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\S 1. Introduction.

In this paper, we study oriented tame links in the oriented 3-sphere $S^{3}$ . A
$\Delta$-unknotting operation is a local move on an oriented link diagram as indicated
in Figure 1.1.

Figure 1.1. $\Delta$ -unknotting operation.

In [8], H. Murakami and Y. Nakanishi introduced this notion and proved
that every knot can be transformed into a trivial knot by a finite number of
$\Delta$-unknotting operations. Let $K$ and $K’$ be oriented knots in $S^{3}$ . Tbe $\Delta$-Gordian
distance from $K$ to $K’$ , denoted by $d_{G}^{\Delta}(K, K’)$ , is the minimum number of $\Delta-$

unknotting operations which are necessary to deform a diagram of $K$ into that
of $K’$ . The $\Delta$-unknotting number of $K$, denoted by $u^{\Delta}(K)$ , is the $\Delta$-Gordian
distance from $K$ to a trivial knot. Then they showed the congruences $d_{G}^{\Delta}(K, K’)$

$\equiv Arf(K)-Arf(K’)$ (mod2) and $u^{\Delta}(K)\equiv Arf(K)$ (mod2) in [8], where $Arf(K)$

is the Arf invariant of a knot $K$ . Let $a_{i}(L)$ be the i-th coefficient of the Con-
way polynomial $\nabla_{L}(z)$ of a link $L$ . It is known that $a_{i}(L)$ has a relation to
the Casson’s invariant ([1], [3]). For the definition and fundamental properties
of the Conway polynomial, we refer to [4]. In this paper, we show the fol-
lowing:

THEOREM 1.1. Let $K$ and $K’$ be two knots wilh $d_{G}^{\Delta}(K, K’)=1$ . Then, $we$

have
$|a_{2}(K)-a_{2}(K’)|=1$ .

AS an immediate consequence of Theorem 1.1, we have the following:

COROLLARY 1.2. For any two knots $K$ and $K’$ , the difference $d_{G}^{\Delta}(K, K’)-$

$|a_{2}(K)-a_{2}(K’)|$ is a non-negative even integer. In particular the difference $u^{\Delta}(K)$
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- $|a_{2}(K)|$ is also a non-negative even integer.

Since $a_{2}(K)\equiv Arf(K)$ (mod2) ([4]), Corollary 1.2 extends to Murakami and
Nakanishi’s congruences. For the signatures $\sigma(K),$ $\sigma(K’)$ of knots $K,$ $K’([9])$ ,

Murakami and Nakanishi also observed the inequalities $d_{G}^{\Delta}(K, K’)\geqq(1/2)|\sigma(K)-$

$\sigma(K’)|$ and $u^{\Delta}(K)\geqq(1/2)|\sigma(K)|$ . By their own congruences and inequalities, they
determined $d_{G}^{\Delta}(3_{1},5_{1})$ and $u^{\Delta}(K)$ ($K=3_{1},4_{1},5_{1},5_{2},6_{1},6_{2}$ and $6_{3}$). Using these
inequalities and Theorem 1.1, we shall determine $\Delta$-unknotting numbers of
prime knots of $\leqq 8$ crossings, and $\Delta$-Gordian distances between any two of
twist knots.

\S 2. Proof and examples.

PROOF OF THEOREM. Considering a skein tree indicated in Figure 2.1, we
obtain

$\nabla_{K_{11}}(z)-\nabla_{K}(z)=z\nabla_{K_{12}}(z)$ ,

$\nabla_{K_{12}}(z)-\nabla_{K_{A1}}(z)=z\nabla_{K_{22}}(z)$ ,

$\nabla_{K_{11}}(z)-\nabla_{K},(z)=z\nabla_{K_{23}}(z)$ ,

$\nabla_{K_{23}}(z)-\nabla_{K_{31}}(z)=z\nabla_{K_{32}}(z)$ .

Figure 2.1.

Since $K_{21}\sim K_{31}$ , we obtain

$\nabla_{K’}(z)-\nabla_{K}(z)=z^{2}(\nabla_{K_{22}}(z)-\nabla_{K_{32}}(z))$ .
Hence

$a_{2}(K’)$ $a_{2}(K)=a_{0}(K_{22})-a_{0}(K_{32})$ .
Since $K$ is a knot, we may consider two cases as indicated in Figure 2.2 (where

dotted lines denote the connecting relations).
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(i) (ii)

Figure 2.2.

In the case (i), $K_{22}$ has one component ( $i.e$ . a knot) and $K_{32}$ has three com-
ponents. Hence $a_{0}(K_{22})=1,$ $a_{0}(K_{32})=0$ . In the case (ii), we have $a_{0}(K_{22})=0$ ,
$a_{0}(K_{32})=1$ by a similar argument. So we have the conclusion, completing the
proof of Theorem 1.1.

Here are some examples.

EXAMPLE 2.1. Let $T(n),$ $T(m)$ be two twist knots as in Figure 2.3. Then,

$d_{G}^{\Delta}(T(n), T(m))_{-}--\{$

$\frac{|n-m|}{2}$ if $n+m=even$ ,

$\frac{n+m+1}{2}$ if $n+m=odd$ .

In particular,

$u^{\Delta}(T(n))=\{$

$\frac{n+1}{2}$ if $n=odd$ ,

$\frac{n}{2}$ if $n=even$ .

TO see this, note that

$\nabla_{T(n)}(z)=\{$

$1+ \frac{n+1}{2}z^{2}$ if $n=odd$ ,

$1-\overline{2}^{Z^{2}}$ if $n=even$ .

When both $n$ and $m$ are odd, by Corollary 1.2, we have

$d_{G}^{\Delta}(T(n), T(m)) \geqq\frac{|n-m|}{2}$ .

On the other hand, we can actually transform $T(n)$ into $T(m)$ by $|n-m|/2$

times of $\Delta$-unknotting operations (see Figure 2.4).

Therefore $d_{G}^{\Delta}(T(n), T(m))=|n-m|/2$ . The other cases can be also obtained
by a similar method.
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$T(n)$

$T(n)$

Figure 2.3.

$T(n-2)$

Figure 2.4.

EXAMPLE 2.2. For the diagrams of these prime knots, we refer to [10].

Table 2.2. $\Delta$-unknotting numbers.

EXAMPLE 2.3. In this Example 2.3, we don’t deal with $\Delta$-Gordian distances
between the mirror images of them.
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Table 2.3. $\Delta$ -Gordian distances.

ACKNOWLEDGEMENTS. The author wishes to thank Professor A. Kawauchi,
Professor H. Murakami and Professor Y. Nakanishi for their useful advices and
encouragements. In particular, $d_{G}^{\Delta}(6_{1},6_{2})=1$ is due to Y. Nakanishi.

References

[1] S. Akbult and J. D. McCarthy, Casson’s invariant for oriented homology 3-spheres
an exposition, Math. Notes, 36, Princeton Univ. Press, Princeton, 1990.

[2] G. Burde and H. Zieschang, Knots, de Gruyter Stud. Math., 5, de Gruyter, Berlin-
New York, 1985.

[3] J. Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc., 297 (1986),
547-562.

[4] L. H. Kauffman, On Knots, Ann. of Math. Stud., 115, Princeton Univ. Press, Prince-
ton, 1987.

[5] L. H, Kauffman, The Conway polynomial, Topology, 20 (1981), 101-108.
[6] H. Murakami, Some metrics on classical knots, Math. Ann., 270 (1985), 35-45.
[7] H. Murakami, The Arf invariant and the Conway polynomial of a link, Math.

Sem. Notes (Kobe), 11 (1983), 335-344.
[8] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math.

Ann., 284 (1989), 75-89.
[9] K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math.

Soc., 117 (1967), 387-422.
[10] D. Rolfsen, Knots and Links, Math. Lecture Series, 7, Publish or Perish Inc.,

Berkeley, 1976.

Masae OKADA
Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan


	\S 1. Introduction.
	THEOREM 1.1. ...

	\S 2. Proof and examples.
	References

