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Introduction.

In 1983 Jones introduced in [3] the concept of an index for a pair of type
I, factors, called Jones index nowadays, and he showed the importance of such
indices. With this as a momentum, the interests of research in the theory of
operator algebras have been gradually extended from a single factor to a pair
of factors. Thereafter Pimsner-Popa [8] gave an important relation between
the index and the relative entropy for a pair of finite von Neumann algebras
and showed that if NCM is a pair of II, factors with finite index, then there
exists a certain orthonormal basis of M over N. In the case of type Il factors,
Kosaki defined an index depending on a conditional expectation and, on the
other hand, Longo gave another definition by using the canonical endomor-
phism. And in the case of C*-algebras, Watatani defined an index by
using a quasi-basis.

However it is not easy to calculate explicitly the index even for a pair of
I, factors only from the definition. For this reason, useful index formulas are
expected. So far, Pimsner-Popa [8], Wenzl and Ocneanu gave index
formulas respectively. Wenzl’s formula is applicable only for pairs of approxi-
mately finite dimensional (=AFD) II, factors. In this paper we give a new
index formula, that is the extension of Wenzl’s one, and its application, for a
pair of II, factors which are not necessarily AFD.

We treat a pair of II, factors arising from two increasing sequences of finite
direct sums of II, factors. Let us explain more exactly, denote the sequences
by {My,}.en and {N,}.cy, and assume that the diagram

M, C Ma,y

(A) U U
Nn C Nn+1

is a commuting square for any n. Set M=(J,.M,)” and N=(J,N,)”. If the
inclusion relations N,CN,,,, M,CM,,, and N,CM, are periodic, then M and N
are found to be II, factors. For such a pair NCM we give an index formula.
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THEOREM 2.3. Let {M,}.en and {N,}.ecn be increasing sequences of finite
direct sums of II, factors such that for any neN the diagram (A) is a commui-
ing square. Set M=\, M,)” and N=(0J.N,)".

(1) Assume M and N are 11, factors, and [M: N]<oco. Then

[MN:I :h’{n<in; fn>,

where fn is a vector defined by the inclusion N,CM,, t, is the trace vector of
N, and {-, -> is the standard inner product.

(2) If the periodicity condition holds, then there exists n,=N such that
[M:N] =<t fod>=[M,:N,] for n=n,.

Here, for [M,: N,], we follow Goodman-de la Harpe-Jones’ definition [2] of
index for N,C M, of von Neumann algebras which are direct sums of II, factors.

This formula is applicable even in case that M, and N, are finite direct
sums of finite type I factors.

Furthermore we give an evaluation of dimension of the relative commutant
N'NM.

THEOREM 2.4. Let {M,},ex and {N.}.ey be as in Theorem 2.3 and set
M=0J,M,)" and N=(J,N,)". Let {pn i} it be the minimal central projections
of N,. Suppose that NCM is a pair of 11, factors with finite index and there
exists a constant ¢>0 such that tr(p,, )>c for all 1 and n.

Then for any nonzero projection p=N,, the following inequality holds:

dim(N'NM) < dim(N,NM.,), .

Next we give an application of our index formula. Starting from an irre-
ducible pair of II, factors A_,C A, we construct two increasing sequences of
finite direct sums of II, factors {M,}.cy and {N,}.en by using the basic con-
struction. In detail, let A_,CA,CA,=<A,, e,)CTA,=<A,, ;> --- be a sequence
of II, factors and e;=ey, , be a projection obtained from the basic construction,
and define M;=A; for ;=0 and N,=A_,, N;=(A_,\Ul{ey, -, e;})” for i=1. Then
M=0.M,)” and N=(J,N,)” are II, factors and we calculate the index
[M: N] by means of our formula.

THEOREM 3.4. Let A_,C A, be an irreducible pair of 11, factors with index
A and construct {M,}, and {N,}. as above.

(1) {Ma}, and {N,}, satisfy the lower boundedness condition, in the sense of
Condition 11 of section 2, if and only if the index A<4.

(2) The index [M: N] is given by
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k
[M:N] ={ 4sin*z/k)
oo if Az4,

if 2<4,

where k is an integer such that A=4 cos®(z/k).

This paper consists of three sections. In §1, we prepare the notations
concerning finite direct sums of II; factors and review certain properties of
traces on the relative commutant. In §2, we give an index formula and an
evaluation of dimension of the relative commutant. In §3, we apply our index
formula to a certain kind of concrete pairs of II, factors.

§1. Preliminaries.

In this section, we review the some notations and terminologies in which
we need below.

1.1. Let M=@J, M, be a finite direct sum of II, factors and ¢, the minimal
central projection corresponding to M;. Since the normalized normal trace on
II, factor is unique, a trace on M (denoted by tr) is specified by a numerical
vector (tr(g:))i=i,.. = called the trace vector.

Let N=@?;N,CM be another finite direct sum of II, factors having the
same identity and p; the corresponding minimal central projection. We assume
that the trace on N is the restriction of the trace on M. The trace vector
for M (resp. N) is denoted by § (resp. ).

Now we define two matrices representing the inclusion relation NC M, one
is the index matrix and another is the trace matrix. The index matrix A%¥=(4;;)
is given by

2 { Lp:q;Mpiq;: puq;Npag;3® if pug; # 0,
v 0 if pig; =0,

and the trace matrix T#=({;;) is given by tij=tro;u(p:q;), tre;n being the normal-
ized trace on ¢;M. The following properties (1.1)~(1.4) come from the very
definitions.

(1.1) 25 {0} U {2cos(n/n); n=3}\U[2, o]

(1.2) Trace matrix T¥ is column-stochastic, i.e., #;;=0 and 3};t;;=1 for
all j.

(1.3) The equality {=T%2 holds.
(1.4) If NCMCL are finite direct sums of II; factors, then T§=T¥%T%L.

1.2. We suppose that N is of finite index in M in the sense of [2], i.e.,
there is a faithful representation = of M on a Hilbert space such that the
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commutant w(N)’ is finite. Then the algebra (M, ey> obtained from the basic
construction for NCM is a finite direct sum of II, factors and the corresponding
minimal central projections are Jq,/, ---, JgnJ, where J is the canonical con-
jugation on L*M, tr).

As is shown in [2], the index matrix and the trace matrix for MC<M, ey)
have the following properties (1.5)~(1.7).

(15) Agew = (AR

(1.6) T§ew =THFY,

where (T%)ﬂ = tis ! F{ = diag(ng, Ty $0n>, Py — (2](?‘%)”)—1

0 puq;=0,
(1.7) For any trace Tr on <M, ex>, TrlexJp:J) = @ Tr(Jp:]).
The index [M: N] is defined as follows,
(1.8) [M:N]=nrT¥T%), where »(T) is the spectral radius of 7.
1.3. We conclude this section by recalling the trace on the relative com-

mutant.

Let M, M, be an irreducible pair, that is M;M,=C, of I, factors with
finite index. By the basic construction, we obtain a tower of II, factors M,C
M, cM,C ---cM,C ---. Then by [8] and we get

(1.9) try, (x) =tryy(x) for x € MiNM, .

§2. Factor generated by direct sums of II; factors.

In this section, we construct a pair of factors from two increasing sequences
of finite direct sums of II, factors and calculate the index for the pair.

LEMMA 2.1. Let NCM be a pair of II, von Neumann algebras with finite
dimensional centers acting on a Hilbert space H. Let tr be a faithful finite trace
on M and Ey be the trace preserving conditional expectation of M onto N. Sup-
pose a projection e=B(H) satisfies the following conditions:

the map Nox—xec=Ne is a -isomorphism and exe=E y(x)e for all x&M.
Let L be the von Neumann algebra generated by M\U{e}. Then:

1) L=A®PB, with A=<{M, ey)> and B isomorphic to an ultraweakly closed
subalgebra of M.

(2) Let z& L be the central projection with A=zL. Then z is equal to the
central support of e.

() Let Tr be a trace on L such that Tr|y=tr, then
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Tr(e) = d-Tr(z), where d=min{p;=(F¥):; i=1, .-+, n}.

Proor. (1) Let L, be a =x-algebra generated by M\ {e}, and define a
x-homomorphism @ : L,—<{M, ex)> by P(x,+2; xey:)=x0+ 2 xseny;. Suppose
that x,+>;x:ey;=0. For x&M, we put T=x,x+>;x:Enx(y:x). Then we
obtain that

Xe = (xﬁ»@ xieyi)xe =0 and Ex(Z*%)e = ex*xe=0.

Hence we have Ey(%*%)=0, i.e., ¥=0. Denote by [x] the image of x under
the imbedding of M into L2*(M, tr). Then for any x=M,

(xo+}i] xieyy)lx] = [XOX-{—? i Ex(yix)] =0.

Since M is dense in L*M, tr), this implies x,+>; x;exy:=0. Thus @ is well-
defined.

Next we prove the norm continuity of @. Let x=x,+3);x:ev;=L, and
yeM. Then

O(x)[y]= [XOY+%] x:Ex(yiy)] = [¥]
and
1@)y1l2 = 1[F]2 = tr(5*F) = tr(Ex(F*¥) .

The map N>x’—try(ex’)eC is a faithful trace on N. Therefore there is a
constant a>0 such that

a~tr(x’) < triex) < atr(x’) for all x' & N.
Then,
(@) y]II? £ atri(eEn(7*y)) = atri(ey*ye) = atri(ey*x*xye)
< alx|’tri(ey*ye) = atri(eEx(y*))
< a®|x|Ptr(En(y*y)) = a?| 2| [y ]1?

so that [|@(x)[y]I=alx]-II[¥]l, ie., [PX)I=alx].

We prove the ultrastrong continuity of @. Let {x;};c4C L, be a bounded
net converging to O in the ultrastrong topology (=us). From the previous
argument, the net {@(x;)} ;e4 is also bounded and for any yeM

1D(xD[Y]IE < atr(ey*x¥x,ye) =0 as 1 — .

Therefore @(x;)—0 in the strong operator topology and by norm boundedness
of {@(x,)}1ex it follows that D(x;)—0 (us), i.e., @ is us-continuous on (L,),.
Since (L,); is us-dense in L,, the map @ extends to an ultrastrongly conti-
nuous homomorphism & of L,. We denote by ¢ the linear extension of @ to
L. By the us-continuity of ¢ on the bounded set of L, we see that ¢ is
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ultraweakly continuous. As ¢|; =® is a *-homomorphism, it follows that ¢ is
also a *-homomorphism. Thus we obtain a us-continuous *-homomorphism ¢ of
L onto {M, ex).

Put B=Ker(p)C L then B is an ultraweakly closed two-sided ideal of L and
there exists a central projection ze L such that B=(1—2z)L. Define A=zL,
then ¢: A— (M, ey) is a *-isomorphism. Therefore

L=A®B and A={M, eyx>.

(2) As ¢p(e)=ey and zy,.y(en)=1, it follows that z.(e)=z. On the other
hand, by [|[1—z|| <1, there exists a net {x;} ;e4C(L,); such that x;—1—z (us)
and ¢(x2)—@(1—2)=0 (us). For x;=a,+2;a:eb;, we put y;=a,+2>;aEx(by).
Then x;e=y,e and

Enx(y¥yi)en = eny*yien = exe(x2)*@(x2)exy — 0
in ultraweak topology (=uw). Hence we have that Ex(y%y:)—0 (uw) and
ex¥xie = ey%ye = Enx(yfya)e— 0 (uw),

whence x,¢—0 (us). Since x;e converges to (1—z)e ultrastrongly, we have
(1—2)e=0, so that zz(e)=z.

(3) Let {p;; i=1, ---, n} be the minimal central projections of N and define
a #-isomorphism ¥ : A—<{(M, ex> by U=¢|,. Then we can take the central
projections {p; =1, ---, n} of A such that ¥'(p,)=Jp,J, where J is the canon-

ical conjugation on L*M, tr). Now we define another trace Tr’ on <M, ¢> by
Tr'=Tr-¥"!. Then

Tr(ep:) = Tr'enJ p:iJ) = @i Tr'(JpiJ) = ¢ Tr(Py) = d-Tr(py),
and therefore
Tr(e) = 3 Tr(epy) = d 3 Tr(Fy) = d-Tr(z). -

In the rest of this section, we consider the following situation. Let {My}.en
and {N,}.ex be two increasing sequences of finite direct sums of II; factors and
assume that there exist traces try, and try, such that for each n&N,

tru, . \u, =try, and try |y, =try,

and the following diagram

M,Cc M,

2.1 U U
N,C N,

is a commuting square, i.e., Ey Ey,, . =Ey_ ([2]).
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Moreover we deal with the following two conditions.

CoNDITION I (Periodicity). There exist n,=1 and p=1 such that for any
n=no,

@ Tx::“, Tf;f;‘,“ and F%Z are periodic modulo p.

2) T%Z“’ and TZZ”” are primitive.

ConpiTION II (Lower Boundedness). There exists a constant d >0 such that
(F¥™y=d for all n and i.

It is clear that Condition II follows from Condition I.

Here we denote the inductive limit of {M,} (resp. {N.}) by M. (resp. N.)
and let tr be the tracial state on M., such that tr|, =tr, for all n&€N. More-
over let = be the GNS representation with respect to tr and put M==n(M..)”
and N==n(N.)”, then NCM is a pair of finite von Neumann algebras.

Now we give a sufficient conditions for M and N to be factors and for the
index [M: N] to be finite.

LEMMA 2.2.

(1) If Condition 1 holds, M and N are II, factors.

(2) If Condition Il holds, and M and N are II, factors, then the index
[(M: N] is finite.

PrOOF. (1) Let tr be a normalized trace on M and §, the trace vector of
tr for M,. We may suppose that n,=p=1. Then we can put Tﬁ;‘”:T for
any ne<N, and by (1.3), it follows that

§5,=T*"s,,, forall k=1.

Thus s,eMNe T*(R*)™, where R*={xcR; x>0} and hence §, is a Perron
Frobenius eigenvector of T. Therefore the normalized trace on M is unique
so that M is a II, factor.

(2) Let L, be the von Neumann algebra generated by M,\U {eyx} and z, be
the central support of ey in L,, then z,—1 (us). Take a semifinite trace Tr
on {M, eyx>. Since ex{M, ex>ey=Ney=N, we have that ey is a finite projection
and Tr(ey)<oco. From [Lemma 2.1(3), we get

Tr(ey) = d-Tr(z,) for all n & N,
and letting n—co, we have that
Tr(ey) = d-Tr(l), ie., Tr(l)=d 'Trley) < co.

Therefore <M, ey) is finite so that the index [M: N] is finite. |
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Here we give an index formula which is one of our main results of this
paper.

THEOREM 2.3. Let M and N be defined from two increasing sequences {M,}
and {N,} as above

(1) Assume M and N are II, factors, and [M: N]<oco. Then
[M:N]=limd,, f.>,

where f,,:((F%Z);il)i and 1, is the trace vector of N, and <., -> is the standard
inner product.

(2) If Condition 1 holds, then for all n=n,,
[M:N]={,, f.>=[M,:N,].

ProOOF. (1) Since the index [M: N] is finite, there exists a normalized
trace tr on {M, ey> such that

tr(xey) = [M: N] tr(x) for x € M.

Using [Lemma 2.1, we get an ultraweakly closed subalgebra A of L,=
(M,\U{ex})”, x-isomorphic to K,=(M,\{ex })”. Now let {p;; i=1, ---, m} be
the minimal central projections of N,, {f;; i=1, ---, m} be the corresponding

central projections of A. Then, by the same method as the proof of (3) in
Lemma 2.1,

tr(Ps) = @atitr(enps) = @ati[M: NIt tr(ps),

where ¢, ;=(F§™),. Denoting the trace vector of tr for N, by f,=(ta., -
t..m), (m depends on n) and the central support of ey in L, by z,, we get

’

tr(za) = D tr(h) = 3 galilM : N7 tr(py)
=[M:N]" S galitns = [M: N1, fod.

Since z,—1 (uw) as n— oo, it follows that

limdt,, fo)=[M:N].

(2) If Condition I holds, then for n=n, the trace vector f, is a Perron
Frobenius eigenvector of T»”*' by the proof of Lemma 2.2. Since Tx"*' and
F%;‘ are periodic modulo p, we see that #, and fn are also periodic for n=n,.
Because <i,, f.) converges to [M:N], we have for n=n,,

[M:N] =<, f.> and z,=1.
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From z,=1, we have K,=L,, so there exists a *-isomorphism ¥ : K,— L,.
Let tr be a Markov trace on L, and define the trace tr’ on K, by tr'=tr-¥,
then tr’ is also a Markov trace. Denoting the trace vector for M, by §,, we
have

T2Tusn =[M: Nls,,

where Tn:T%g and T,=T %2. Therefore §, is a Perron Frobenius eigenvector

of 7.7, so that [M: N7] is the maximal eigenvalue of T.T, and so
[M:N]=rT,T,) =[M,:N,]. ]

REMARK 2.1. In case that M, and N, are finite direct sums of full matrix
algebras, the same formula holds too. This formula is not exactly the same as
Wenzl’s index formula, but essentially equivalent.

Similarly as in [13], we get the next theorem concerned with the relative
commutant.

THEOREM 2.4. Let M, N, {M,} and {N,} be as above and {p, :}i=x be the
minimal central projections of N,. Suppose that NCM is a pair of II, factors
with finite index and there exists a constant ¢>0 such that tr(p,. ;)>c for all i
and n.

Then for any nonzero projection p<N,, the following inequality holds:

dim(N'N\M) < dim(NeNM,), .

§3. Examples.

In this section, we give examples of {M,}.cy and {N,},.cy satisfying
Condition 1I.

Let A_,C A, be an irreducible pair of II, factors with index A. If A<4, then
there exists k=N such that A=4 cos®(z/k). In case Ai=4 we put k=oo.

By the basic construction we get a sequence of 1I; factors A_\CAC A=
(Ao, )T A;=<A,, e;)C -+, where e;=ey, ,. Now we define

3.1 No=A_, Ny=(A_\Ule, -+, ¢;})” fori=1and M;= A, for j = 0.
Then N,=N,XB, where B,={e,, ---, e,}”, so we can see the structure of
N, from the structure of B,. This fact is important in the sequel.
LeMMA 3.1. For all n, the diagram

Mn C Mn+1

(3.2) U U
Nn C Nn+1
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is a commuting square.

PrROOF. Let Ey_: M,,;—M, be the trace preserving conditional expectation,
then Ey (s )=24"'. Denote by L,,, the *-algebra generated by N,\U {en..}.
For x=xo+2tX:€011Y:4E€ Lns(xy, y:ENr), we get

By, (x) = xo+§ xiEy (eni)y: = xo‘*’? A%y € Ny

By Kaplansky’s density theorem, for any x&N,,, there exist a sequence {x;}icn,
%:E€ Ly,,, such that |x;|<|x]l and x;—x in L*WM,,, tr) as i—oo. Then the
sequence {Ey (x;)};in N, converges to Ey (x) as /— oo in ultraweak topology,
so we have Ey (x)EN,.

Thus Ey (Nay )TNy, ie., the diagram (3.2) is a commuting square. [ ]

Next we calculate the trace matrices T” netl TN’“‘1 and T%Z.
It is clear that Tﬁz*l——(l) and TN"+1 is given in the next proposition.

PROPOSITION 3.2. Let /INﬁ“ be the index matrix and T%g“ the trace matrix
of the inclusion N,CN,,,. Then,

o 1 7 =1t,i+1,
n = (d ]))1.]; 1, ]) = 0

otherwise,
Qn,i .
. ——  j =14, i+1,
Twp™ = (i) ¢ilf = nr, j
0 otherwise,

where for n<k—3,

=01, [n+D/2), =01, [a+2/2], ans=(7)=(.",),
and for n=zk—2,
i = [(n—k+4)/2], -, [(n+1/2], j=[n—k+5)/2], -, [(n+2)/2],

An.t = (?)”(i—n-z)“(m Z~2)'

Proor. We prove this by induction on n. Since N, is a factor and since
N,=N,e,;BN,(1—e,), we see that Tx}, is equal to 1X2-matrix (1, 1). Suppose
that the statement is true for n=m. By [Lemma 2.1, we obtain that N,.,.=
{Nms1, en, DB, where B is an ultraweakly closed subalgebra of N,,;. Thus
AN =A% .., AT™hena?) and Tym2=(T% .., TW."5 ¢¥’). Since the central
projection corresponding to B is l—e Ve,V - Ven,s, and since N, =
Npa(l—eV - Ve )N mi1, 1D - ONmsrcimsn2, We have ANm+1~TNm+1
(1,0,-,00 On the other hand, we have that AY™Lemw’=(Ay™1)t and

Nm+1
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T mrbenw=Tymr1FIm+t by (1.5) and (1.6), so the statement is true for n=

m—+1.
In case n=k—2, the algebra (N, ey, is isomorphic to N,,,, so we have

N N N ~ . . .
that Ay2=Ay e and Tyt2=Ty ‘Nn>. Therefore the assertion in this

case follows by a simple calculation. [ ]
PROPOSITION 3.3. Let Ax™ be the index matrix and TN™ the trace matrix
of the inclusion N,CM,. Then,

TNE = (cfV) with ¢ = ap A7 Poys_se(A7)
and
Mn — (d("’) with d(n) = A(n+1~ “)IZsz 2 (A7),

where

i=0, -, [(n+1)/2] (n=k—3); i=[(n—k+4)/2], -, [(n+1)/2] (n2k—2),
and a, ; is the constant in Proposition 3.2 and P,(t) is Jones polynomial defined
by Pt)=P.(t)=1 and P,(t)=Pn_,(t)—tPn_s(?).

PrROOF. Let {p. :}: be the minimal central projections corresponding to the
factorization of N,. Since TR*=(tr(pn i), it is easy to see that c{®=
An, A Py a_2:(A7Y). We prove the assertion for A%; by induction on n. Since

d§9=[A,: A_1¥?=2"%, it is clear for n=0. Suppose it is true for n=m. For
j=i, i+1, we have that

(@™ DY = [Mnipmyr,;: Nnsddp g, ;]
= [Mnspmer, jom. it NmsDpmar, om, 1]
= [MusDpmer om it Nmdomyr, jom, ¢
= a0y, i(q)-trwmypm LD MM )pp it Nadpy 415

where ¢=pm+1,jPm.1.
Denoting the trace on M, by tr, we obtain that tru,,,, (@=
m,

tr(pm.:) ' tr(g) and by (1.9)
tUrovmy i(q) = tryy(pm. ) tryy(@) = tr(pm. )7 tr(g).
Therefore

(d§™* D) = tr(pm, ) 1@ LM ns)p g, o Mumdp 1 lMm)p o o (Nmdp ]
= tr(pm.i)_ztr(pmn,j)ztr(Nm+1)pm+l j(Q)'(dim))Zl-

Using the induction hypothesis and [Proposition 3.2, we obtain
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d§™ = @ i@, st (D, ) (Dmsr, )AE™ A2

= AIEEDIEP, 047 n

Put M=(J.M,)” and N=(J,N,)”, then M and N are II, factors (cf. [I]).

THEOREM 3.4. Let A_,C A, be an irreducible pair of II, factors with index
A and construct {M,}, and {N,}, as in (3.1).

(1) {M.,}, and {N.}, satisfy Condition 1l if and only if the index A<4.

(2) The index [M: N] is given by

k .
[M:N]=1{ 4sin*z/k) asd
oo if A= 4,

where k is an integer such that A=4 cos*(x/k).

PROOF. Let {p, ;}; be the minimal central projections corresponding to the
factorization of N,. Then the trace vector #, for N, is equal to (tr(p,, :)): and
the vector f,=(fa. o) in is given by f.=(tr(pa, ) (d{)?; with
di"=[(Mz)p, ;: (Na)p, 1% Using [Proposition 3.3, we see that

-1 — ,7,,7,,,2{‘,1},,,,,,
U= peimsip, iy

a) Case of 1<4: Since P,((4cos?d,) Y)=sin nf,/(2" *cos® *#,sinf,;) with
0.=n/k, it follows that

Qq, 2% sin 0 - .
2. ke >sind,.

N1 — T ]
U = inn+2-20)0, cos™ 6,

Therefore we see that the Lower Boundedness Condition holds. By
2.3, we get '

[M:N] = limd,, fa>

C(n+1)/2]

=lm 3 - tr(patr(pa, )7 (d™)?

n i=[(n—k+4)/2]

) Ca/21  sin¥(n+2—20)0,
= lim > Y S
n i=[(R=k+4)/2] sin®@

k
4sin¥(n/k)

b) Case of 1=4: By a simple calculation, it follows that

(Fr)™ = gaip gy S >0 (=)
n+2
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So Condition II does not hold. Suppose in contrary that [M: N]<co. Then by
we have that

. /2]
=lim X (d{™)*

n =0

., [nty)/2] )
=lm 3 R"+1-2]Pﬁ+z—zj(l_l)

n 1=0

. e+ /2] 1
=Zlim 3 A'=c,

n =0

This is a contradiction, so that [M: N]=co. |

REMARK 3.1. In case that A_,C A, is a pair of type A,, Choda calcu-

lated the value of index [M: N] by using the Wenzl’s index formula.

REMARK 3.2. By the pair NCM is irreducible, that is,

N'"M=C, in case A1<4.
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