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Introduction.

Let G be a complex reductive group, acting linearly on a vector space V.
Assume that V is G-prehomogeneous, i.e., V has a dense G-orbit. Let C[V]g, 4
={feC[V]|f(gv)=¢(g)f(v)} and f be its non-zero element. Then it is known
that there exists a unique G-orbit O; which is closed in £:=7"Y(C*). Let
T be a maximal torus of the isotropy subgroup H:=G, of G at v,;€0;, N:=
Ng(T) the normalizer of T in G, G':=N/T, and V’':=Vr={veV |tv=v for any
teT}. We can show that ¢ induces a character of G/, which we shall denote
by the same letter ¢. Define C[V']s 4 in the same way as above.

The purpose of this note is to prove the following two theorems.

THEOREM A. (1) V'’ is G’'-prehomogeneous. More precisely, the G’-orbit of
v, 1S open dense in V.

(2) The isotropy subgroup Gy, of G’ at v, is finite.

(3) Therestriction CLV]—C[V"] induces an isomorphism C[V]g y==C[V']g 4.

THEOREM B. Assume that H is finite. Take heH, and let {h) be the finite
cyclic group generated by h. Put N”":=Ng({h)), G" :=N"/{h), and V" :=V 4.
Then

(1) V7 is G”-prehomogeneous. More precisely, G”-v, is open dense in V”.

@) If h#1, |G4]<|Gy,l.

(3) Take a rational character ¢ of G and a non-zero relative invariant f<
C[Vle 4. Then ¢ induces a character of G”, which we shall denote by the same
letter ¢, and the restriction C[V]—C[V"] induces an isomorphism C[V]g 4~
CLV"]gn, g

NoTATION. If a group I” acts on a set X, X denotes the set of [-fixed
points, and [, denotes the isotropy subgroup of " at x=X. For two subsets
A, BcI', AB:={b"t'ablacs A, beB}. We write a® for {a}®. The meaning of
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A% and a®(a, be]") is similar. The complex number field is denoted by C.
For a set X, | X| denotes the cardinality.

1. Preliminaries.

LEMMA 1. Let H be a complex reductive group acting linearly on a vector
space U, and S a maximal torus of H. If there is no absolute H-invariant poly-
nomial function on U other than constants, then Ugs={0}.

PROOF. Assume 0+ucUs. By [2, p. 354] or [3, Corollary 3], Hu is closed
in U. Hence there is an absolute H-invariant f such that f|Hu=1 and f(0)=0.
Thus we get a contradiction.

Let G, V, f, ¢, 2, O,, etc. be as in the introduction, and V'~ the dual vector
space of V. It is known that there exists a non-zero f"C[V ]s 4-1. See [5,
p. 717 or [1, 1.5, (2)]. Let 27 :=f""%C*) and O7 be the unique G-orbit in £~
which is closed in 7. It is known [1, 1.18, (3)] that F:=gradlogf gives an
isomorphism 0,=07. Put v{=F(v,). Then Gy =G,

LEMMA 2. Q;=(0)),.

PrROOF. Let H:=G,, and A:=(TO7)* be the conormal bundle of O7, i.e.,

A=(TOD* = {(v, v) € VXOT|v LTwO1}.

By [1, 1.18, (4)], 4 is G-prehomogeneous, and hence U::(T,,IOI)i(CV) is H-
prehomogeneous. Since a prehomogeneous space does not have an absolute
invariant other than constants, U,={0} by lemma 1. (It is known [1, 1.18, (1)]
that G,, is reductive.) Again by [1, 1.18, 4)], Ar=Q2,=V N is irreducible.
Let #7: A—O7 be the natural projection. Then dim/A;<dim(O7)r, since the
fibre of #7| A at v1€07 is Uy={0}, and since 7 (Ar)C(0O7)r. Thus

dim@2; = dim 4y < dim(07); = dim(0,)r < dimQ7 .

Hence (0,);=0,"\V is in the same time dense and closed in Q7=2"V,. Thus
we get the assertion.

2. Proof of Theorem A.

Let t=T be a topological generator with respect to the Zariski topology.
Define a mapping a: G—G by a(g)=t%. For g=GC,

gneVre—tgnn=gné=al@e G, =H.

Hence (0)r=V,:N\Gv,=(a*H)/H. By O r=827:=09"Vy is open
dense in V. Hence
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2.1 dimVy = dima*H—dimH .
Let us show that
(2.2) NH = (t°N\T)HE .

One inclusion is obvious; ((°"TYHCEE*NTHCi°N\H. Conversely, take an
element t*<t°"\H. Since t® generates T# topologically, T¢ and T are both
maximal tori of H. Take heH sothat T¢=T". Define T by t¥=t’*. Then
VetN\T and 2@ NT)CENT)H.

Next, for g=G, técTeT*=T<geN. Hence

(2.3) NT =tV
Let Z=7Z4T) (=Zs)) denote the centralizer. Then
(2.4) ItV = [N/Z| < +oco.

Since for any n& AN, (* is also a topological generator of 7', Zyo(t*)=2Z yo(T)
=T, where H° is the identity component of H=G,,. Hence

(2.5) dim "7 = dim (t")?° = dim H°—dim T .
By and
(2.6) dim t¥¥ = dim H—dim T .
Hence
dim (t°\H) = dim (¢ N\T¥ by
— dim (M) by

=dimH—dim T by [2.6).

On the other hand, every fibre of @ is isomorphic to Zs()=Z4T). Hence
dima Y(H) = dim Z&(T)+dim (a(G)NH)

=dim Zs(T)+dim H—dimT .
Together with [2.1), we get
(2.7) dimVy = dim Za(T)—dim T = dim Ng(T)—dim T .
Consider the N-action on V7. Then
(2.8) Ny, = NNGy = ZNG,,  (locally)

=Zuy(T)=T (locally).

Hence dim N, =dimT, i.e., dimG; =0. Thus we get (2) and also
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dim Gy, =dim G’ =dim N—dimT =dimV,

by [2.7). Thus we get (1). By [5, §4, Prop. 3], C[V1s 4=Cf, C[V']e 4=
Cf|V’, and we get (3).

3. Proof of Theorem B.

(2) is obvious; |Gl l=|N&/<hY| < |Gy /<hY] 51 Gyl
(1) Since |H|<o and V is G-prehomogeneous, dimV =dim G=dim G-v; <
dimV and hence G-v, is open dense in V. Define a: G—G by a(g)=h?¢. For
g<G,
gneVa & hgn=gué—= htecH— g a'H.

Hence Gu,N\V n,=(a"'H)/H. Moreover
(3.1) dim V<h> - dim a_lH,

since Gv;N\V (4, is open dense in V., and |H|<-+co. Since every fibre of a is
isomorphic to Zg(h)=Zg(<h)) and a(a'H)=a(G)N\H is a finite set,

(3.2) dima 'H = dim Z4(KhD).
Since No({h>)/ Ze({h>)T Aut({h)),
(3.3) | Na({h))/ Za({h))| < o0,

By (2) and (3.1)-(3.3),
dimV” = dimV (5, = dim Ng(<h)) = dim G” = dim G” —dim G/, ,

which implies (1). (3) is proved in the same way as Theorem A, (3).

4.

Let notation be as in the introduction, and assume that feC[V]s 4 and
f'eC[V’]g, 4 correspond to each other by the isomorphism of Theorem A, (3).
Let b(s) and b’(s) be the b-functions of f and f’, respectively. (See [5, p. 72]
or [1, 1.6] for the b-functions.) Suppose that b(s)=b, ITf; (s+ea;) and b'(s)=
bo I1f-1 (s+aj) (bo, by, @j, a;€C), and put b*P()=IT{, (t—exp(2r+/—1a;)) and
b’ =P (1) =TI, (t—exp 2rv/—1aj)).

CONJECTURE. b®XP(H)=p’ e*P(¢),

We can prove this equality when (G, V) is among those listed in [5, §7].
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5. Example.

Let G;=GL,(C) and T, be the totality of diagonal matrices in G,. Define
the action of G:= G,XG, on V:= M,(C) by (g, g’)v=gvg’~'. Let f=det and
v,V be the identity matrix. Then H={(g, g)lg=G,} and we may take
{¢¢,, |teT,} as T. Then

V' = {diag (x4, ---, xa)| x,&C}
and N is generated by
(diag(, -+, ta), diag(ty, ---, tn)) (t;, ti€C*) and
((Bs,000), (01,6(0)) (0EBGL),

where d;; denotes the Kronecker delta. The former acts on V’ by xs—t4; " x,,
and the latter by x;—x,-14. The restriction f/ of f to V'’ is the monomial
I12, x;. The b-function b(s) (resp. b’(s)) of f (resp. f’) is given by

b(s) = (s+1)(s+2) - (s+n) (resp. b'(s)=(s+1)").

6. Example.

Let G:=SLJ{C)XSLy(C)XGL,C). Define the action of (g,, g:, £:)=G on
Vi= My(C)DM,(C) by

(g1, 82)(X, Y) = (g:.X'gs, 8:Y"g0), g1, 82 € SLy(C) and

g (X, V) = (aX+e¥, bX+dy),  g=(" g)ecL2<c>.

Let f be the discriminant of the binary cubic form det (Xu-+Yv), where (X, Y)
eV and u, v are variables. Put

1 0
()
0 —1

Then H=G,, is generated by

t it 1
T = { t2 t3 X t-Z'I t—l ><( 1) |ilt2t3 = 1}1
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(The kernel of G—GL(V) is {diag(t, t, t)xXdiag(¢t™!, t7*, t!)|t*=1}.) Then

V, = VT = {(diag<x1; x2’ xs), diag(yly yZ) y3))}:
and N is generated by

b ‘ 1 a b a b
, ’ A x N d
( ) ts) ><( # t;) ><(C d), (t,, theC*, (c d)EGL2(6 ) an

1 0
(5i.a(j))><(6i,a(j))><(0 1), (6=G,;).

The former acts on V’ by

X1 Y1 Lt X1 1

a b
Xy Ya|F—> tols Xo Vo

¢ d
Xs Vs tsls/ \Xs Y3

and the latter by (x;, vi)—(Xs-1(), Vo-10y). Lhe restriction f’ of f to V' is
given by
Xo  Xsl?

X1 Xl Xy X%

Y1 Yzl [Y2 Vs Vs W1

The b-function b(s) (resp. b’(s)) of f (resp. f’) is given by
o = (e 3) (o ) D)o D)o D)

(resp. b’(s):(s+1)4(s+%—)4(s+%)(s+%)(s+—g—>(s+%>).

7. Remark.

In our construction, naturally appears a prehomogeneous vector space (G, V)
such that the isotropy group at a generic point of V is finite. A typical ex-
ample of such (G, V) can be obtained from a cuspidal pair in the sense of G.
Lusztig via the Dynkin-Kostant theory. See [4, 2.8]. For example the
prehomogeneous vector spaces of type (4), (8) and (11) in Table I of [5, §7]
come from the unique cuspidal pair of the simple algebraic group of type G,
F, and E,, respectively. The generic isotropy group are isomorphic to &, &,
and &;, respectively, if we assume GCGL(V).
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