = W_m^u(\varepsilon) + K(\varepsilon) \oplus \phi B^c(\varepsilon/n)$ for $m \ge M_{\varepsilon}(n)$.

LEMMA 4. If (X, σ) is ergodic, then for every $\varepsilon \in (0, \alpha_0/3)$, there is a function $L_{\varepsilon} : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that for $p \ge 1$, $L_{\varepsilon}(n^p)/n \to 0$ as $n \to \infty$ and such that for $n \ge 1$, $m \ge L_{\varepsilon}(n)$ and $x, y \in X$ there is $z \in y + K(\varepsilon) \oplus \psi B^c(\varepsilon/(n+1))$ such that $z + W^u(\varepsilon) \subset \sigma^m \{x + W^u(\varepsilon)\}$.

PROOF. Since X is solenoidal, there are $n_0>0$ and a sequence $X=X_0\supset X_1$ $\supset\cdots\supset X_{n_0-1}\supset X_{n_0}=\{0\}$ of σ -invariant subgroups which satisfy all the conditions of (L.15). Take and fix $\varepsilon\in(0,\alpha_0]$. For $0\le i\le n_0-1$ we put $W^u_n(\varepsilon)_i=W^u_n(\varepsilon)\cap X_i$ for $n\ge 1$, $K(\varepsilon)_i=K(\varepsilon)\cap X_i$ and $\psi B^c(\varepsilon)_i=\psi B^c(\varepsilon)\cap X_i$. Since $(X_i/X_{i+1},\sigma)$ is either hyperbolic, or ergodic and has central spin, we can use Lemma 3 for $(X_i/X_{i+1},\sigma)$. Then there is a sequence $\{M_{\varepsilon}^{(i)}(n)\}_{n=1}^{\infty}$ of positive integers such that for $p\ge 1$, $M_{\varepsilon}^{(i)}(n^p)/n\to 0$ as $n\to\infty$, and for $m\ge M_{\varepsilon}^{(i)}(n)$

$$W_m^u(\varepsilon)_i + K(\varepsilon)_i \oplus \phi B^c(\varepsilon/n)_i + X_{i+1} = X_i$$
.

Then for $n \ge 1$ and $m \ge M_{\varepsilon/n_0}^{(i)}(n+1)$

$$(4.1) W_m^u(\varepsilon/n_0)_i + K(\varepsilon/n_0)_i \oplus \psi B^c(\varepsilon/n_i(n+1))_i + X_{i+1} = X_i.$$

Choose C>0 with $\lambda_0^{-C}>n_0$ and put $L_{\varepsilon}(n)=C+\max\{M_{\varepsilon/n_0}^{(i)}(n+1); 0\leq i\leq n_0\}$ for $n\geq 1$. Clearly $L_{\varepsilon}(n^p)/n\to 0$ as $n\to\infty$ for all $p\geq 1$. Since $\sigma^CW^u(\varepsilon/n_0)\supset W^u(\varepsilon)$, we have $W_m^u(\varepsilon)\supset \sum_{i=0}^{n_0-1}W_{m-C}^u(\varepsilon/n_0)_i$ for $m\geq L_{\varepsilon}(n)$. It is clear that $K(\varepsilon)\supset \sum_{i=0}^{n_0-1}K(\varepsilon/n_0)_i$ and $\psi B^c(\varepsilon/(n+1))\supset \sum_{i=0}^{n_0-1}\psi B^c(\varepsilon/(n+1))_i$, and so by (4.1)

$$\begin{split} W^u_m(\varepsilon) + K(\varepsilon) \oplus \psi B^c(\varepsilon/(n+1)) \\ &\supset \sum_{i=0}^{n_0-1} \{ W^u_{m-C}(\varepsilon/n_0)_i + K(\varepsilon/n_0)_i \oplus \psi B^c(\varepsilon/(n+1))_i \} = X. \end{split}$$

Hence for $n \ge 0$, $m \ge L_{\varepsilon}(n)$ and x, $y \in X$, there is $z \in y + K(\varepsilon) \oplus \psi B^{c}(\varepsilon/(n+1))$ with $z + W^{u}(\varepsilon) \subset \sigma^{m}\{x + W^{u}(\varepsilon)\}$ since $X = \sigma^{m}x + W^{u}_{m}(\varepsilon) + K(\varepsilon) \oplus \psi B^{c}(\varepsilon/(n+1)) \ni y$ and $K(\varepsilon) \oplus \psi B^{c}(\varepsilon/(n+1))$ is symmetry (by (L.12, iv)).

Now we are ready to prove Theorem 1.

PROOF OF THEOREM 1. Let $\varepsilon \in (0, 2\alpha_0/3)$ and $L_{\varepsilon} : \mathbb{Z}^+ \to \mathbb{Z}^+$ as in Lemma 4.

With the notation $a=\dim(E^c)$, we define a function $M_{\varepsilon}\colon Z^+\to Z^+$ by $M_{\varepsilon}(n)=L_{\varepsilon}(n^a)$ $(n\geq 1)$. Clearly $M_{\varepsilon}(n)/n\to 0$ as $n\to\infty$, and for every n>0, $m\geq M_{\varepsilon}(n)$ and $x, y\in X$, there is $z\in y+K(\varepsilon)\oplus \phi B^c(\varepsilon/(n+1)^a)$ with $z+W^u(\varepsilon)\subset \sigma^m\{x+W^u(\varepsilon)\}$ (by Lemma 4). Applying Lemma 1, we get $\gamma^i B^c(\varepsilon/(n+1)^a)\subset B^c(\varepsilon(i+1)^{a-1}/(n+1)^a)$ for $i\geq 0$, so that for $0\leq i\leq n$

$$(1) \sigma^{i}z \in \sigma^{i}y + \sigma^{i}K(\varepsilon) \oplus \psi B^{c}(\varepsilon(i+1)^{a-1}/(n+1)^{a}) \subset \sigma^{i}y + K(\varepsilon) \oplus \psi B^{c}(\varepsilon).$$

For every $k \ge 1$, $x_1, \dots, x_k \in X$ and a sequence of integers $a_1 \le b_1 < \dots < a_k \le b_k$ with $a_i - b_{i-1} \ge M_{\varepsilon}(b_i - a_i)$ $(2 \le i \le k)$. Letting $z_1 = \sigma^{a_1} x_1$, we can find a sequence of k-1 points z_2, \dots, z_k such that for $1 \le i \le k-1$, $z_{i+1} \in \sigma^{a_{i+1}} x_i + K(\varepsilon) \oplus B^c(\varepsilon/(b_{i+1} - a_{i+1} + 1)^a)$ and $z_{i+1} + W^u(\varepsilon) \subset \sigma^{a_{i+1} - b_i} \{\sigma^{b_i - a_i} z_i + W^u(\varepsilon)\}$. This is easily obtained using (1). We now have for $1 \le i \le k-1$,

$$\sigma^{-a_i} \{ z_i + \sigma^{-(b_i - a_i)} W^u(\varepsilon) \} \supset \sigma^{-a_{i+1}} \{ z_{i+1} + W^u(\varepsilon) \}$$
$$\supset \sigma^{-a_{i+1}} \{ z_{i+1} + \sigma^{-(b_{i+1} - a_{i+1})} W^u(\varepsilon) \},$$

which yields

$$\bigcap_{1}^{k} \sigma^{-a_i} \{z_i + \sigma^{-(b_i - a_i)} W^u(\varepsilon)\} = \sigma^{-a_k} \{z_k + \sigma^{-(b_k - a_k)} W^u(\varepsilon)\}.$$

Take a point x from the last set. Then for $a_i \le j \le b_i$ $(1 \le i \le k)$ we get

$$\sigma^{j}x \in \sigma^{j-a_{i}}z_{i} + \sigma^{-(b_{i}-a_{i})}W^{u}(\varepsilon)$$

$$\subset \sigma^{j}x_{i} + \{\sigma^{j-a_{i}}(K(\varepsilon) \oplus \phi B^{c}((j-a_{i}+1)^{a}\varepsilon/(b_{i}-a_{i}+1)^{a}) \oplus \sigma^{-(b_{i}-a_{i})}W^{u}(\varepsilon)\}.$$

This shows that (X, σ) satisfies almost weak specification.

References

- [1] N. Aoki, A simple proof of Bernoullicity of ergodic automorphisms on compact abelian groups, Israel J. Math., 38 (1981), 189-198.
- [2] N. Aoki, Zero-dimensional automorphisms with specification, Monatsh. Math., 95 (1983), 1-17.
- [3] N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specifications, Monatsh. Math., 93 (1982), 79-110.
- [4] M. Dateyama, Invariant measures for homeomorphisms with weak specification, Tokyo J. Math., 4 (1981), 389-397.
- [5] M. Dateyama, Invariant measures for homeomorphisms with almost weak specification, Lecture Notes in Math., 1021, Springer, 1983, pp. 93-96.
- [6] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math., 527, Springer, 1976.
- [7] B. Marcus, A note on periodic points for ergodic toral automorphisms, Monatsh. Math., 89 (1980), 121-129.
- [8] J. Miles and K. Thomas, Generalized torus are Bernoulli, Studies in Ergodic Theory and Probability, vol. 2, Academic Press, New York, 1978, pp. 231-249.
- [9] L. Pontrjagin, Topological Groups, Gordon & Breach, New York-London-Paris, 1966.

- [10] K. Sigmund, Generic properties of invariant measures for axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.
- [11] K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.

Masahito DATEYAMA
Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558
Japan