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1. Introduction.

Nonlinear integrable systems, as pointed out by Sato $[10, 11]$ , may be under-
stood as “deformations” of 9-modules. For the case of the KP hierarchy, such
a 9-module is given by

$\mathscr{M}_{0}=9_{0}W$ ,

where $W$ is a pseudo-differential operator of the form

$W=1+ \sum_{m=1}^{\infty}w_{m}(t, x)\partial^{-m}$ , $\partial=\partial/\partial x$ ,

$9_{0}$ is a ring of ordinary differential operators in $x$ , and $w_{m}(t, x)$ are unknown
functions of the KP hierarchy $[8, 9]$ that depend on an infinite number of “time
variables” $t=(t_{1}, t_{2}, \cdots)$ . In algebraic aPProaches [8, 9, 6], it has been customary
to consider “formal” (or “formally regular”) solutions, $i.e.$ , solutions for which

$w_{m}(t, x)\in C[[t, x]]$ .
In that setting, $9_{0}$ is given by

$9_{0}=\{P;\exists m, P=\sum_{n=0}^{m}p_{n}\partial^{n}, p_{n}\in C[[t, x]]\}$ .

This is a subring of the ring

$\mathcal{E}_{0}=\{P;\exists m, P=\sum_{n=-\infty}^{m}p_{n}\partial^{n}, p_{n}\in C[[t, x]]\}$

of pseudo-differential operators. $\mathscr{M}_{0}$ is thus a free left $9_{0}$-submodule of $\mathcal{E}_{0}$ .
With these notions, Sato $[10, 11]$ presented an abstract formulation of the KP
hierarchy and its relation to the “universal Grassmannian manifold“ (UGM)
$[8, 9]$ .

$*$ Supported in part by Grant-in-Aid for Scientific Research No. 01740089, the Min-
istry of Education, Science and Culture, Japan.
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The relation to UGM becomes quite manifest if one considers the underly-
ing $C[[t, x]]$ -module structure of $\mathscr{M}_{0}$ . As a $C[[t, x]]$ -module, $\mathscr{M}_{0}$ is also a
free module, but of infinite rank, and has a special generator system of the
form

$\mathscr{M}_{0}=\bigoplus_{i\geqq 0}C[[t, x]]W_{i}$ , $W_{i}= \partial^{i}-\sum_{J<0}w_{ij}\partial^{j}$ .

The coefficients $w_{ij}$ can be identified with a set of affine coordinates on UGM.
The KP hierarchy then becomes a set of evolutionary differential equations on
$w_{i_{J}}$ . Further, there is a “dual” description that uses the right $9_{0}$-module

$\mathscr{M}_{0}^{*}=W^{-1}9_{0}$

with a similar $C[[t, x]]$ -generator system of the form

$\mathscr{M}_{0}^{*}=\bigoplus_{J<0}W_{f}^{*}C[[t, x]]$ , $W_{j}^{*}= \partial^{-j-1}+\sum_{i\geqq 0}\partial^{-i-1}w_{t_{J}}$ .

Sato $[10, 11]$ explains these two types of representations as a kind of cohomo-
logical duality.

These affine coordinates $w_{ij}$ , however, can cover only a subset of UGM
called the “open Schubert cell.” On boundaries of this open subset, these
coordinates as well as the coefficients $w_{n}$ of $W$ have singularities (poles). It is
known $[8, 9]$ that these poles are of very special tyPe, coming from zeros of
the so called $\tau$ function.” The $\tau$ function is one of the so called Pl\"ucker
coordinates. The Pl\"ucker coordinates $\xi_{S}$ , where $S$ run over an index set intro-
duced later in this paper, are not true functions of UGM but sections of a line
bundle over UGM. Their quotients however give rational functions on UGM.
If the denominator is fixed to be $\xi_{S}$ and another index $S’$ varies over a collec-
tion of indices (which is determined by $S$ ), the quotients $\xi_{S’}/\xi_{S}$ give affine
coordinates over the open subset

$U_{s_{def}}=\{\xi_{S}\neq 0\}$

of UGM. Varying $S$ now, one can thereby obtain an affine open covering of
UGM. The previous coordinates $w_{ij}$ are also obtained in that way with a
special choice of $S$ , written $Sff$ ; the denominator, $\xi_{S_{\ovalbox{\tt\small REJECT}}}$ can be identified with
the $\tau$ function. $\mathscr{M}_{0}$ and $\mathscr{M}_{0}^{*}$ are thus, in a sense, defined on $U_{Sff}$ . What 9-
modules are then sitting on $U_{S}$ for order $S’ s^{P}$ This is a question that motivates
the present paper.

TO answer this question, we reinterpret UGM as a “differential-algebraic
variety“ in the sense of Kolchin [4] (Section 2). More precisely, we shall
introduce a set of differential rings $\mathcal{A}_{S}$ with a single derivation $\partial$, where $S$ runs
over the same set of indices as mentioned above. As a commutative ring, $\mathcal{A}_{S}$

is nothing but the coordinate ring of Us (in other words, $U_{S}=Spec\mathcal{A}_{S}$ ). These
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affine subsets are then “glued together” to form UGM, and $\mathcal{A}_{S}’ s$ give rise to
the structure sheaf $\mathcal{A}$ of UGM in the usual sense. The derivation $\partial$ is intro-
duced to be consistent with this gluing, hence the ringed space (UGM, $\mathcal{A}$ ) de-
fines a “differential-algebraic variety,” the structure sheaf $\mathcal{A}$ belng a sheaf of
differential rings. Besides the commutative structure sheaf $\mathcal{A}$ , this differential-
algebraic variety also carries the sheaves 9 and $\mathcal{E}$ of noncommutative rings of
differential and Pseudo-differential operators. By definition, the rings $9_{S}$ and
$\mathcal{E}_{S}$ of sections over $U_{S}$ are comprised of differential and Pseudo-differential
operators of the form $\sum a_{n}\partial^{n}$ with coefficients in $\mathcal{A}_{S}$ , and they glue together
to become sheaves over UGM.

We then construct left and right $9_{S}$-submodules $\mathscr{M}_{S}$ and M\S of $\mathcal{E}_{S}$ and
show that they are also consistent with the gluing of $U_{S}’ s$ (Section 3). Thus
actually we have two sheaves $\mathscr{M}$ and $\mathscr{M}^{*}$ of 9-modules over the differential
algebraic variety (UGM, $\mathcal{A}$ ). Sections 4 and 5 are devoted to the study of co-
homological properties of these sheaves. If $S=Sff,$ $\mathscr{M}_{S}$ and $\mathscr{M}_{S}^{*}$ become free
modules with a single generator. (If $\mathcal{A}_{S}$ is replaced by $C[[t, x]]$ , this exactly
reproduces the structure of $\mathscr{M}_{0}$ and $\mathscr{M}_{0}^{*}.$ ) For other $S’ s,$ $\mathscr{M}_{S}$ and M\S are no
longer free, but we show that they are projective 9-modules (Section 4) and
dual to each other (Section 5). These seem to answer the question addressed
above.

In Section 6, we give a differential-algebraic interpretation of the KP
hierarchy itself in the language of $\mathcal{A}_{S}$ . Actually, we simply add an infinite
set of derivations, $(\partial_{1}, \partial_{2}, )$ to $\mathcal{A}_{S}$ and show again their consistency with the
gluing of $U_{S}$ . The KP hierarchy thus gives rise to yet another structure of
differential-algebraic variety on UGM.

Our results show that $\mathscr{M}_{S}$ and .SZX are of very special nature; the projec-
tivity and duality imply that they are still close to the free case. It seems
likely that these results can be extended to the case where 9 is comprised of
more than one derivations and where 9-modules are, in some sense, “deforma-
tions” of a free module generated by a single element. Remarkably, several
“higher dimensional” nonlinear integrable systems are known to be related
with such free 9-modules (and, possibly, their nontrivial deformations). This
fact was discovered by one of the present authors [14] and recently extended
to a more general case by Ohyama [7].

We do not know what implications these results have in the theory of the
KP hierarchy. Nevertheless, the interpretation of UGM as a differential-
algebraic variety, along with the construction of the sheaves $\mathscr{M}$ and $\mathscr{M}^{*}$ , seems
to provide new material to the algebraic standpoint of Sato [10-12] on differ-
ential equations as well as that of Kolchin [4]. It should be also noted that as
opposed to the usual situation, we are now dealing with very abstract rings
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$\mathcal{A}_{S}$ rather than the ring $C[[t, x]]$ of formal power series. Such a possibility
seems to have been overlooked.

2. Universal Grassmannian manifold as differential algebraic variety.

The universal Grassmannian manifold (UGM) is an infinite dimensional ex-
tension of ordinary, Pnite dimensional Grassmannian manifolds. Several differ-
ent descriptions are known [8-13], most of wbich are set-theoretical and re-
cognize UGM as a set of vector subspaces included in a fixed vector space. A
more axiomatic and functiorial definition is presented by Kashiwara [3] in the
language of scheme theory.

From the standpoint of algebraic geometry, UGM should be understood as
a collection of affine open sets glued together by holomorphic maps. We now
give such a construction of UGM. In the finite dimensional case, this is a well
known construction.

We now consider the set of all strictly increasing sequences $S$ of integers
of the form

(2.1) $S=(s_{0}, s_{1}, s_{2}, )$ , $s_{i}\in Z$, $s_{0}<s_{1}<s_{2}<\ldots$

under the condition

$s_{i}=i$ for all but a finite number of $i’ s$ .

Let $S^{c}$ denote the complement $Z\backslash S$ with a similar strictly increasing numbering.

(2.2) $S^{c}=(\cdots, S_{-2}, s_{-1})$ , $s_{i}\in Z$, $\cdot..<s_{-2}<s_{-1}$ .
A graphical representation of such a sequence $S$ , or the pair $(S^{c}, S)$ , is given
by “Maya diagrams” $[9, 10]$ . A Maya diagram consists of an infinite chain of
boxes, which are numbered by all integers from the left (negative) side to the
right (positive) side and colored either “black” (if the box lies in $S^{C}$) or “white”
(if the box lies in $S$ ) (see Fig. 1). These are also in one-to-one correspondence
with the set of all Young diagrams $[8, 9]$ . In the literature of the KP bierarchy
[8-10], Young diagrams or Maya diagrams have been used as an index set of
the Sehubert cells of UGM. In our construction below, they arise as a index
set of affine open covering of UGM.

Figure 1. Maya diagram for $S=(-1,0,2,3, \cdots)$

For each $S$ as above, we now introduce a polynomial ring $\mathcal{A}_{S}$ with an in-
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finite number of variables as:

(2.3) $\mathcal{A}_{s_{def}}=C[w_{S.ij} (i\in S, j\in S^{c})]$ .

This represents the coordinate ring of an affine space with coordinates $w_{S,ij}$ .
We now have to specify how to glue together these affine spaces. To this
end, it is convenient to introduce infinite matrices

(2.4) $\eta_{S}=(\eta_{S,ij} ; i\in S, j\in Z)$ ,

$\eta_{S}^{*}=(\eta\S_{ij} ; i\in Z, j\in S^{c})$ ,

with matrix elements given by

(2.5) $\eta_{S.\ell j}d=ef\{\delta_{ij}-w_{S.ij}$

if $i,$ $j\in S$ ,

if $i\in S,$ $j\in S^{c}$ ,

$\eta\S_{tj}d=ef\{\delta_{tj}w_{S.ij}$ $ififi,j\in S^{c}i\in S,j\in S^{c}$

,

where $\delta_{ij}$ is the Kronecker delta. In the usual set-theoretical interpretation,
the row vectors of $\eta_{S}$ sPan a vector subsPace in a given big vector sPace,

which is the corresponding point of UGM. Similarly, \eta \S is to represent a col-
lection of column vectors in the dual vector space, and gives a “dual” repre-
sentation. These two matrices are connected by the relation

(2.6) $\eta_{S}\eta X=0$ ,

which determines each other. Note that $\eta_{S}^{*}$ corresponds to the $\xi$-matrix of in
the literature [8-10]. The rule of gluing between $\mathcal{A}_{S}$ and $\mathcal{A}_{S’}$ is given by the
algebraic relation

(2.7) $\eta_{S}=h_{SS^{r}}\eta_{S^{r}}$ ,

where

(2.8) $h_{SS’}=(\eta_{S.ij} ;def i\in S, j\in S’)$ .

Since $h_{SS’}$ differs from the identity matrix by at most a finite number of rows,
one can define its determinant as

(2.9) $\det h_{SS’}=\lim_{Ndefarrow\infty}\det(h_{SS’} ; i, j\geqq-N)$ .

(The finite determinants on the right hand side does not depend on $N$ if $N$ is
sufficiently large, hence the limit is meaningful.) Determinant (2.9) becomes a
non-vanishing rational function of $w_{S.ij}$ . Equation (2.7) defines a birational
relation between two sets of variables $w_{S.ij}$ and $w_{S^{r}.ij}$ , which is holomorphic
if the determinants do not vanish. More precisely, (2.7) gives rise to an iso-
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morphism

(2.10) $g_{SS’}$ : $\mathcal{A}_{S}[\det h_{SS’}^{-1}]_{arrow \mathcal{A}_{S’}}\sim[\det h_{S^{t}S}‘’]$ .

Because of the obvious relations

$h_{ss\prime}^{-1}=h_{S’S}$ ,

$h_{SS’}h_{S’S^{n}}=h_{SS^{\chi}}$ ,

the collection of ring isomorphisms $g_{SS’}$ defines a consistent gluing of the affine
spaces $U_{S}$ represented by $\mathcal{A}_{S}$ . This gives a realization of UGM as an infinite
dimensional algebraic variety. Actually, the above gluing rule can be restated
in terms of $\eta_{S}^{*}$ as:

(2.11) $\eta_{S}^{*}=\eta\S,$ $h$ \S , $s$ ,

where

(2.12) $h\S_{s_{d}}=_{ef}$ (h\S . $ij;i\in S^{\prime c},$ $j\in S^{c}$).

We now define a derivation $\partial$ on $\mathcal{A}_{S}$ by

(2.13) $\partial(w_{S,ij})=\theta_{s^{c}}(i+1)\delta_{i+1.j}+\theta_{S}(i+1)w_{S.i+1.j}def$

$- \theta_{S^{C}}(_{J}-1)w_{S.i.j-1}-\sum_{k\Rightarrow 0}^{m}w_{S.i.i_{k}-1}w_{S.t_{k}.j}$ ,

where $\theta_{S}$ and $\theta_{sc}$ are the characteristic functions of $S$ and $S^{c},$ $i.e.$ , for any
subset $X$ of $Z$,

$\theta_{X}(i)d=ef\{01$ $ififi\in Xi\not\in X$

’

PROPOSITION (2.14). This definition of $\partial$ is consistent with the gluing iso-
morphism $g_{SS’}$ . More precisely, if $\partial_{S}$ denotes the derivation on $\mathcal{A}_{S}$ defined by
(2.13), $\partial_{S}$ and $\partial_{S’}$ obey the relation

$\partial_{S}\circ g_{SS’}=g_{SS’}\circ\partial_{S’}$ .

PROOF. Let us note that, in terms of the matrix $\eta_{S}$ , the action of $\partial$ can
be rewritten

(2.15) $\partial(\eta_{S})=B_{S}\eta_{S}-\eta_{S}\Lambda$ ,

$B_{s_{d}}=_{ef}(\eta_{S.i.j-1} ; i, J\in S)$ ,

where $\Lambda$ denotes the infinite shift matrix

(2.16) $\Lambda=def(\delta_{i.j-1} ; i, j\in Z)$ .
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In the dual form, this is also equivalent to the following.

(2.17) $\partial(\eta_{S}^{*})=\Lambda\eta_{S}^{*}-\eta_{S}^{*}A_{S}$ ,

As $def=(\eta\S_{i+1.j} ; i, j\in S)$ .

The proposition asserts that the same equations are also satisfied by $\eta_{S’}$ and
\eta \S , for any other $S’$ . To see this, insert (2.7) into (2.15). This results in the
equation

(2.15’) $\partial(\eta_{S’})=B_{S^{r}}\eta_{S’}-\eta_{S’}\Lambda$

where $B_{S’}$ is given by

$B_{S^{i}}=h_{\overline{S}^{1}S’}B_{S’}h_{SS’}-h_{\overline{S}^{1}S’}\partial(h_{SS’})^{-1}$

Actually, one does not have to do further calculations for the right hand side;
extracting the $S’\cross S’$ part of both hand sides of (2.15) gives the relation

$0=B_{S’}-(\eta_{S^{l}.i,j-1} ; i, j\in S’)$ ,

which determines $B_{S’}$ just as in (2.15) with $S$ replaced by $S’$ . The equatlon

for \eta \S , can be derived in the same way. Q. E. D.

This result says a geometric fact that $\partial$ gives a globally defined vector
field on UGM. Our UGM thus becomes a “differential-algebraic variety” whose
structure sheaf $\mathcal{A}$ is associated with the differential algebras $(\mathcal{A}_{S}, \partial)$ .

One can define the rings $9_{S}$ and $\mathcal{E}_{S}$ of differential and pseudo-differential
operators

(2.18) $9_{s_{d}}=_{ef}\{P;\exists m, P=\sum_{n=0}^{m}p_{n}\partial^{n}, p_{n}\in \mathcal{A}_{S}\}$ ,

(2.19) $\mathcal{E}_{s_{def}}=\{P;\exists m, P=\sum_{n=-\infty}^{m}p_{n}\partial^{n}, p_{n}\in \mathcal{A}_{S}\}$ ,

witb the same summation and multiplication rules as the ordinary ones [8, 10,
12];

$\sum p_{n}\partial^{n}+\Sigma q_{n}\partial^{n_{d}}=_{ef}\sum(p_{n}+q_{n})\partial^{n}$ ,

$(\Sigma p_{i}\partial^{i})\cdot(\Sigma q_{j}\partial^{j})=\Sigma r_{n}\partial^{n}def$

$r_{n}= \sum_{defi+j-k=n}(\begin{array}{l}ik\end{array})p_{i}\partial^{k}(q_{j})$ .

Let $($ $)_{\pm}$ denote the projection onto the components of the direct sum decom-
position (as an $\mathcal{A}_{S}$-module)

(2.20) $\mathcal{E}_{S}=9_{S}\oplus \mathcal{E}_{S}^{(-1)}$ , $\mathcal{E}t^{-1)}=def\{\sum p_{n}\partial^{n} ; p_{n}=0\forall n\geqq 0\}$
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In other words,
$(\partial^{n})_{+}=0$ $(n<0)$ , $=\partial^{n}$ $(n\geqq 0)$ ,

$(\partial^{n})_{-}=\partial^{n}(n<0)$ , $=0$ $(n\geqq 0)$ .

It should be noted that the commutative ring $\mathcal{A}_{S}$ now has two distinct roles.
In one hand, it is a commutative subalgebra of $9_{S}$ or of $\mathcal{E}_{S}$ ; on the other hand,
it is a differential ring on which $9_{S}$ acts. To distinguish notationally, we
write $Pf$ or $P\cdot f(P\in 9_{S}, f\in \mathcal{A}_{S})$ to mean the multiplication of differential
operators, whereas let $P(f)$ denote the action of $P$ on $f$.

3. $9_{S}$-modules $\mathscr{M}_{S}$ and M\S .

Let $\mathscr{M}_{S}$ be the following left free $\mathcal{A}_{S}$-submodule of $\mathcal{E}_{S}$ .

(3.1)
$\mathscr{M}_{S}=\bigoplus_{defi\in S}\mathcal{A}_{S}W_{S.i}$ ,

$W_{S.i}=\partial^{i}-defjS^{C}w_{S.ij}\partial^{j}$
$(i\in S)$ .

Actually, this becomes a $9_{S}$-module. To specify its structure, we write $S$ as
a disjoint union of finite intervals and a semi-infinite interval as:

(3.2) $S=[i_{0}, j_{0}]\cup\cdots\cup[i_{m- 1}, j_{m- 1}]\cup[i_{m}, \infty)$ ,

$i_{0}<j_{0}<i_{1}\leqq..$ . $\leqq i_{m-1}<j_{m-1}\leqq i_{m}$ ,

$n_{def}= \sum_{l=0}^{m-1}(i_{l}-J\iota+1)$ ,

where $[i_{l}, j_{l}]$ , for $1=0$ , $\cdot$ .. , $m-1$ , denotes the sequence of integers from $i_{l}$ to
$j_{l}$ , and $[i_{m}, \infty]$ all integers greater than or equal to $i_{m}$ (see Fig. 2).

Figure 2. Maya diagram associated with $S$

PROPOSITION (3.3). 1) The generators $W_{S.i}$ satisfy the relations

(3.3.1) $\partial\cdot W_{S.i}=\theta_{S}(i+1)W_{S}$ . $,+1^{-\sum_{l=0}^{m}w_{S.i.i_{l}-1}77_{S,t_{l}}^{7}}$ $(\forall i\in S)$ .

2) $\mathscr{M}_{S}$ is closed under the left multiplication of $\partial$ , hence becomes a $left^{-}9_{S}-$

module.
3) $\mathscr{M}_{S}$ is generated over $9_{S}$ by a finite number of elements:

(3.3.3) $\mathscr{M}_{S}=\sum_{\iota\Rightarrow 0}^{m}9_{S}W_{S.t_{l}}$ .

(Actually, this is a minimal generator system; see Appendix.)
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PROOF. According to the general composition rule, $\partial\cdot W_{S,i}$ can be written

$\partial\cdot W_{S.i}=\partial^{i+1}-\sum_{j\in S^{C}}w_{S.ij}\partial^{j+1}-\sum_{j\in S^{C}}\partial(w_{S.ij})\partial^{f}$ .

The first term on the right hand side can be further rewritten:

$\partial^{i+1}=\theta_{S}(i+1)\partial^{i+1}+\theta_{Sc}(i+1)\partial^{i+1}$

$= \theta_{S}(i+1)W_{S.i+1}+\sum_{jS^{C}}(\theta_{Sc}(i+1)w_{S.i+1.j}+\theta_{S}(i+1)\delta_{i+1.j})\partial^{j}$ .

and $\partial^{j+1}(]\in S^{c})$ has a similar expression. Inserting these formulas and gather-
ing up various terms appropriately, one arrives at the following expression of
$\partial\cdot W_{S,l}$ .

$\partial\cdot W_{S}$ . $’= \theta_{S}(i+1)W_{S.i+1}-\sum_{J\in S^{C}}\theta_{S}(_{J}+1)w_{ij}W_{S,j+1}$

$+\Sigma[\theta_{Sc}(i+1)\delta_{i+1,j}+\theta_{S}(i+1)w_{S.i+1.j^{-\theta_{Sc}(j-1)w_{S.i.j1}}}$

$j\in S^{c}$

$- \sum_{\iota_{\in}sc}\theta_{S}(l+1)w_{S}$ . tlWs, $\iota+1.j^{-\partial(w_{S.ij})]}$ .

The last sum over $j\in S^{c}$ disappears due to the definition of $\partial$ . One thus obtains
(3.3.1). This readily implies the second statement of the proposition. The last
part is a consequence of (3.3.1) and a simple induction argument. Q. E. D.

EXAMPLE. Let us consider the case for $S=(-1,0,2, 3, )$ . The Maya
diagram is shown in Fig. 1. The $9_{S}$ -module $\mathscr{M}_{S}$ is now given by

(3.4)
$\mathscr{M}_{S}=\mathcal{A}_{S}W_{-1}\oplus \mathcal{A}_{S}W_{S.0}\bigoplus_{k\geq 2}\mathcal{A}_{S}W_{S.k}$ ,

$W_{S.i}= \partial^{i}-w_{S,i.1}\partial-\sum_{J\leqq- 2}w_{S.ij}\partial^{j}$ .

The derivation $\partial$ acts on the generators of $\mathscr{M}_{S}$ as:

(3.4) $\partial\cdot W_{S.-1}=W_{S.0}-w_{s_{-}1.- 2}W_{-1}-w_{S,-1,1}W_{S,2}$ ,

$\partial\cdot W_{0}=-w_{S.0.- 2}W_{S}$ . .. $1^{-w_{S,0.1}W_{s.2}}$ ’

$\partial\cdot W_{S.k}=W_{S.k+1}-w_{S,k.-2}W_{S,1}-w_{S.k.1}W_{S,2}$ $(\forall k\geqq 2)$ .
$\mathscr{M}_{S}$ is generated by two elements $W_{s_{-}1}$ and $W_{S,2}$

(3.5) $\mathscr{M}_{S}=9_{S}W_{S.-1}+9_{S}W_{S.2}$

with a $9_{S}$-linear relation of the form

(3.6) $(\partial^{2}+\partial\cdot w_{-1.-2}+w_{0.-2})W_{1}+(\partial\cdot w1,1+w_{0,1})W_{2}=0$ .
NOW let M\S be the right $\mathcal{A}_{S}$-submodule M\S of $\mathcal{E}_{S}$ given by
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(3.7)
$\mathscr{M}_{S}^{*}=\sum_{defj\in S^{C}}W_{S.j}^{*}\mathcal{A}_{S}$ ,

$W \S_{j}-\partial^{-j1}+\sum_{Sdeft\in}\partial^{-i- 1}\cdot w_{S.ij}$ .

The index set $S^{c}$ can be written as a disjoint union of finite intervals and a
semi-infinite interval like the expression of $S$ in (2.1) (see Fig. 3):

(3.8) $S^{c}=(-\infty, i_{m}^{*}]\cup[]_{m- 1}^{*},$ $i_{m1}^{*}]\cup\cdots\cup[]_{0}^{*},$ $i_{0}^{*}]$ ,

$i_{m}^{*}\leqq j_{m-1}^{*}<i_{m- 1}^{*}<\ldots\leqq i_{1}^{*}<j_{0}^{*}<i_{0}^{*}$ ,

$n^{*}= \sum_{ldef=0}^{m- 1}(i_{l}^{*}-jf+1)$ .

The endpoints of the intervals are related with the previous expression as:

(3.9) $i_{m}^{*}=i_{0}-1,$ $i_{m-1}^{*}=i_{1}-1,$ $\cdots$ $i_{0}^{*}=i_{m}-1$ ,

$j_{m-1}^{*}=j_{0}+1,$ $j_{m- 2}^{*}=j_{1}+1,$ $\cdots$ $j_{0}^{*}=i_{m1}+1$ ,

Figure 3. Maya diagram in “dual” form

We now have an analogue of Proposition (3.3).

PROPOSITION (3.10). 1) The $\mathcal{A}_{S}$-generators W\S . $j$ satisfy the relations

(3.10.1) $W \S_{j}\partial=W\S_{j-1}\theta_{Sc}(j-1)+\sum_{l=0}^{m}$ W\S . $t_{l}-1w_{S.t_{l}.j}$ $(]\in S^{c})$ .

2) M\S becomes a right $9_{S}$-module.
3) AS a $9_{S}$-module, M\S is generated by a finite number of elements as

(3.10.3) ..SIZX $= \sum_{0\leqq l\leqq m}9_{S}W\S_{i_{l}- 1}$ .

(These generators give a minimal $9_{S}$-generator system.)

Let us consider the case of

(3.11) $S=S_{\emptyset_{d}}=_{ef}(0,1, 2, )$ .

TO simplify notations, we write $\mathcal{A}ff,$ $9ff$ . etc. rather than $\mathcal{A}_{Sff},$ $9_{S_{\ovalbox{\tt\small REJECT}}},$
$\cdots$ .

PROPOSITION (3.12). 1) $\mathscr{M}ff$ and $\mathscr{M}^{*}ff$ are cyclic $9ff$ -modules, $i$ . $e.$ , generated
by a single element:

(3.12.1) $\mathscr{M}_{\ovalbox{\tt\small REJECT}}=9ffW_{g.0}$ ,

$\mathscr{M}_{\ovalbox{\tt\small REJECT}}^{\star}=W^{*}ff.- 19ff$ .
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2) $Wff,i$ and $iV_{\ovalbox{\tt\small REJECT}.j}^{*}$ can be written explicitly:

$\backslash ^{3.12.2)}/$ $W_{\ovalbox{\tt\small REJECT}.i}=(\partial^{\iota}\cdot Wff.0^{-1})_{+}Wff.0$ ,

$W_{\ovalbox{\tt\small REJECT},j}^{*}=W_{\ovalbox{\tt\small REJECT}.1}^{*}(W^{*-1}ff.-1\partial^{-j1})_{+}$ .
3) $W_{\ovalbox{\tt\small REJECT}.0}$ and $W_{\ovalbox{\tt\small REJECT}.-1}^{*}$ are connected by the relation

(3.12.3) $W_{\ovalbox{\tt\small REJECT},0}W_{\ovalbox{\tt\small REJECT}.-1}^{*}=1$ .

PROOF. The first statement is obvious from the previous propositions. To
see (3.12.2), let us note the obvious relation

$(\partial^{i}\cdot W_{\ovalbox{\tt\small REJECT},0^{-1}})_{+}Wff.0=\partial^{i}-(\partial^{i}\cdot Wff.0^{-1})-Wff.0$ ,

which shows that this operator takes such a form as

$= \partial^{i}-\sum_{j<0}a_{if}\partial^{j}$ , $a_{ij}\in \mathcal{A}ff$ .

Such an element of $\mathscr{M}_{S}$ is unique and should be given by $TVff,t$ . In much the
same way, one can check the expression for $W^{*}ff,j$ , completing the proof of
(3.12.2). Equation (3.12.3) can be proven as follows. Recall that $Wff.i$ satisfy
the relation

$\partial\cdot Wff.i-1=Wff.i-wff.l-1.-1Wff.0$ .

This gives rise to a recursion formula for $W_{\ovalbox{\tt\small REJECT}.i}Wff.0^{- 1}$ :

$Wff.iWff.0^{-1}=\partial\cdot W_{\ovalbox{\tt\small REJECT}.i1}Wff.0^{-1}+wff,i-1.-1$ .

Solving this and using (3.12.2), one has the relation

$( \partial^{i}\cdot W_{\ovalbox{\tt\small REJECT}.0^{-1}})_{+}=Wff.tWff.0^{-1}=\partial^{i}+\sum_{k=0}^{i-1}\partial^{i-1- k}\cdot wff.k.- 1$ .

Since this is valid for all $i\geqq 0$ ,

IVff, $0^{-1}=1+ \sum_{k\geqq 0}\partial^{-k-1}\cdot w_{\ovalbox{\tt\small REJECT}.k.-1}=W:,$ $-1$ .
Q. E. D.

COROLLARY (3.13). For any $i$ and $J,$ $M^{\gamma}ff.iW^{*}ff.j$ is a differential operator.

The situation for $S=Sff$ is thus exactly the same as $\mathscr{M}_{0}$ and $\mathscr{M}_{0}^{*}$ in Section
1, though the differential algebras are different.

Remarkably, the last result can be generalized.

PROPOSITION (3.14). For any $S,$ $i\in S$ and $J\in S^{c},$ $W_{S.i}W\S_{j}$ is a differential
operator.

PROOF. Let $\mathscr{K}$ denote the quotient field of $\mathcal{A}_{S}$ . We do not specify the
suffix $S$ for $\mathscr{K}$ , because all $\mathcal{A}_{S}$ are now connected by an invertible transforma-
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tion, their quotient fields all being isomorphic. $\mathscr{K}$ is now a differential field
with a single derivation $\partial$ . Let $9_{j\zeta}$ and $\mathcal{E}_{X}$ denote the associated rings of dif-
ferential and Pseudo-differential operators. They give a ring extension of $9_{S}$

and $\mathcal{E}_{S}$ . We now notice that linear relations (2.7) and (2.11) give rise to the
following relations of operators:

(3.15) $W_{S.i}= \sum_{j\in s},$
$h_{SS’.ij}W_{S’,j}$ ,

$W \S_{j}=\sum_{i\in S^{\prime c}}$ W\S ,. $i/\iota\S_{S.if}$ .

Applying these relations to the case of $S’=Sff$ , one finds that each of the
operator products $W_{S.i}W\S_{j}$ is linear combination of similar operator products
for $Sff$ with coefficients in $\mathscr{K}$ . (The matrix elements of $h_{S.Sff}$ and $h\S ff.s$ are
included in $\mathscr{K}.$ ) As we have seen above, $W_{Sff,i}W^{\gamma}\S_{g\cdot j}$ are differential operators.

Therefore $W_{S.i}W_{S.j}^{*}$ are also differential operators, though their coefficients
belong to $\mathscr{K}$ . Actually, they are members of $\mathcal{E}_{S}$ from the construction, hence
turn out to be in $9_{S}$ . Q. E. D.

REMARK. It is immediate from the above observation that $\mathscr{M}_{S}$ and $\mathscr{M}_{S}^{*}$

become cyclic (actually, isomorphic to $9_{X}W_{S_{\ovalbox{\tt\small REJECT}},0}$ and $W_{Sff.-1}^{*}9_{j\zeta}$ ) if their ring of
coefficients are extended from $9_{S}$ to $9_{\mathscr{K}}$ . Tbis is exactly the situation con-
sidered in Ref. 10.

4. Vanishing of cohomology and projectivity.

This and the next sections deal with cohomological properties of the modules
$\mathscr{M}_{S}$ and $\mathscr{M}\S$ with $S$ fixed. Let us suppress the suffix $S$ ’ for simplicity of
notation.

In view of Proposition (3.3), we now take a finite set of generators of $\mathscr{M}$

as:

(4.1)
$\mathscr{M}=\sum_{i\in S.i\leqq i_{m}}9W_{i}$ .

For the definition of $i_{m}$ , see (3.2). (One may also take the minimal generator
system as presented therein; see Appendix for such a treatment.) Our task
below is to construct a free resolution of this module.

DEFINITION (4.2). We now introduce the following matrices of differential
operators [cf. Proposition (3.14)]. Note that $M$ is an $n\cross(n+1)$ matrix, $N$ an
$(n+1)\cross n$ matrix, and $U$ an $(n+1)\cross(n+1)$ matrix, $n$ being the number defined
in (3.2).

(4.2.1) $M=def(M_{ij} ; i\in S, i<i_{m}, j\in S, j\leqq i_{m})$ ,
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$M_{if}=\delta_{ij}\partial-\theta_{S}(i+1)\delta_{i+1.j}+\theta_{Sc}(j-1)w_{i.j-1}def$

(4.2.2) $N=def(N_{ij} ; i\in S, i\leqq i_{m}, j\in S, j<i_{m})$ ,

$N_{ij}=-(W_{i}\partial^{-j-1})_{+}def$

(4.2.3) $U=def(U_{ij} ; i, j\in S, i, j\leqq i_{m})$ ,

$U_{iJ_{d}}=_{ef}\theta_{Sc}(j-1)W_{t}W7-1$ .

Proposition (3.3) implies the following relations among the generators $W_{t}$

in (4.1).

(4.3) $\sum$ $M_{ij}W_{j}=0$ $(i\in S, i<i_{m})$ .
$j\in S.j\leq i_{m}$

The following lemma plays a key role in this and the next sections.

LEMMA (4.4). $M$ and $N$ obey the relations

(4.4.1) $MN=1_{n}$ .
(4.4.2) $N_{1}ll=1_{n+1}-U$ ,

where $1_{n}$ , in general, denotes the $nXn$ unit matrix.

PROOF. We first prove (4.4.1). From (4.3), obviously,

$\sum_{j\in^{s.j\leq t_{m}}}(M_{ij}TV_{j}\partial^{-k-1})_{+}=0$ , $\forall k\in Z$ .

In view of the definition of $M_{ij}$ , on the other hand, the left hand side can be
rewritten

$\in j\leq m\sum_{jS.i}(jM_{ij}W_{J}\partial^{-k- 1})_{+}=(\partial\cdot W_{i}\partial^{-k-1})_{+}-\partial\cdot(W_{i}\partial^{-k-1})_{+}-\sum_{k\in S.k\leqq i_{m}}M_{ij}N_{jk}$ .
We notice here that for any pseudo-differential operator $P= \sum p_{n}\partial^{n}$ ,

$(\partial\cdot P)_{+}-\partial\cdot(P)_{+}=p_{-1}$ .
Applying this formula to $W_{i}\partial^{-k-1}$ , one finds that

$(\partial\cdot W_{i}\partial^{-k-1})_{+}-\partial\cdot(W_{i}\partial^{-k-1})_{+}=\delta_{ik}$ .
One can thus deduce that

$\sum_{j\in^{s}.J\leqq i_{m}}M_{ij}N_{jk}=\delta_{ik}$

for $i,$ $k\in S,$ $i,$ $k<i_{m}$ . This is exactly (4.4.1). One can derive (4.4.2) by similar
calculations: First, from the definition of $M_{tj}$ and $N_{jk}$ ,

$\sum$ $N_{tj}M_{jk}=-(W_{i}\partial^{-k- 1})_{+}\partial+$ $\sum$ $(W_{i}\partial^{-j-1})_{+}\theta_{S}(j+1)\delta_{j+1,k}$

$j\in S.j<i_{m}$ $j\in S.j<\iota_{m}$

$- \sum(W_{i}\partial^{-j- 1})_{+}\theta_{Sc}(k-1)w_{j.k-1}=I+II+mj\in S.J<i_{m}def$
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The second part on the right hand side is equal to $(W_{i}\partial^{-k})_{+}$ if $k-1\in S$ and
vanishes if $k-1\in S^{c}$ . Hence

II $=\theta_{S}(k-1)(lV_{i}\partial^{-k})_{+}$ .

The third part can be gathered up to give the following contribution:

$m=\theta_{s}c(k-1)(W_{i}\sum_{SJ\in.J<t_{m}}\partial^{-j-1}\cdot w_{f.k-1})_{+}$ .

Since $i$ is now bounded by $i_{m},$ $W_{i}$ is of order less than or equal to $i_{m}$ . The
range of $j$ on the right hand side may be extended to all $S$ because $\partial^{-r-1}$ for
$j\geqq i_{m}$ have no contribution to $(\cdots)_{+}$ . Therefore

$m=\theta_{S}c(k-1)(W_{i}\sum_{j\in S}\partial^{-j-1}\cdot w_{j.k- 1})_{+}=\theta_{Sc}(k-1)(W_{i}(W_{k-1}^{*}-\partial^{-k}))$ .

TO summarize,

$I+II+m=-(W_{i}\partial^{-k-1})_{+}\partial+(W_{i}\partial^{-k})_{+}-\theta_{S^{c}}(k-1)(W_{i}^{r}iV_{k-1}^{*})_{+}$

$=\delta_{ik}-\theta_{Sc}(k-1)(W_{i}W_{k-1}^{*})_{+}$ .
This implies (4.4.2). Q. E. D.

PROPOSITION (4.5). $\mathscr{M}$ has a free resolution of the form
$\alpha$

$\beta$

$0arrow 9^{n}arrow 9^{n+1}arrow \mathscr{M}arrow 0$ (exact),

where $9^{n}$ and 9 are the free 9-modules of row vectors of differential operators,
and $\alpha$ and $\beta$ are left 9-homomorphismm given by

$\alpha$ : $Q$ . $=(Q_{j} ; j \in S, j<i_{m})-(\sum_{i\in S.i<i_{m}}Q_{i}M_{ij} ; j\in S, j\leqq i_{m})$ ,

$\beta$ : $P$. $=(P_{j} ; j \in S, j\leqq i_{m})-\sum_{j\in S.f\leqq i_{m}}P_{j}W_{j}$ .

PROOF. Since the first $n$ columns of $M$ is a matrix of dlfferential operators
of the form $\partial\cdot 1_{n}+(order0),$ $\alpha$ is an injective bomomorphism. From (4.1) and
(4.3), $\beta$ is surjective and its composition with $\beta$ vanishes. It remains to prove
that $Ker\beta$ is equal to ${\rm Im}$ a. This readily follows from (4.4.2) and the con-
struction of $M,$ $N$ and $U$ : Suppose that $P.=(P_{j})$ is in the kernel. Obviously,

$\sum_{i}P_{i}U_{ij}=0$ , $\forall j\in S,$ $j\leqq i_{m}$

Therefore from (4.4.2),

$P_{k}= \sum_{i}\sum_{J}P_{i}N_{ijk}M_{j}$
,

hence P. is in the image of $\alpha$ . Q.E. D.

COROLLARY (4.6). AS a left 9-module,
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$\mathscr{M}\cong 9^{n+1}/\sum_{i\in S.i<i_{m}}9M_{i}$ . ,

where $M_{l}$ . are row vectors given by

$M_{i}.=(M_{ij} ; j\in Sdefj\leqq i_{m})$ .

From the above free resolution, in particular, one finds that

(4.7) Extg $(\mathscr{M}, 9)=0$ for $p\geqq 2$ .
At first si ht, this result looks almost obvious in view of the basic knowledge
on 9-modules on complex manifolds [2]. Actually, this is not the case. Since
$\mathcal{A}$ is a polynomial ring of an infinite number of variables, one can rather prove
that

gl. $\dim 9=\infty$ ,

which means that there is no uniform upper bound for the range of $P$ with
non-vanishing $Ext_{9}^{p}$ if one alIows an arbitrary 9-module. Further, ordinary
methods [2] are more or less rely upon dimensional induction and cannot be
applied for the present case. The above result is due to some very sPecial
nature of $\mathscr{M}$ .

One can actually prove the following even stronger result.

PROPOSITION (4.8).
$Ext_{\Phi}^{1}(\mathscr{M}, 9)=0$ .

PROOF. From the free resolution of (4.5),

$Ext_{B\}}^{1}(\mathscr{M}, 9)\cong 9^{n}/\sum_{j\in S,J\leqq i_{m}}M_{j}g$
,

where $M_{j}$ is the following column vector

M. $J_{def}=(M_{ij} ; i\in S, i<i_{m})$ .

On the other hand, (4.4.1) implies $\Sigma M_{j}9=9^{n}$ . Q. E. D.

From these results, we arrive at our first theorem.

THEOREM (4.9). For any $S,$ $\mathscr{M}_{S}$ is a projective $9_{S}$-module.

PROOF. One can obtain a long exact sequence from the short exact sequence
of Proposition (4.5) by the contravariant functor $Ext_{9}^{i}(\cdot, 9)$ . Because of the
above vanishing of cohomology, this long exact sequence can be reduced to the
short exact sequence

$0arrow 9^{n}arrow 9^{n+1}Hom_{9}(\mathscr{M}\alpha^{*}\underline{\beta^{*}}g)-0$ ,

which splits because the first and second terms are free modules. $Hom_{\Phi}(\mathscr{M}, 9)$
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thus turns out to be a projective right 9-module. We now have the following
commutative diagram, whose both rows are exact.

$0arrow 9^{n}arrow 9^{n+1}arrow\alpha\beta$
$\mathscr{M}$ $arrow 0$

$\cong\downarrow$ $\cong\downarrow$ $\downarrow$

$a^{**}$ $\beta^{**}$

$0arrow 9^{n}arrow 9^{n+1}arrow Hom_{9}(Hom_{9}(\mathscr{M}, 9),$ $9)arrow 0$

Therefore the canonical homomorphism $\mathscr{M}arrow Hom_{9}(Hom_{9}(\mathscr{M}, 9),$ $9)$ is actually
an isomorphism, and since $Hom_{9}(\mathscr{M}, 9)$ is projective, $\mathscr{M}$ also becomes a pro-
jective 9-module. Q. E. D.

5. Duality of 9-modules.

In tbe previous section, the key relations in Lemma (4.4) are used to con-
struct a special free resolution of $\mathscr{M}$ . We now use the same relations to
deduce a different exact sequence.

AS a counterpart of (4.1), we now take a finite set of generators of $\mathscr{M}^{*}$ as:

(5.1)
$\mathscr{M}^{*}=\sum_{j\in S^{C},j\geq i_{m}^{*}}W_{j}^{*}9$

.

LEMMA (5.2). There is an isomorphism

$\varphi^{*}:$

$\mathscr{M}_{arrow}^{*\sim}\sum_{j\in S^{C}.j\geq i_{m}^{*}}V_{j}9$

$(\subset 9^{n+1})$

of right 9-modules given by

$\varphi^{*}(\sum_{j\in S^{C}.j\geq\iota_{m}^{*}}W_{j}^{*}P_{j})=\sum_{j\in S^{C}.j\geq t_{m}^{*}}$
V. ${}_{J}P_{j}$ ,

where $9^{n+1}$ is now considered as a set of column vectors of differential $oPerators$ ,

and $V_{j}$ is an element of $E)^{n+1}$ given by

V. $j_{def}=(V_{ij} ; i\in S, i\leqq i_{m})$ ,

$V_{ij}=W_{i}W_{j}^{*}def$

PROOF. $\varphi^{*}$ is well-defined from the construction; if $\Sigma W_{J}^{*}P_{j}=0$ for some
$P_{j}\in 9$ , then $\Sigma V{}_{ij}P_{j}=\Sigma W_{i}W_{j}^{*}P=0$ . The surjectivity of $\varphi$ is also obvious. To
prove the injectivity, suppose that $\varphi(\Sigma W_{j}P_{j})=0$ . This means that $\Sigma W_{i}W_{j}^{*}P_{j}$

$=0$ for $i\in S,$ $i<i_{m}$ . Since $\mathcal{E}$ contains no zero-divisor, it follows that $\Sigma W_{j}^{*}P_{j}$

$=0$ . Q. E. D.

PROPOSITION (5.3). The following sequence of right 9-modules is exact.
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$\psi^{*}$ $\varphi^{*}$

$0arrow 9^{n}-9^{n+1}arrow \mathscr{M}^{*}arrow 0$ ,

where $\varphi^{*}$ is the homomorPhism induced by the $\varphi^{*}$ of (5.2), and $\psi*is$ the homo-
morPhism that sends $(n+1)$-column vectors of differential operators to n-column
vectors as:

$\psi^{*}:$ $P$. $=(P_{i} ; i \in S, i\leqq i_{m})rightarrow(\sum_{j}M_{ij}P_{j} ; i\in S, i<i_{m})$ .

PROOF. Step i) $\varphi^{*}$ is injective [Lemma (5.2)].
Step ii) The surjectivity of $\psi^{*}:-For$ any $Q.=(Q_{i} ; i\in S, i<i_{m})\in 9^{n}$ , let

$P.=(P_{i} ; i\in S, i\leqq i_{m})$ be an element of $9^{n+1}$ given by

$P_{i}= \sum_{f\in S.j\leq m}N_{ij}Q_{j}$

with some $(P_{j})\in 9^{n+1}$ . Because of (4.4.1), this turns out to satisfy the relation

$Q_{i}= \sum_{j}M_{tj}P_{j}$ ,

hence $Q.\in{\rm Im}\psi^{*}$ .
Step iii) ${\rm Im}\varphi^{*}\subset Ker\psi^{*}$ :–From the construction,

$\psi^{*}\circ\varphi^{*}(W_{k})=\sum_{j\in S.jst_{m}}M_{ij}V_{fk}$
,

and since $V_{jk}=W_{j}W_{k}^{*}$ , the right hand side vanishes.
SteP iv) $Ker\psi^{*}\subset{\rm Im}\varphi^{*}$ :–Suppose that $P.=(P_{i} ; i\in S, i\leqq i_{m})$ is in $Ker\psi^{\star}$ ,

$i.e.$ ,

$\sum_{k\in S.k\leq i_{m}}M_{jk}P_{k}=0$ for $j\in S,$ $j<i_{m}$ .

Notice here that (4.4.2) implies the relation

$\sum_{j\in S.J<j_{m}}N_{ij}M_{fk}=\delta_{ik}-U,k$ .
Multiplying the previous relation by $1V_{ij}$ , summing over $j$ and using this identity,
one readily finds that

$P_{i}= \sum_{\in kS.k<t_{m}}U_{ik}P_{k}=\sum_{l\in S^{C}.l\geq i_{m}^{*}}\theta_{s}(l+1)V_{il}P_{l+1}$
.

This means that $P.\in{\rm Im}\varphi^{*}$ . Q. E. D.

REMARK. In a fully analogous way, one can obtain an exact sequence of
the form

$\varphi$
$\psi$

(5.4) $0arrow \mathscr{M}arrow 9^{n+1}*arrow 9^{n^{*}}arrow 0$ .
where $9^{n^{*}}$ and 9 are, now, free 9-modules of row vectors, and $\varphi$ and $\psi$

are left 9-homomorphisms, $n^{*}$ being defined in (3.8). Just as the first exact
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sequence in the proof of Theorem (4.9), this exact sequence also splits and leads,
again, to the conclusion $that\mathscr{M}$ is a projective 9-module. Since we have the
duality theorem below, $\mathscr{M}^{*}$ also turns out to be a projective 9-module.

Our second theorem is concerned with duality.

THEOREM (5.5). For any $S,$ $\mathscr{M}_{S}$ and M\S are dual, $i$ . $e.$ ,

$\mathscr{M}_{S}^{*}\cong Hom_{g_{S}}(\mathscr{M}_{S}, 9_{S})$ ,

$\mathscr{M}_{S}\cong Hom_{9_{S}}(\mathscr{M}_{S}^{*}, 9_{S})$ .
PROOF. We only prove the first isomorphism; the second one is proven in

a parallel way. The exact sequence of (4.5) gives rise to a long exact sequence
of the form

$\alpha^{*}$
$\beta^{*}$

$...arrow Ext_{\ovalbox{\tt\small REJECT}}^{1}(\mathscr{M}, 9)=0-9^{n}-9^{n+1}-Hom_{9}(\mathscr{M}, 9)arrow 0$ .

From this and the exact sequence of (5.3), one can obtain the following com-
mutative diagram of homomorphisms of right 9-modules, whose rows are both
exact.

$\psi^{*}$ $\varphi^{*}$

$0arrow 9^{n}arrow 9^{n+1}-$ $\mathscr{M}^{*}$ –0 (exact)

$\cong\downarrow$ $\cong\downarrow$ $\rho\downarrow$

$0arrow \mathcal{O}^{n}E)^{n+1}arrow Hom_{9}(\mathscr{M}\underline{\alpha^{*}}\beta^{*}9)arrow 0$ (exact)

where $\rho$ is the canonical homomorphism that maps $W_{j}^{*}$ to an element of
$Hom_{9}(\mathscr{M}, 9)$ as:

$\rho(W_{j}^{*}):W_{i}-V_{ij}$ .

The commutativity is a consequence of the construction and (4.4). The so
called “five lemma” now deduces the first isomorphism. Q. E. D.

6. KP hierarchy as differential-algebraic structure on UGM.

The ordinary expression of the KP hierarchy, as mentioned in Section 1,
is based upon the 9-module structure for $S=Sff$ . We now extend it to other
coordinates associated with a general S. (Actually, the following results can
further be generalized to a hierarchy associated with an infinite dimensional
flag manifold [5].)

Let us briefly review the case of $S=S_{\ovalbox{\tt\small REJECT}}$ within the context of the present
paper. The KP hierarchy now means a differential algebra with the same com-
mutative algebra $\mathcal{A}=\mathcal{A}ff$ but with an addional set of derivations $\partial_{n}(n=1,2, \cdots)$ .
This may be called the “KP differential algebra.” These derivations, by de-
finition, act on the generators $wff.ij$ as:
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(6.1) $\partial_{n}(wff.if)=wff.i+n.j^{-w_{\ovalbox{\tt\small REJECT},i.f- n^{-\sum_{k=-n}w_{\ovalbox{\tt\small REJECT},ik}wff.k+n.f}}}$ .

It is not hard to see [14] that this is indeed equivalent to the system of equa-
tions

(6.2) $\partial_{n}(W)=\sum_{defm=1}^{\infty}\partial_{n}(w_{m})\partial^{-m}=B_{n}W-W\partial^{n}$ , $n=1,2,$ $\cdots$

which is one of various equivalent expressions of the KP hierarchy. It should
be, however, noted that (6.2) is now a definition of the derivations $\partial_{n}$ rather
than equations for unknown functions.

The new derivations $\partial_{n}$ can be extended to all other $\mathcal{A}_{S}’ s$ . To see this, it
is convenient to start from the matrix form

(6.3) $\partial_{n}(\eta ff)=Bff.n\eta ff-\eta ff\Lambda^{n}$ ,

$Bff,n_{d}=_{ef}(\eta ff.i.j- n ; i, j>0)$ ,

where $\Lambda$ is the matrix defined in (2.1). The “dual” matrix $\eta^{*}ff$ gives an equi-
valent expression of (6.3):

(6.4) $\partial_{n}(\eta^{*}ff)=\Lambda^{n}\eta_{\ovalbox{\tt\small REJECT}}^{*}-\eta_{\ovalbox{\tt\small REJECT}}^{*}Aff.n$ ,

$Aff.n_{d}=_{ef}(\eta^{*}ff.i+n.j ; i, j<0)$ .

These equations give rise to the equations

(6.5) $\partial_{n}(\eta_{S})=B_{S.n}\eta_{S}-\eta_{S}\Lambda^{n}$ ,

$\partial_{n}(\eta\S)=\Lambda^{n}\eta\S-\eta_{S}^{*}A_{S.n}$ ,

for the transformed matrices

(6.6) $\eta_{S}=h_{S.Sff}\eta ff$ , $\eta\S=\eta_{\ovalbox{\tt\small REJECT}}^{*}h8ff.s$ .
One can determine the coefficients $A_{S,n}$ and $B_{S.n}$ just as in the proof of Pro-
position (2.14):

(6.7) $A_{S.n}=(\eta\S_{i+n.j};i, j\in S^{c})$ ,

$B_{S.n}=(\eta_{S.i,j-n} ; i, j\in S)$ .
Having obtained (6.5), one can change the point of view, and now under-

stand (6.5) as the definition of new derivations $\partial_{n}$ on $\mathcal{A}_{S}$ . Proposition (2.14)

can be now generalized as follows.

PROPOSITION (6.8). The derivations defined by (6.5) are consis tent with the
gluing homomorphis $mg_{SS’}$ . More precisely, if $\partial_{S,n}$ denotes the derivation on $\mathcal{A}_{S}$

defined by (6.5), $\partial_{S.n}$ and $\partial_{S’.n}$ obey the relation
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$\partial_{S.n}\circ g_{SS’}=g_{SS’}\circ\partial_{S’.n}$ .
This fact again allows a geometric intepretation that $\partial_{n}$ , like $\partial$ , are globally

defined vector fields on UGM. Our UGM thus acquires a new structure of
“differential-algebraic variety,” which now represents the KP hierarchy itself.

Let us rewrite (6.5) in terms of $\mathscr{M}_{S}$ and M\S . Note that the generators
$W_{S.l}$ and $W_{S.j}^{*}$ of these $9_{S}$-modules are linked with $\eta_{S}$ and $\eta\S$ by the simple
relation

(6.9) $\dagger V_{S.i}=\sum_{j}\eta_{S.tf}\partial^{j}$ ,

$W \S_{j}=\sum_{i}\partial^{-i-1}\eta\S_{ij}$ .
From this fact, one can readily give an equivalent expression of (6.5) in terms
of these generators. As in (6.2), we define

$\partial_{n}(P)=\Sigma\partial_{n}(p_{i})\partial^{i}def$ for $P=\Sigma p_{i}\partial^{i}\in \mathcal{E}_{S}$ .

PROPOSITION (6.10). In terms of $W_{S,i}$ and $W\S_{j},$ $(6.5)$ can be rewritten

(6.10.1) $\partial_{n}(W_{S.i})=\sum_{j\in S}B_{S.n.’ j}W_{s_{J}}.-W_{S.i}\partial^{n}$ ,

(6.10.2) $\partial_{n}(lV\S_{j})=\partial^{n}W\S_{j}-\sum_{i\in S^{C}}W\S_{i}A_{S.n.’ j}$ ,

where $A_{S.n.ij}$ and $B_{s.n.ij}$ stand for the $(i, j)tomponent$ of As, $n$ and $B_{S.n}$ . The
summation on the right hand side actually contains only a finite number of non-
vanishing $ter?m$ .

This result can be restated in a more intrinsic way as:

(6.11.1) $\partial_{n}(W)+W\partial^{n}\in \mathscr{M}_{S}$ for $W\in \mathscr{M}_{S}$ ,

(6.11.2) $\partial_{n}(W^{*})-\partial^{n}W^{*}\in \mathscr{M}\S$ for W*\in M\S .

One can derive from (6.10) these relations; conversely, starting from (6.11), one
can reproduce (6.10) just as we have derived (6.7) from (6.5) alone. These two
expressions are thus entirely equivalent. The latter expression is manifestly
invariant under the action

$W-PW$ , $W^{*}-W^{*}P$

of elements $P$ of $9_{S}$ , hence more suitable from the point of view of 9-modules.
Selecting a special generator system of $\mathscr{M}_{S}$ and M\S ammonts to selecting a
special matrices like $\eta_{S}$ and \eta \S among various “equivalent frames” [8-10].

If $S=Sff,$ $(6.11)$ reproduces Sato’s intrinsic formulation of the KP hierarchy
$[10, 11]$ . Our $9_{S}$-modules thus give a natural extension of Sato’s formulation
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of the KP hierarchy, now taking into account the gluing structure of UGM.
Another point to be noted is that we have constructed such a global object
without using any actual realization of solutions (like the ring $C[[t, x]]$ of
formal power series); we just reinterpret the structure sheaf of UGM as a
sheaf of differential rings.

Appendix. Minimal generators of 9-modules.

We here present several results on the minimal generators $W_{i_{k}}$ of $\mathscr{M}_{S}$ .
Proofs are omitted because they are parallel to the previous case. The results
presented below can be readily extended to M\S . We again suppress the suffix

$S$ ’ in the following.
A counterpart of (4.3) for the minimal generators is given by

(A. 1) $\sum_{k=0}^{m}\tilde{M}_{lk}W_{t_{k}}=0$ (O$l\leqq m--l) ,

where

(A.2) $\tilde{M}_{lk}=def(\partial^{J_{l}+1}W_{t_{k}-1}^{*})_{+}$ .

An associated free resolution of $\mathscr{M}$ is given by

(A.3)
$0arrow 9^{m}9^{m+1}arrow \mathscr{M}\underline{\tilde{\alpha}}\tilde{\beta}arrow 0$

where

(A.4) $\tilde{\alpha}$ : $Q$ . $=$ ( $Q_{\iota}$ ; OS l$ $m-1$ ) $-$ ( $\sum_{l=0}^{m-1}Q_{\iota}\tilde{M}_{lk}$ ; $0\leqq$ k$m),

$\beta$ : $P$. $=(P_{k} ; 0 \leqq k\leqq m)-\sum_{k=0}^{m}P_{k}iV_{i_{k}}$ .

Let $\tilde{M}$ denote tbe matrix

(A.5) $\tilde{M}=def(\tilde{M}_{lk} ; 0\leqq l\leqq m-1,0\leqq k\leqq m)$ .

Likewise,

(A.6) $\tilde{N}=def$ ( $\tilde{N}_{lh}$ ; OS $l\leqq m$ , OS $k\leqq m-1$ ), $\tilde{N}_{lk}=def-(W_{i_{l}}\partial^{-j_{k}-1})_{+}$ .

One then has a variation of Proposition (4.4) as follows.

PROPOSITION (A.7). $\tilde{M}$ and $N$ obey the relations

(A.7.1) $\tilde{M}\tilde{N}=X^{-1}$ ,

(A.7.2) $\tilde{N}X\tilde{M}=1_{m+1}-C$ ,

where
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$x_{d}=_{ef}(X_{lk} ; 0\leqq 1, k\leqq m-1)$ , $X_{lk}=\delta_{lk}-\delta_{l.k+1}\partial^{j_{l}-J_{k}}def$

$\tilde{U}=def$ $(\tilde{U}_{lk} ; 0\leqq l, k\leqq m)$ , $\hat{U}_{lk}=W_{\iota_{l}}W_{i_{k}-1}^{*}def$

COROLLARY (A.8). $W_{i_{k}}$ and $W_{t_{k}- 1}^{*}$ give a “partition of unity” :

$\sum_{k=0}^{m}W_{i_{k}- 1}^{*}W_{i_{k}}=1$ .

From these results, one can prove that $W_{t_{k}}s$ and $W_{\ell_{k}-1}^{*}’ s$ indeed give minimal
generator systems of $\mathscr{M}$ and $\mathscr{M}^{*}$ .

The following is an analogue of (5.2).

(A.9) $\mathscr{M}^{*}\cong 9^{m+1}\hat{U}\subset 9^{m+1}$ ,

This induces an exact sequence of the form [cf. (5.3)]

(A.10)
$0arrow \mathscr{M}^{*}arrow 9^{m+1}9^{m}\tilde{\varphi}\underline{\tilde{\psi}}arrow 0$

,

which splits:

$\langle$A.ll) $9^{m+1}\cong \mathscr{M}^{*}\oplus 9^{m}$

From Corollary (A.8), one can further derive the following expression of
$TV_{i}’ s$ and $W_{j}^{*}’ s$ . This gives an extension of (3.12.2) to a general $S$ .

PROPOSITION (A. 12). $W_{i}$ and $W_{f}^{*}$ for general $i\in S$ and $j\in S^{c}$ can be written

$W_{i}= \sum_{k=0}^{m}(\partial^{\iota}w_{i_{k}-1}^{\gamma}*)_{+}W_{i_{k}}$ ,

$W_{j}^{*}= \sum_{k=0}^{m}W_{\ell_{k}- 1}^{*}(W_{i_{k}}\partial^{-j- 1})_{+}$ .
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