J. Math. Soc. Japan
Vol. 43, No. 4, 1991

On special values of Selberg type zeta
functions on SU(1, g+1)

By Koichi TAKASE

(Received Aug. 1, 1988)
(Revised Aug. 10, 1989)

§0. Introduction.

There is mystery in the arithmetic nature of the special values of {(s)=
»_in~% at the odd integers greater than one.

It is widely believed that the special values of the Dedekind zeta function

Cx(s) of an algebraic number field K at the positive integer m is written in

the form
{x(m)=R-P-A

where R=vol(I'NR") is the (higher) regulator with r=ord,_,_,{x(s) and 'CR"
a Z-lattice, P is the period and A is an algebraic number called the algebraic
part of the special value {x(m). A typical example is the residue formula at
s=1, that is, {x(s) has a simple pole at s=1 and

Res {x(s) = R(K)-P-A

where R(K)=vol(Ug\R7"1*7271) is the usual regulator of K with »,+r,—1=
ord;_{x(s), P=2"1(2x)"2, and A=h/(w~|D]|). Here Ug is the unit group of
the maximal order of K, », (resp. r,) is the number of the real (resp. complex)
places of K, h is the class number of K, w is the number of the rcots of unity
contained in K, and D is the absolute discriminant of K.

In this paper, we will show that special values of Selberg zeta functions
are also written as a product of “regulator” and “period”.

In §1, we will recall basic facts on the irreducible unitary representations
of the special unitary group SU(1, ¢+1) of signature (1, ¢g+1)(¢>0). The unitary
dual of a real rank one semi-simple Lie group is determined by [BSB]. We
will recall a result of Kraljevic in which we can find a parametrization
of the irreducible unitary representations of SU(l, ¢+1) and the irreducible
decomposition of them restricted to a maximal compact subgroup K of SU(,
g+1). We will give a connection between the Harish-Chandra parametrization
of square-integrable representations of SU(l, ¢g+1) and the parametrization of
Kraljevic.
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In §2, we will prove Paley-Wiener theorem for spherical Fourier transform
on SU(1, ¢+1) in the case of one-dimensional K-type. It is a reformulation of
Paley-Wiener theorem in or in [WkI]. Such a reformulation is possible
thanks to the detailed parametrization of Kraljevic [Kr].

In §3, we will define a Selberg type zeta function on SU(1, ¢+1) with one-
dimensional K-type. The proofs may be omitted because they are well-known
([WK1, 27).

In §4, we will give, using the trace formula, a formula which expresses
the special values of the Selberg type zeta functions as a product of two factors
R and P (Theorem 4.4 or [Theorem 4.5). Analogous formulae are given by
several authors D’Hoker-Phong [DP], Fried or Voros [Vr]. The purpose
of this paper is to give a new interpretation of the formula.

In §5, we will treat Dedekind zeta functions. The purpose is to give, using
the explicit formula, a formula which expresses the residue of the Dedekind
zeta function at s=1 as a product of two factors R and P (Theorem 5.4).
Comparing with the classical residue formula cited above, it is suggested that
the factors R and P correspond to the factors R(K)h/(w~/|D]) and 2"1(2z)"2
respectively. In other words, R is the regulator and P is the period.

Selberg defined a “Selberg zeta function” in order to solve the follow-
ing crossword puzzle;

Crossword Puzzle

Dedekind zeta function ?

‘ explicit formula Selberg’s trace formula

There exist a lot of analogy between Dedekind zeta functions and Selberg zeta
functions. We can find a clear correspondence between the arguments in §4
and in §5. Such a correspondence of arguments suggests that the factors R
and P in [Theorem 4.4 or [Theorem 4.5 play the role of the regulator and the
period respectively for special values of Selberg type zeta functions (see §6
for details).

The author would like to express his thanks to Professor Nobushige Kuro-
kawa for valuable suggestions and constant encouragement.

NOTATIONS. For any topological space X, we will denote by C.(X) the
C-vector space of the C-valued continuous functions on X with compact support.
For any ring R, we will denote by M, .(R) the R-module of the matrices with
m rows and n columns whose entries are in R. The transposed matrix of
gEM, .(R) is denoted by 'g=eM, «(R). Put M,(R)=M,, .(R). We will denote
by diag(a,, ---, a,) the diagonal matrix with diagonal elements a,, --, a,. The
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unit matrix of size n is denoted by /,. Put g*='g for any g&= M., .(C) where
g denote the complex conjugation of g.

§ 1. Preliminaries.

1) Special unitary group of signature (1, ¢g+1). Let G=SU(, ¢+1) be
the special unitary group of signature (1, ¢+1) with ¢>0. The group G is
defined by

G=1{g=SLg+2, C)lg*jg =]}
0 01

where g*='g and J=| 0 —I, 0 |. The connected semi-simple Lie group G
1 00

has the Iwasawa decomposition G=K-A-N where

a b ¢
d e —d|eG

¢ —b a

K={geCGlgtg=1} =

is 2 maximal compact subgroup of G and

{ a 0 0
:’1:-] 0 1, O)CGO<(Z€R
(\0 0 a*,
J 1 b (1/2)bb*+~v—1t l
N:| 0 I, b* eGlbeCy,te R,
(N0 0 1 J

Let ¢=Lie(G)={X<sl(g+2, C)| X*J+JX=0} be the Lie algebra of G, and
Gc=86XrC the complexification of ¢. Choose a Cartan subalgebra 8= {diagonal
matrixeg} of ¢. The root system of (G¢, Be) is Z={4:i—4;|7, j=0, 1, -,
g+1, i#;}. Here we define A, 8% by A(H)=a,; for H=diag.(a,, a1, -, Qq+1)
< Bc. The ordering of X is defined by the fundamental root system {A;— 441/
=0,1, -+, ¢}. Put P,={0<2€3|A(A)+#0} where A=Lie(A)cg is the Lie
algebra of A. Put p=(1/2)Xocies0. Any element x<=G has the unique ex-
pression x=x(x)-exp H(x)-n(x) with g(x)e K, H(x)= 4, and n(x)eN. Normalize
the Haar measures dx(k) and dy(n) on K and N so that

ngK(k) =1, SNexp(—ZpH(n*))dN(n) =1

respectively. Define a Haar measure d4(a) on A by

a 0 0
ds 0 I, 0 |=a'da.
0 0at
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The Haar measure dg on G is normalized so that de(x)=exp(2pH(x))-dn(n)-
da(a)-dg(k) for x=kanesG=K-A-N.

2) Square-integrable representations of SU(1, ¢+1). Take a compact
Cartan subalgebra

a 0 ¢
C=40 e 0| gle=diagle,, -, e
¢ 0 a

of ¢. Define a C-linear form y;&C& on C¢ by

a 0 ¢ a 0 ¢

vl 0 e 0 |=a—c, veurl 0 e 0 |=a+c
c 0 ¢c 0 a
a 0 ¢

v;l 0 e 0 |=¢e; (1<j=q, e=diagle;, ---, e).
¢c 0 a

Then the root system of (G¢, C¢) is

A= {+;—v)I0=i<j=Zg+1}
and
V={v;,—v;.|0=,=q}

is a fundamental rcot system of A. The set of the compact roots and the set
of the non-compact roots are

Ag={xw:i—y)|0=i<j=q}

A= j—(”j—”q-l-l)]oi/équ}
respectively. We have a relation vo+v,+-+ve1=0, and {v,, vi, -, v} is a
C-basis of C§. Then the Weyl group Wy of A is a subgroup of GLc(CE)
generated by the permutations of {v,, vy, -+, veu1}. We denote by Wg the

subgroup of W generated by the reflection corresponding to the compact roots.
Then Wg is a subgroup of GLc(CE) generated by the permutations of {v,, vi,
o, Vgl

Put T=expC which is a connected closed subgroup of K. The exponential
mapping is a surjective group homomorphism from ¢ to 7. Let A be the Z-
lattice in ~/—1C*CC¥ corresponding to the character group of 7 via the ex-
ponential mapping. Then

q
A= {Z} mw,-]m;eZ},
j=0

and the character &; of T corresponding to A</ is defined by &;(expX)=
expA(X) for all Xec. Let A’ be the subset of A consisting of the 2& 4 such
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that w(d)#2 for all non-trivial w=W,. Then
q
At = { _Eomjvj[();é m;eZ, m0>ml>~->mq}
=

is a complete set of the representatives of Wx\A’.

Now we will write down the Harish-Chandra parametrization. We denote
by G, the set of unitary equivalent classes of the square-integrable irreducible
unitary representations of G. Then there exists a bijection (the Harish-Chandra
parametrization) A—r; from A* to G,. Here z; is a square-integrable irredu-
cible unitary representation of G whose character is

O = (DA 2 det(w)bwa
WEW
on T’ the regular elements of 7. Here ¢(A)=Il.ca+w(a, 2) and
Ar(t) =&,) II (1—&«())
acA+(¥)
with p=(1/2)Zsearra=2%-o(¢+1—jlv;e4. With the Haar measure on G
normalized as above, the formal degree of 7; &G, with A=%_w,eA* is

ﬂq+1 mi—n;
. = —— X(2r)@H —_— 7
(1.1 da 2% X(27) Osiggq li—7]

q
X H ImJI .
J=0
By the result of [HS], the representation 7;&G, with A=3%_,my,& A" is
integrable if and only if |m;|>¢+1 for all j=0, 1, ---, q.
The compact group K is isomorphic to the unitary group U(g+1) via

@ b ¢ a—c ~2b
d e —d +—>( B )
c —b a V2d e
o a b ¢
a—c ~N2b
We have det( - ):((H—c)“ for| d ¢ —d |eK. Put
e
¢ —b a

q
M= { Smy;lmeZ, mo._>__mlz-~-zmq}.
j=0

Take a p=X%_ymy;EM*. Let 0 be an irreducible representation of U(g+1)
corresponding to the Young diagram

12 } 1|
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with {;=m;_,—m,. Let d, be an irreducible representation of K defined by
a b ¢

bl d e —d |=(atomd(

c —b a ¢

a—c \/ﬁb)
Then d,=K is the irreducible representation of highest weight g, and p—d,
is a bijection from M* to K.

Now we will recall the K-type theorem for square-integrable representations
of G. Take a 2=3%_my;=A*. Put

A*(2) = {a=A|(a, )>0}
and

1 1
pe=7 2 & =5 2.

ag€A*(HNA acAt (N,
Then py=2—pc+p,=M*, and the K-type BFOEK has the following properties;
1) the multiplicity of d,, in 7|« is equal to one,
2) m;|x does not contain any 5#6}3 of p=p,—A with a non-empty sum
A of roots in A*(A)NA,.
On the other hand, we have the following proposition;

PROPOSITION 1.1. Up to infinitesimal equivalences, w; is the unique representa-
tion of G whose restriction to K contains 8,,=K, and does not contain any 6,=K
of p=po—A with a non-empty sum A of roots in A*(A)NA,.

3) Unitary dual of SU(1, ¢g+1). We will recall a result of Kraljevic [Kr].
For complex numbers a« and 8, we put

azf if and only if 0Za—B<=Z
a>-f if and only if O0<a—p<Z.

Let CZ be the set of the n-tuples (/y, l5, -, {,)=C" of complex numbers such
that {,>=[,>=---=[,. For any integer 0<¢<¢+1, let C%'Y be the set of (+, -
r¢+1)EC?! such that

b

VAZ VoD oo ZV Va1 - g4

In particular, C4'L=C%1 >=C%"'. For any integers 0su<v=qg+1, let R%*2<
be the set of (sy, -+, Sqs2)=RI*? such that

31; ;Su>'su+lé ;sv+1>'3v+2; §3q+2
Sit o FSgre=u+v—(¢+1).
For any p=C%, let I'(p) be the set of /=C%! such that

1121)1;[2;172; ;Zq;pq;lqﬂ-
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For any r&C%*, let I',(r) be the set of /[=C%* such that
hzrizbzr,z - zZl.zZr,
Ve Z a1 2V ppe s o Zlqérq+1;lq+1-
In particular

['y(r)={{eCY \rizlizr,Zl= - Zrq1Zlgsr}

for r=C%L and
L) = {{eCY  LhzriZlhzreZ - ZlgZ e}
for r=C4! . For any s=R%Z s, let [, (s) be the set of (=C%* such that
LZsiZlezSez - Z1uZ sy

Sut1ZlunZ SyreZ o Z1Z Sy

SpreZ lpr1Z SosaZ 0 ZgZ SqeZ

lg+1-
That is ', (s)=I" ()N ,(r") with
7 =(S1, ***, Sy Spszs *** 5 Sgya) E CLTL
' = (S, ", Suy Susey *t s Sqi2) & CLRL.
The elements of ((¢+2)"*Z)%" correspond bijectively to the elements of
M+* by the mapping
L=l —> = 3 0D,

where {I>=[,4 -+ +l441. For any [=(,, -, l;+1)=(¢+2)"*Z)%", put 5125‘“EK
with p=3%_([;4+<DWw,sM*.

For an irreducible unitary representation = of G, let I'(x) be the set of
[=((g+2)"'Z)%! such that §,=K is contained in =|x. For all (&e[(x), the mul-
tiplicity of 6,=K in = | is equal to one. We will denote by X, the infinitesimal
character of #. Then we have a proposition [Kr, Theorem 9.2]

PROPOSITION 1.2. Irreducible unitary representations n, and =, of G is in-
finitesimally equivalent if and only if

['(z)=1[(7:) and 1. (2)=12(2)
where Q is the Casimir operator on G.

Let U, be the set of pairs (p, £4) with p=((¢+2)"'Z)% and 1=C such that
0<23,—2*<R. Here
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Ay =Min{0ZreR| {=r}N\K(p)+ D}
K(p)= () {s/p)+2t|0%tZ)
si{(p) =<p>+q+1+2(p;—7).
Let U, be the set of pairs (¢, ») of an integer 0<t<¢+1 and r=((¢+2)'Z){X
such that one of the following three conditions
1) r;4<r>=1t+;—(¢g+1) for some 1<7<t,
ii) 74> =t+;—(¢+1)—1 for some t<j<q+1,

i) 7+4<r) > 2t—(g+1) > rep+<{r),
and a condition

v —5u(r) Z t—(g+1) > v +r>—18(r)
are fulfilled. Here ry=co, rg4,=—oc0 and
Jir) = Max{1<j<t|r;.,>r;}

Jo(r) = Min{t <j<qg+11r;>70} .

Let U; be the set of triple (u, v, s) of integers 0u<v<¢g+1 and s<

(g+2)"'Z)%% 5 such that Sus= - =Spe.
For any 7=(p, £2)U,, there exists a z°=G such that
['(z)=T(p)
LoD = o (R D42 B3 T peb,+Di=18g+1-20)p,)}
g 4(g+2) P Y. PP e )f
For any r=(t, r)€U,, there exists a z°=G such that
['(7;7) = Ft(7>
1 .
xzr(.Q) - q+2 {1§i§'§q+1rirj+1§‘gc(4+l_t_])rj

+ 3 (@+2—t—jr—tg+1-n}.

t<jsg+
For any 7=(u, v, s)&U,, there exists a z°=G such that

I'(z7) = Iy 8)

=1 _D(Ss -
Xee (49 = 4(g+2) { (ng Sj+1§i§sq+zsisj)

+4( 3 jst 3 G-Dsit B (-2s))
1gjsu u<ljsv+1

v+1<jSq+2

+(g+1—(utv)r—duv).
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By, Proposition 1.2, z7G is uniquely determined for all r<U=U,JU,\JU,.
Then we have [Kr, Th. 10.3, Prop. 11.4]

PROPOSITION 1.3. The correspondence t—n* gives a bijection from U=U\J
U,JUs to G.

Let U, be the subset of U, consisting of (¢, )= U, such that

{ vy > jH+t—(g+1)  for 1<t
ri+<ry < jHt—(g+2) for t<j<¢+1.

Then we have

PROPOSITION 1.4. The correspondence v—n® gives a bijection from U, to
Gq. t=(t, r)EU4 corresponds to x°€G4 of Harish-Chandra parameter

2 Tt >Fg—t— v+ 2 g+ l—t—jy, € AF

oLt lsisq
PrOOF. Take a A=3%_,my;= A" such that m,_,>0>m,(0<t<g+1). Then
AT (DNAk = {vi—y;|05i< =g}

A*(ADNAR = {y;— v | 0= 7 <P U {vgn—y; [t =g},
and

o= 2(E=ipn o= (-5 Ert(—L-1) .

j=o\2 Jj=0

On the other hand, for any p=3%_((/;,+<{Dy;=M* with [=((¢+2)"'Z)%, we
have

q V
p—(Vj—ves1) = §0<Z§+1+<l/>>uj
t—(Vgr1—y;) = ;20<[9/+1+<Z”>)“J'

where [’=Il—c¢;,, and [”=[+¢;,,. Here ¢;,,=(0, ---, 0, 1,0, ---, 0) is a row vector
with only one 1 appears at j-+1-th component. Then [Proposition 1.1 shows
that 7;=G4 has the K-types I'(z;)=I",(r) with »&((¢g+2)*Z)?* such that

A=pctpn = §0(7’J‘+1+<7’>)W-

<,

Then the proof is complete. =

§2. Paley-Wiener theorem.

Take an integer r=Z and fix a K-type 0, defined by
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a b ¢
0.l d e —d |=(a+c)r".

¢c —b a

Using the notations of §1, we have d,=d,=0, with

#=]§OerM+, and l=<q:_2,---, q:_2>e<z]—j_—2Z)q>ﬂ.

We denote by G(3,) the subset of G consisting of =G such that the K-type
0, is contained in =|x. Put

U= {(p, £DEU LT (p)}
Ul) = {t, s)EU,|IET (s)}
UyD) = {(u, v, YEUIEU 4, ()}

and U)=U()\VU)\JU). Then, by Proposition 1.3, the set G(3.) is para-
mentrized by U(/). We have

PROPOSITION 2.1.
1) Ul) consists of the pairs (p, +A) such that

¥ v 1 q
p=(g 0 oy) = (G5 2) and 0<n—r=R
where
g+1—|rl if |ri<g+1
Ap=1<0 if (rl=q+1, r=q+1(2)
1 if |rl=q+1, r¥¢+12),

2) Uy(l) consists of the pairs (t, s) such that
i) if r>0, then t=qg+1 and

r r
Sl——“-——sq—m, Sq+1—mEZ
r A . r 1/ gr
— > > — ==
g 2 s 2 Min{ T, — 5 (L —@+D))},

ii) if <0, then t=0 and

r v
$2 = =Sqn1 =5, Si— 52

q+2’ q+2

r r 1 r
méslé Max{c]—I—Z’ **2-(;]?‘}‘(]'{"1)},
iii) f r=0, then U(D)=Q.
3)
{0, ¢+1, $)Is=(0, ---, 0)} if »=0

U3(1>={ ) if 0.
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In the case of r=0, the trivial one-dimensional representation of G corresponds
to the unique element of U,(l).

PROOF.
1) If (p, £A)=U,(), we have

v r
p—(q+2""’ q+2)
Kp)={nsZ|n=r+q+12), |n—r|=zq+1}.
Then
g+1—ir| if |r|<g+1
dp=10 if 7] =q+1, r=¢+12)
1 if |r|zq+1, r#Eg+12).

2) If (¢, s)eU,(l), we have two cases

. r
l) f:q+1, S1= - :Sq:m, Sq+1~_ +2
.. ¥
In case i), we have
1 ) 1 .
Sqr1 2 — i ( 742 ) Or Sgu1 = J— 312 r for some j=1,2, ---. ¢

and

r 1 r
Sg+1 = m>0 or —-2-<q+2 (Q+1)> = Sqi1 < q—_l_z*

These conditions are equivalent to

1
q:—2 = Mm{ :—2 2 (q+2

The case ii) is treated similarly.
3) Obvious. =

= Sq1 =

)} 0.

Any spherical function & on G of K-type d, and ¥(1)=1 is written in the
form

(2.1) Uy (x)= SK5r(k)5r(ff(X'lk))exp(—(l-l— 0)H(x™'k))d (k)

with 2e4¥ where p=(1/2)Zo<iesA=2%-0(g+1—7)2; ((Wr, vol. 2, p. 42]). We
have ¥'; ,=¥,. . if and only if ===+4. Put H,=diag(l, 0, ---, 0, 1) which is
a base of 4. The dual space A} is identified with C via A—A(H,). Then the
spherical function ¥, , is parametrized by A=C modulo the multiplication by
{£1}. Using the notations of [Kr], the spherical function ¥;, , is the spherical
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function of 7, with p=(/(¢+2), -, r/(g+2)).

Take a #=G(8;) with a representation space H. The multiplicity of J, in
7|k is equal to one, and there exists a unit vector u<H such that #z(k)u=
d.(B)u for all keK. Put ¥, . (x)=(m(x)u, u) for x=G. Then ¥, . is a spherical
function on G of K-type ¢, and ¥, ,(1)=1. Two representations = and =’
G(3,) are unitarily equivalent if and only if ¥, ,=¥, ,[Gd]. For any ==G(,),
there exists a A= A%=C such that ¥, ,=¥,.,. Then the set G@,), or U(l)=
U, (DVU(I)JU1), is identified with a subset V(r)=V,()UV(r)UVr) of C
modulo {+1} where Uj() corresponds to V ,(r).

PROPOSITION 2.2.

by
Vir)={AeCl0< -2 < R, —7 < arg(d) =}
where
g+1—=1r| if |ri<g+1
Ar=10 if \rl=q+1, r=q¢+12)
1 if 1rl=g+1, r#£Eg+1(2),
2)
@ if =0
Vir) = = 7 |M=rTa+1@) if re
\ { {nhz" 7| —=(g+Dzm=Min{|r|—(g+1), 0}} i r=0.
3)
{g+1} if »r=0
Vit = @ if r0.

ProOF. We will use the notations and the terminologies of [Kr].

1) If r=(p, £2)Uy(), then ['(z7)=I"(p) is A-connected and so n*=zxP*
infinitesimally. Then ¥, ,=7; ..

2) If ©=(0, s)&Uy(l), then ['(n")=1"y(s)=I"%(p) is a A-connected component
of I'(p) where

1
b= (ﬁ in) = (q+2 Z>q>
=254+ 4g41.

g+2
In this case, we have r<0, '
r+g+l=isMax{r+g¢+1, 0},

and s,—r/(¢g+2)=Z if and only if A=Z such that i=r+¢+12). If r=(¢+1, s)
cU,(l), then I'(z")=I",.,(s)=I"%(p) is a 2-connected component of I'(p) where
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1
p= (q:—2 T q—7;—2> = (mz):
2:2s4+l+q—‘ﬂr%-—<q+1>.

In this case, we have >0,
r—(g+1zAiz=zMin{r—(¢+1), 0}

and so.1—7/(g+2)=Z if and only if A=Z such that A=r+¢+1(2). In any cases,
z® is a subquotient of z?* and we have ¥ .=¥, ..

3) Uyl is non-empty only if »=0. In this case, the unique element of
Uy!) corresponds to the trivial one-dimensional representation of G. On the
other hand, we have ¥, ,=1. =

The correspondence from V(r) to U(l) is given by

1) on Vir)
el ) )
2) on Vi(r)
m— (o1 (0 o %(7n—£§+q+1>)) it >0

m— (0’ <_%(m+qi—§7:2~+Q+l>’ q-T—Z P q—T—Z ))

Thus we have identified the set G(8,) with a subset V() of C. Let X be
the infinitesimal character of 7=G(5,)cC. Then we have

1
4g+2) {n2+ 012 rQ_(HDZ}
where £ is the Casimir operator on G.
Now G4(8.)=GuNG(3,) is identified with a subset V() of V(r)CC. Pro-
position 1.4 gives the following.

if »<0.

(2.2) ()=

ProrosiTION 2.3.

@ if IriZg+1

Valr)=
¢ { {meZ|\m=r+q+12), |ri—(g+1)z=zm>0} if |r|>q+1.

If |r1>q+1, then mEV 4(r) corresponds to mn=Gq of Harish-Chandra parameter

1 .
= {f(m#—r—l-f]-i-l)'—(]-!-1)}”j+m’f'q e AT if r>0

0s7<g
1 . .
—Mmyet+ 2 {~2—(—m+7+q+1)——]}uj =AY if r<0.

0<j=q
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. =Gy is integrable if and only if |m|>q+1.

Now we will prove Paley-Wiener theorem for the spherical Fourier trans-
form with respect to ¥, ,. It is a reformulation of a result of [Wkl, p. 603].

Let § X=—X* be the Cartan involution on ¢ associated with (G, K). The
real Lie algebra ¢ has the structure of Eucledian space with the norm |X|3=
—B¢(X, 0X) where Bo(X, YV)=2(q+1tr(XY) is the Killing form of ¢. Put =
{Xeg¢|0X=—X}. Then any x<G has the unique decomposition x=~%-expX(x)
with k=K and X(x)=®, and we put o(x)=]X(x)|s. We denote by CYG) the
complex vector space consisting of the complex valued C=-functions f on G
such that

v, (f) = SuB(l+a(x) ao(x) (D f)(x)] < o0

for all 0<t= R and all left G-invariant differential operator D on G. Here we
put

2.3) wo(x) = SKeXp(*Z‘oH(xk))dK(k).

Then CYG) is a subspace of LYG) and it is a Frechet space with respect to
the system of semi-norm {vp :|0<t=R, D}. We denote by CYG, d,) the com-
plex vector space consisting to the functions f<CYG) such that f(xk)=f(kx)=
d.(k)f(x) for all k=K.

Put Vg, ={2=C||Re(A)| <q+1}. Then, by the identification GOH)=V (")
Vo (r)UV «(r) given above, we have V,.,N\Gy(8,)={r=G4(d,) not integrable}.

Let () be the complex vector space consisting of the complex valued
functions ¢ on Vq+1UCd(5,) which satisfies the following conditions;

1) ¢ is holomorphic on |Re(2)| <¢+1,

2) sup (14 14))'1¢™ ()| <co for all 0<t=R and 0sneZ,

IRe(2)I<g+1
3) H—D=¢(A) for all A&V ..
For any f<cC¥G, 8,), the spherical Fourier transform f of f is defined by

2.4) Fy={ £ W (0dotx)

with the identification A¥=C via the mapping A—A(diag.(1, 0, ---, 0, —1)).
Then the Paley-Wiener theorem for the spherical Fourier transform is

THEOREM 2.4. The mapping f»—»f is a bijection from CXG, d,) to F(r).

Proor. We will use the notations of [Wr, p. 603], but » and ¢ in his
paper must be ¢-+1 and » respectively in our situation. Put r=z,. The set
vV —1-V* coincides with G4(z) in our notation, if Gu(z) is identified with a
subset of € as above. Exactly speaking, these two sets coincide modulo the
multiplication by {-=1}, but the corresponding representations of G is the same.
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Then the set V5 corresponds to the set {x=Gy(r): not integrable} =V ,.,N\G4(7)
in our notation. If |r|>¢-+1, the linear relation

jev=1.v

Ff()n) = > . @w(l)<aj>'FA<TM: \/__1'].)
0
is trivial because @,c1>(a;)=0 for all j& v —1-V}§ if w(1)&Gy(r) and
Oucir(ay) = | a,(x™)-67(V=Tk, 2)dx =0,

by the definition of a; if w(2)=G4(r) corresponds to £<V3. Then the Proposi-
tion 3.1 of is simplified to our theorem. m

§3. Selberg type zeta function.

The Selberg type zeta function with non-trivial K-type is considered by
and by [WKk1, 2]. In this section, we will recall and simplify results of
[Wki].

Let I' be a discrete torsion-free subgroup of G such that I'\G is compact.
Let (X, V) be a finite dimensional unitary representation of I". Take an integer

a b c
reZ and fix a K-type 0, defined by 5,( d e —d ):(a—{-c)".
¢c —b a
Take a non-compact Cartan subgroup J,={diag.(a,, ai, -, aq+1)EG} of G.

Under the assumption on I', any ['=7=1 is hyperbolic and G-conjugate to an
element A(y)=diag.(a(7), ai(7), -+, (7)) of J, with [ao(7)|>1, and the cen-
tralizer I'; of 7 in I’ is a cyclic group. A ['-conjugacy class {7} + {1} is called
primitive hyperbolic if I', is generated by y. We will denote by Pr the set of
the primitive hyperbolic I'-conjugacy classes.

For any a<=P,, define a (non-unitary) character &, of J, by Adx)X,.=
§4(h)X, with a root vector X, of a. If a=Ai;—2;€P, then &,(h)=a;a;' for
h=diag.(a,, ay, -+, @gs1)=Jn. We denote by <(P,> the set of the linear com-
bination Xep,m. - a< BF with non-negative integers m,. Put &3=Il.ep, &V« for
A=2lsep, Mo a={P;). For any 1&(P,), we denote by n(4) the number of the
ways in which 1 is expressed in the form A=3,ep,m.-a@ with non-negative
integers m,.

The Selberg zeta function Z, ,(X, s) with respect to (I, X) with K-type 0,
is defined by the infinite product

ar)
lao(r)]
which converges absolutely for Re(s)>Max{q+1, |r|—(¢g+1)}.

Using the trace formula, the log-derivative Zr (X, s)/Zr,.(X, s)of Zp (X, s)
is meromorphically continued to the whole s-plane, and its poles are all simple

BL Zr, )= T I det{1-1n&hm™)(

(FY[EPPAS(P L)

) lap) s}



646

K. TakasE

whose locations and the residues are given by the following table;

CASE 1; |r|=qg+1

!

pole

residue

(A) 0#2<C s.t. 2—23<0

m(=+ 2, Ind#x)
(—rn<arg(AET)

(B) 0 2-m(0, IndFX)
= 1<n<|ri—(g+1) . G
nz|rl+(@+D 1.9,
(C) —neZ s.t. n=r+q+12) (—1)2-2-m(n)

+1 (only if r=¢(2))

m(1, IndfX) Tdim X-vol(I'NG)-d-.

Case 2; 0<{r|{<q+1. Adding to (A), (B), and (C) of CASE 1,

i

l pole |

residue |

mig+1—|7|, Ind@t) |

| tgtl-irD)

Case 3; r=0. Adding to (A), (B), and (C) of CASE 1

pole ’ residue l

—(g+1) ! (=% 2-mlg+1D+m(r, X)
g+1 ‘

m(l[‘, X)

Here we use the identification G(@3,)=V . (»)UV,(»)UV)CC given in §2.
We use also the following notations; Ind#X denote the unitary representation
of G induced from ¥, and m(z, IndfX) denote the multiplicity of = in Ind%x.
The trivial one-dimensional representation of [’ is denoted by 1r. For any
integer n such that n>=|r|{+¢+1 and n=|r|+¢g+1(mod2), put m(n)=dimX-
vol(I'\G)-d; with the formal degree d; of z;EG, such that A=ny,+3%_,
@ Y n+|r|+q+1)—jweA*. The explicit formula of d, is given in §1 and
m(n) is a polynomial function of » with rational coefficients. We have m(n)=
m(z;, Indfx) if n>qg+1—|r| by [HP], and m(n)cZ for all n=Z. The last
statement is proved as follows; the set X={n=Z|n>g+1—|r|} is dense in
the p-adic integer ring Z, for any prime number p. On the other hand, m(n)
is a Qp-valued polynomial function on Z, such that m(X)©cZcZ,. Then
m(Z,)CZ, for all p. Hence m(Z)CZ,N\Q for all p, and we have m(Z)CZ.
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Then Zp, (X, s) has a meromorphic continuation to the whole s-plane, and
the locations and the orders of the zeros or poles of Z (X, s) are given by the
table above. Also deduced by the trace formula is the functional equation

32  Zr. —s)=Zr (L s)exp {dimx-vol(F\G)-Szyr(«/fls)ds}
where

t) if r=q(mod 2)

T
(3.3) () = t fI{(L)ZJF(M‘j)Z}X : .
t) if »#¢(mod 2)

is the weight function of the Planchrel measure.

§4. Special values of the Selberg type zeta functions.

Fix the data (', X) and the K-type 0, given in §3. We will start with a
lemma;

LEMMA 4.1. For any real number n, the integral
(4D Ja(s) = @)y {4+ (wtnt) s ()

converges absolutely for Re(s)>q-+1, and has a meromorphic continuation to the
whole s-plane which is holomorphic except for the possible simple poles at s=1, 2,
-, q.{_l’

Proor. The weight function g,(x) is an odd polynomial function of x
times tanh (zt/2) or coth (xt/2), and an elementary calculation gives the formula

S:(x2~|— n?) " x?™*! tanh(zx)dx

m1 j+i

I (s—£)° S (524 n2)Y -0 2m =D sech®(r x)dx

T
T 2% (m—j))

and

Sm(x2+n2)‘sx2m“ coth(zx)dx
0

:g:(xz—l—nz)'sxzm“ coth(zx)dx+ = L

5 coth(z) z

( )l (1__]_n2>]T1 s H (s___k) 1

m ] +1

+% 2 (mm T 6 ]H (s—Fk)” S (224 n2) =352 cosech?(rx)dx
= (m—

and the proof of the lemma is completed. m
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Put n,=Max{g+1, |r|—(g+1)} and wu,={n’+qgr*/(g+2)—(g+1)’}/{4g+2)}.
Let 2 be the Casimir operator of G;, and u a real number such that u=u,.
We denote by A, , the differential operator £—u acting on the §,-isotypic com-
ponent of Ind%X. Then X.(2—u)<0 for any z=G(d,) (X, is the infinitesimal
character of z), and we put

4.2) T(s, Ar.w) = Zm(x, Indf2)- [ X(2—w)|~*

where 3. is the summation over the z=G(d,) such that %(2—u)#0. Then
we have

PROPOSITION 4.2. The Dirichlet series T(s, A, .) converges absolutely for
Re(s)>qg+1 and has a meromorphic continuation to the whole s-plane which is
holomorphic except for the possible simple poles at s=1, 2, -, ¢+1.

DEeFINITION 4.3. We put detA, ,—=exp(—T77(0, A, ,)) which is called the
functional determinant of the operator A,, ..

Then we have the following theorems;

THEOREM 4.4. Take an integer n>n, and put u={n’+qr*/(qg+2)—(g+17}/
{4q+2)}. Then Zr, (X, n)=R-P with

P = exp{/4(0)-dimX-vol (I'\G)}
R = (detA,,u) H IXR(‘Q_.u)‘—diml-vc’.sl(I“\(;’).d?,r

2€Gq P
and

THEOREM 4.5. Suppose r=0. Then Z, (X, s) has a zero of order m(1r, X)
at s=q+1, and we have

Zr X, s)=R-P-(s—g—1)"r-¥4+[terms of degree>m(1r, )]

with
P = (2g+2)"0I 1 exp{[}1(0)-dim X-vol (I'\G)}

R = detAol 0.

The rest of this section is devoted to the proof of these results. We will
imitate the arguments of [Fr].
The trace formula

> m(x, Indf2)- f(x)

PLS)
=dimX-vol(I'\G)- f(1)
laum)] O 0

log|ay(7)] aoy) \’
+ 2 XN D(MT))(m——- F.l 0 I, 0
nim (7<) '%W”) 0 0 laI™
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is valid for all f=C¥G, d,) (c.f. [GW], [Mt]). Here ]?(ﬂ'):SGf<x)¢n,r(x)dG(x)

is the spherical Fourier transform of f with respect to the spherical function
¥_ .(x) cited in §2, X r.uy is the summation over the I'-conjugacy classes
{rtr={1},
D(h) = exp(—oH(h)) TT [1—6.(R)H] 7}
acP
for he=J,, and

Fy(a) = exp(—pH(a)| f(na)d v(w)

for a= A is the Abel transform of f.

We will take, as a test function f for the trace formula, a solution of the
heat equation Qf=0df/6t on G. We have (&/anf(n):Q?(;—:)::g@f(::) for all
r=G@,), and hence, F(m)=C(x)-exp(X(2)t). By the formula of the in-
finitesimal character %.(2) and by the Paley-Wiener theorem (Theorem 2.4),
there exists a function f,=CYG, d,) such that f't(rr):exp(xﬂ(.Q)t) for all z=G(@3,)
and all t>0. Then we have

fil)= 2 d.-exp(Q)0)

€5 q @y

+2m)| exp| - fet 1= e |uode

1
4g+2) g+2

by the Planchrel formula, and

a 00
Fel 01,0 (a>0, t>0)
0 0a

_ |g+2 1 1gq
_\/ mt eXp[4(q+2)\q+2

By virtue of the results of [HP], we have sz, IndfX)=dimX-vol(I'\G)-d, for
all 7=G4(d,) such that |z|>1 with respect to the identification G(3,).C given
in §2.

1
P+ 17— (g+2)log a¥ — |

PROOF OF PROPOSITION 4.2. Let u be a real number such that u=u,, and
put u={n*+qr*/(¢g+2) — (¢g+1)*}/{4(¢+2)} with n=n,. Applying the trace
formula to the function f,=C%G, 0,), we have

(4.3) HiO+Hy = LO)+Ga1)

for t>0 where
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Hit)y= 3.  m(x, IndfX)-exp(X(2—udt)
zeg (lzrg):ug)‘i?r)

+ P (m(z, IndFX)—dimX-vol(I'~\G)- d.) exp(X.(2 —u)t)
(k] Q,?f(gf)u) =0
HY= 3 m(z, Indfx)

€GB
A (R-uw)=0

() =dim¥-vol("~G) <2n>-lg‘:exp{— (x4 2t g, ()

1
4g+2)
and

— IOgldo(r)I . ao(y) \7/q+2\1?
Gut) = 3 tr) (Fr G5y D) (la(r)l>( z )

xexp{— g tHa+2)loglaup) e

4(q +2)
Let X 11(resp.X, ) be the characteristic function of (0, 1](resp.(1, <)), and put
Aut) = Hy®+H i Yoo, 1) —1a(t) = Gat)—H - X1, (@) .
Then A,(t) decays exponentially as {——+0 or {—-+co, and the Mellin transform
Auls) = S:Au(t)ts“dt
is an entire function of s (we will denote by F(s) the Mellin transform

SjF(t)ts“ldt of the function F(t)). We have H . #)=0( ") as t—+0 by [4.3),

and the Mellin transform F];(s) converges absolutely for Re(s)>¢+1. On the
other hand, we have

(4.4) Ai(s) = Aus)—H s +1(s)
for Re(s)>¢+1 with
I.(s) = dimX-vol(I"\G)-I"(s)- [ u(s)

and Hl(s) has a meromorphic continuation to the whole s- plane which is holo-
morphic except for the possible poles at s=0, 1, ---, ¢g+1 by Lemma 4.1. We
have
His) =F(s)(T(s, A, )—dimX-vol[\G) 3 d.- |xﬂ<9-u)1-5)
TG @)

and the proof of the Proposition 4.2 is complete. W

The log-derivative @ (X, s)=Zf (X, s)/Zr, (X, s) of the Selberg zeta func-
tion Zr,,(, s) is

_ log|aq()| ay) \" s
Or. ot 9= 3 wlp)op 2D (T r) ladn)
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for Re(s)>n,, and we have

x P noo\-$ JR—
45) Gus)=I(1—s) 2\/(]—{—280{:{()6—1—\/(1—_?2) O (L, 2 VGgE2%+n)dx

for Re(s)<1 by the formula

Sj(zlm)*/z exp{—(ct-+d% )} -1 1dt
(4.6) i
=F(1—s)“goexp{—d(x+c/2)} Ax(x+o)}-tdx

for Re(s)<(1l, d>0, and ¢>0([Fr]). On the other hand, we have
4.7) Gu(s) = Au(s)—HY-s™

for Re(s)<0 and CN;n(s) has a meromorphic continuation to the whole s-plane
with unique simple pole at s=0 of residue Hj. Combining and we
have HL(s)=Gn(s)+Ia(s).

PROOF OF THEOREM 4.4. Let n be an integer such that n>n, and put
u={n?+qr*/(qg+2)—(qg+1)*}/{4(¢g+2)} >u,. In this case, Hi=0 and exp(—G,(0))
=Zr (X, n) by (4.5). On the other hand, we have

T, A, ) =dimX-vol(I"\G)(J.(O)+ X do)

r€lq (0
[(s)-T(s, A, ) = dimA-vol (TNG) - T (Ju(H 2 del 1 @— )] )+G(s).
nEG g 0
Hence
T,(O: Ar.u) = lslnol F(S)(T(s, Ar,u)“T«)y Ar.u))

= dimX-vol (NG (Ju(O— 3 d.-log|%(2—u))+G(0).
rEG g @p)

The proof of [Theorem 4.4 is complete. ®

PrROOF OF THEOREM 4.5. Suppose r=0. Put u=u,=0 and n=n,=q+1.
In this case, X.(2)=0 for 7=G,, if and only if 7=14, and we have Hy=m(1s,
IndfX)=m(1r, %) by the Frobenius reciprocity law. Then we have

T’(O, Ao o) = lsml;l (T'(s, A, o)“T(O, A,, o)
= lsirl‘;l(én(s)+]1(s)m(1p, 2)+dim X-vol (I'NG)- J4(0).
On the other hand, similar to [Fr], we can show that
Sj{x(x+2q+2)}_s@p, (L, x+g+Ddx

= —m(lp, X)-s7'+mlr, X)loge(e+29+2)—log Z r (X, e+qg+1)+o(e)+o(s)
as ¢—0 and s—~0. Then, putting Zr, ., s+g+1)=s"".F(s) where F(s) is
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holomorphic at s=0 and F(0)=0, we have
1in3<5n<s>+l”<s>m<1p, 1) = m(1r, 1)-log (2g+2)—log F(0)

and the proof of is complete. =

§5. Dedekind zeta functions.
Let K be a finite algebraic number field and
Ce(s)= vgo(l—N(v)‘S)“l (Re(s)>1)

the Dedekind zeta function of K. Then we have the explicit formula ([WI])

50(w) = F(0)log| D) +2S F(x) cosh(x/2)dx

(5.1) — 3 3 N@)* logN(@)- {F(logN (v")+F(—logN ("))}

2 2
+32 }ES:@%“L V=Tx)Re (-?(%Jr V=T ))d

where F is a suitable test function and
(5.2) O(s) = S“ F(o) exp((s—1/2)x)dx,

>l is the summation with multiplicity over the zeros w of {x(s) such that 0<
Re(w)<1, D is the absolute discriminant of K, 3 ,«.(resp. >y) is the summa-
tion over the finite places (resp. infinite places) of K, and ['(s)=x"%%["(s/2) if
v is real, I'y,=Q2x)!"*['(s) if v is complex. Using the explicit formula, we will
prove the following results;

LEMMA 5.1. The integral

5 R o S ryel  — .
(5.3) Jo(s) = —7;80(1 +x ) Re (ﬁ( 5 + lx))d.x
converges absolutely for Re(s)>1/2, and has a meromorphic continuation to the

whole s-plane which is holomorphic except for the possible double poles at s=1/2
—j0=5€2).

PROPOSITION 5.2. The infinite series
1

L 2] (— + uz)—s

2 w=1/2+v=1u 4

(5.4) T(s, Ax) =

converges absolutely for Re(s)>1/2, and has a wmeromorphic continuation to the

whole s-plane which is holomorphic except for the possible double poles at s=1/2
—j0<£5€2).
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In [Proposition 5.2, we used the following notations; 3o—i/2+v=fx IS the
summation with multiplicity over the zeros w=1/2++~—1u of {x(s) such that
0<Re(w)<1. Note that Re(1/4+u?)>0 for w=1/2++~—1<C such that 0<Re(w)
<1, and we will put (1/44+u?)*=exp(—s-log(1/4+u?) where log(l/4+u*)=
log|1/4+u?| ++v—1arg(l/4+u?) with —rz<arg(l/4-+u®)<r.

DEFINITION 5.3. We put det Ax=exp(—T"(0, Ag)).

THEOREM 5.4. We have an equality
r T h' — ’ r Iy T
2"1(2m) :R(K )E | D] *=(exp/i(0))"1(exp/:(0))" 2 detAx

where J($)=]reai(s) and JoS)=Jcompiez(S). The other notations are dejined in § 0.

REMARK. Applying to some special fields, we have exp/i(0)
=(detAg)™" and exp/y(0)=2"%2%.x(detAgcv=1>)""

The rest of this section is devoted to the proof of these results.
Applying the explicit formula to the function

(5.5) F(x)=@r-t)" P exp{—(x/2)%""} (xR, t>0)

which is the fundamental solution of the heat equation 0*F/0x?=0F /dt, we have
(5.6) H() = I{t)+2+G(t)+ > I()

where ’

Ht) = > exp{—(—l—+u2>t}

w=1/23¥=Tu 4

=)

Git)= -2 vganz N@) "% log Nw)-(4z -t)"* exp [——i—{t—{-(logN(v))zt"}]

=1

I(t) = log| D| - (47 -1)"V2 exp(—1/4)

_2(= 1 . 'y r1 -
1) = ;Soexp{—(z tx )t}-Re(-l;;<§+x/—lx>)dx.
Let X, 11(resp. 2. «») be the characteristic function of (0, 1](resp. (1, «)), and
put

6.7 A) = Ht)—2L o, () —I()— v%fv(f) = G422, (1)

Then A(t) decays exponentially as t—+0 or t—+oco, and the Mellin transform
ﬁ(s)zgoA(z‘)ts‘ldt is an entire function of s. The following lemma is easily
proved ;

LEMMA 5.5. Let F be a C>-function on [0, 1]. Then the integral

S:F(t)ts‘ldt
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converges absolutely for Re(s)>0, and has a meromorphic continuation to the
whole s-plane which is holomorphic except for the possible poles at s=—j0<;Z).

Proor OoF LEMMA 5.1. We have

, —_T1 N
| Ry(x)] £ M,-x~@¥+D

for x=1/2 with suitable constants a,, a,(n), and M, ([Mg, p. 18]). Then I(t)=
O(t™%) as t—+0 and the Mellin transform I,(s)=2I"(s)/.(s) converges absolutely
for Re(s)>1/2. Decompose [,(s) into four terms;

Is) = ijv(t)t“‘ldt

Y1 /a2 ) f_{lL —
55 +§ft (S:exp{ o1/} -Re(F( 5V T
—f—gots—l(gl exp{—(x2+1/4)} ’Bu(x)dx)a'z‘

+ ([ expt—(ee+1/0)} (- logn)dz)a

with By(x)=Re("s/I"(1/2++~—1x))—a,—logx. The first term is an entire
function of s. The second term has a meromorphic continuation to the whole

s-plane which is holomorphic except for the simple poles at s=—;(0<7Z)
by Lemma 5.5 The third term is equal to

avs"—i—bvs“gzts(fexp{—(x2+1/4)}dx)dt

—}—S"S:t“(rcv(x)exp{—(x2+1/4)}dx)dt
with

ay = Sva<x>exp{—<xZ+1/4>}dx
Bu(x) (124 1/4) = byt Cofx).

Then the third term of (5.8) has a meromorphic continuation to the whole s-
plane which is holomorphic except for the simple poles at s=—;j(0<;=2Z) by
Lemma 5.5, We have

S?aﬁ—logx) exp(—x%)dx = c,t "V logt+dyt ™2
with suitable constants ¢, and d,, and
1
S 157312 exp(—1/4) logt dt =14+ (s—1/2)"2
[}

+ -}T<s—1/2>-1S:zs-1/2 exp(—1/4)-logt di— %(5—1/2)-25(}5-1/2 exp(—t/4)dt .
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Then, by the fourth term of (5.8) has a meromorphic continuation
to the whole s-plane which is holomorphic except for the double poles at s=1/2
—Jj(0<j=Z). The proof of is complete. m

PROOF OF PROPOSITION b5.2. We have H(t)4-O(t"*/%) as t—-+0 and I ()=
O@t~'/?) as t——+0. Then the Mellin transform H(s)=2I"(s)T(s, Ax) converges
absolutely for Re(s)>1/2. On the other hand, by (5.7), we have

(5.9) H(s) = A(s)+2s7 +I(s)+2I(s) 2 Tus)

with I(s)=@~x )'log|D|-I"(s—1/2), and the proof of [Proposition 5.7 is
complete. W

PRrROOF OF THEOREM 5.4. By G(t) is bounded as t—-+<o and exponen-
tially decays as t—-0. Then the Mellin transform @(s) converges absolutely
for Re(s)<0 and (E(s)-—-ﬁ(s)—i—Zs'1 by [5.7) Hence 5(5) has a meromorphic
continuation to the whole s-plane with unique simple pole at s=0 with residue
2. On the other hand, we have

|

()= — 3 3 logN@")-N(v)™"*
Lx v<Teo B=1

for Re(s)>1 and

5(3) = ZF(l-s)“ST%(x—H)- {x(x+1D}dx

for Re(s)<<0 here we use the formula (4.6). We have
2 ()T (s, Ax) = G(s)+1(s)+2(5) 3 ] u(s)
T, Ax) = 1+§ofu(0)
by [5.9) and then
T'0, Ax) = Isi_{r(’lf(s)(T(s, Ag)—T(O, Ag))

1~ 1, ,
- 18131(5 G(s)—T(9))+ 5 10+ 2 T0)
and (1/2)[(0)=—(1/4)log|D|. Similar to the case of the Selberg zeta function,
putting {x(s-+1)=s""f(s) with f(0)=Res;..{x(s), we can show that
S‘:;L(HD- {x(x+1)}~*dx = s —log f(0)+o(s)
K

as s—0. Then

lim (%(;(s)—l’(s)) — —logf(0)

8§50

and we have
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1
T'(0, Ag) = —log(Res;—.{x(s)— 7108l Di+ = J+0).
Being combined with the classical residue formula
T 7 h -1/2
Res;.{x(s) = 2"1(2x) ZR(K)E | D™,

the proof of the is complete. m

§6. Concluding remarks.

1) The factors 27:(2x)"2 and (exp/i(0)) 1(expJ4(0))"2 in depends
only on the structure of K®oR=R"1XC"2. On the other hand, the factors
R(K)h/w|D|~%* and detAg in depends deeply on the arithmetic
number field K itself. In this sense, the factors 271(2z)"2 and R(K)h/w|D|™**
correspond to the factors (exp/i(0))"wexp/50)) s and detAx respectively. In

other word, (exp/4(0))"1(exp/4(0))"z is the period and detAy is the regulator for
the residue of Dedekind zeta function at s=1.

Now we have a completed crossword puzzle;

Crossword Puzzle

l Dedekind zeta function i Selberg zeta function E
1
| |

l explicit formula Selberg’s trace formula

In the proof of [Theorem 5.4, we used, as the test function for the explicit
formula, the fundamental solution of the heat equation 0*F/0x?=0F/0t. On the
other hand, in the proof of [Theorem 4.4l or [Theorem 4.5, we used, as the test
function for the trace formula, the fundamental solution of the heat equation
QF=0F/ot on G. The functions 7'(s, A.,,) and T(s, Ax) are defined as summa-
tions over non-trivial zeros of Selberg zeta function Zr .(X, s) and Dedekind
zeta function {x(s) respectively. Thus we have quite parallel arguments for
Dedekind zeta functions and Selberg type zeta functions. It suggests that the
factors R=detA,, and P=(2¢+2)"“7" " exp(/}.+1(0)-dimX-vol(/'\G)) in Theorem
4.5 correspond to the factors detAx and (exp/i(0))"1(exp/s(0))7e in
respectively. There correspondence suggests that the factors P and R in
Theorem 4.4 or [Theorem 4.5 play the role of the period and the regulator for
the special values of the Selberg zeta functions.

2) We will consider the Selberg zeta function of G=SL(2, R). In this
case, K=S0(2, R) is a maximal compact subgroup of G. All the K-type is

? —ac)=<a+«/~_1c)’ with »r&Z. Let I" be a

discrete torsion-free subgroup of G such that I'\G is compact, and X is a finite

one-dimensional, that is, 5,(
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dimensional unitary representation of I'. Then the Selberg zeta function of G
with respect to (I, X) with K-type §, is defined by

Cret )= IL 11 det {1-1(r)( é% ) ay el

Here [I is the product over the primitive hyperbolic I'-conjugacy classes of
I'. By the conditions torsion-free and co-compact, any elements l=y<l’ is

0 —
a(r) )cG such that |a(y)| >1. We

have {r, (X, s)=Cr X, s) if r=r'(mod2), and {r X, s) is the function originally
considered by [SI]. The arguments in §4 with slight modification holds in
the case of G=SL(2, R). In fact, we have {r ., s)=Zr, (X, 2s—1) where
Zr, X, s) is the function (3.1) formally specialized ¢=0. Let g is the genus
of the Riemann surface I'\G/K with which we have vol(I'N\G)=2g¢—2. Then
we have

hyperbolic, and it is G-conjugate to aér)

THEOREM 6.1. Take an integer n>Max{2, |r|} and put u=n(n—2)/8. Then
Cr.-&, n/2)=R-P with

R =det(A,, ) {(n+m—2)(n—m)} - (m-DE-Hdimz

1<msTr
=7(2)

P=exp{/;(0)-dim%-(2g—2)} .

~ A

THEOREM 6.2. The function {r.oX, s) has a zero at s=1 of order m(1p, X),
and we have

Cr.~(X, s)= R-P-(s—=1)"I D4 Tterms of degree>m(1lr, X)]
with
R= detAo,o

P = 4m0r1 exp{ J1(0)-dimX-(2g—2)} .

As shown by [Vg], the zeta function {, (X, s) has the “I’-factor”. The
double ['-function of Bernes is defied by

[My(s+1)7' = 2r)* exp[—{s(s+1)—7rs*}/2] nli(l—ks/n)” exp{—s+s*/(2n)}
where 7 is Euler’s constant. The double /'-function ['y(s) has the following

properties ;

log%g—_—:% = s-log (Zx)—Ssz-cot(rcx)dx,
Ly(s+1) =T(s)"(s).
Define that ['-factor {f)(X, s) for {r, (%, s) by
{@r) () o(s+1)}dim*-2e-2 if »=0(mod 2)

e S s



658 K. TAKASE

Put £ (X, $)=C&%X, s)-Cr. (X, s). Then the functional equation of {r, (X, s)
is written in the symmetric form

C;k’. X, 1—5) = C}E X, s).

Let n>1 be an integer such that n=7 (mod 2). Then 1—#n/2 is a pole of the
“I-factor” {f%(X, s), and n/2 is not a critical point of {r .(X, s) in the sense
of [DI]. So it is very natural that the “regulator” R appears in the special
value {r.,(, n/2)=Zr (X, n—1) of the Selberg zeta function in
or [Theorem 6.2.

3) As considered in 1), the factor detAx in corresponds to
R(K)h/w|D|~"* in which appears the algebraic part 2/w|D| ¢ of Res;—;{x(s).
On the other hand, the algebraic part of the special values of the Selberg zeta
functions are still in mystery.
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