A theorem of Chevalley type for prehomogeneous vector spaces

By Akihiko GYOJA

(Received Sept. 11, 1993) (Revised April 18, 1994)

Introduction.

Let G be a complex reductive group, acting linearly on a vector space V. Assume that V is G-prehomogeneous, i.e., V has a dense G-orbit. Let $C[V]_{G,\phi} = \{f \in C[V] \mid f(gv) = \phi(g)f(v)\}$ and f be its non-zero element. Then it is known [1] that there exists a unique G-orbit O_1 which is closed in $\Omega := f^{-1}(C^{\times})$. Let T be a maximal torus of the isotropy subgroup $H := G_{v_1}$ of G at $v_1 \in O_1$, $N := N_G(T)$ the normalizer of T in G, G' := N/T, and $V' := V_T = \{v \in V \mid tv = v \text{ for any } t \in T\}$. We can show that ϕ induces a character of G', which we shall denote by the same letter ϕ . Define $C[V']_{G',\phi}$ in the same way as above.

The purpose of this note is to prove the following two theorems.

THEOREM A. (1) V' is G'-prehomogeneous. More precisely, the G'-orbit of v_1 is open dense in V'.

- (2) The isotropy subgroup G'_{v_1} of G' at v_1 is finite.
- (3) The restriction $C[V] \rightarrow C[V']$ induces an isomorphism $C[V]_{G,\phi} \cong C[V']_{G',\phi}$.

THEOREM B. Assume that H is finite. Take $h \in H$, and let $\langle h \rangle$ be the finite cyclic group generated by h. Put $N'' := N_G(\langle h \rangle)$, $G'' := N''/\langle h \rangle$, and $V'' := V_{\langle h \rangle}$. Then

- (1) V'' is G''-prehomogeneous. More precisely, $G'' \cdot v_1$ is open dense in V''.
- (2) If $h \neq 1$, $|G_{v_1}''| < |G_{v_1}|$.
- (3) Take a rational character ϕ of G and a non-zero relative invariant $f \in C[V]_{G,\phi}$. Then ϕ induces a character of G'', which we shall denote by the same letter ϕ , and the restriction $C[V] \rightarrow C[V'']$ induces an isomorphism $C[V]_{G,\phi} \cong C[V'']_{G'',\phi}$.

NOTATION. If a group Γ acts on a set X, X_{Γ} denotes the set of Γ -fixed points, and Γ_x denotes the isotropy subgroup of Γ at $x \in X$. For two subsets A, $B \subset \Gamma$, $A^B := \{b^{-1}ab \mid a \in A, b \in B\}$. We write a^B for $\{a\}^B$. The meaning of

A. Gyoja

 A^b and $a^b(a, b \in \Gamma)$ is similar. The complex number field is denoted by C. For a set X, |X| denotes the cardinality.

1. Preliminaries.

LEMMA 1. Let H be a complex reductive group acting linearly on a vector space U, and S a maximal torus of H. If there is no absolute H-invariant polynomial function on U other than constants, then $U_S = \{0\}$.

PROOF. Assume $0 \neq u \in U_s$. By [2, p. 354] or [3, Corollary 3], Hu is closed in U. Hence there is an absolute H-invariant f such that $f \mid Hu \equiv 1$ and f(0) = 0. Thus we get a contradiction.

Let G, V, f, ϕ , Ω , O_1 , etc. be as in the introduction, and V^* the dual vector space of V. It is known that there exists a non-zero $f^* \in C[V^*]_{G, \phi^{-1}}$. See [5, p. 71] or [1, 1.5, (2)]. Let $\Omega^* := f^{*-1}(C^*)$ and O_1^* be the unique G-orbit in Ω^* which is closed in Ω^* . It is known [1, 1.18, (3)] that $F := \operatorname{grad} \log f$ gives an isomorphism $O_1 \cong O_1^*$. Put $v_1^* = F(v_1)$. Then $G_{v_1^*} = G_{v_1}$.

LEMMA 2. $\Omega_T = (O_1)_T$.

PROOF. Let $H:=G_{v_1}$, and $\Lambda:=(TO_1^*)^{\perp}$ be the conormal bundle of O_1^* , i.e.,

$$\Lambda = (TO_1^*)^{\perp} = \{(v, v^*) \in V \times O_1^* | v \perp T_{v^*}O_1^* \}.$$

By [1, 1.18, (4)], Λ is G-prehomogeneous, and hence $U := (T_{v_1^*}O_1^*)^{\perp}(\subset V)$ is H-prehomogeneous. Since a prehomogeneous space does not have an absolute invariant other than constants, $U_T = \{0\}$ by lemma 1. (It is known [1, 1.18, (1)] that G_{v_1} is reductive.) Again by [1, 1.18, (4)], $\Lambda_T \cong \mathcal{Q}_T = V_T \cap \mathcal{Q}$ is irreducible. Let $\pi^* : \Lambda \to O_1^*$ be the natural projection. Then $\dim \Lambda_T \leq \dim(O_1^*)_T$, since the fibre of $\pi^* | \Lambda_T$ at $v_1^* \in O_1^*$ is $U_T = \{0\}$, and since $\pi^*(\Lambda_T) \subset (O_1^*)_T$. Thus

$$\dim \Omega_T = \dim \Lambda_T \leq \dim (O_1)_T = \dim (O_1)_T \leq \dim \Omega_T$$
.

Hence $(O_1)_T = O_1 \cap V_T$ is in the same time dense and closed in $\Omega_T = \Omega \cap V_T$. Thus we get the assertion.

2. Proof of Theorem A.

Let $t \in T$ be a topological generator with respect to the Zariski topology. Define a mapping $a: G \rightarrow G$ by $a(g) = t^g$. For $g \in G$,

$$gv_1 \in V_T \iff tgv_1 = gv_1 \iff a(g) \in G_{v_1} = H.$$

Hence $(O_1)_T = V_T \cap Gv_1 \cong (a^{-1}H)/H$. By Lemma 2, $(O_1)_T = \Omega_T = \Omega \cap V_T$ is open dense in V_T . Hence

$$\dim V_T = \dim a^{-1}H - \dim H.$$

Let us show that

$$(2.2) t^G \cap H = (t^G \cap T)^H.$$

One inclusion is obvious; $(t^G \cap T)^H \subset (t^G)^H \cap T^H \subset t^G \cap H$. Conversely, take an element $t^g \in t^G \cap H$. Since t^g generates T^g topologically, T^g and T are both maximal tori of H. Take $h \in H$ so that $T^g = T^h$. Define $t' \in T$ by $t^g = t'^h$. Then $t' \in t^G \cap T$ and $t^g \in (t^G \cap T)^h \subset (t^G \cap T)^H$.

Next, for $g \in G$, $t^g \in T \Leftrightarrow T^g = T \Leftrightarrow g \in N$. Hence

$$(2.3) t^G \cap T = t^N.$$

Let $Z = Z_G(T)$ (= $Z_G(t)$) denote the centralizer. Then

$$(2.4) |t^N| = |N/Z| < +\infty.$$

Since for any $n \in \mathbb{N}$, t^n is also a topological generator of T, $Z_{H_0}(t^n) = Z_{H_0}(T)$ = T, where H^0 is the identity component of $H = G_{v_1}$. Hence

(2.5)
$$\dim t^{nH} = \dim (t^n)^{H^0} = \dim H^0 - \dim T.$$

By (2.4) and (2.5),

$$\dim t^{NH} = \dim H - \dim T.$$

Hence

$$\dim(t^G \cap H) = \dim(t^G \cap T)^H \qquad \text{by (2.2)}$$

$$= \dim(t^N)^H \qquad \text{by (2.3)}$$

$$= \dim H - \dim T \qquad \text{by (2.6)}.$$

On the other hand, every fibre of a is isomorphic to $Z_G(t) = Z_G(T)$. Hence

$$\dim a^{-1}(H) = \dim Z_G(T) + \dim (a(G) \cap H)$$
$$= \dim Z_G(T) + \dim H - \dim T.$$

Together with (2.1), we get

$$(2.7) \qquad \dim V_T = \dim Z_G(T) - \dim T = \dim N_G(T) - \dim T.$$

Consider the N-action on V_T . Then

(2.8)
$$N_{v_1} = N \cap G_{v_1} \cong Z \cap G_{v_1} \quad \text{(locally)}$$
$$= Z_H(T) \cong T \quad \text{(locally)}.$$

Hence dim N_{v_1} =dim T, i.e., dim G'_{v_1} =0. Thus we get (2) and also

A. Gyoja

$$\dim G'v_1 = \dim G' = \dim N - \dim T = \dim V_T$$

by (2.7). Thus we get (1). By [5, § 4, Prop. 3], $C[V]_{G,\phi} = Cf$, $C[V']_{G',\phi} = Cf|V'$, and we get (3).

3. Proof of Theorem B.

- (2) is obvious; $|G_{v_1}''| = |N_{v_1}''/\langle h \rangle| \leq |G_{v_1}/\langle h \rangle| \leq |G_{v_1}/\langle h \rangle|$.
- (1) Since $|H| < \infty$ and V is G-prehomogeneous, $\dim V \le \dim G = \dim G \cdot v_1 \le \dim V$ and hence $G \cdot v_1$ is open dense in V. Define $a : G \to G$ by $a(g) = h^g$. For $g \in G$,

$$gv_1 \in V_{\langle h \rangle} \iff hgv_1 = gv_1 \iff h^g \in H \iff g \in a^{-1}H$$
.

Hence $Gv_1 \cap V_{\langle h \rangle} \cong (a^{-1}H)/H$. Moreover

$$\dim V_{\langle h \rangle} = \dim a^{-1}H,$$

since $Gv_1 \cap V_{\langle h \rangle}$ is open dense in $V_{\langle h \rangle}$ and $|H| < +\infty$. Since every fibre of a is isomorphic to $Z_G(h) = Z_G(\langle h \rangle)$ and $a(a^{-1}H) = a(G) \cap H$ is a finite set,

$$\dim a^{-1}H = \dim Z_G(\langle h \rangle).$$

Since $N_G(\langle h \rangle)/Z_G(\langle h \rangle) \subset \operatorname{Aut}(\langle h \rangle)$,

$$(3.3) |N_{G}(\langle h \rangle)/Z_{G}(\langle h \rangle)| < +\infty.$$

By (2) and (3.1)-(3.3),

$$\dim V'' = \dim V_{\langle h \rangle} = \dim N_G(\langle h \rangle) = \dim G'' = \dim G'' - \dim G''_{v_1}$$

which implies (1). (3) is proved in the same way as Theorem A, (3).

4.

Let notation be as in the introduction, and assume that $f \in C[V]_{g,\phi}$ and $f' \in C[V']_{g',\phi}$ correspond to each other by the isomorphism of Theorem A, (3). Let b(s) and b'(s) be the b-functions of f and f', respectively. (See [5, p. 72] or [1, 1.6] for the b-functions.) Suppose that $b(s) = b_0 \prod_{j=1}^d (s + \alpha_j)$ and $b'(s) = b'_0 \prod_{j=1}^d (s + \alpha'_j)$ ($b_0, b'_0, \alpha_j, \alpha'_j \in C$), and put $b^{\exp}(t) = \prod_{j=1}^d (t - \exp(2\pi \sqrt{-1}\alpha_j))$ and $b'^{\exp}(t) = \prod_{j=1}^d (t - \exp(2\pi \sqrt{-1}\alpha'_j))$.

CONJECTURE. $b^{\exp}(t) = b'^{\exp}(t)$.

We can prove this equality when (G, V) is among those listed in [5, § 7].

5. Example.

Let $G_1=GL_n(C)$ and T_1 be the totality of diagonal matrices in G_1 . Define the action of $G:=G_1\times G_1$ on $V:=M_n(C)$ by $(g,g')v=gvg'^{-1}$. Let f=det and $v_1\in V$ be the identity matrix. Then $H=\{(g,g)|g\in G_1\}$ and we may take $\{(t,t)|t\in T_1\}$ as T. Then

$$V' = \{ \operatorname{diag}(x_1, \dots, x_n) | x_i \in C \}$$

and N is generated by

$$(\operatorname{diag}(t_1, \cdots, t_n), \operatorname{diag}(t_1', \cdots, t_n')) \quad (t_i, t_i' \in \mathbb{C}^{\times}) \quad \text{and}$$
$$((\boldsymbol{\delta}_{i,\sigma(j)}), (\boldsymbol{\delta}_{i,\sigma(j)})) \quad (\boldsymbol{\sigma} \in \mathfrak{S}_n),$$

where δ_{ij} denotes the Kronecker delta. The former acts on V' by $x_i \mapsto t_i t_i'^{-1} x_i$, and the latter by $x_i \mapsto x_{\sigma^{-1}(i)}$. The restriction f' of f to V' is the monomial $\prod_{i=1}^n x_i$. The b-function b(s) (resp. b'(s)) of f (resp. f') is given by

$$b(s) = (s+1)(s+2)\cdots(s+n)$$
 (resp. $b'(s)=(s+1)^n$).

6. Example.

Let $G := SL_3(C) \times SL_3(C) \times GL_2(C)$. Define the action of $(g_1, g_2, g_3) \in G$ on $V := M_3(C) \oplus M_3(C)$ by

$$(g_1, g_2) \cdot (X, Y) = (g_1 X^t g_2, g_1 Y^t g_2), \qquad g_1, g_2 \in SL_3(C) \text{ and}$$
 $g_3 \cdot (X, Y) = (aX + cY, bX + dY), \qquad g_3 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(C).$

Let f be the discriminant of the binary cubic form $\det(Xu+Yv)$, where (X,Y) $\in V$ and u,v are variables. Put

$$v_1 = \begin{pmatrix} 1 & -1 & \\ & -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \\ & & -1 \end{pmatrix} \rangle.$$

Then $H=G_{v_1}$ is generated by

$$T = \{ \begin{pmatrix} t_1 & & \\ & t_2 & \\ & & t_3 \end{pmatrix} \times \begin{pmatrix} t_1^{-1} & & \\ & t_2^{-1} & \\ & & t_3^{-1} \end{pmatrix} \times \begin{pmatrix} 1 & \\ & & 1 \end{pmatrix} | t_1 t_2 t_3 = 1 \},$$

$$\begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix} \times \begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix} \times \begin{pmatrix} -1 & 1 \\ & & 1 \end{pmatrix}, \quad \text{and}$$

$$\begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix} \times \begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix} \times \begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix} \times \begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix}.$$

A. Gyoja

(The kernel of $G \rightarrow GL(V)$ is $\{\operatorname{diag}(t, t, t) \times \operatorname{diag}(t^{-1}, t^{-1}, t^{-1}) | t^3 = 1\}$.) Then

$$V' = V^T = \{(\operatorname{diag}(x_1, x_2, x_3), \operatorname{diag}(y_1, y_2, y_3))\},$$

and N is generated by

$$\begin{pmatrix} t_1 & & \\ & t_2 & \\ & & t_3 \end{pmatrix} \times \begin{pmatrix} t_1' & & \\ & t_2' & \\ & & t_3' \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad (t_i, \ t_i' \in \mathbb{C}^\times, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})) \text{ and }$$

$$(\delta_{i, \, \sigma(j)}) \times (\delta_{i, \, \sigma(j)}) \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad (\sigma \in \mathfrak{S}_3).$$

The former acts on V' by

$$\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} \longmapsto \begin{pmatrix} t_1 t_1' & & \\ & t_2 t_2' & \\ & & t_3 t_3' \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and the latter by $(x_i, y_i) \mapsto (x_{\sigma^{-1}(i)}, y_{\sigma^{-1}(i)})$. The restriction f' of f to V' is given by

$$\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} \begin{vmatrix} x_3 & x_1 \\ y_3 & y_1 \end{vmatrix}^2.$$

The b-function b(s) (resp. b'(s)) of f (resp. f') is given by

$$b(s) = (s+1)^4 \left(s + \frac{3}{2}\right)^4 \left(s + \frac{4}{3}\right) \left(s + \frac{5}{3}\right) \left(s + \frac{5}{6}\right) \left(s + \frac{7}{6}\right)$$
(resp. $b'(s) = (s+1)^4 \left(s + \frac{1}{2}\right)^4 \left(s + \frac{1}{3}\right) \left(s + \frac{2}{3}\right) \left(s + \frac{5}{6}\right) \left(s + \frac{7}{6}\right)$.

7. Remark.

In our construction, naturally appears a prehomogeneous vector space (G, V) such that the isotropy group at a generic point of V is finite. A typical example of such (G, V) can be obtained from a cuspidal pair in the sense of G. Lusztig [4] via the Dynkin-Kostant theory. See [4, 2.8]. For example the prehomogeneous vector spaces of type (4), (8) and (11) in Table I of [5, §7] come from the unique cuspidal pair of the simple algebraic group of type G_2 , F_4 and E_8 , respectively. The generic isotropy group are isomorphic to \mathfrak{S}_3 , \mathfrak{S}_4 and \mathfrak{S}_5 , respectively, if we assume $G \subset GL(V)$.

References

[1] A. Gyoja, Theory of prehomogeneous vector spaces without regularity condition, Publ. Res. Inst. Math. Sci., Kyoto Univ., 27 (1991), 861-922.

- [2] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404.
- [3] D. Luna, Adhérences d'orbite et invariants, Invent. Math., 29 (1975), 231-238.
- [4] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math., 75 (1984), 205-272.
- [5] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.

Akihiko Gyoja

Department of Fundamental Sciences Faculty of Integrated Human Studies Kyoto University Kyoto 606-01 Japan