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§1. The main results.

1.0. Several methods to construct even (unimodular) lattices from doubly

even (self-dual) codes are known (cf. [1], [2], [4], [10], [11]). For some of

such constructions, we will deal with the problem whether non-equivalent codes
yield non-isomorphic lattices. Our main results are Theorems 1, 2 and 3 stated
below.

1.1. Let 2, be a set of n letters 1,2, ---, n and P(£2,) be the power set
of 2,, i.e. the set of all subsets of 2,. P(f,) is regarded as a vector space
over the field of 2 elements with respect to the symmetric difference: X+Y =
(XUY)—(XNY), where X,Y<=P(2,). A code of length n is a subspace of
P(2,). Let ey, e, ---,e, be vectors in an n-dimensional Euclidean space E™
satisfying

(1'1'1) (ei) ej) - 2515_7' (1§Z, ]é n) ’

where (,) denotes an inner product in E*. Set

A - A(ely A en) = élzei

-Ae = ./15<91, Ty Qn) = {12:1 Xi€;

x;€Z and ixize modZ}.
i=1
where ¢=0 or 1. Also, for X&P(2,), set
ex = > @;.
ieX

Let C be a code of length n. Then we construct some lattices as follows:

L0 = U(Atrex),  Loe)= U (Avt7ex)

eC
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Le(0) = ch{(ﬂo+%ex>u(/15+%—ex+ 71—@;;)} ,  where 2=20,.

It is not difficult to see that

(1.1.2) for U=A or B, Ly(C) is integral (resp. even) if a code C 1is self-ortho-
gonal (resp. doubly even),

(1.1.3) Lg(C) is integral (resp. even) if C is doubly even and n=0mod 8 (resp.
e=n/8 mod 2).

REMARK 1.1.4. The constructions of L4(C) and Lp(C) are those which are
known in or as construction A and B respectively. The construction
of L(C) can be found in [T], or [T1]. See Remark 2.1.4 and Lemma 2.2.3
for a slightly general form of Lz(C) and L¢(C).

1.2, Let L be an integral lattice in E™ and e, ¢,, ---, ¢, be vectors in E"
satisfying and
1.2.1) e;re; e L (14, j<En).

The set Fo={zxe, -, £e,} is called a frame of L. Now we consider the
following three types of frames:
Type A: ey, -+,e, € L

Type B: e; & L but —;—ADL

Type C: 3ABL.
The first result of the present paper is the following

THEOREM 1. Let L be an even lattice in E™ with a frame F,={+e,, -, £e,}
Let C be a code defined as follows:

c= {XeP(Qn) (/1 +%ex)mL ;&@}.

Then replacing some e; by —e; if necessary, L can be expressed as L4(C), Lg(C)
and L%¢) 0=0 or 1 and 6=n/8 mod 2) according as F, is of Type A, B and C
respectively.

REMARK 2.2.1. (i) A code C defined in is determined only by a
frame &, i.e. C does not change when we replace some ¢; by —e;. Also any

permutation of ey, -+, ¢, yields a code equivalent to €. (ii) In [Theorem 1|, it
will be sufficient to assume that L is integral, when &, is of Type A or B (cf.

§2.1 and also for Type C).

The second result is as follows:
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THEOREM 2. Let L be an even lattice with a frame. Then Aut(L), the
automorphism group of L, is transitive on the set of all frames of the same type
if we assume n>16 (resp. n>32) for Type B (resp. Type C).

REMARK 1.2.2. In [Theorem 2, it will be sufficient to assume that L is
integral, when %, is of Type A or B (cf. §3.2 and Remark 4.3.1). If n<16
(resp. n<32), is not necessarily true for Type B (resp. Type C).
Some counter examples are given in §5 (cf. (5.3.1)-(5.3.3)).

Let Lo(C)=L%C) where 6=n/8mod 2. Combining [Theorem 1 and [Theorem
2, we have

THEOREM 3. For U=A, B or C, a mapping C—Ly(C) gives a one to one
correspondence from the set of all isomorphism classes of doubly even codes of
length n to the set of all isomorphism classes of even lattices in E™ with a frame
of type U if it is assumed that n>16 (resp. n>32) for U=DB (resp. U=C).

1.3. Let 4, be the set of all isomorphism classes of doubly even self-dual
codes of length n with minimum weight=8. If Cce4%,, then L¢(C) is an even
unimodular lattice having no 2-vectors (i.e. a vector v with (v, v)=2). In parti-
cular, if C=4,, C is the Golay code (cf. [8]) and Ly(C) is the Leech lattice
(cf. [8). In [6] and [7], Ozeki examined whether a mapping C— Lc(C) (CE I y)
is one to one, and showed that this is true for some subclasses of %,,. Clearly
has generalized his results not only for all codes in .4 ,, but also
for the classes of all doubly even codes of length =40. It should be noted that
a mapping C—L¢(C) (C€4(,) is one to one for n=32 too. In this case n=32,
however, some additional arguments will be needed compared to the case n=40
(cf. §6).

1.4. In §2-§5, the following notations will be used:

Z: the ring of rational integers,

| X|: the cardinality of a set X,

Cc*: the dual of a code CCP(R,), i.e. the set of X&P(2,) such that
| XNY| is even for all Y=c,

L*: the dual of a lattice LCE™, i.e. the set of uc E™ such that (u, v)eZ
for all ve L.
We note that Ae,, -, e)*=1/2)A(e,, -, en). &, Esand Dy, (=2, 3, ---) are
some doubly even codes generated by tetrads. See §5 for the definition of
those codes. Sometimes the terminology “a natural basis” of those codes will
be used (cf. §5.2). As for other terminologies and notations of codes and

lattices, we refer to [4], or [9].
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§2. The proof of Theorem 1.

2.1. Throughout this section, let L be an integral lattice in E™ with a
frame F,={+e,, -, +e,}, i.e. e, ---, e, are vectors in E"™ satisfying
and [1.2.1).

LEMMA 2.1.1. Lc1/2)AU({(1/2)A+(1/4)ep) where A= A(ey, -+, e,) and
2=20,.

ProOOF. Let x=>};x;¢;=L. Then
(*) (X, eiiej)ZZ(xiixj)EZ

as L is integral. From this we see LC(1/4)4. But if x;,=(1/4)Z—(1/2)Z for
some x;, (%) yields all x;&(1/4)Z—(1/2)Z which proves Lemma 2.1.1.

Let

¢={xcP@|(4+gex)nL #o},

o= {XeP(.Q)‘(/Io+—;—eX)mL +g}.

LEMMA 2.1.2. (i) C is self-orthogonal. If L is even, C is doubly even. (ii)
[C: COJ_S_Z.

PrROOF. Let X, Y=c¢. Then there exist x, y 4 such that x+(1/2)ex=L
and y+(1/2)eys L, and we have 0=(x+(1/2)ex, y+(1/2)ey)=(1/2)| XNY | mod 1
and so |XNY|=even which implies that C is self-orthogonal. If L is even,
((1/2)ex, (1/2)ex)=(1/2)| X|=0mod 2 for X&C and so |X|=0mod4. Let X,V
eC—C, There exist Xx;e;+(1/2ex, 3y:ei+(1/2)ey= L such that Jx; =3y,
=1mod 2. Then the sum of these two vectors is equal to 3 (x;+ v:)e;+ex v+
(1/2)ex+y which belongs to LN(A,+(1/2)ex.y) and so X+Y ¢C,.

LEMMA 2.1.3. Let Lo=LN\(1/2)A. There exist e}, e}, --- , ehEF, such that

L= \J (/1 + %e&) or U (Ao+leir)

el Xel 2

according as Fo is of Type A or not. In particular, Theorem 1 holds for a
frame of Type A or B.

ProofF. If F, is of Type A or C=C,, it will be sufficient to put ej=e;
(1£i<n). So suppose C+#C, and ¥, is not of Type A. Take T&Cj—C* and
set
e; i&T

—&; ZET .

(%) e; = {
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Let Loou+(1/2)ex (usd, XeC). Then we have

1 1
u+“2—€x = u+'§‘(eXnT+eX-(XnT))

1 ! ’ ’ 1 7
= u+?(_eXr\T+eX—(XnT)) = u—ex~r+ Sex.

If XeC,, we have us 4, and |XNT|=even. So u—eceir=4, If Xec—0C,,
we have uc4, and |XNT|=odd. So u—ekr=4,. Thus we get L,=
Xkéc(/10+(1/2)e,’r)-

ReMARK 2.1.4. If &, is of Type B, we have another expression of L:
when we choose ¢;= 9, suitably, we have

1 1
(s5) L={ (At gex)ho{ ) (A 5er)}
where ¢’'={X&C | | X]|=0mod4} and ¢"=C—C’. In fact, let szuc(A°+(1/2)e“’)
(=]
and c#C’. If we take TeC’t—C* and define ¢; (1=/<n) as in (xx) above, we
see that L has an expression () with respect to a basis {e}}.

2.2. In the following, we assume that C=¢C, and &, iszof Type C, i.e.
Lg(1/2)A. Let

L,= (-%—/1 —I—%e())ﬂL ,

1 1
¢, ={XeP@ ’ (4 +§ex+-:1—eg>f\[, +@}
and Z&C, so that there exists x< L which can be expressed as
1 1
X =vz+ 'é‘ez"“ze,() (UzE A).
We shall fix such a Z=¢, and vz;= A4 henceforward.

LEMMA 2.2.1. (i) Qec. (ii) n=0mod 8. (iii) ¢,=C+Z.

PrROOF. From 2x<= LN(A+(1/2)eg) we get 2=c¢C. Also we have (x, x)=
n/8 mod1l and then n=0mod8 as (x, x)Z. Take Yec,. If X=Y4+2Z, we
have, for some us 4,

1 1 1 1 1
L> u+-2—ex+z+ 7z = u—Ean+—2—ex+—2—ez+zeQ

which yields Xec¢. Thus ¢,CC+Z. Conversely if CoX and y=u+(1/2)exsL
(ue ), from x+ys=L we get X+Z<C, i.e. C,;DC+Z.

LEMMA 2.2.2. Let ¢'={XecC | |X|=0mod4} and C"=C—C’. Then the
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followings hold :
(i) €' =CNKZ)* and | Z| =even.
(ii) Assume that vz A, (=0 or 1_). Then we have

(Ae+—;‘ex+z+‘i‘e.a)}u{ Y\é)c#(Ax—s+é‘eY+z+‘l—e.O)} .

Li={\ 1

Xecr

Proor. (i) If Xec€, we have

1 \_1XNZ| | 1X]
)= K02 1K gy

71 1
Z = (EeXy v+'2'eZ+ZeQ 2 4

which yields ¢’=CN<Z>*. Also |Z| is even as £2<=c”’.
(i) If Lisu+1/2)ex z+(1/4)eg (X=C and us ), we have
1

. 1 1 1 1
u+'2_eX+Z+“4“e!) = u+§'€_y+—2-ez——-exnz—,——zeg .

Since (1/2)ex< L and LN A=A,, we must have v;—(u—ex~z)=A,. This together
with (i) proves (ii).

LemMma 2.2.3. Let

(I=si=n).

, e; 1EZ
“= { —eq =7
Then the followings hold :

i L={y (dergetof u (4t 5e)}

Yel

g b deioly v e L)

XeC Yecr 4

In particular, if C is doubly even, L=Ly(C).
(i) If L is even, L———LZ(C) where 0=0 or 1 and 6=n/8 mod 2. Thus Theo-
rem 1 holds for a frame of type C.

Proor. Let u+(1/2ex=L (usd, and X=¢). Then

1 1
u+7ex = u+—2‘(eXnZ+eX~(XnZ))

1
= u+§-(—~e&nz+e5:-<xﬂz>) = u—exnz+ —2—e,’r,

which yields, by (i),
L= Lgd={ Y (et gefof g (k5o

If u+(1/2)ex.z+1/4)eg=L (X=C and us A,.), we have ¢’=¢ or 1—e¢ according
as X’ or ¢”. Also we see
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1 1 1 1
u+§ex+z+zeg =u—ez+ —z‘efri—zeb s
which yields

L ____{ U (As_{__é_e&_*_;ll_eb)}u{ U/,(Al_s-l-—;e{»-%-leb)}

xe&c Y&c 4

as |Z]=even. This proves (i). (ii) We have L>x=v;+(1/2)ez+(1/4)eq and
vzeA.. Since L is even, we see (x, x)=(vz, vz)-+(1/8)| 2| mod 2 by using the
fact |Z|=even. As (vz,vz)=emod2, we get e=n/8mod2. This proves
Lemma 2.2.3

REMARK 2.2.4. (i) If C is not doubly even, we can take ¢=0 in the ex-
pression of L in (i). In fact, let Ye¢” and

e} Y
ei = { :
—e; Y.
Then we easily see that the expression of L with e=1 is changed into the one

with ¢=0. (ii) If € is doubly even, L=L¢(C) is even if and only if n/8=¢
mod 2.

§3. Some automorphisms of L.

3.1. In this section, we will give some automorphisms of L which will be
used in §4 for the proof of [Theorem 2.

Let L be an integral lattice with a frame §,={+e¢,, ---, +¢,}. We assume
that a code € and vectors e, ---, ¢, are chosen so that L can be expressed as
in [Theorem 1. Note that the code C is self-orthogonal (resp. doubly even) if
L is integral (resp. even).

LEMMA 3.1.1. Let TeC with |T|=4. Define an orthogonal transformation
tr of E™ as follows:
~1—eT—ei ieT
tr(e) =1 2
é; Z$ T.
Then tp=Aut(L).
PROOF. Let r=77. We easily see 7(e;+e;)= L, and also z(e;)e L if &, is
of Type A. Let X=C. Then we have

1 1 1
T(Tz'ex) = "Z‘T(eXnT)‘i‘?T(QX—(XnT))

1/IXNT 1 XNT|, 1
:7(| 5 ler—exnz')-l-?ex—wnr):l“”z—ler+7ex~exf\r-
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Since T<cC and so | XN\T| is even, we get t((1/2)ex)= L. Thus reAut(L) if
Fo is of Type A or B. As z((1/4)eg)=(1/4)eq, we have t=Aut(L) also when
F, is of Type C. q.e.d.

3.2. Now we will prove for F,of type A. Let F={%f,, =1,
-, +f,} be an arbitrary frame of Type A. Note that f,eL. If f,eF—
(FNF,), fi is of the form (1/2)Z,erte; for some T C with |T|=4. We
note that, if ¢ is an orthogonal transformation of E™ such that e(e;)=c¢;e;
(s;==%1), ¢ is an automorphism of L. Applying a suitable ¢ to f;, we have
e(f1)=(1/2)er—e, where p=T. Now apply rr defined in to vec-
tors in &(F). Then we have r7e(f;)=e¢, and rre(f;)=9, if f,=F,NTF, and so
| FNGFo| <|rre(F)NTF,|. Now proceeding by induction on |F,N\F|, we can get
an automorphism ¢ such that ¢(F)=%,. q.e.d.

3.3. DEFINITION. A partition II={T,, T,, -, T} of £, is called a T-
decomposition of a code € if the following conditions are satisfied :

(3.3.1) Qn = TIUTgU e UTn/4

.. n
(3.3.2) 1T =4 (1= <7)
(333) TiUTj ecC for any Zi].

LEMMA 3.3.1. Let II={T,, -+, Tan} be a T-decomposition of €. Define
orthogonal transformations ¢ and ¢ as follows:

fp(ei)=—§-er——e,~ ieTell

—é—er—ei ZETEH, T=+S

¢(ei) = 1
ei——ges ieS

where S is an arbitrarily chosen tetrad in II. If L is even, then the followings
hold :

(1) if Ti&C* for some i (and consequently for all i), then o=Aut(L),
(ii) 2f Fo is of type C, then Aut(L)>¢ or ¢ according as n/8=0 or 1 mod 2.

PrOOF. We easily see ¢(e;+e;), ¢le;+e;)e L. Let Xec. Then

go(—%—ex) = %Tgﬂw(exnr) = é—;(‘ X/;TI eT“‘eXr\T>

1 1
__Z;‘XmTleT—E-eX ............... (#)'

Now in order to see ¢((1/2)ex)= L, we divide into two cases:
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Case I: | XNT]| is even for some T<ll.

Case Il: |XNT)| is odd for all T<1l.
Firstly suppose that we have Case I. Then |XNT]| is even for all T<Il by
and the number of T with |XNT|=2 is also even because C is doubly
even. Then from (#) we see ¢((1/2)ex)= L. In particular, if TC*, we have
o((1/2)ex)= L. Next suppose that we have Case II. Then from (#) we see

1 1 1 1
o(gex) = geatgZer—gex
where the summation >’ runs over all Tl with | XNT|=3. If n/8=0 mod 2,
we have ¢((1/2)ex)< L as the number of Tl with | XN\T|=3 is even. Now
we have ocAut(L) as ¢((1/2)ex)=L in both cases and ¢((1/4)eg)=(1/4)eq.
Also we have

§(3ex) = 3{ T dexnnrtPlexns)}

T#S

2
= _;_{HS(IX;\TI €T~"€Xn2')+(eXf‘S_ |X95|es)}
1

1XNS| 1
4T§71XﬂTleT 2 egs 29X+9X(\S-

In the same way as above, if n/8=1mod8, we get ¢((1/2)ex)=L and so ¢<
Aut(L) as ¢((1/4)e0)=(1/4)eq—(1/2)es. q.e.d.

LEMMA 3.3.2. Let II={T,, -, Tan} be a T-decomposition of C. Assume
that T;C*—C for all i. Then the followings hold:
(i) there exists A=C* such that |ANT:|=1 for all i,
(ii) define p as follows: if icTell,
Ser if i}=ANT
oes) = 1
eAnT+ei~—2*eT if ieT—(ANT).

If 94 is of Type B and L is even, then p=Aut(L).

PROOF. (i) Let €¢,=<C, T|T<IIl) which is a code generated by € and all
T<ll. Take A’ect—cCi. Then |A'NT|=o0dd for all T. Let A=A"+XT
where the summation runs over all T with |A’/"\T|=3. Then A satisfies the
condition in (i).

(ii) It will be sufficient to see p((1/2)ex)=L for any X<C. Since p(er)=
2e4nr, We see p((1/2)ex)eL if X is a union of even number of T<ll. As
| XN\T| is even for any T<ll, we may assume |XNT|=0 or 2 by adding
even number of the T'eIl to X. Furthermore, as |XNA| is even, so is the
number of T<Il with | XNANT|=1. So we may assume XNANT=¢ for



76 M. KitazumMme, T. Konpo and 1. MivamMoTO
any T<ll. Then we see

1 1 1
P(‘z—ex) = *Q‘TAZ‘_:HP(QX(\T) = ”2'“2/(2e.mr+€xf\r—éz')
1 1
?ex~'§2’er e L ,
where 3)’ runs over all T with XN\T=+@. (Note that € is doubly even and so
the number of such T is even.)

= Veanr+

REMARK 3.3.3. Let L be an integral lattice with a frame of type B. Then
we can prove that if an orthogonal transformation p of L is defined in the
same way as above by using an expression (xxx) of L in Remark 2.1.4, we still
have p=Aut(L).

§4. The proof of Theorem 2.

4.1. Let L be an even lattice in E" with a frame F,={=*e,, ---, +e,} of
Type B or C. We will assume n>16 or n>32 according as &, is of Type B

or C. Through §4, F={xf,, ---, = f.} is a frame of L of the same Type
as go. ’

LEMMA 4.1. f;==e; for some J or f;=(1/2)>icreie; where QDT, |T|=4
and St:il. '

ProOOF. Let f;=>}a:;¢; (1=i<n). Note that the matrix A=(a;;) is an
orthogonal matrix. Then it will be sufficient to see a;;=(1/2)Z for all ¢, j.
Let ¢ be of type B. Then a;;&(1/4)Z because 2f,= LC(1/2)A(ey, -+, e,). Sup-
pose a;;=(1/4)Z—(1/2)Z for some ¢, j. If a;,=(1/2)Z for some k, we have
e;ter=221(a;+ac)fe and ay+a, =(1/4)Z—(1/2)Z which is impossible because
ej+e, s LC/2)A(fy, -+, fn). Thus a,,=(1/4)Z—(1/2)Z for all k. By inter-
changing the role of {e;} and {f;}, we get a,,=(1/4)Z—(1/2)Z for all k. Thus
we must have a,;€(1/4)Z—(1/2)Z for all i, ;. Then 2=(e;, ¢))=(1/8)3;x%
(0#x;=4a;;=Z) and so n=16. As we are assuming n>16, we must have
a;;€(1/2)Z. Next let & be of Type C. Then a,;=(1/8)Z. Suppose a;<
(1/8)Z—(1/4)Z for some 7, j. Then the same arguments as above yield a;;&
(1/8)Z—(1/4)Z for all 7, 5. Then e¢;4e, or ej—e,=(1/2)A(f1, -+, f2)+(1/4eg
and so (e;+ex, e;+ex) or (ej—es, e;—e,)=4=(1/8)2x% (0+x,&Z). Thus n<32.
Next suppose a.;(1/49)Z—1/2)Z for some 7, ;. If a,;=0 for some %, we have
fitfe=2Zautar)ec(1/2)A(ey, -+, en)+(1/4)eg and so we get n<32 from
(fitfr, fi+fr)=4. Therefore a,;#0 for all .. Then n=<16 because >;,a%
=1 and O0#a,;=(1/4)Z. Thus we have a;;=(1/2)Z for all 7, j if n>32.

4.2, For f,€9, set
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supp(fs) = {jlai;#0},  where fi= 3 aye;.

Then |supp(f:)|=1 or 4 by Lemma 4.1. In the following, we assume that a
code ¢ and vectors e,, ---, e, are chosen so that L can be expressed as in
fTheorem 1. The the following remark is important:

(4.0) Let XeC. Then (1/2)Xiexcie;= L (e;==x1) if and only if the number
of i with e;=—1 is even.

Now we will prove a lemma which is a key to the proof of [Theorem 2.

LEMMA 4.2. One of the following holds:

(1) There exists c=Aut(L) such that ¢(F)=9,.

(ii) There exists a T-decomposition II ={T,, ---, Tuss} such that each tetrad
T, coincides with supp (f;) for some f;,=9.

The proof of will be done by being divided into several steps.

(4.1) If |supp(f:)| =1 for some f:=F, then (i) of holds.

Proofr. If |supp(f,)|=4, we have supp(f,)eC as f;—f;=L. Then as
f;eL, (4.0) implies that f; is of the shape +((1/2)er—e,) where T =supp(f;)
and pT. Applying 7r defined in Lemma 3.1.1, we get tr(f;)==%e, and t7(f+)
=9, for any f,€9F with |supp(f:)|=1, and so |FNTF|<|FNTr(F)|. Pro-
ceeding by induction on |F,NF|, we can find e=Aut(L) such that ¢(F)=9%,.

(4.2) Now in order to prove we may assume |supp (f:)| =4 for
all f;€g. Then the matrix A=(a,;) has just four nonzero elements +1/2 in
each row and each column. Let /" be a code generated by supp(f:) (f:iEF).
Then I is a doubly even code generated by tetrads. So, by Theorem 6.5 in
Pless and Sloane [9], I” is isomorphic to a direct sum of components &, & and
Dsr. (See §5 for the definition of &,, & and 9D,,.) Correspondingly the matrix
A becomes a direct sum of some orthogonal matrices of degree 7, 8 and 2%.

(4.3) If supp(fuNsupp(fo)Tsupp(fs) for fi, fo, f:€F, we have supp(fs)=
supp (f1) or supp(fa).

Proor. This is clear if supp(f,)=supp(f.). So let supp(fi)Nsupp(fs)=
{a, b}. Then &,46:0+¢1,625=0 by orthogonality between f, and f, where f,=
(1/2)2%,85c¢.. From this fact, we see {esq, €50} =1 {€1a, €15} (resp. *+{csa, €2})
and then orthogonality yields supp(fs)=supp(f,) (resp. =supp(f3)).

(4.4) Let I" be a component of I'. If there exist three elements fi, fi, fs
of F whose supports coincide and are contained in I, we have I"'=9,.
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PRrROOF. If f, is the 4th vectorc&F with supp(f,)Nsupp(f.)# @, the ortho-
gonality of columns of the matrix A yields supp(f.)=supp(f;). Thus we must
have I"=<{supp (/1)) =D,.

(4.5) Let I'" be a component of I'. If there exist distinct elements f, and
fi with supp(fi)=supp(f)l"”, then we have I'=D,, for some m and vice
versa.

PROOF. Let fi, f2, -+, fm-1 (m=3) be a maximal set of & subject to the
conditions that

(1) supp(fi)el” (1=t=m-—1),

(2) there exists fi=F such that supp(f,)=supp(fi) and f,#f1,

3 2 if |i—7]=1

@ Iswpp(fonsupp(fAl=1{ o1,
Namely supp(f,), -, supp(fm-1) is a natural basis of 9,, (cf. §5.2) if a suitable
permutation is applied to {e;, e, ---, ¢,}. In the following arguments, it is
important to recall a fact mentioned in (4.2):

(*) The matrix A has just four non-zero elements +1/2 in each row and each
column.

Let supp (fi)Nsupp(f.)={a, b}. By (%), there exists f;=F such that f;#f.
and a=supp(f;). Then the orthogonality of columns of f,, fi, fe, f: yields be
supp(f3). By (4.3) and (4.4), we must have supp(f.)=supp(fs). Similarly
we get Ff;+f; (t=1, 2, ---, m—1) with supp(fi{)=supp(f,). Furthermore we
can find f,=% such that f,% fu-1, fm-1 and supp (fu)Supp (fm-1)*@. Then
by the maximality of f,, ---, fm-: and (%), we have |supp(fa)supp(f,)|=2
and |supp (fa)Nsupp(f:)|=0 (1<i<m—1). Also, by (x) again, we can find
Fofhn#*fn with supp(fr)=supp(fn). Then a 2mXn matrix with f,, f1, ---,
fm, fmn as rows is of the shape (X, 0) after a suitable permutation of columns,
where 0 is a 2mX(n—2m) zero-matrix and X is an orthogonal matrix of degree
2m which is a direct sum component of A corresponding to I (cf. (4.2)). Then
from the shape of X we see I”"=<{supp(f,)|t=1, 2, -, md>=D,n,. Conversely
let I"=9D,, (m>1) and supp(f,), supp(fe)=I"’ with |supp(fi)Nsupp(f.)|=2.
If fsis a vector with supp (f,)Nsupp(f2)N\supp(f:)# @, then we get supp(f,)
Nsupp (f.)Csupp(fs) from the structure of D, (cf. (5.2.1)) and so, by (4.3),
supp(fs)=supp(f,) or supp(f.). This completes the proof of (4.5).

(4.6) Suppose that I' has a component I'" which is isomorphic to E; or Don
where m is odd. Then (i) of holds.

ProoF. Firstly we will show that supp(f:)C for some f,=I”. Suppose
that I"=¢&,. By (4.5), there exist seven distinct f;€ & such that supp(f)el”.
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Since &, posseses seven non-zero elements, we must have supp (f;)-+supp(f.)=
supp (f.) for some f,, f:, f. whose supports are in /. But then supp(f.)EC,
because f;+f.=L and so supp(f,;)+supp(f;)=C. Next suppose ["=D,,. Let
f1, ==+, fn be as in the proof of (4.5). Then as f,—fin€L (1<s<m—2), we
have CNI""=supp (f»)=2r'supp(f,) if m is odd. Now take supp(f)ecNI”.
Then as f;= L, (4.0) implies that f; must be of the shape +((1/2)er—e,) where
T=supp(f:)>p. Applying rr defined in [Lemma 3.1.1to f;, we get zo(f:;)=te,.
Then (4.6) follows from (4.1) applied to r4(F).

(4.7) [Lemma 4.2 holds.

PrROOF. By (4.6) we may assume that each component of I” is isomorphic
to & or Dy, (m=even). If f,, -, fm-, are taken in a component=9,,, so that
supp(fy), -+, supp(fm-1) is a natural basis of 9,,, then any two of supp(fs:-1)
(1=t=m/2) are disjoint and any two union of them arein €. Also we can get
supp(f:) and supp(f,;) in a component=&; with supp(f:)N\supp(f;)=@. Thus
we can find a T-decomposition of C satisfying the condition in (ii) of
4.2.

4.3. Now we will prove [Theorem 2. By [Lemma 4.2, we may assume that
there exists a T-decomposition {T,, T, -+, Tr;s} of C such that each T; coin-
cides with supp(f;) for some f;=F (1<i<n/4). The following two cases will
be considered: Let f,=(1/2)2:er,e.e:.

Case 1. The number of it=T, with ¢,=—1 is odd. In other words, f, is
of the shape £((1/2)er,—e,) where p&T,=supp(f,).

Case lI. The number of =T, with e;=—1 is even.

We note that if f, is as in Case I (resp. CaseIl), so are all f,e%F (k=1, ---, n)
as f,—fr=L. Suppose that we have Casel. Let &F be of Type B. If T,&CH,
there exists Xec¢ with |XNT,|=odd and then we have ((1/2)ex, fi1)=
| XN\T,|/2 mod 1, which means that (1/2)ex& A(fy, -, fo)*=Q/2)A(f1, -+, fr),
contrary to the assumption that & is of Type B. So we must have T,=C*.
Then if ¢ is an automorphism of L defined in Lemma 3.3.1, we get ¢(f,)=x+e,.
By (4.1) applied to ¢(F), we can get d=Aut(L) such that op(F)=9F, Next
let § be of Type C. Then by using ¢ or ¢ in Lemma 3.3.1 according as n/8=0
or 1 mod 2 and applying (4.1) to ¢(ZF) (resp. ¢(F)), we get e =Aut(L) such that
cp(F) or o(F)=F,. Now we are in Case II. Firstly suppose there exists
Xec with | XNT;|=o0dd. Then if ex is an orthogonal transformation defined
by

e; 1&EX

EX(ei)Z{ —e; ieX
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ex(f1) has the shape as in Case I and so, by (4.1), we have o =Aut(L) such that
oex(F)=F, Sowe may assume T,=C*. Then & must be of Type B. In fact,
as we see (1/2)ex, fi), (1/4)eq, fr)=Z for all XeC and all f,=%F, we have
1/2ex, (1/Deos A(f1, -+, f2)*=1/2)A(f,, ---, f») which would be a contradic-
tion if ¢ were of Type C. If p is an automorphism of L defined in
3.3.2, we have |[supp(p(fi)|=1 and then (4.1) yields c=Aut(L) such that
o(0(F))=%,. This completes the proof of [Theorem 2.

REMARK 4.3.1. (i) Let L be an integral lattice with a frame of Type B.
If we use an expression of L in Remark 2.1.4 and an automorphism p in Remark
3.3.3, the same arguments as above apply. Therefore holds for
any integral lattice with a frame of Type B. (ii) For a frame of Type C, the
situation is not the same. In fact, let ¢ be a doubly even self-dual code and
L=Ls) where n/8=—emod2. Then L is not even. Assume that C has a
T-decomposition II={T,, ---, Trs}, and set f,=(1/2)er—e; GT<Il). Then
we see that F={f,, ---, f.} is a frame of Type C of L and the code associated
with F is <X, A+T,| X€en<T >*> where A is an element of € with |ANT,]
=odd. But this code is not doubly even as | A+T,|=2mod 4 and, in particular,
is not isomorphic to C.

§5. Some examples.

5.1. We denote by F'% a vector space of row vectors of length n over F,,
the field of 2 elements. To X=P(£2,) we assign a vector vy=(x;, Xa, =+, Xn)
in F? as follows:

1 ieX
Xi— { .
0 iEeX
Then a mapping X—vy yields an isomorphism P(2,)=F7 as a vector space

over F,. Thus a code of length #n, i.e. a subspace of P(2,) can be regarded
as a subspace of F'%.

(I<ign).

5.2. Let
D; ={2—1, 2, 2i+1, 2i+2} € P(2,) a.=1{L,3, -, n} € P(R,),

where #, is the largest odd integer <n.
Now we define codes &;, & and D, as follows:

&: =Dy, D, a;y C P(2,),
Es =<Dy, Dy, Dy, as) C P(£2y),
Do =D | i=1,2, -+, k—=1> C P(£,:).

Then &;, & and 9,, are doubly even codes generated by tetrads (4-element
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subsets of P(£2,)) of length 7, 8 and 2k respectively. It is known that any self-
orthogonal code generated by tetrads is isomorphic (equivalent) to a direct sum
of components &;, & and 9. (cf. Theorem 6.5 in Pless and Sloane [9]). Let
us call the set of the generators a,, as, Dy, D,, --- etc. of &;, & and 9., a natural
basis of those codes. We see from the structure of 9,, that

(5.2.1) if X; (i=1, 2, 3) are elements of D,; such that | X;|=4 and X,NX;NX;
+@, then we must have X,NX,CX;.

Let
Egp = <D1, Qg | Z=1, 2, ey, 4k'—1> C P(Qn> N

&Esr (B=1) is a doubly even self-dual code of length 8. When we regard &,,
&s: and 9., as a subspace of F'%, their generator matrices are

1111
1111
1111 1111
(1 %1%11), HETE ( 1L )
111---11 1111
sizes 3X7 (4 —1)X8k (E—1)X2k

respectively.

5.3. It is not difficult to see that, for C=¢&;, & or D,,, L4(C) is a lattice
of root system of type E,, Es or D, respectively. Now we will show

(6.3.1) Lp(28) = Lp(€16) but Le(2€5) & Le(€4e),
(5.3.2) Lo(38s) = Lo(€s+E16),
(533) LC(488) = LC(zgls) $ LC(288+816)}

which give counter examples to or 3 in small dimension cases (&
denotes a direct sum of m copies of &;). Every lattice exhibited in (5.3.1)-
more generally of the form Ly(k&s+1&,) (U=B or C), possesses a frame
F={+f;|i=1,2, -} of Type A:

1 1 1 1

1/1 1 -1 -1

(f1, far [3 fo) = (e, e, €5, e)H, where Hzf 1 -1 1-—1
1-1-1 1

where indices of the f; and the ¢; should be taken mod4. Let ¢’ be a code
associated with the frame & of Type A for each lattice. The proof of (5.3.1)-

can be done by calculating a code ¢’. Now we will prove Let
L=LgC)=L4(C’") where Cis 2€; or £;;. From the factthat L>(1/2)e,+e,+e5+¢;)

=1/2)(f1+ fe+ fs+fo) or (1/2)fs+fatfrt fs), We see
(5.3.4) c>11,2,5,6} mod8, {3,4,7,8} mod8.
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Expressing (1/2)(ei+1+eirsteirs+eirs) (=0 or 8) or (1/2)(e,+tes+e,+ey,) by the
fi, we see ' : ‘
o= { {1, 3,5,7}, {9, 11, 13, 15} if c=&,,
{5, 6,9, 10}, {7, 8, 11, 12} if C=é&y,.
Also expressing e;—eg or (1/2)(e,+ --- +e,5) by the fj, we see
{1, 2, 3, 4,9, 10, 11, 12} if c=&,,
e = { .
{1,3,5,7,9,11, 13, 15} if C=2&y,.

Thus, from (5.3.4)-(5.3.6), we get generator matrices for C’,

(5.3.5)

(5.3.6)

11 11 1 11
11 11 11 11
1 11 11 11
11 11§, 1 11
1111 1 11
1111 11 11
1111 1111 : 11111111

(blank denotes 0)

according as C is 2&; or &,,. By rearranging columns suitably, we find that
these generator matrices yield equivalent codes both of which are generated by
29, and a,. Thus we get LB(Zé’s)E Ly(&,). When we add a word
(1000100010001000) to the last row of the above matrices, we get a generator
matix of &, or 2&;, respectively. Since (1/4)(e,+ -+ +e1e)=(1/2)(f1+ fs+ fot+ f1s)
corresponds to a word (1000100010001000), we get

Lo(28s) = L4(€1s) and = Lo(E1e) = Lu(2Es).

In particular, Lo(2€5)% Lo(€16) because 2€3% &, and s0 L,(2€5)% L4(E1¢) by
Similarly we can give a generator matrix of a code ¢’ for.each
lattice in [5.3.2) and [5.3.3). In fact, for lattices in C' is_generated by
39; and row vectors of the following matrix (glue words for the direct sum
3Dg):

aal abbd
Oaa], O0aal, where a=a,, b=(11000000) and c=a-+b
chb, cal

according as C is 3&; or &€3+&,,. Those two codes are equivalent and so we

get [5.3.2). Also for lattices in C’' is generated by 49, and glue words
for the 49,

aa(0 aa0 aa00
0aal ' 00aa Oabb
00aa |’ bbbb |’ 00aa
bbbb a0a0/ bbal

according as C is 4&;, 2&,, or 2&;-+&;s respectively. Clearly the first and the
second matrices yield equivalent codes, while the third one is not equivalent to



Even lattices and doubly even codes 83

others.

REMARK. There exist four doubly even self dual codes of length 40 with
the core (a subcode generated by all tetrads) 59; and the following glue words:

aa000 aa000 abb00 aa000
0aal0 0aal0 0bbbb chbb00
00aal, 00abb , 0aal0, 0acal
000aa 000aa 000aa 00bbc
cbbbb cbbal calal 000aa

respectively. The first three codes come from lattices of the form L (k&s+1&5;)
where (%, )=(5, 0), (3, 1) or (1, 2), while the last one does not.

§6. The family 4.

6.1. In this section, we will see that holds for the family 4,
(§1.3), although just a brief outline will be given.

Let $,={*e,, -, +e,} be a frame of an even lattice L of Type B or C
and F={=*f,, ---, = f,} be a frame of L of the same type as F,. Set, as in §4,

fi:ilaijej G=1,2,,n) and A= /(ay).
p2

If n<32, the orthogonal matrix A has several possibilities other than those in
Lemma 4.1. In particular, we see from the proof of Lemma 4.1 that

(6.1) If n=32 and A is not as in [Lemma 41, F, is of Type C and 44 is
H, O)
0 H,/°
6.2. Now let L be an even unimodular lattice in E™ having no 2-vectors.
Then &, is a frame of Type C. If A is as in Lemma 4.1, the same arguments
as in §4 can be applied and so holds in this case. Therefore, by
(6.1), we may assume that 44 is a direct sum of two Hadamard matrices H,
and H; of degree 16. But as we are assuming that ¢ has the minimum weight
=8, we see that both H, and H, must be equivalent to the Hadamard matrix
H, of the character table of an elementary abelian group of order 16:

a divect sum of two Hadamard matrices H, and H, of degree 16:4A:(
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e i o o = S
T o o
++++  ———— . ————

e
L = el B
Ft——  F——  ——t it
tt—— ot =ttt
dt——  ——tt b= ——tt
Ho:
fedt— et b o
e s
f—t— et A= —t—1
F—t— =+ =+ -
T = S S S
bt At -
F——t  —tt— F——F bt
fe—t - e 4

where + and — denote +1 and —1 respectively. In fact, it is known that
there exist five inequivalent Hadamard matrices of degree 16, but those other
than H, yield codes with minimum weight 4.

6.3. Let g,, be a code of length 16 generated by vectors
—%—(vl +v,) mod 2 (e F}),

where v, and v, run over all row vectors of H,. Then a generator matrix of
Gy is

u100

Ouul u=(1111)
002 u where x=(0101)
Yyyy y=(0011).
XXxx

Moreover ¢i; is generated by &,, and six vectors of length 16:
(6.3.1) 000, yy00, xx00, y0y0, x0x0, vvvv, where v=(1000).
Also we have that

(6.3.2) the minimum weight of vectors in each coset (#G,,) of the quotient space
@t/8,, is either 4 or 6, and

(6.3.3) there exist 35 cosets of Gis/Gis with minimum weight 4 whose representa-
tives are as follows:
(i) u000, vvvy,
(ii) ww00, w' w00, wOw0, w'0wl, Owwl, 0w’ wd
where w=x, y or z=(0110)=x+y and w'=u+w,
(iii) wvivoov, vvvw, Vo where i=1, 2, 3, 4 and vi:(OOfO), ViV VD
where {i, j, B} is any permutation of 2, 3, 4.
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REMARK. @, (resp. Gi;) is the lst (resp. 2nd) order Reed-Miiller code of
length 16.

6.4. Since 44 is a direct sum of two H,’s, ¢ contains a direct sum 28,
of two G,’s. Let w,w,=C be a glue word for 24,,, where w, and w, are
vectors of length 16. Then from (6.3.2) and the fact that the minimum weight
of =8, we see that a coset of ¢{/@,, containing w, is uniquely determined
by w;. So we write w,=f(w,). Now we will determine f(w,) where w, runs
over all vectors in (6.3.1). Note that f(w,) can be taken as a vector of weight
4 by (6.3.2). When we rearrange e¢,,, ---, s and fq,, ---, fs2 suitably by per-
mutations which are induced from automorphisms of H, and &, (cf. (ii) and
(iii) of Lemma 6.5.1 below), it turns out that we may assume

f(u000) = 000 and  f(yy00)= yy00.

Instead of the details of the proof of this fact, typical examples will be given:

ExAMPLE. (1) From (ii) and (iii) of Lemma 6.5.1 we see that Aut(g,;) acts
transitively on the set of the cosets of @¢{;/2,, of minimum length 4. For ex-
ample we have

(y300)w, = 1000, (y’y00)asr,= yy00 (y'=y+u), (xx00)w,= yy00,
(x00x)rswsw; = yy00, (wuvv)w,wsw,w, = u000 etc.

Thus we may assume [f(#000)=x000. (2) We have eighteen possibilities for
f(yy00) i.e. vectors listed in (ii) of (6.3.3). For example let f(yy00)=0xx0
(the sum of vectors xx00 and x0x0 in (6.3.1)). Then we have 0xx0=x00x mod &,
(x00x)rswsw,=yy00 and (2000)r;w,w,=u000. In this way, we can find a per-
mutation which sends f(yy00) to yy00 and leaves x000 invariant for all possi-
bilities of f(yy00).

Now we see that f(y0y0) must be one of y0y0, y’0y0, 0¥y0, 03’30, xx00,
x'x00, 2zz00 or 2z’z00. Then by rearranging the e; and f; (17</<32) by per-
mutations which leave ©000 and yy00 invariant, we may assume f(y0y0)=y0y0
or xx00, and then f(xx00)=xx00 or y0y0 according as f(y0y0)=y0y0 or xx00.
Also we may assume f(x0x0)=x0x0 as f(x0x0)=x0x0 or x’0x0. Finally we
must have f(vvvv)=wvvwvv. Thus € is equivalent to one of two codes generated
by 24,; and glue words for 2¢,,

120002000 120002000
300y 500 300y y00
xx00xx00  or v0y0xx00
00500 xx00y0y0
x0x0x0x0 x0x0x0x0

vVvvvvvY vvvvovvvy
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respectively. (The first code is the 2nd order Reed-Miiller code of length 32.)
Then noting that the matrix A is still a direct sum of two H,’s, we easily see
that an orthogonal transformation e¢;—f; leaves L=L¢(C) invariant. This
proves for the family 4.

REMARK: It is known (cf. [5]) that 44, consists of five codes among which
just two codes contain 2G,.

6.5. We will give a lemma about Aut(H,), Aut{G,,) which was used in
§6.3. The proof is left to the readers.

LEMMA 6.5.1. (1) Aut(Hy)=2'*8.GL,(2) (an extension of GL.(2) by an extra-
special group of order 2°) and Aut(G,s)=Aut(8f)=2'-GL,2) (an extension of
GL,2) by an elementary abelian group of order 2%).

(i) A complement GL(2) of these groups is generated by the following per-
mutations of columns of H, or those of a gemerator matrix of G,; or Gi:

w; = (2, 3)(6, 7)(10, 11)(14, 15), we = (3, 5)(4, 6)(11, 13)(12, 14)
ws = (5, 9)(6, 10)(7, 11)8, 12), ry = (3, 4)(7, 8)(11, 12)(15, 16)
rs = (5, 7)(6, 8)(13, 15)(14, 16), rs = (9, 13)(10, 14)(11, 15)(12, 16).
For Aut(H,), also permutations of rows of H, should be accompanied :
w, = (5, 9)6, 10)(7, 12)8, 11), we = (3, 5)(4, 6)(11, 13)(12, 14)
ws = (2, 3)(6, 8)(10, 11)(14, 15), r, = (9, 13)(10, 14)(11, 15)(12, 16)
rs = (5, 8)(6, 7)(13, 15)(14, 16), rs = (3, 4)X7, 8)(11, 12)(15, 16).
(iii) The following permutations of columns of the gemerator matrix of Gy
are in Aut(G,e):
a, = (1, 23, 4)(5, 6)7, 8)(9, 10)(11, 12)(13, 14)(15, 16),
a, = (1, 3X2, 4)(5, 7X6, 8)(9, 11)10, 12)(13, 15)(14, 16).

These are in Aut(H,) too, if suitable permutations of rows of H, are accompanied.
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