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1. Introduction.

In this paper, we are concerned with the hypoellipticity and the solvability
in a Gevrey class. Let $G^{\sigma}$ be a Gevrey class of order $\sigma,$

$1\leqq\sigma\leqq\infty$ . For a
domain $\Omega$ in $R^{n}$ and a differential operator $P$ on $\Omega,$ $P$ is said to be $(G^{\sigma}-)$ hy-
Poelliptic in $\Omega$ if, for any subdomain $\Omega’\subset\Omega$ and any distribution $u\in D’(\Omega’)$ such
that $Pu\in G^{\sigma}(\Omega^{l})$ it follows that $u\in G^{\sigma}(\Omega’)$ . We say that $P$ is $(G^{\sigma}-)$ globally
hypoelliptic in $\Omega$ if, for any $u\in D’(\Omega)$ such that $Pu\in G^{\sigma}(\Omega)$ it follows that $u\in$

$G^{\sigma}(\Omega)$ . Though hypoelliptic operators are globally hypoelliptic, there are
considerable gaps between these notions. In fact, the hyperbolic operator
$(\partial/\partial x_{1}-\tau\partial/\partial x_{2})^{2}$ on $T^{2}=R^{2}/2\pi Z^{2},$ $x=(x_{1}, x_{2})\in T^{2}$ is globally hypoelliptic for
some real value $\tau$ (cf. Greenfield-Wallach [4]).

In Section 2, we discuss solvability, hypoellipticity and non hypoellipticity
in $G^{\sigma}$ for operators satisfying a resonance tyPe condition $(\Re)$ . In fact, we give
equations which are $G^{\sigma}$ -globally hypoelliptic for $\sigma$ near 1, and that are not $G^{\sigma}-$

globally hypoelliptic for large $\sigma$ . We note that such examples are known for
local hypoellipticity. But, our example does not follow from such examples
because global hypoellipticity does not necessarily imply local hypoellipticity.

In Section 3, we study the resonance type condition $(R)$ in Section 2. By
Greenfield’s example, we immediately see that $(R)$ is not necessary for the
global hypoellipticity, in general. Instead of $(\Re)$ , we introduce a so-called
Siegel condition in $G^{\sigma}$ (cf. (3.2)), which is weaker than $(\Re)$ . We consider
equations treated in [16], namely, equations satisfying the condition (A. 1) which
follows. Then, the Siegel condition is necessary and sufficient for $G^{\sigma}$ -global
hypoellipticity. We also give an example such that we cannot drop (A.1), in
general (cf. Remark 3.3). We also note that hyperbolic equations as well as
elliptic equations may satisfy the condition (3.2).

The last section is devoted to the study of the solvability of semilinear
equations. As applications of the arguments in \S \S 3 and 4, we show the exis-
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tence of periodic solutions for hyperbolic equations whose ratio of periods is not
rational (cf. Example 4.2.).

2. Solvability and hypoellipticity under resonance type restriction.

We consider the following equation on the torus $T^{2}=R^{2}/2\pi Z^{2}$ ,

(2.1) $Pu=(D_{x}+ia(x)D_{y})^{2}u-(aD_{y}+b)u=f(x, y)$ ,

where $D_{x}=i^{-1}\partial_{x}=i^{-1}\partial/\partial x,$ $a,$ $b\in C,$ $(x, y)\in T^{2}$ , and where $a(x)$ is a real-valued
real analytic $2\pi$ -periodic function on $R$ .

We assume that $a(x)$ does not change its sign and $a(x)$ is not identically
equal to $0$ , and without loss of generality we demand

(2.2) $a(x)\leqq 0$ , $x\in R$ .

We set $\omega=\int_{0}^{2}a(r)dr,$ $k(\eta)=a\eta+b,$ $\lambda(\eta)=k(\eta)^{1/2}$ , where we take the branch of

$\lambda(\eta)$ such that ${\rm Im}$ Z(\eta )$O. Then we assume

(Y1) $\omega\eta\pm 2\pi i\lambda(\eta)\not\in 2\pi iZ,$ $\forall\eta\in Z$, and $a\eta+b\neq 0$ for all $\eta\in Z$ .
For a domain $\Omega\subset T^{2}$ and l;$a\leqq \infty , we define $G^{\sigma}(\Omega)$ the set of all smooth

functions $f$ in $\Omega$ such that, for any compact set $K\subset\Omega$ , there exists $C>0$ so
that

$\sup_{(x.y)\in K}|\partial_{x.y}^{\alpha}f(x, y)|\leqq C^{|\alpha|+1}(\alpha!)^{\sigma}$

for all $\alpha\in Z_{+}^{2}$ , where $Z_{+}$ is the set of nonnegative integers. Here, if $\sigma=\infty$ we

put $G^{\sigma}(\Omega)=C^{\infty}(\Omega)$ . If we set $f_{\eta}= \int_{T^{2}}f(z)e^{-i\eta z}dz,$ $\eta\in Z^{2}$ , then the above condi-

tion is equivalent to
$\sup_{\eta}|\hat{f}_{\eta}e^{C|\eta|^{1/\sigma}}|\leqq C^{-1}$

with another constant $C>0$ . For $a>1$ , we denote by $G^{\sigma}(\Omega)’$ the space of $\sigma-$

ultradistributions (cf. [6]). We say that $L$ is $G^{\sigma}(T^{2})$ -solvable if, for any
$f\in G^{\sigma}(T^{2})$ , the equation $Lu=f(x)$ has a solution $u$ in $G^{\sigma}(T^{2})$ . We determine
the integer $k$ by

$2k= \max\{] ; \exists x\in T, \partial_{x}^{l}a(x)=0,0\leqq l\leqq_{J}-1, \partial_{x}^{j}a(x)\neq 0\}$ ,

and we set $\sigma_{0}=2+2/(2k-1)$ . Then we have the following

THEOREM 2.1. SuppOse that the conditions (2.2), (SP), and $1\leqq\sigma<\sigma_{0}$ are
satisfied. Then, the operator $P$ is $G^{\sigma}$ -globally hypoelliptic and $G^{\sigma}(T^{2})$-solvable
with a trivial kernel $ker\{P;G^{\sigma}(T^{2})’arrow G^{\sigma}(T^{2})’\}=\{0\}$ .
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PROOF. We shall prove the solvability. Suppose that $u$ solves (2.1) with
$f\in G^{\sigma}(T^{2})$ , allil. Performing the discrete partial Fourier transformation with
respect to $y$ in the equation (2.1), we get

(2.3) $((D_{x}+ia(x)\eta)^{2}-k(\eta))\text{\^{u}}(x, \eta)=\hat{f}(x, \eta)$ , $\eta\in Z$ .
From the well-known formulas in the theory of ordinary differential equations,
we can write formally, for each $\eta\in Z$,

(2.4) \^u(x, $\eta$ ) $=- \int_{\delta_{\eta}}^{x}e^{A(x.*.\eta)}\frac{\sin((x-s)\lambda(\eta))}{\lambda(\eta)}f(s, \eta)ds$

$+B(\eta)e^{A(x.\delta_{\eta},\eta)+ix\lambda_{(\eta)}}+C(\eta)e^{A(x.\delta_{\eta},\eta)-ix\lambda_{(\eta)}}$

where $\delta,=z(1-sign(\eta)),$ $A(x, s, \eta)=\eta jga(r)dr$ . Here, sign $(\eta)=1$ (if $\eta>0$ ) $;=0$

(if $\eta=0$ ) $;=-1$ (if $\eta<0$ ).

In order to obtain $2\pi$ -periodicity of \^u(x, $\eta$ ) $(\eta\in Z)$ in $\chi$ we need two con-
ditions

$\text{\^{u}}(2\pi, \eta)-\text{\^{u}}(O, \eta)=0$ , $\text{\^{u}}_{x}(2\pi, \eta)-\hat{u}_{x}(0, \eta)=0$ .

Let us assume, for the moment, $\eta>0$ . Then, by (2.4) and the periodicity of
$a(x)$ we have the system of equations for $B(\eta)$ and $C(\eta)$ ,

$\alpha_{+}(\eta)B(\eta)+\alpha_{-}(\eta)C(\eta)=F_{1}(\eta)$ ,
(2.5)

$\beta_{+}(\eta)B(\eta)+\beta_{-}(\eta)C(\eta)=F_{2}(\eta)+F_{1}(\eta)\eta a(2\pi)$ ,

where
$\alpha_{\pm}(\eta)=e^{\omega}-1$ , $\beta_{\pm}(\eta)=\pm i\lambda(\eta)\alpha_{\pm}(\eta)$ , $\omega=A(2\pi, 0, \eta)\eta^{-1}$ ,

$F_{1}( \eta)=(\lambda(\eta))^{-1}\int_{0}^{2\pi}e^{A(2\pi.*.\eta)}\sin((2\pi-s)\lambda(\eta))f(s, \eta)ds$ ,

$F_{2}( \eta)=\int_{0}^{2r}e^{A(2\pi.}\cos((2\pi-s)\lambda(\eta))f(s, \eta)ds$ .

It follows from $(R)$ that (2.5) has a unique solution

$B( \eta)=\frac{i\lambda(\eta)F_{1}(\eta)+F_{2}(\eta)+F_{1}(\eta)\eta a(2\pi)}{2\beta_{+}(\eta)}$ ,
(2.6)

$C( \eta)=\frac{-i\lambda(\eta)F_{1}(\eta)+F_{2}(\eta)+F_{1}(\eta)\eta a(2\pi)}{2\beta_{-}(\eta)}$ .

We need to estimate the growtb of $B(\eta)$ and $C(\eta)$ : If $f\in G^{\sigma}(T^{2}),$ $1\leqq\sigma\leqq\sigma_{0}$ ,
then we have, for some $M>0$

(2.7) $|B(\eta)|\leqq M^{-1}e^{-M|\eta|1/\sigma}$ , $|C(\eta)|\leqq M^{-1}e^{-M|\eta 11/\sigma}$ ,

for all $\eta\in Z$.
By (R), the absolute values of the denominators, $|\beta_{\pm}(\eta)|$ of (2.6) are bounded
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from below by some positive constant. On the other hand, since $f\in G^{\sigma}(T^{2})$ we
have, for $\hat{f}(s, \eta)=\int_{0}^{2\pi}f(s, y)e^{-i\eta y}dy$ ,

$\langle$ 2.8) $|f(s, \eta)|$ ;$ $K^{-1}e^{-K|\eta|1/\sigma}$

for all $\eta\in Z$, and all O;lls:$2\mbox{\boldmath $\pi$}, where $K>0$ is independent of $s$ .
It follows from $|\lambda(\eta)|\sim|\eta|^{1/2}$ as $|\eta|arrow\infty$ that

(2.9) $|e^{A(2\pi.*.\eta)} \sin((2\pi-s)\lambda(\eta))|\leqq C\exp(|2\pi-s|C_{1}|\eta|^{1/2}+|\eta|\int_{s}^{2\pi}a(r)dr)$ .

If $a(r)$ does not vanish at $r=2\pi$ , then it follows from (2.2) that the rlght-hand
side of (2.9) is estimated by $C\exp(-\epsilon|2\pi-s||\eta|)$ for some $\epsilon>0$ , if $|\eta|$ is
sufficiently large. Hence, by (2.6) and (2.8) we get (2.7).

On the other hand, if $a(r)$ vanishes at $r=2\pi$ exactly of order $2k$ , then the
right-hand side of (2.9) is bounded by

(2.10) $C\exp(|2\pi-s|C_{1}|\eta|^{1/2}-|2\pi-s|^{2k+1}C_{3}|\eta|)$

for some $C_{3}>0$ , if $\eta$ is sufficiently large. If $s$ and $\eta$ satisfy $|2\pi-s|^{2k}|\eta|^{1/2}>L$

for some large $L>0$ , we see that the term (2.10) is bounded by
$C\exp(-\epsilon|2\pi-s||\eta|^{1/2})$ for some $\epsilon>0$ . If otherwise, we have $|2\pi-s|^{2k}|\eta|^{1/2}$

$\leqq L$ . Hence, the term (2.10) is estimated by $C\exp(C_{1}’|\eta|^{1/2(1-1/2k)})$ for some
$C_{1}’>0$ independent of $\eta$ . These estimates, together with (2.6), (2.8), (2.9), and
the definition of $a_{0}$ show (2.7). We note that one deals similarly in case $\eta<0$ .
Hence, (2.7) is valid for all $\eta\in Z$. We also note that the same arguments
apply to the integrand of the first term in the right-hand side of (2.4). We
have the same estimate as (2.7).

It follows from (2.4) and (2.7) that the formal solution \^u(x, $\eta$ ), $x\in T,$ $\eta\in Z$ is
a discrete partial Fourier transform of the $G^{\sigma}$ -function $u(x, y)=\Sigma_{\eta\in Z}\hat{u}(x, \eta)e^{ty\eta}$ .
This proves the solvability, and, in fact, $G^{\sigma}$ -hypoellipticity of $P$, because the
adjoint operator $P^{*}$ is of the same type. $\square$

REMARK 2.2. (a) We note that the conditions (2.2) and $(R)$ in Theorem
$-\xi 2.7$ are superfluous for the $G^{\sigma}$ -global hypoellipticity of $P$. Indeed, we can re-

place them by $b\neq 0$ . In this case, we replace $\sigma_{0}$ by $a_{0}=2+2/(k-1)$ , where $k$

is the maximal vanishing order of $a(x)$ . This follows from the arguments of
[3] for the local hypoellipticity. We note that (2.2) and (R) are necessary in
order to assure the solvability.

(b) We point out that, in the case $f\in G^{\sigma}(T^{2})’$ one obtains in the same way
a solution $u\in G^{\sigma}(T^{2})’$ . In fact, we have the estimate, $\max\{|B(\eta), |C(\eta)|\}\leqq$

$L_{\epsilon}e^{8|\eta|1/\sigma},$ $\forall\epsilon>0$ in the line of considerations in [3].
(c) We note that the previous assertion is valid for operators of the type
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$P=(D_{x}+ia(x)D_{y})^{m}+ \sum_{j=0}^{m-1}B_{j}(x, D_{y})(D_{x}+ia(x)D_{y})^{m-1-j}$

where $B_{j}(x, D_{y})$ are analytic differential operators of order $j$ , OS $j\leqq m-1$ , as
in [3], and where $a(x)$ does not change the sign.

Next, we consider the relation between global hypoellipticity and the Gevrey
index $a$ . Let us consider the operator

(2.11) $P_{0}=(D_{x}+ia(x)D_{y})^{2}-b(x)D_{y}$ ,

where $a(x)\geqq 0$ is a $2\pi$ -periodic real-valued real analytic function on $R$ having
zero of exact order $2k$ at $x=0$ . Here, $b(x)$ is given by, for $|x|\leqq\pi$

$b(x)=-(cx^{2\mu-1}+id)^{2}$ for $|x|<1/4$ , $suppb(x)\subseteqq[-1/2,1/2]$ ,

and periodically extended on $R$, where $\mu\in N2\mu\leqq k,$ $c>0$ , and $d\in R/\{0\}$ . Then
we have

THEOREM 2.3. The operator (2.11) is $G^{\sigma}(T^{2})$-hyPoelliPtic for l:$a $\leqq a_{0}=$

$2+2/(2k-1)$ , but is not $G^{\sigma}(T^{2})$-hyPoelliPtic if $a_{1}\leqq a\leqq\infty,$ $a_{1}=2+4\mu/\{2(k-2\mu)+1\}$

$>a_{0}$ .

REMARK 2.4. We note that the operators (2.11) are the Prst examples of
global (non) hypoelliptic operators with such properties. The class of operators,
$G^{\sigma}$ -hypoelliptic for $\sigma$ close to 1, that are not $G^{\sigma}$ -hypoelliptic for $a\gg 1$ locally
in $R^{2}$ is known. (See Theorem 2.3 in [3], L. Rodino [8], L. Cattabriga-L.
Rodino-L. Zanghivati [2], T. Okaji [7], as well as S. Baouendi-F. Treves [1]

for two analytic vector fields.)

PROOF OF THEOREM 2.3. The hypoelllpticity follows from Remark 2.2 and
the standard arguments. According to the classical results on asymptotics for
ordinary differential equations (cf. [13]), there exists a solution $v(x, \eta),$ $\eta\in Z_{+}$

to the ordinary differential equation,

(2.12) $P_{\eta}v\equiv(D_{x}+ia(x)\eta)^{2}v-b(x)\eta v=0$ .

$v(x, \eta)$ has the form, denoting $\alpha(x)=\int_{0}^{x}a(s)ds$ ,

(2.13) $v(x, \eta)=\exp(\alpha(x)\eta-C(2\mu)^{-1}x^{2\mu}\eta^{1/2}-idx\eta^{1/2})q(x, \eta)$ , $\eta\in Z_{+},$ $|x|\leqq 1/4$ ,

where $q(x, \eta)\sim\Sigma_{j=0}^{\infty}q_{-j}(x)\eta^{-j/2}$ is an analytic classical symbol in $\eta^{1/2}$ such that,
for some constant $R>0$ ,

(2.14) $|\partial_{x}^{l}q(x, \eta)|\leqq R^{l+1}l$ ! , $1=0,1,2,$ $\cdots$ , $\eta>1$ ,

with $q_{-j}(x)$ verifying transport equations, $q_{-j}’’(x)+\theta(x)q_{-j}(x)=q_{-j+1}’’(x),$ $q_{-j}(0)=\delta_{j0}$
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( $\delta_{j0}$ stands for the Kronecker symbol), $j=0,1,$ $\cdots$ , $q_{1}$ $:=0,$ $\theta(x)$ being a real
analytic function expressed through $b(x)$ . One obtains the estimates (2.14) in a
standard way, solving consecutively the transport equations and taking into
account the analyticity of $\theta(x)$ .

Evidently, $\alpha(x)=x^{2k+1}\alpha_{0}(x)$ with $m_{1}\leqq\alpha_{0}(x)\leqq m_{2}$ for some $m_{1}>0$ and $m_{2}>0$ .
We choose $X(x)\in G^{1+\epsilon},$ $0<\epsilon\backslash \ll 1$ , and $\psi(x)\in G^{1+\epsilon}(R)$ so that

$suppX\subseteqq(-\infty, \delta_{1}]$ , $X=1$ on $(-\infty, \delta_{2}]$ , $0<\delta_{2}<\delta_{1}\ll 1$ ,
(2.15)

$supp\psi\subseteqq[-1/2,1/2]$ , $\psi=1$ on $[-1/4,1/4]$ .
We put

(2.16) $\omega(x, \eta)=\exp(\alpha(x)\eta-Cx^{2\mu}(2\mu)^{-1}\eta^{1/2}-idx\eta^{1/2})q(x, \eta)\psi(x)X(x\eta^{1/}\theta)$ ,

where $\theta=2(2(k-\mu)+1)$ . Then $W(x, y)= \sum_{\eta\in Z_{+}}\omega(x, \eta)e^{iy\eta}$ satisfies $PW\in G^{\sigma_{1}}(T^{2})$ ,
while $(0, O)\in C^{\infty}$-sing $suppW$ , i.e., $W$ is not smooth at $x=y=0$ . Indeed, it
follows from the assumption $C>0$ that $W$ is a distribution on $T^{2}$ . The condi-
tion $q(O, 0)\neq 0$ and the definition of $\psi$ and $X$ implies that $(0, O)\in C^{\infty}$-sing $suppW$ .
In order to show that $PW\in G^{\sigma_{1}}$ we note, by (2.12), (2.13), and (2.16) that

(2.17)
$PW= \sum_{\eta\in Z_{+}}P_{\eta}(v(x, \eta)\psi(x)X(x\eta^{1/^{\theta}}))e^{iy\eta}$

$= \sum_{\eta}(D_{x}+ia(x)\eta)v(x,$ $\eta\eta\psi/$

$+ \sum_{\eta}v(x, \eta)(D_{x}+ia(x)\eta)^{2}(\psi(x)X(x\eta^{1/^{\theta}}))e^{iy\eta}\equiv F$ .

We estimate the exponential factor of $v(x, \eta)$ . It follows from (2.13) and $\mu\leqq k$

that,

(2.18) $\alpha(x)\eta-(C/2\mu)x^{2\mu}\eta^{1/2}\leqq m_{2}x^{2k+1}\eta-(C/2\mu)x^{2\mu}\eta^{1/2}$

$=x^{2\mu}\eta^{1/2}(m_{2}x^{2(k-\mu)+1}\eta^{1/2}-C/2\mu)$ .

It follows from the definition of $X(x\eta^{1/}\theta)$ and (2.15) that $x^{2(k-\mu)+1}\eta^{1/2}\leqq\delta_{1}^{\theta/2}$ .
By taking $\delta_{1}$ sufficiently small, the right-hand side of (2.18) is bounded by
$-C(4\mu)^{-1}x^{2\mu}\eta^{1/2}$ . On the other hand, $P_{\eta}(v\psi X)$ does not vanish only if $\emptyset\not\equiv 1$ or
$X\not\equiv 1$ . This implies that the term $-C(4\mu)^{-1}x^{2\mu}\eta^{1/2}$ is bounded by $-K\eta^{1/\sigma_{1}}$ for
some $K>0$ . Since all terms in $F$ are in $G^{1+8}$ with respect to $x$ , and since the
differentiations with respect to $\chi$ and $y$ yield only some powers of $\eta$ it follows
that $F\in G^{\sigma_{1}}$ . $\square$

3. Necessary and sufficient conditions.

In Section 2 we have shown $G^{\sigma}$ -hypoellipticity and $G^{\sigma}$ -nonhypoellipticity
under the resonance condition $(\Re)$ . In this section, we consider the necessity
of $(R)$ .
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Let $m\geqq 1$ be an integer, and let $P_{m}(\eta)$ be a polynomial of degree $m,$ $P_{m}(\eta)$

$=\Sigma_{|\alpha|=m}a_{\alpha}\eta^{\alpha}$ with $a_{\alpha}\in C$, and let $q_{\beta}(\eta)$ be a function on $Z^{(:}$ such that, for
some $C>0,$ $|q_{\beta}(\eta)|\leqq C\langle\eta\rangle^{m-1}$ for all $\eta\in Z(l$ We denote by $q_{\beta}(D)$ the pseudo-
differential operator with the symbol $q_{\beta}(\eta)$ . We consider the following operator
on $T$ a:
(3.1) $P(x, D)= \sum_{|\alpha|=m}a_{\alpha}D^{\alpha}+\sum_{\{\beta_{1\leqq m- 1}}b_{\beta}(x)q_{\beta}(D)$ , $b_{\beta}\in G^{s}(T^{d})$ .

We expand $b_{\beta}(x)$ into Fourier series, $b_{\beta}(x)=\Sigma_{\gamma}b_{\beta,\gamma}e^{i\gamma x}$ , and we define $\Gamma_{P}$

as the smallest closed convex cone with apex at the origin which contains all
$|$

$\gamma$ such that, $b_{\beta.\gamma}\neq 0$ for some $\beta$ . If $b_{\beta}=0$ for all $\beta$ , then we set $\Gamma_{P}=\{0\}$ . We
set $P(\eta)=P_{m}(\eta)+\Sigma_{|\beta|\leqq m-1}b_{\beta.0}q_{\beta}(\eta)$ . Our major premise is

(A. 1) $\Gamma_{P}$ is a proper cone, that is, $\Gamma_{P}$ contains no ray.

Moreover, we assume

(A.2) For every $\xi\in R(1\backslash \{0\}$ such that $p_{m}(\xi)=0$ , we have $\theta\cdot\nabla_{\xi}p_{m}(\xi)\neq 0$ for all
$\theta\in\Gamma_{P}\backslash \{0\}$ .

THEOREM 3.1. SuPPose (A. 1) and (A.2). Then, $PisG^{S}$-globally $hy$PoelliPtic,
if and only if a Siegel condition

(3.2)
$\eta^{arrow\infty},$

$\eta\in Z^{(}\lim_{f}|\eta|^{-1/S}\log|p(\eta)|---0$

is satisfied.
REMARK 3.2. (a) For the operator $P$ in (2.1) $(\Re)$ implies (3.2). Indeed,

we have, $P(\eta)=(\eta_{1}+i\omega\eta_{2})^{2}-k(\eta_{2}),$ $\eta=(\eta_{1}, \eta_{2})$ . Since $\omega\neq 0$ by $(R)$ , we have
(3.2). We note that $P$ satisfies (A.2), but does not satisfy (A. 1).

(b) (A.2) is too strong for the proof of Theorem 3.1. Indeed, if $d=2$ we can
replace (A.2) by (A.2)’ ; $p_{m}(\xi)\neq 0$ for $\forall\xi\in\Gamma_{P}\backslash \{0\}$ . In the general case, $d\geqq 3$ ,

we assume: For every $\theta\in\Gamma_{P}$ and $\xi\in R^{d},$ $|\xi|=1$ , and $p_{m}(\xi)=0$ we have $L_{\xi}(\theta\rangle$

$\neq 0$ . Here $L_{\xi}(\theta)$ is the localization of $p_{m}(\eta)$ at $\eta=\xi$ defined by, for $\xi,$ $\theta\in R^{d}$ ,

(3.3) $p_{m}(\xi+t\theta)=L_{\xi}(\theta)t^{q}+O(t^{q+1})$ ,

where $q=q(\xi)$ is a nonnegative integer, and $L_{\xi}(\theta)\not\equiv O$ . Furthermore, we assume
the regularity on the roots of $p(\eta)$ . We set $S(\eta, t)=r^{m}p(t^{-1}\eta)$ , and take a vector
$\theta$ such that $p_{m}(\theta)\neq 0$ and write $\eta=\zeta_{1}\theta+\zeta’$ . We factor $S(\zeta_{1}\theta+\zeta’, t)$ as a poly-
nomial of $\zeta_{1}$ :

(3.4) $S( \zeta_{1}\theta+\zeta’, t)=c\prod_{f=1}^{jo}(\zeta_{1}-\lambda_{j}(\zeta’, t))^{m_{j}}$ .

Then, we assume that the roots $\lambda_{j}(\zeta’, t)(j=1, \cdots , j_{0})$ are smooth with respect
to $\zeta’$ and $t$ . Under these assumptions, Theorem 3.1 is valid for $s$ such that,
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$1\leqq s<q/(q-1)$ , where $q= \max_{\xi}q(\xi)$ . Finally, we note that (A.2) is equivalent to
say that $P$ is simple characteristic and microhyperbolic (cf. [5]).

REMARK 3.3. (a) The assumption (A. 1) is essential in Theorem 3.1. In
fact, the Mathieu operator $M=D_{1}+2\cos x_{1}$ on $T^{2}$ satisfies the generalized (A.2)’

in Remark 3.2 and does not satisfy (A.1) and (3.2). Nevertheless, we can show
the global $G^{\sigma}(T^{2})$-hypoellipticity of $M,$ $(1Sa\leqq\infty)$ .

(b) By modifying the proof of Theorem 3.1, we can prove the solvability
of (3.1) under (A.1) and (A.2)’. In fact, $P(D)u=f$ is uniquely solvable in
$G^{s}(T^{a})$ , if and only if $p(\eta)\#O$ for all $\eta\in Z^{d}$ , and (3.2) is satisPed.

Preliminary lemmas. For $\epsilon>0$ and $\xi\in R^{d}$ , we define an $\epsilon$ -conical neighbor-
hOOd $C(\xi;e)$ Of $\xi$ by $C(\xi ; \epsilon)=\{\eta\in R^{\alpha} ; ||\eta/||\eta||-\xi||<\epsilon i\}$ , where $||\cdot||$ denotes the
usual $l^{z}$ -norm in $R^{a}$ . Then we have

LEMMA 3.4. Let $\Gamma$ be a closed convex cone with aPex at the Origin, and let
$\Sigma$ be a closed set on the sphere I $\xi||=1$ such that $\Sigma_{\cap}\pm\Gamma=\emptyset$ . Then, there exists
$c>0$ depending only on $\Sigma$ and $\Gamma$ such that $||\theta||/||\zeta||\leqq 16\epsilon c$ for every $\xi\in\Sigma$ , every
small $\epsilon>0$ and every $\zeta(\neq 0)$ and $\zeta+\theta(\theta\in\pm\Gamma)$ in $C(\xi;\epsilon)$ . Moreover, if $\zeta$ is not
necessarily $\theta nC(\xi;\epsilon)$ , then it follo $rvs$ that $||\zeta+\theta||\leqq c||\zeta||$ for V $\theta\in\pm\Gamma$.

This lemma is a slight modification of Lemma 4.1 of [15]. So we omit the
proof.

LEMMA 3.5. a) For $a\geqq 0,$ $b\geqq 0$ , and $s\geqq 1$ we have $a^{1/g}+b^{1/S}\geqq(a+b)^{1/S}$ .
b) Let $\tau\in R$ . For $\zeta\in Z^{a}(d\geqq 2)$ , we set $\langle\zeta\rangle=1+|\zeta|$ . Then we have that

$\langle\delta\rangle^{\tau}\langle\eta\rangle^{-\tau}\leqq\langle\delta-\eta\rangle^{|\tau|}$ for all $\delta,$ $\eta\in Z^{d}$ .

PROOF. a) is proved by elementary computations. In order to prove (b),

let us suppose $|\delta|\geqq|\eta|,$ $\tau>0$ . Then

$\langle\delta\rangle^{\tau}\langle\eta\rangle^{-\tau}=(\frac{1+|\delta|}{1+|\eta|})^{\tau}\leqq(|\delta|-|\eta|+1)^{\tau}\leqq(|\delta-\eta|+1)^{\tau}=\langle\delta-\eta\rangle^{|\tau I}$ .

The other cases will be proved similarly. $\square$

PROOF OF THE SUFFICIENCY OF THEOREM 3.1. The proof is done by the
similar method as in the proof of the sufficiency of Theorem 2.1 in [16]. Indeed,
we use Gevrey estimate in place of $C^{\infty}$-estimate. Hence, in order to avoid the
repetition we give a rough sketch of the proof. Throughout the proof, we set
$a=1/s$ .

We take a closed convex Proper cone, $\Gamma$ with apex at the origin such that
the interior of $\Gamma$ contains $\Gamma_{P}\backslash \{0\}$ , and that (A.2) is still valid, if we replace
$\Gamma_{P}$ by $\Gamma$. We set $\tilde{\Gamma}=\Gamma\cap Z^{a}$ , and we take $e\in-\tilde{\Gamma}\backslash \{0\}$ and $\eta\in\tilde{\Gamma}$ . We define
$\chi_{n}(\delta)(n=0,1,2, \cdots \infty)$ by



Gevrey hypoellipticity 509

(3.5) $\chi_{n}(\delta)=1$ if $\delta\in\eta_{0}-\tilde{\Gamma}$ and $e\cdot\delta<n+e\cdot\eta_{0}$ ; $=0$ if otherwise,

where the dots denote the usual inner products in $R^{f}$( We denote by $\chi_{n}(D)$

the pseudodifferential operator witb the symbol $\chi_{n}(\delta)$ . We note that $\chi_{\infty}arrow 1$ on
$Z^{d}$ when $\etaarrow\infty$ in $\tilde{\Gamma}$ .

For $\tau\in R$ , and $u(x)=\Sigma_{\delta}u_{\delta}e^{i\delta x}\in D’(T^{d})$ , we define the norm $||u||_{\tau}$ of $u$ by

(3.6) $||u||_{\tau}=up_{d}\exp\delta\in Z(\tau|\delta|^{\sigma})|u_{\delta}|$ ,

if the right-hand side is finite. We define $\tilde{\varphi}(\delta)$ by $\tilde{\varphi}(\delta)=1$ if $\delta$ satisfies $p(\delta)=0$ ;
$\tilde{\varphi}(\delta)=0$ , if otherwise. Since $p(\delta)$ vanishes only for a finite number of $\delta’ s$ in
$Z^{(:}$ , by (2.3), $\tilde{\varphi}$ has a compact support. We take rc so that $||b_{\beta}||_{2\kappa}<\infty$ for all $\beta$ .

We want to show the following estimates; for any $\epsilon>0$ , there exist con-
stants $C_{1},$ $C_{2}$ and $N$ such that, if $u\in D’,$ $||Pu||_{\kappa+3\epsilon}<\infty$ then

$(*)$ $||\chi_{\infty}(D)(1-\chi_{n}(D))u||_{\kappa}\leqq C_{1}||\chi_{\infty}(D)(1-\chi_{n}(D))Pu||_{\kappa}$ ,

$(**)$ $||\chi_{\infty}(D)u||_{\kappa}\leqq C_{1}||$ Pu $||_{\kappa+3\epsilon}+C_{2}||\tilde{\varphi}u||_{\kappa+3\epsilon}$ ,

for all $n\geqq N_{0}$ . Here, the constants $C_{1}$ and $C_{2}$ are independent of $\eta\in\Gamma$. If we
can prove these estimates, then, by letting $\eta_{0}arrow\infty,$

$\eta_{0}\in\tilde{\Gamma}$ in $(**)$ and by noting
that $\chi_{\infty}arrow 1$ , we have that $||u||_{k}<\infty$ , if $||$ Pu $||_{\kappa+3\epsilon}<\infty$ . This proves the assertion.

The proofs of $(*)$ and $(**)$ are done by modifying the methods of the proof
of the corresponding two estimates in the proof of Theorem 2.1 of [16], where
we replace all $C^{\infty}$-estimates with $G^{\sigma}$ -estimates. This will be done by use of
Lemma 3.5. $\square$

In order to prove the necessity, we prepare a lemma. For $\eta’\in Z^{d}$ , and $\Gamma$

and a vector $e$ given in the definition of $\chi_{n}(\delta)$ , we define $\psi_{n}(\delta)(n=1,2, \cdots, \infty)$

by $\psi_{n}(\delta)=1$ if $\delta\in\eta’+\Gamma$ and $-e\cdot(\delta-\eta’)<n$ ; $\psi_{n}(\delta)=0$ if otherwise. Let $p(\eta)$ be
as in Theorem 3.1, and let $P_{0}(D)$ be the corresponding pseudodifferential operator.
We write $P=P_{0}(D)+P_{1}(x, D)$ . Then we have

LEMMA 3.6. Suppose (A. 1) and (A.2). Then we have
a) If $p(\eta)\neq 0$ for $\forall\eta\in\eta’+\tilde{\Gamma}$ , then, for any $f\in G^{\sigma}$ there exists a solution $u$

of the equation $P(\psi_{\infty}u)=\psi_{\infty}f$ given by

(3.7) $\psi_{\infty}u=\sum_{\nu=0}^{\infty}Q^{\nu}P_{0}^{-1}\psi_{\infty}f$ , $Q=-P_{0}^{-1}P_{1}$ .

Every Fourier $coeJficient$ of $\psi_{\infty}u$ is determined by a finite number of terms in the
right-hand side of (3.7).

b) If $p(\eta’)=0$ and $p(\eta)\neq 0$ for $\forall\eta\in\eta’+\tilde{\Gamma}$ , then the smooth solution of the
equation $P(\psi_{\infty}u)=0$ is given by $\psi_{\infty}u=\Sigma_{v=0}^{\infty}Q^{\nu}\psi_{1}u$ .

PROOF. We have $P_{1}(\psi_{\infty}u)=\psi_{\infty}(1-\psi_{1})P_{1}(\psi_{\infty}u)$ . Since $P_{0}^{-1}$ exists on $\psi_{\infty}C^{\infty}$ , it
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follows from the equation $P\psi_{\infty}u=\psi_{\infty}f$ that $P_{0}^{-1}\psi_{\infty}f_{-}--\psi_{\infty}u-Q\psi_{\infty}u$ . Hence, if we
can show the convergence of the sum in (3.7) we have the assertion, because
$Q^{\nu}\psi_{\infty}g=\psi_{\infty}(1-\psi_{\nu})Q^{\nu}\psi_{\infty}g$ . By (A.2) with $\xi=\theta$ , we see that $p_{m}(\xi)\neq 0$ in $\Gamma_{P}\backslash \{0\}$ .
Hence it follows that $P_{m}(\eta)\neq 0$ if $(1-\psi_{n}(\eta))\psi_{\infty}(\eta)\neq 0$ for sufficiently large $n$ .
Noting that $Q$ is at most of order $-1$ we have, for some $\sigma>0,$ $\tau<1$ and every
$k\geqq 1$ , $||Q^{n+k}g||_{\sigma}\leqq\tau^{k}||Q^{n}g||_{\sigma}$ with $g=P_{0}^{-1}\psi_{\infty}f$, which proves the convergence.

In order to Prove b), we consider the equation $P(\psi_{\infty}u)=0$ . We set $\psi=$

$\psi_{\infty}(1-\psi_{1})$ . Since $P_{1}(\psi_{\infty}u)=P_{1}(\psi_{1}u)+P_{1}\psi u$ , it follows that $P_{0}\psi u+P_{1}\psi u=-P_{1}(\psi_{1}u)$ .
Noting that $P_{0}$ is invertible on $\psi D’$ we have that $(I-Q)(\psi u)=Q\psi_{1}u$ . Then the
solution is obtained by iteration. $\square$

PROOF OF THE NECESSITY OF THEOREM 3.1. We divide the proof intO
three steps.

Step1. Let us suppose that (3.2) is not satisfied. First, we suppose that
$p(\eta)=0$ for infinitely many $\eta\in Z^{a}$ . We want to show that, for any $\zeta$ with
$p(\zeta)=0,$ $P(\eta)\neq 0$ for sufficiently large $\eta\in\zeta+\Gamma_{P}$ , where $\tilde{\Gamma}_{P}=\Gamma_{P}\cap Z^{d}$ . If other-
wise, there exist distinct $\eta_{n}\in\zeta+\Gamma_{P}$, such that $p(\eta_{n})=0,$ $\eta_{n}/||\eta_{n}||arrow\exists\xi\in\Gamma_{P}$ , to
yield $p_{m}(\xi)=0$ , a contradiction to (A.2).

We take $\eta_{1}\in\zeta+\tilde{\Gamma}_{P}$ such tbat, it attains the minimum of $e\cdot(\eta-\zeta)$ among
$\eta\in\zeta+\tilde{\Gamma}_{P},$ $P(\eta)=0$ , where $e$ is given in the definition of $\chi_{n}(\delta)$ . If $p(\eta_{1}+\eta’)=0$

for some $\eta’\in\tilde{\Gamma}_{P}\backslash \{0\}$ , then, we have that $\eta_{1}+\eta’-\zeta\in\tilde{\Gamma}_{F}+\tilde{\Gamma}_{P}\subset\tilde{\Gamma}_{P}$ , and that
$e\cdot(+-\zeta)e(\eta_{1}-\zeta)$ by definition, which contradicts to the choice of $\eta_{1}$ .
Hence we have $p(\eta_{1}+\eta)\neq 0$ for all $\eta\in\Gamma_{P}\backslash \{0\}$ . Repeating this argument, we
can choose $\eta_{k}\in Z^{d}$ in such a way that, for $k=1,2$ , ,

$\langle$ 3.8) $p(\eta_{k})=0$ , $P(\eta_{k}+\eta)\neq 0$ for $\forall\eta\in\tilde{\Gamma}_{P}\backslash \{0\}$ .

Without loss cf generality, we may assume that $\eta_{k}/||\eta_{k}||arrow\exists\xi\not\in\pm\Gamma_{P},$ $||\xi||=1$ .
Step2. By (3.8) and Lemma 3.6, there exist $u(x ; \eta_{k})\in G^{s}(k=1, 2, )$ such

that Pu$(x;\eta_{k})=0$ . We set $a_{k}=||u(\cdot, \eta_{k})||_{0}$ . In view of (3.6), we can find $\zeta_{k}\in$

$\eta_{k}+\Gamma_{P}$ such that $a_{k}$ is equal to the absolute value of the Fourier coefficient
$u_{\zeta_{k}}$ of $u(x ; \eta_{k})$ . If $\{|\zeta_{k}|\}_{k}$ is bounded, then there exists $\zeta\in Z^{d}$ such that $\zeta=$

$\eta_{k}+\theta_{k}$ for infinitely many $\theta_{k}\in\Gamma_{P}$ . Since $\eta_{k}/||\eta_{k}||arrow\xi$ it follows that $\theta_{k}/||\theta_{k}||$

$arrow-\xi\in\Gamma_{P}$ , which is impossible. Therefore, we may assume that $|\zeta_{1}|<|\zeta_{2}|<\cdots$ ,
$\zeta_{k}/|\zeta_{k}|arrow\exists\xi’$ as $karrow\infty$ .

We want to show that $\xi’\not\in\pm\Gamma_{P}$ . We write $\zeta_{k}=\eta_{k}+\theta_{k}$ for some $\theta_{k}\in\Gamma_{P}$ .
Since $\eta_{k}$ is in a small conical neighborhood of $\xi\not\in\pm\Gamma_{P}$ , it follows that $\xi’\not\in-\Gamma_{P}$ .
Suppose $\xi’\in\Gamma_{P}$ . Without loss of generality, we may assume that $\zeta_{k}\neq\eta_{k}$ .
Then we write
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$u(x; \eta_{k})=\sum_{0}^{N}Q^{\nu}\psi_{1}u+\sum_{\nu=N+1}^{\infty}Q^{v}\psi_{1}u\equiv\psi_{1}u+QA_{1}+R,$ $R= \sum_{+\nu=N1}^{\infty}Q^{\nu}\psi_{1}u$ .

We take $N$ so large that $\langle\psi_{\infty}u, e^{i\zeta_{k}}\rangle=\langle A_{1}, e^{t\zeta_{k}}\rangle$ , by Lemma 3.6. We note
that $Q$ is elliptic in the Fourier support of $Q^{N}\psi_{\infty}u$ . It follows that $||\Lambda^{\epsilon}R||=$

$||\Lambda^{\epsilon}QQ^{N}\psi_{\infty}u||\leqq K_{1}a_{k}$ for some $K_{1}>0$ independent of $k$ , where $\Lambda=\langle\eta\rangle$ . On the
other hand, it follows from $||A_{1}||=a_{k}$ and $\xi’\in\Gamma_{P}$ that, $||\Lambda^{\epsilon}QA_{1}||\leqq K_{2}a_{k}$ for some
$K_{2}>0$ independent of $k$ . Hence, we have $||\Lambda^{\epsilon}(\psi_{\infty}u-\psi_{1}u)||=\langle\zeta_{k}\rangle^{\epsilon}a_{k}\leqq(K_{1}+K_{2})a_{k}$ ,

a contradiction to the definition of $\zeta_{k}$ .
Since $\{\eta_{k}\}$ is in a conical neighborhood of $\xi,$ $\xi\not\in\pm\Gamma_{P}$ , it follows from

Lemma 3.4 that the number of $\eta_{k}’ s$ contained in $\zeta_{1}-\Gamma_{P}$ is at most of poly-
nomial order of $|\zeta_{1}|$ . We thus find an integer $k(2)$ such that $\eta_{k}\not\in\zeta_{1}-\Gamma_{P}$ for
$k\geqq k(2)$ . Moreover, we may assume that $\zeta_{k(2)}\not\in\eta_{1}+\Gamma_{P}$ . Indeed, if otherwise,
then we have $\zeta_{k}=\eta_{1}+\theta_{k}$ for $\exists\theta_{k}\in\Gamma_{P}$ . Since $\zeta_{k}/|\zeta_{k}|arrow\xi’$ it follows that $\theta_{k}/|\theta_{k}|$

$arrow\xi’\in\overline{\Gamma}_{P}=\Gamma_{P}$ , a contradiction to a choice of $\xi’$ . In the same way, we can
choose a sequence $\{k(n)\},$ $k(1)=1$ so that $\eta_{k}\not\in\zeta_{k(n)}-\Gamma_{P}$ for $k\geqq k(n+1),$ $\zeta_{k(n)}\not\in$

$\eta_{k(\nu)}+\Gamma_{P}$ for $v=1,2,$ $\cdots$ , $n-1$ .
We define

(3.9) $v(x) i\sum_{r,\backslash }v_{\zeta}e^{i\zeta x}=\sum_{n=1}^{\infty}u(x ; \eta_{k(n)})a_{k(n)}^{-1}$ .

Since $||u($ . ; $\eta_{k})||_{0}a_{k}^{-1}=1,$ $|v_{\zeta}|$ is bounded by the number of $\eta_{k}’s$ contained in
$\zeta-\Gamma_{P}$ . It is of some power of $|\zeta|$ , by Lemma 3.4, which implies $v\in D’$ . We
have $Pv=0$ , by definition. Moreover, since $\zeta_{k(n)}\not\in\eta_{k(\nu)}+\Gamma_{P}$ for $n\neq\nu$ it follows
that $|v_{C_{k(\nu)}}|=1,$ $\nu=1,2$ , -, that is $v\not\in C^{\infty}$ .

Step3. Now, let us assume that there exists $\eta_{k}\in Z^{d}$ and $\rho>0$ such that
$0<|p(\eta_{k})|\leqq\exp(-\rho||\eta_{k}||^{1/S})$ , $||\eta_{k}||\geqq k(k=1, 2, )$ . We may assume that
$\eta_{k}/||\eta_{k}||arrow\xi\not\in\pm\Gamma_{P}$ , and that $p(\eta+\eta_{k})\neq 0$ for V $\eta\in\Gamma_{P}$ .

By Lemma 3.6, there exists a solution, $u(x; \eta_{k})=\sum u_{\eta}e^{i\eta x}\in G^{s}$ of $P_{\mathcal{U}}=f$ ,
$f=\delta_{\eta-\eta_{k}.0}e^{i\eta x}$ . We define $a_{k}$ and a subsequence $\{k(n)\}$ as in Step 2. Since
$u_{\eta_{k}}=1/p(\eta_{k})$ , we have that $a_{k}\geqq|P(\eta_{k})|^{-1}\geqq\exp(\rho||\eta_{k}||^{1/S})$ . Then, the functions
$v(x)$ and $f(x)$ given by (3.9) and $f(x)=\Sigma_{n=1}^{\infty}a_{k(n)}^{-1}\exp(i\eta_{k(n)}x)$ satisfy $Pv=f$ ,
$v\in D’\backslash C^{\infty},$ $f\in G^{s}$ , a contradiction. $\square$

4. Solvability of nonlinear equations on compact manifolds.

Let $\Omega$ be an $n$ -dimensional compact closed real analytic Riemannian mani-
fold, and let $P$ be an analytic differential operator of order $m$ . We suppose that
there exist $s>n/2,0<\delta<m$ , and a left inverse $Q$ of $P$ such that

(4.1) $Q:H^{s}(\Omega)arrow H^{s+m-\delta}(\Omega)$ ,

where $H^{\sigma}(\Omega)$ denotes the Sobolev space of order $\sigma$ . In order to have analytic
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hypoellipticity, we demand that there exist positive numbers $s_{0}$ and $\gamma$ such that

(4.2) $||Qu||_{s+m-\delta} \leqq\gamma^{s}\sum_{j=0}^{s}j1||u||_{s-j}$ , $s\in Z_{+}$ , $s\geqq s_{0}$ .

Obviously, (4.2) implies the analyticity of $Qf$ if $f$ is analytic.
Consider the following semilinear equation on $M$,

(4.3) $Lu=Pu+g(u)=f$ ,

where $g(u)\in C^{\iota}(R, R),$ $l=[s]+1$ , and

(4.4) $g(u)=O(u^{2})$ , for $|u|\ll 1$ .

THEOREM 4.1. Suppose(4.1) and (4.4). Then, there exists an $\epsilon>0$ such that,

for every $f\in H^{s}(M),$ $||f||_{s}<\epsilon(4.3)$ has a solution $u\in H^{s+m-\delta}(M)$ . Furthermore,

if (4.2) holds then we can choose a solution $u$ to be real-valued $C^{\infty}$ (resp. real
analytic) function on $M$ if $f$ and $g$ are $C^{\infty}$ (resp. real analytic).

PROOF. Evidently, we can reduce the equation (4.3) to

(4.5) $u=K(u)+F$, $F=Qf$ , $K(u)=-Q(g(u))$ .

We use the classical iteration scheme

(4.6) $u_{k}=K(u_{k-1})+F$, $k=1,2$ , – , $u_{0}=F$ .

We want to show that $\exists c_{0}>0$ verifying with $N=s+m-\delta$

(4.7) $||u_{k}||_{N}\leqq C_{0}$ , $k=0,1,$ $\cdots$

if I $f||_{s}<\epsilon$ for sufficiently small $\epsilon>0$ . Indeed, (4.7) with $k=0$ follows from (4.2).

NOW, let us assume that $||u_{j}||_{N}\leqq 2q\epsilon=c_{0\underline{-}}<1,0\leqq_{j}$ :$ $k$ . Since $||F||_{N}\leqq q\epsilon,$ $q$ being
the norm of $Q$ , we have, by induction

$|Iu_{j+1}||_{N}\leqq||K(u_{f})||_{N}+q\epsilon\leqq C||g(u_{j})||_{N}+q\epsilon$

$\leqq c_{1}(||u_{j}||_{N})^{2}+q\epsilon\leqq c_{1}4q^{2}\epsilon^{2}+q\epsilon$ ;$ $2q\epsilon$ ,

if $\epsilon$ is small enough. We have used the fact that (4.4) and the smallness $of\xi u$

imply $||g(u)||_{N}\leqq c(||u||_{N})^{2}$ for some $c>0$ .
It follows from (4.4) and (4.5) that, writing simply $||\cdot||$ instead of $||\cdot||_{N}$ ,

$||u_{k+1}-u_{k}||$ :Ell $c(||u_{k}-u_{k-1}||)(||u_{k}||+||u||_{k-1})\leqq 4q\epsilon||u_{k}-u_{k- 1}||$ .
By taking $\epsilon<(8qc)^{-1}$ , we see that the contraction method holds for the integral
equation (4.6). Clearly, the solution of (4.6) $u\in H^{r}(M)$ solves the semilinear
equation (4.3) as well. If (4.2) is valid for all $s>n/2$ , then $f\in C^{\infty}(M)$ implies
$F\in C^{\infty}(M)$ . Moreover, if $u_{-}^{\subset}H^{s}(M)$ then $Q(g(u))\in H^{s+m-\delta}$ . By repeating the
same arguments, we can show that $u\in C^{\infty}(M)$ .
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If (4.2) holds, one estimates $H^{s}$ norm of $u$–the solution of (4.6) in the next
way

(4.8) $||u||_{s}\leqq R^{s+1}s!$ , $s=0,1,2,$ $\cdots$

where the constant $R>0$ depends on $\gamma$ and $c,$ $c$ appears in the inequalities:
$||f||_{s},$ $||g||_{s}\leqq c^{s+1}s$ !, $s=0,1,$ $\cdots$ Since these estimates imply analyticity of $u$ , we
have proved Theorem 4.1. $\square$

EXAMPLE 4.1. Let $P$ be as in Theorem 2.1, $a=0$ . Then (4.2) holds. The
proof is an easier version of the considerations from [3; Theorem 4.1].

EXAMPLE 4.2. Let us consider the existence of periodic solutions for $(4.3\rangle$

with $P$ given by,

(4.9) $P= \prod_{j=1}^{4}(\partial_{x_{1}}-\tau_{f}\partial_{x_{2}})$ on $T^{2}$

If all $\tau_{j}$ are rational, and if the order of $P$ is two, then the existence of periodic
solutions is proved in [12] by variational methods. But, it does not work well,
if some $\tau_{j}$ is irrational. Here, we apply Theorem 4.1 for operators of order 4
with irrational $\tau_{j}$ .

For the sake of simplicity, we assume that $\tau_{j}$ $(]^{=1}, , 4)$ are real irrational,
distinct, and are algebraic numbers of degree 2, $i.e$ . $\pm\sqrt{}\overline{a_{j}/b_{j}}$ for some integers
$a_{j}$ and $b_{j}$ . By the elementary theory of numbers, $\tau_{j}$ satisfy, for some $c>0$

independent of $\eta,$ $|\eta_{1}-\tau_{j}\eta_{2}|>c(|\eta_{1}|+|\eta_{2}|)^{-1}$ for all $\eta\in Z^{2},$ $j=1,2$ . This implies
(4.1) and (4.2). By Theorem 4.1, (4.3) has a periodic solution. We note that
the same argument works, for operators with variable coefficients which have
constant coefficients principal parts.
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