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Introduction.

Let $L$ be a very ample line bundle on an $n$ -dimensional complex projective
manifold $X$ . In this article we classify pairs (X, $L$ ) as above with some smooth
$A\in|L|$ being del Pezzo, i.e., with a smooth $A\in|L|$ such that $-K_{A}=(n-2)H$

for some ample line bundle $H$ on $A$ . We assume that $n\geqq 3$ since otherwise we
are in the completely understood case when $A$ is an elliptic curve.

If $H=L_{A}$ , then the problem reduces to the classification of del Pezzo mani-
folds, which has been done by Fujita [Fu] in the more general setting of ample
divisors. However there are several examples (e.g., [LPS], [LPSI]) showing
that $H\neq L_{A}$ can occur. This suggests the develoPment of a detailed structure
theory in which both Fujita’s theory (in the very ample setting) and all known
examples fit. This is exactly what we do in this paper.

If $n$ 1114, then the structure of pairs (X, $L$ ) with $A\in|L|$ del Pezzo is simple:
we work it out in the appendix. In particular this shows that, apart from few
obvious exceptions, the situation $H\neq L_{A}$ can occur only when $n=3$ , which we
assume from here on in this introduction.

In section $0$ we summarize background material. We also prove some very
ampleness results (Theorems (0.3) and (0.5)) in order to show that a number of
pairs coming up in the classification do really occur.

In section 2, by using adjunction theory, we prove a structure theorem
(Theorem (2.4)) giving a breakup of the possible pairs (X, $L$ ) we are dealing
with into 9 classes. Of these the most complicated are quadric fibrations over
$P^{1}$ , Veronese bundles over $P^{1}$ and scrolls over surfaces.

We study quadric fibrations over $P^{1}$ in sections 1 and 4. To do this we
embed $X$ in $P(\pi_{*}L)$ where $\pi:Xarrow P^{1}$ is the quadric fibration map. The
smoothness of $X$ imposes very strong restrictions on which vector bundles $\pi_{*}L$

are possible and on the homology class of $X$ in $P(\pi_{*}L)$ .
In section 3 we classify the Veronese bundles over $P^{1}$ that arise in our

structure theory.
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In section 5 we give a precise description of the scrolls over surfaces
appearing in the breakup result assuming $K_{A^{2}}\geqq 2$ . Actually, if $K_{A^{2}}\geqq 2$ , we have
that $-(K_{X}+L)$ is nef, hence $X$ is a Fano bundle, this allowing us to apply
classification results for such special manifolds, $e.g$ . $[SzW]$ .

The first two authors would like to thank the M.U.R.S.T. of the Italian
Government (40% Project Geometria Algebrica) for its support. The third
author would like to thank the ${\rm Max}- Planck$-Institut f\"ur Mathematik and the
NSF (DMS 93-02121) for their support at different stages of this research. We
thank the referee for useful remarks.

$0$ . Background material.

We work over the complex number field. A projective $k$ -fold is an irreduc-
ible -mooth projective scheme of dimension $k$ . Vector bundles are holomorphic
$ve^{r\cdot\backslash }(r$ bundles. We use standard notation from algebraic geometry. We also
a vpt some current abuses. Everywhere we do not distinguish between line
bundles and invertible sheaves. We freely shift from the multiplicative to the
additive notation for line bundles; multiplicative notation with ‘ omitted is
reserved for the intersection product in the Chow rings.

Let $V$ be a proective $k$ -fold and let $\mathcal{L}$ be a line bundle on $V$ . We let
$X^{f}=c_{1}(X)^{r}$ ; $\mathcal{L}_{W}$ will denote the restriction of $\mathcal{L}$ to a subvariety $W$ of $V;K_{V}$

will stand for the canonical bundle of $V$ .
If $p_{X},$ $p_{Y}$ are the projections of a product $X\cross Y$ onto the factors, we set

$O_{X\cross Y}(m, n)=p_{X^{*}}o_{X}(m)+p_{Y}*o_{Y}(n)$ .
A line bundle $X$ on $V$ is said to be numerically effective (nef, for sbort) if

$\mathcal{L}C\geqq 0$ for all curves $C\subset V$ . In addition $\mathcal{L}$ is said to be big if $X^{k}>0$ . We
say that $\mathcal{L}$ is spanned if it is spanned at all points by $\Gamma(V, X)$ .

For an ample line bundle $\mathcal{L}$ on $V$ , the sectional genus $g(V, X)$ of (V, $X$ )

is defined by

$2g(V, \mathcal{L})-2=(K_{V}+(k-1)\mathcal{L})\mathcal{L}^{k-1}$ .
If $\mathcal{L}$ is also spanned, then $g(V, \mathcal{L})$ is simply the geometric genus of the smooth
curve obtained by intersecting $k-1$ general elements of the complete linear
system $|X|$ . We also set $d(V, \mathcal{L})=X^{k}$ .

(0.1) Special Varieties.
We denote by $Q^{k}$ a smooth quadric hypersurface of $P^{k+1}$ . Let $V$ be a

projective $k$ -fold and let $\mathcal{L}$ be an ample line bundle on $V$ . We say that (V, $\mathcal{L}$ )

is a Del Pezzo $k$ -fold if $-K_{V}=(k-1)\mathcal{L}$ . We say that (V, $\mathcal{L}$ ) is a scroll
(respectively a quadric bundle) over a normal variety $W$ of dimension $h$ , if
there exists a surjective morphism with connected fibers $p:Varrow W$ and an
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ample line bundle $H$ on $W$ such that $K_{V}+(k-h+1)X=p^{*}H$ (respectively $K_{V}+$

$(k-h)X=p^{*}H)$ . In particular, if (V, $X$ ) is a scroll over either a curve or a
surface $W$ with $k-h>0$, then $W$ is smooth and $V$ is a $P^{k-h}$-bundle over $W$

and $\mathcal{L}_{f}=O_{pk-h}(1)$ for every fibre $f$ of $P$ [S2, (3.3)]. A projective 3-fold $V$ is
said to be Fano if $-K_{V}$ is ample.

(0.2) Reductions [S2, (0.5)].

Let $\mathcal{L}$ be an ample and spanned line bundle on a projective $k$ -fold $V$ . We
say that a pair (V’, $\mathcal{L}’$ ), consisting of a projective $k$ -fold $V’$ and an ample line
bundle $\mathcal{L}’$ , is a reduction of (V, $\mathcal{L}$ ) if

(0.2.1) there exists a morphism $\rho:Varrow V’$ expressing $V$ as $V’$ blown-up at a
finite set $B$ ,

(0.2.2) $\mathcal{L}=\rho^{*}\mathcal{L}’-[\rho^{-1}(B)]$ (equivalently $K_{V}+(k-1)\mathcal{L}=\rho^{*}(K_{V’}+(k-1)X’)$ ).

Recall that if $K_{V}+(k-1)\mathcal{L}$ is nef and big, then there exists a reduction
(V’, $\mathcal{L}’$ ) of (V, $\mathcal{L}$ ) and $K_{V’}+(k-1)\mathcal{L}’$ is ample [S2, (4.5)]. Note that in this
case such a reduction is unique up to isomorphisms and that the positive
dimensional fibres of $\rho$ are precisely the linear $P^{k-1}\subset V$ with normal bundle
$O_{pk-1}(-1)$ . Furthermore $\rho$ induces a bijection between the smooth elements of
$|\mathcal{L}|$ and the smooth divisors of $|\mathcal{L}’$ , passing through $B$ .

In particular, in the special case of threefolds, we need to recall the follow-
ing fact (e.g. see [SV, (0.3.3)]).

(0.2.3) Let (V’, $\mathcal{L}’$ ) be the reduction of (V, $\mathcal{L}$ ), let $\rho$ : $Varrow V’$ be the reduction
morphism. Let $S$ be any smooth element of $|\mathcal{L}|$ and let $S’=\rho(S)$ .
Then $(S’, \mathcal{L}_{S’}’)$ is the reduction of $(S, \mathcal{L}_{S})$ . In particular, if $\rho$ contracts
$t(-1)$ -planes of (V, $\mathcal{L}$), then

$K_{S’}^{2}=K_{S}^{2}+t\geqq K_{s}^{2}$ .

For all the results of adjunction theory we will need for pairs (V, $\mathcal{L}$ ) with
$\mathcal{L}$ very ample, we refer to [SV], [S3] and especially [BS].

NOW we prove a very ampleness result which we need in sec. 3.
(0.3) THEOREM. Let $P_{1},$

$\cdots,$
$P_{r}$ be $r$ totally $dis_{J}oint$ linear subspaces of

$P^{n}(i.e$ . the linear space they genevate has dimension $a_{1}+\cdots+a_{r}+r-1$ , where
$a_{i}=\dim P_{i})$ . Let $\pi:Parrow P^{n}$ be the blowing-up of the union of the $P_{t}’ s$ and let
$E_{i}=\pi^{-1}(P_{i})$ . If $t\geqq r\geqq 3$ , then the line bundle $L=\pi^{*}O_{P^{n}}(t)-\Sigma_{i}E_{t}$ is very ample.

PROOF. Any two points or a point and a direction in $P^{n}$ generate a line,
say I.
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CLAIM. At least one of the $pro_{j}ections$ from $P_{i}$ maps I to a line.

PROOF. Assume otherwise. Then I must meet every $P_{i}$ and thus I is not
contained in any of them, since they are totally disjoint. So there exists a
point $x\in I$ not on any $P_{i}$ . Project to $P^{n-1}$ from $x$ . Note that every $P_{i}$ maps
isomorphically onto its image, say $Q_{i}$ since $x$ is in none of them. On the other
hand in $P^{n-1}$ all the subspaces $Q_{i}$ meet since I is a line through $x$ meeting all
the $P_{i}’ s$ . This implies that the $Q_{i}’ s$ span a linear space of dimension $\leqq a_{1}+\cdots$

$+a_{r}$ . Thus coming back to $P^{n}$ we conclude that the $P_{i}’ s$ span a linear space
of dimension $\leqq a_{1}+\cdots+a_{r}+1$ , which in view of our assumption implies $r\leqq 2$ ,

a contradiction. This proves the claim.
Since $\pi^{*}O_{pn}(t-r)$ is spanned, it suffices to assum$et=r$ . To prove the very

ampleness of $L$ , note that $L=\Sigma(\pi^{*}\mathcal{O}_{P}n(1)-E_{i})$ ; so if two points or directions
are separated by $|\pi^{*}\mathcal{O}_{P^{n}}(1)-E_{i}|$ for some $i$, then they are also separated by
$|L|$ . Moreover note that the morphism associated with the i-th summand is
induced by the projection of $P^{n}$ from the linear space $P_{i}$ .

NOW consider two points $x,$ $y$ on $P$. If they are not on the same $E_{i}$ with
the same image in $P_{i}$ , then they are separated by $|\pi^{*}O_{P^{n}}(1)-E_{j}|$ for some $j$ ,
by the above claim. Therefore assume that $x,$ $y$ are in the same $E_{i}$ with the
same image, say $z$ , in $P_{i}$ . This means that $x,$ $y$ correspond to two different
normal directions to $P_{i}$ at $z$ . But then, since the projection from $P_{i}$ separates
normal directions we see that $|\pi^{*}\mathcal{O}_{P^{n}}(1)-E_{i}|$ separates $x,$ $y$ .

Similarly, if $y$ is a tangent direction at $x$ , by using the claim we reduce
to the case when $x$ is in $E_{i}$ with image, say $z$ , in $P_{i}$ and $y$ goes to zero at $z$ .
Then $|\pi^{*}O_{P^{n}}(1)-E_{i}|$ maps the fibre $\pi^{-1}(z)$ biholomorphically onto its image.

The argument proving the above theorem does not work for $r=2$ . In this
case however we have the following weaker result.

(0.4) THEOREM $([LPS, (0.4)])$ . Let $P_{1},$ $P_{2}$ be two $dis_{J}oint$ linear subspaces of
$P^{n}$ . Let $\pi:Parrow P^{n}$ be the blow-up at $P_{1}$ and $P_{2}$ and let $L=\pi^{*}O_{P}n(2)-\pi^{-1}(P_{1})$

$-\pi^{-1}(P_{2})$ . Then $L$ is very ample outside the proper transform of $\langle P_{1}, P_{2}\rangle$ , the
linear span of $P_{1}$ and $P_{2}$ .

By using tbis fact we now prove a very ampleness result we need in sec. 2.

(0.5) THEOREM. Let $Q^{3}\subset P^{4}$ be a smooth hyperquadnc and let $x_{1},$ $x_{2},$ $x_{3}\in Q^{3}$

be three points no two on a line contained in $Q^{3}$ . Let $\rho$ : $Xarrow Q^{3}$ be the blowing
up at $x_{1},$ $x_{2},$ $x_{3}$ and let $E_{i}=\rho^{-1}(x_{t})$ . Then the line bundle $L:=\rho^{*}\mathcal{O}_{Q^{3}}(2)-$

$E_{1}-E_{2}-E_{3}$ is very ample on $X$ .

PROOF. Let $\theta_{i}$ : $M_{i}--- P^{4}$ be the blowing up of $P^{4}$ along $x_{i}(i=1,2,3)$ and
along the line $\langle x_{j}, x_{k}\rangle(i\neq j, k)$ and let $\mathcal{E}_{i}$ and $\mathcal{E}_{jk}$ denote the exceptional
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divisors respectively. Look at the commutative diagram

$P^{3}$

$arrow p$

$M_{i}$

$arrow q$

$P^{2}$

$p’\uparrow$ $\sigma’\swarrow$ $\downarrow\theta_{i}$ $\searrow\tau’’$ $\uparrow q’$

$P_{\ell}$ $arrow$ $P^{4}$ $arrow$ $P_{ji}$

$\sigma’$ $\tau’$

where $P’$ and $q’$ are the morphisms obtained by resolving the indeterminacies
of the projections of $P^{4}$ from $x_{i}$ and from the line $\langle x_{j}, x_{k}\rangle$ respectively and
$\sigma’(\tau’’)$ denotes the blowing-up of $P_{i}(P_{jk})$ along the proper transform of
$\langle x_{j}, x_{i}\rangle$ via $\sigma’$ (of $x_{i}$ via $\tau’$). We have

$p’*o_{P3}(1)=\sigma^{\prime*}O_{P4}(1)-\sigma^{J-1}(x_{i})$ and $q^{\prime*}O_{P}2(1)=\tau^{\prime*}O_{p_{4}}(1)-\tau^{\prime-1}(\langle x_{j}, x_{k}\rangle)$ ;

so that
$p^{*}o_{p3}(1)+\mathcal{E}_{t}=\theta_{i^{*}}O_{p_{4}}(1)=q^{*}O_{pz}(1)+\mathcal{E}_{jk}$ .

So, letting $g_{i}=(p, q):M_{i}arrow P^{3}\cross P^{2}$ , we get

(0.5.1) $\theta_{i^{*}}\mathcal{O}_{P^{4}}(2)-\mathcal{E}_{i}$ – $\mathcal{E}_{jk}=p*o_{p_{3}}(1)+q^{*}O_{P^{2}}(1)=g_{i^{*}}O_{P\cross P}32(1,1)$ .

NOW come to our quadric. In view of the general position assumption, the
plane $\langle x_{1}, x_{2}, x_{3}\rangle$ cuts $Q^{3}$ along a smooth conic; call $C$ its proper transform
on $X$ . In particular since every line $\langle x_{j}, x_{k}\rangle$ is transverse to $Q^{3}$ we get for
every $i=1,2,3$ a commutative diagram

$M_{i}arrow\theta_{i}P^{4}$

$\cup$ $\cup$

$Xarrow Q^{3}$
$\rho$

and $[e_{i}]_{X}=E_{i},$ $[e_{jk}]_{X}=E_{j}+E_{k}$ . Thus restricting (0.5.1) to $X$ we see that

$L=(g_{i^{*}}O_{P^{3}\cross P2}(1,1))_{X}$ for $i=1,2,3$ .
So, due to the very ampleness of $O_{P\cross P}32(1,1)$ , to show that sections of $L$

separate two points $x,$ $y$ of $X$ (possibly $y$ being a tangent direction at $x$ ) it is
enough to show that $g_{i}$ separates them for some $i$ . Note that, according to
the definition of $g_{i}$ ,

(0.5.2) the $p$ component of $g_{i}$ separates any couple of points (or point, direction)
whose images in $P^{4}$ are not collinear with $x_{i}$ , while

(0.5.3) the $q$ component of $g_{i}$ separates any couple of points (or point, direction)

not on the same fibre of $E_{jk},$ $i.e$ . whose images in $P^{4}$ are not coplanar
with $x_{f},$ $x_{k}$ .
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Note also that the line bundle $\theta_{i^{*}}O_{P4}(2)-\mathcal{E}_{i}-\mathcal{E}_{jk}$ is very ample on $M_{i}$ outside
the proper transform of $\langle x_{1}, x_{2}, x_{s}\rangle$ , by (0.4); hence $L$ is very ample on $X\backslash C$ .
Property (0.5.2) will be enough to show that som $eg_{i}$ separates $x$ and $y$ in the
remaining cases. Actually, let $x\in X\backslash C$ and $y\in C$ ; then necessarily $y\neq x_{i}$ for
some $i$ , so that $g_{i}$ separates $x$ and $y$ , by (0.5.2). Now suppose that $x\in C\backslash (E_{I}$

$\cup E_{2}\cup E_{3})$ ; then $x$ and any point $y\in C$ (or tangent direction) are separated by
some $g_{i}$ by (0.5.2), since they cannot be collinear with all $x_{i}’ s$ . Now let $x\in E_{i}$ ;
if $y$ is a tangent direction or another point on the same $E_{i}$ , then projecting
from $x_{i}$ we get different images, hence $g_{i}$ separates $x$ and $y$ , by (0.5.2).
Finally assume that $x\in E_{1}$ and $y\in E_{z}$ ; then $g_{3}$ separates them, by (0.5.2), since
$x_{3}$ and the images of $x,$ $y$ in $P^{4}$ are not collinear. This concludes the proof.

In sec. 4 we will have to decide whether a line bundle on a projective
bundle has a smooth element in its linear system. The remainder of this
section deals with $pre$paratory material to this end. A key condition translating
smoothness is the following

(0.6) PROPOSITION. Let $\mathcal{L}$ be a line bundle on a compact comPlex manifold
X. Let $Z$ be a compact complex submanifold of X. Let $|\mathcal{L}-Z|$ be the linear
system of the zero sets of sections of $\mathcal{L}$ that vanish on Z. Let $N\xi$ be the
conormal bundle of $Z$ in $X$ and let

(0.6.1) $d_{Z}:\Gamma(X)arrow\Gamma(N_{Z}^{\star}\otimes \mathcal{L})$

be the homomorPhsm locally given by the differential along Z. Then the linear
system $|X-Z|$ contains an element smooth except possibly on the set $Bs|X-Z|-Z$
if and only if there exists a section $s\in\Gamma(\mathcal{L}-Z)$ such that $d_{Z}s$ is nowhere zero
on $Z$ .

PROOF. Let $s\in\Gamma(f-Z)$ . Since $s$ vanishes on $Z$ , the zero locus of $s$ is
smooth along $Z$ if and only if locally the differential of $s$ does not vanish on
$Z$ . Since this is an open condition, if satisfied, then the general element of
$|\mathcal{L}-Z|$ is smooth along $Z$ ; on the other hand by the Bertini theorem the
general element of $|\mathcal{L}-Z|$ is smooth outside $Bs|X-Z|$ . This gives the
existence of an element smooth outside $Bs|\mathcal{L}-Z|-Z$ . The converse is
obvious.

We can explicitly describe $N_{Z}^{*}$ when $X$ is a $P$-bundle and $Z$ is a P-subbundle
of it. First we recall the following general result.

(0.7) LEMMA. Let $\mathcal{E}arrow 9arrow 0$ be a surjection of vector bundles over a smooth
connected manifold Y. Then there is an inclusion $P(\ovalbox{\tt\small REJECT})\subseteqq P(\mathcal{E})$ and the restriction
of the tautological bundle $\xi_{\mathcal{E}}$ of $\mathcal{E}$ to $P(B)$ is equal to the tautological bundle $\xi_{\ovalbox{\tt\small REJECT}}$

of $B$ .
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PROOF. Let $\pi_{8}$ : $P(\mathcal{E})arrow Y$ and $\pi_{S}$ : $P(9)-Y$ denote the bundle projections.
Since the inclusion $P(B)\subseteqq P(\mathcal{E})$ corresponds to an injection $0arrow B^{*}arrow \mathcal{E}^{*}$ between
the dual bundles, it follows that $\pi_{\mathcal{E}1P(\ovalbox{\tt\small REJECT})}=\pi_{B}$ . Note that $(\xi_{\mathcal{E}})^{*}$ is the subbundle
of $\pi_{C^{*}}\mathcal{E}^{*}$ with each fibre over a point, $e$ , of $P(\mathcal{E})$ equal to the line through the
origin of the fibre $\mathcal{E}_{\pi(e)}^{*}$ corresponding to $e$ . Similarly $(\xi_{B})^{*}$ is the subbundle
of $\pi_{9^{*}}9^{*}$ with each fibre over a point, $b$ , of $P(\ovalbox{\tt\small REJECT})$ equal to the line through
the origin of the fibre $B_{\pi(b)}^{*}$ corresponding to $b$ . Under the inclusion $\pi_{B}^{*}B^{*}\subseteqq$

$\pi_{\mathcal{E}}^{*}\mathcal{E}^{*}$ induced by $\ovalbox{\tt\small REJECT}^{*}\subseteqq \mathcal{E}^{*}$ we have that $(\xi_{\ovalbox{\tt\small REJECT}})^{*}=((\xi_{C})^{*})_{P(B)}$ .

In particular this implies

(0.7.1) $\xi_{\mathcal{E}}^{(rk\ovalbox{\tt\small REJECT}-1+d{\rm Im} Y)}P(\ovalbox{\tt\small REJECT})=\xi_{B}^{(rkB-1+\dim Y)}$ , and if $\dim Y=1$ ,
this last number is $\deg B$ .

$Ke$eplng notation as in (0.7), we have

(0.8) LEMMA. Let $0arrow \mathcal{A}arrow \mathcal{E}arrow 9arrow 0$ be an exact sequence of vector bundles
over a connected manifold Y. Then the conormal bundle of $P(B)$ inside $P(\mathcal{E})$ is
isomorphic to

$\pi_{\ovalbox{\tt\small REJECT}^{*}}\mathcal{A}\otimes\xi_{B^{*}}$ .

PROOF. TO see this let $V_{C},$ $V_{9}$ denote the vertical tangent bundles of $P(\mathcal{E})$

and $P(B),$ $i.e.$ , the subbundles with vectors going to zero under the differential
$d\pi$ . Let $Q$ denote the quotient of $(V_{8})_{P(B)}$ by $V_{B}$ under the natural inclusion.
Considering the following diagram it follows that it suffices to show that
$Q\cong\pi_{B^{*}}\mathcal{A}^{*}\otimes\xi_{B}$ .

$0$ $0$

$\uparrow$ $\uparrow$

$0arrow$ $Q$ $arrow N_{P(9)1P(\mathcal{E})}$ $arrow$ $0$

$\uparrow$ $\uparrow$ $\uparrow$

$0arrow(V_{\mathcal{E}})_{P(9)}arrow(T_{P(\mathcal{E})})_{P(B)}arrow(\pi_{S^{*}}T_{Y})_{P(g)}arrow 0$

$\uparrow$ $\uparrow$ $\uparrow$

$0arrow$ $V_{9}$ $arrow$ $T_{P(B)}$ $arrow$ $\pi_{B^{*}}T_{Y}$ $arrow 0$

$\uparrow$ $\uparrow$ $\uparrow$

$0$ $0$ $0$ .
Recall that the bundle $V_{8}$ fits into the Euler sequence

$0arrow \mathcal{O}_{P(\mathcal{E})}arrow\pi_{C^{*}}\mathcal{E}^{*}\otimes\xi earrow V_{\mathcal{E}}arrow 0$ .
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Note that the first term of this sequence tensored with $\xi_{e^{*}}$ gives the tautological
inclusion of $\xi e^{*}$ in $\pi_{8^{*}}\mathcal{E}^{*}$ . Of course $V_{B}$ fits into a similar sequence. Putting
them tog $e$ther we get the following diagram

$0$ $0$

$\uparrow$ $\uparrow$

$0$ $arrow$ $\pi_{\ovalbox{\tt\small REJECT}^{*}}\mathcal{A}^{*}\otimes\xi_{\ovalbox{\tt\small REJECT}}$ $\cong N_{P(9)1P(\mathcal{E})}arrow 0$

$\uparrow$ $\uparrow$ $\uparrow$

$0arrow(\mathcal{O}_{P(\mathcal{E})P(B)}\uparrowarrow(\pi_{\mathcal{E}^{*}}\mathcal{E}^{*}\otimes\xi_{e})_{P(B)}\uparrowarrow(V_{C})_{P(B)}|arrow 0$

$0arrow$ $O_{P(\ovalbox{\tt\small REJECT})}$ $arrow$ $\pi_{B^{*}}9^{*}\otimes\xi_{\ovalbox{\tt\small REJECT}}$ $arrow$ $V_{B}$ $arrow 0$

$\uparrow$ $\uparrow$ $\uparrow$

$0$ $0$ $0$ .
An inspection of it, noting that $(\pi_{\mathcal{E}^{*}}e^{*}\otimes\xi_{\mathcal{E}})_{p(g)}\cong\pi_{9^{*}}\mathcal{E}^{*}\otimes\xi_{B}$ by (0.7), concludes
the proof.

1. Quadric fibrations over $P^{1}$ : general properties.

In this section we discuss som $e$ general Properties of quadric fibrations over
$P^{1}$ , which we will need in sec. 4. For the sake of completeness we start
considering polarized $n$ -folds (X, $L$), $n\geqq 3$ , where the line bundle $L$ is assumed
to be very ample. Let $p:Xarrow P^{1}$ be the morphism expressing $X$ as a quadric
fibration. Then $K_{X}+(n-1)L=p^{*}H$, for some ample line bundle $H$ on $P^{1}$ .
First of all note tbat all fibres of $P$ are irreducible. To se $e$ this note that all
fibres of $P$ are embedded by $|L|$ as quadric hypersurfaces of $P^{n}$ . Assume that
there is a reducible fibre $Q=A+B$ of $p$ . Since

$o_{A}=[Q]_{A}=[A]_{A}+[B]_{A}$

and $[B]_{A}=O_{P^{n-1}}(1)$ we would get $[A]_{A}=O_{P}n-1(-1)$ , so that $A$ could be contracted,
hence also the hyperplane $B\cap A$ would be contractible, a contradiction. Moreover
all fibres of $P$ are reduced. Otherwise, by cutting out $(n-2)$ general elements
of $|L|$ we would get a smooth surface fibered in conics over $P^{I}$ having a double
line as a fibre, a contradiction.

Let $\mathcal{E}=p_{*}L$ . For every fibre $Q$ of $P$ we have $h^{0}(L_{Q})=n+1$ , since $|L|$

embeds $Q$ as a quadric of $P^{n}$ . This implies that $e$ is a $rank-(n+1)$ vector
bundle on $P^{1}$ . Moreover $\mathcal{E}$ is spanned. To see this let $t\in P^{1}$ , consider the
fibre $Q_{t}=p^{-1}(t)$ and look at the following diagram
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$\Gamma(L)arrow\Gamma(L_{t})$

$\Gamma(\mathcal{E})\downarrowarrow\Gamma(\mathcal{E}_{t})\downarrow$

where the vertical arrows are isomorphisms. Since $L$ is very ample and $|L|$

embeds $Q_{t}$ as a quadric of $P^{n}$ , the restriction homomorphism $\Gamma(L)arrow\Gamma(L_{t})$ is
’surjective and then so is also the homomorphism $\Gamma(\mathcal{E})arrow\Gamma(\mathcal{E}_{t})$ . So we have

(1.0.1) $\mathcal{E}=\oplus_{i=0,\cdots.n}O_{P1}(a_{i})$ , with $a_{n}\geqq a_{n-1}\geqq\cdots\geqq a_{1}\geqq a_{0}\geqq 0$ .
We let $\delta=\deg \mathcal{E}=\sum a_{i}$ . Consider the projective bundle $P=P(\mathcal{E})$ , let $\pi:Parrow P^{1}$

be the projection and let $\xi$ be the tautological line bundle of $\mathcal{E}$ on $P$. Then,
from the $re$ lation $\xi^{n+1}-\xi^{n}\pi^{*}c_{1}(\mathcal{E})=0$ we get

(1.0.2) $\xi^{n+1}=\delta$ .

Moreover since $\mathcal{E}=p_{*}L$ and $X$ embeds fibrewise inside $P$, we have that

(1.0.3) $\xi_{X}=L$ and $X\in|2\xi-bF|$ ,

where $F$ stands for a fibre of $\pi$ . We denote by $z_{j}$ the homogeneous coordinate
on the general fibre of $P$ corresponding to the summand $\mathcal{O}_{P1}(a_{j})$ ; so the quadric
$Q$ cut out by $X$ on $F$ is represented by a second degree homogeneous equation
in the $z_{j}’ s$ . By (1.0.3) and in view of the isomorphism

$\Gamma(P(\mathcal{E}), 2\xi-bF)\cong\Gamma(P^{1}, \mathcal{E}^{(2)}\otimes O_{P1}(-b))=\oplus_{i\leq j}\Gamma(O_{P^{1}}(a_{i}+a_{j}-b))$

we have that

(1.0.4) every summand $z_{i}z_{j}$ appearing in the equation of $Q$ corresponds to a
section of $O_{p1}(a_{i}+a_{j}-b)$ .

A sort of converse to the above setting is the following situation

(1.0.5) Let $\mathcal{E}$ be as in (1.0.1), let $\pi:P=P(\mathcal{E})arrow P^{1}$ be the corresponding projec-
tive bundle and se $t\delta=\sum a_{i}$ . Let $\xi$ and $F$ denote the tautological bundle
of $\mathcal{E}$ and a fibre of $\pi$ respectively.

(1.1) LEMMA. Let things be as in (1.0.5) and assume that $|2\xi-bF|$ contains
a smooth element $Y$ and that $\xi_{Y}$ is very ample. Then either $b=0$ or $-1$ , or $\mathcal{E}$ is
very ample.

PROOF. We have that $\pi_{*}(-\xi+bF)=\pi_{*}(-\xi)\otimes \mathcal{O}_{P1}(b)=0$ , since $\pi_{*}(-\xi)=0$.
Since also $R^{1}\pi_{*}(-\xi+bF)=0$ we get $h^{\mathfrak{i}}(-\xi+bF)=0$ for $i=0,1$ . This implies
that $h^{i}(\xi-Y)=0$ for $i=0,1$ . So, looking at the exact cohomology sequence of

$0arrow[\xi-Y]arrow\xiarrow\xi_{Y}arrow 0$ ,
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we see that $H^{0}(P, \xi)=H^{0}(Y, \xi_{Y})$ . In view of the assumption we thus conclude
that the map $\varphi\epsilon$ : $Parrow P(H^{0}(P, \xi))$ embeds $Y$ . Now assume that $\mathcal{E}$ is not ample,
so $a_{0}=0$ . Letting $\sigma$ denote the section of $\pi$ corresponding to the surjection
$\mathcal{E}arrow O_{P1}(a_{0})=O_{P1}$ , we have that $\varphi e(a)$ is a point, as $\xi_{\sigma}$ is trivial. This implies
that $Y\sigma$ consists of one point at most. On the other hand

$Y\sigma=(2\xi-bF)\sigma=-b$ .
This shows that $\mathcal{E}$ is ample, hence very ample, unless $b=0,$ $-1$ .

In sec. 4 we will make explicit the numerical conditions assuring the ex-
istence of a smooth element in $|2\xi-bF|$ , for $n=3$ . Coming back to our pair
(X, $L$), $(1.1)$ gives the following fact:

(1.2) Since $L$ is $ve$ry ample, then either $b=0,$ $-1$ , or $\delta\geqq n+1$ .
Let $S$ be the smooth surface obtained by intersecting $(n-2)$ general elements

of $|L|$ and set $k=K_{S^{2}}$ .

(1.3) LEMMA. Let (X, $L$ ) be as at the $be\dot{\ovalbox{\tt\small REJECT}}nning$ of this section. Then the
integers $\delta,$ $b,$ $n$ and $k$ are related as follows:

i) $2\delta=3b+8-k$ (in particular $b-k$ is even) ;
ii) $b\geqq k-2$ ;

iii) $2\delta\geqq(n+1)b$ , with equality if and only if $X$ is a bundle (i.e. there are no
singular fibres);

iv) $(n-2)b\leqq 8-k$ ;
v) k$2+6/(n--1).

PROOF. By the canonical bundle formula we know that $K_{p}=-(n+1)\xi+$

$\pi^{*}O_{P1}(\delta-2)$ and then, by adjunction,

(1.3.1) $K_{X}=(-(n-1)\xi+\pi^{*}O_{p1}(\delta-b-2))_{X}$ and $K_{S}=(-\xi+(\delta-b-2)F)_{S}$ .
NOW since $k=K_{S^{2}}$ we get by (1.0.2)

$k=K_{S^{2}}=(-\xi+(\delta-b-2)F)_{S^{2}}=(-\xi+(\delta-b-2)F)^{2}X\xi^{(n-2)}$

$=(-\xi+(\delta-b-2)F)^{2}(2\xi-bF)\xi^{(n-2)}=-2\delta+3b+8$ .
This proves i). To prove ii) note that by (1.3.1) we have $p^{*}H=K_{X}+(n-1)L=$

$p^{*}o_{P1}(\delta-b-2)$ . Thus the ampleness of $H$ implies that $\delta-b-2=degH\geqq 1$ , hence
$\delta\geqq b+3$ . Then the assertion follows by combining i) with this inequality. To
prove iii) note that the singular fibres of $X$ correspond to the zeroes of the
section representing the determinant of the matrix of the terms $z_{i}z_{j}$, which in
view of (1.0.4) is an element of $O_{P1}(2\delta-(n+1)b)$ . Hence its degree must be IO
equality meaning that $X$ is a bundle. iv) simply follows by combining i) and
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iii). Finally ii) and iv) give v).

We can also compute the numerical invariants of (X, $L$ ) in terms of $b$ and $k$ .

(1.4) REMARK. $d=d(X, L)=2b+8-k$ and $g=g(X, L)=3+(b-k)/2$ .
PROOF. We have, recalling (1.0.2),

$d=L^{n}=\xi^{n}X=\xi^{n}(2\xi-bF)=2\xi^{(n+1)}-b\xi^{n}F=2\delta-b$ ,

hence $($1.3; $i)$ gives $d$ . Genus formula, taking into account (1.3; i), gives $g$ .
(1.5) THEOREM. Let (X, $L$ ) be a quadnc fibration over $P^{1}$ as at the beginning

of this section. Then $X$ embeds fibrewise in a $pro_{J}ective$ bundle $P(\mathcal{E})$ , where $\mathcal{E}=$

$\oplus_{i=0,\ldots.n}\mathcal{O}_{P1}(a_{i})$ , with $a_{n}\geqq a_{n-1}\geqq\ldots\geqq a_{1}\geqq a_{0}\geqq 0$, and

$X\in|2\xi-bF|$ , $L=\xi_{X}$ ,

where $\xi$ is the tautological bundle of $e$ and $F$ is a fibre of $P(\mathcal{E})$ . Moreover, if
$k\geqq 1$ , then the possible values of the invanants $k,$ $b,$ $\delta=\sum a_{i},$ $d,$ $g,$ $n(\geqq 3)$ are
those listed in the following table

$k$ $b$ $\delta$ $d$
$g$ $n$

536923
4 2 5 8 2 3, 4

4 8 12 3 3

3 1 4 7 2 3
3 7 11 3 3
5 10 15 4 3

2 $0$ 3 6 2 3
2 6 10 3 3,4,5
4 9 14 4 3
6 12 18 5 3

$-1$ 2 5 2 3
1 5 9 3 3, 4
3 8 13 4 3,4
5 11 17 5 3
7 14 21 6 3.

PROOF. From (1.3; v) we have $k\leqq 5$ , equality implying that $n=3$ . Fix
$k=1,$ $\cdots$ , 5 and note that (1.3; ii) provides a lower bound for $b$ . By comparing
it with the uppe $r$ bound given by (1.3; iv) and recalling that $b-k$ is even we
get an upper bound of $n$ for any admissible value of $b$, unless $b=-1$ or $0$, in
which cases (1.4) shows that $g=2$ . However in these cases it must be $n=3$, as
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proven by Fujita [Ful, (3.25), (3.26)]. Since $L$ is very ample, in the remaining
cases (1.2) applies giving $n\leqq\delta-1$ , where $\delta$ is determined by (1.3; i). By com-
paring these two upper bounds for $n$ we get the last column in the table. The
values of $d$ and $g$ stem from (1.4).

(1.6) REMARKS. i) AS to the effectiveness of the list provided by (1.5) in
case $g=2$ note that all cases do really occur and the explicit description of the
vector bundle $\mathcal{E}$ is known [Ful, (3.30), (3.31)] (where $L$ is simply assumed to
be ample but is in fact very ample). We recall it in the following table for
the convenience of the reader.

$k$ $b$ $\delta$ $(a_{0}, \cdots, a_{n})$ $d$ $n$

5 3 6 (1,1,2,2) 9 3
4 2 5 (1,1,1,2) 8 3
3 1 4 (1,1,1,1) 7 3
2 $0$ 3 (0,1,1,1) 6 3
1 $-1$ 2 (0,0,1,1) 5 3

4 2 5 (1,1,1,1,1) 8 4.

For an alternative description of the pair (X, $L$ ) see also [Io, Thm. 3.4].
ii) Note that in all the above cases the surface $S$ is $P^{2}$ blown-up at $13-d$

points in general position; this means that $S$ is a Del Pezzo surface with $K_{s^{2}}=$

$d-4=k$ .

2. The general result.

We first recall our set-up

(2.0) Let $A$ be a Del Pezzo surface contained as a smooth very ample
divisor in a projective 3-fold $X$ and set $L=[A]$ .

In this section we prove a general result concerning our pairs (X, $L$ ), while
the next sections are devoted to special subcases. We set $k=K_{A^{2}}$ . Recall that
$1\leqq k\leqq 9$ and that $A$ is $P^{2}$ blown-up at $(9-k)$ points for l<k:$7, $A$ is either
$P^{1}\cross P^{1}$ or $F_{1}$ for $k=8$, while $A=P^{2}$ for $k=9$ .

By adjunction we know that there exists a line bundle $\mathcal{H}\in Pic(X)$ such
that $\mathcal{H}_{A}=-K_{A}$ ; of course

$K_{X}+L=-\mathcal{H}$ .

(2.1) PROPOSITION. Let $k\geqq 2$ . If $K_{X}+2L$ is $nef$ and $(K_{X}+2L)^{2}L>0$ , then
$\mathcal{H}$ is $nef$ . In particular $X$ is Fano.

PROOF. Let $E=K_{X}+2L$ and look at the exact sequence
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$0arrow-Earrow \mathcal{H}arrow \mathcal{H}_{A}arrow 0$ .
Since $E$ is nef and $E^{2}L=(K_{X}+2L)^{2}L>0$ , [LPS, (0.7)] and Serre duality give
$h^{1}(-E)=0$ . AS a consequence the $re$striction homomorphism

$H^{0}(X, \mathcal{H})arrow H^{0}(A, \mathcal{H}_{A})$

induc $ed$ in cohomology by the above sequence is surjective. Assume that $\mathcal{H}$ is
not nef. Then there exists a curve $Z$ in $X$ such that $\mathcal{H}Z<0$ ; such a curve $Z$ ,

which is contained in the base locus of .41 $|$ , has a nonempty intersection with
$A$ , which is ample, this producing base points for the trace on $A$ of $|\mathcal{H}|$ , which
is $|\mathcal{H}_{A}|=|-K_{A}|$ . Since $-K_{A}$ is spanned for $k\geqq 2$, this implies $k=1$ , contradic-
tion. The last assertion follows from the fact that $-K_{X}=L+\mathcal{H}$ .

(2.2) REMARK. In case $k=1$ , under the same assumptions as in (2.1), the
sam $e$ argument shows that $|\mathcal{H}|$ is a pencil whose base locus is a line $Z$ of
(X, $L$ ) with $\mathcal{H}Z=-1$ . In this case $-K_{X}$ is nef and big, and ample off $Z$ .

Before stating the main result of this section it is convenient to recall the
following fact, which is an immediate consequence of the Nakai-Moishezon
ampleness criterion.

(2.3) REMARK. Let $S$ be a Del Pezzo surface. Every smooth surface $S’$

dominated by $S$ via a birational morphism is a Del Pezzo surface too.

(2.4) THEOREM. Let thtngs be as in (2.0). Then the Posstble Pairs $(X, L)$

and the corresponding values of $k$ are the following:
(2.4.a) $(P^{3}, O_{Ps}(1)),$ $k=9$ ;
(2.4. b) $(Q^{3}, \mathcal{O}_{0^{3}}(1)),$ $k=8$ and $A=P^{1}\cross P^{1}$ ;
(2.4.c) (X, $L$ ) is a scmll over $P^{1},$ $k=8$ (for more information see (2.8)).
(2.4.d) (X, $L$ ) is a $Del$ Pezzo threefold of degree $k\geqq 3$ (see (2.9)).
$($2.4. $e)$ (X, $L$ ) is a quadnc fibration over $P^{1},$ $k\leqq 8$ (for more information see

sec. 4),

(2.4.f) (X, $L$ ) is a scroll over a surface (for a precise descnption when $k\geqq 2$

see sec. 5),

(2.4.g) (X, $L$ ) admits $(P^{3}, O_{P3}(3))$ as a reduction, the reduction morPhesm
$Xarrow P^{3}$ being the blow-up at $0\leqq 3-k\leqq 2$ points,

(2.4.h) (X, $L$ ) admits $(Q^{3}, \mathcal{O}_{Q^{3}}(2))$ as a reduction, the reduction $morPhesm$

$Xarrow Q^{3}b\alpha ng$ the blow-uP at $0\leqq 4-k\leqq 3$ Points no two of them lying on a line
of $Q^{3}$ ,

(2.4.i) (X, $L$ ) admits as reduction (X’, $L’$) a Veronese bundle overP, $i.e$ . $X’$

is a $P^{2}$-bundle over $P^{1}$ and $2K_{X’}+3L’=\phi^{*}H$, where $\acute{\varphi}$ : $X’arrow P^{1}$ is the bundle
Projection and $H$ is an ample line bundle on $P^{1}$ (for a precise descnption see
sec. 3).
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The proof of (2.4) takes the remainder of this section. The first step is
the following

(2.5) LEMMA. Let (X, $L$ ) be as in (2.0). Then $K_{X}+2L$ is $nef$ and big
unless in cases (2.4. a-f).

PROOF. AS a first thing assume that $K_{X}+2L$ is not nef. Then by [SV],
(X, $L$ ) is either $(P^{3}, O_{P3}(1)),$ $(Q^{3},0_{Q^{3}}(1))$ , or a scroll over a smooth curve $C$ .
In the last case $A$ , which is a smooth element of $|L|$ , is a $P^{1}$-bundle over $C$

and then, since $A$ is rational, it follows that $C=P^{1}$ . Note that in all the
above cases we have $K_{A^{2}}=9$ or 8. So, apart from cases (2.4.a-c), $K_{X}+2L$ is
nef. Assume that it is not big. Then, according to adjunction theory [S3,

(0.3) $]$ , either (X, $L$ ) is a quadric bundle over a smooth curve $C$ and $C=P^{1}$ ,
k$8, since $A$ , which is rational, has to be a conic bundle over $C$ (case (2.4. $e)$),

or (X, $L$ ) is as in (2.4.f), or $K_{X}=-2L$ . In the last case (X, $L$ ) is a Del Pezzo
3-fold; moreover, since by adjunction $-K_{A}=L_{A}$ , which is very ample, we have
$k=d(A, L_{A})\geqq 3$ . This give (2.4.d).

In view of (2.5) we can proceed assuming that $K_{X}+2L$ is nef and big. Let
(X’, $L’$ ) be the reduction of (X, $L$ ) and let $\rho$ : $Xarrow X’$ be the corresponding
reduction morphism.

(2.6) REMARK. $K_{X’}+L’$ is not nef.

PROOF. Let $S’=\rho(A)$ . Then $S’$ is a smooth element of $|L’|$ and by
adjunction $(K_{X’}+L’)_{S’}=K_{S’}$ . If $K_{X’}+L’$ were nef, then so would $K_{S’}$ be. On
the other hand $-K_{S}$ , has to be ample in view of (2.3), a contradiction.

(2.7) By adjunction theory [S3, (0.4)1 and [BS, (1.2)] it follows from (2.6)

that (X’, $L’$ ) is one of the following pairs:

(2.7.1) $(P^{3}, O_{p3}(3))$ ,

(2.7.2) $(Q^{3}, O_{Q^{3}}(2))$ ,

(2.7.3) a Veronese bundle, $i.e$ . $X’$ is a $P^{2}$-bundle over a smooth curve $C$ and
$2K_{X’}+3L’=\phi^{*}H$, where $\phi:X’arrow C$ is the bundle projection and $H$ is an
ample line bundle on $C$ .

We show that these pairs lead respectively to cases g), h) and i) in (2.4).

Let $S’=\rho(A)$ as before; then according to (0.2.3), $\rho$ is the blowing-up of $X’$ at
$t$ points, where

$t=K_{S’}^{2}-K_{A^{2}}=K_{S’}^{2}-k$ .

Note that if $A$ is $P^{2}$ or $P^{1}\cross P^{1}$ it must be $t=0,$ $i.e$ . $(X, L)=(X’, L’)$ ; on the
other hand for none of the above pairs it can be $L’=[A]$ (e.g. [Bal]). So
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from now on we can assume $k\leqq 8$ and $A\neq P^{1}\cross P^{1}$ .
AS to case (2.7.3) note that $C=P^{1}$ , since $A$ , which is a rational surface,

has to fibre over $C$ ; this gives (2.4.i). A complete description of pairs occurring
in this case is given in (3.1). Here we study in detail the first two cases.

In case (2.7.1) we have $K_{S’}^{2}=3$, whence $k\leqq 3$ and so $\rho:Xarrow P^{3}$ is the
blowing-up at $0\leqq 3-k\leqq 2$ points and $L=\rho^{*}O_{p3}(3)-\rho^{-1}$ ($(3-k)$ points).

Note that all these cases really occur. This is obvious for $k=3$, while if
$k=1,2$ , for (X’, $L’$ ) and $\rho$ as above, the line bundle $\rho^{*}O_{P3}(3)-\rho^{-1}$ ($(3-k)$ points)

is in fact very ample, by [LPS, (0.4) and (0.5.1)]. This gives (2.4.g).

In case (2.7.2) we have $K_{S’}^{2}=4$, hence $k\leqq 4$ and $\rho:Xarrow Q^{3}$ is the blowing-
up at $0\leqq 4-k\leqq 3$ points and $L=\rho^{*}O_{Q3}(2)-\rho^{-1}$ ($(4-k)$ points). Note that no two
of these points can lie on a line $I\subset Q^{3}$ ; otherwise we would get $L\rho^{-1}(I)=0$,
contradicting the ampleness of $L$ . On the other hand assume that the $4-k$

points satisfy the above condition, then the very ampleness of $L$ follows from
[LPS, (0.5; 1) and (0.6)] in cases $k=3$ and 2 respectively and from (0.5) in case
$k=1$ .

Note that in both cases the general element of $|L|$ is a Del Pezzo surface
with $K_{A^{2}}=k$ ; in fact it is either a cubic surface blown-up at $(3-k)$ general
points or a complete intersection of two quadrics $blown- up_{-}^{r,}$ at $(4-k)$ general
points.

(2.8) Let (X, $L$ ) be as in $(2.4.c)$ . Then according to [Bal, 2] we have that
$X=P(\mathcal{E})$ , where $\mathcal{E}=\oplus_{i=1},$ $\ldots 3O_{p1}(a_{i})$ with $a_{i}>0$ for all $i$ and $c_{1}(\mathcal{E})=a_{1}+a_{2}+a_{3}$ is
even if $A=P^{1}\cross P^{1}$ , odd if $A=F_{1}$ .

(2.9) The list of Del Pezzo threefolds occurring in (2.4.d), is the following
[Fu, I and Il]:

$k$ description of (X, $L$ ) ; in all cases $-K_{X}=2L$

3 $(V_{3}, O_{P}(1)_{V})$ a smooth cubic hypersurface;
4 $(V_{z,t}, O_{P}(1)_{V})$ a general complete intersection of type $(2, 2)$ ;
5 (V, $O_{P}(1)_{V}$) the section of the grassmannian $G(1,4)$ embedded in $P^{9}$

via the Pl\"ucker embedding by three general hyperplanes;
6 $(P^{1}\cross P^{1}\cross P^{1}, \mathcal{O}_{P^{1}\cross P^{1}\cross P^{1}}(1,1,1))$ or $(P(T_{p2}), \xi)$ , where $T_{P2}$ is the

tangent bundle to $P^{2}$ and $\xi$ its tautological bundle;
7 $(B_{p}(P^{3}), \sigma^{*}\mathcal{O}_{P}(2)-\sigma^{-1}(P))$ , where $a$ : $B_{p}(P^{3})arrow P^{3}$ is the blowing-up

at a point $p$ ;
8 $(P^{3}, O_{P}(2))$ .
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3. More on Veronese Bundles.

Here we look more closely at case (2.4.i). Recall that (X, $L$ ) has a reduction
(X’, $L’$) where

(3.0) $X’$ is a $P^{2}$-bundle over $P^{1}$ and $2K_{X’}+3L’=\varphi’*H$, where $\phi:X’arrow P^{1}$

is the bundle projection and $H$ is an ample line bundle on $P^{1}$ .
The $re$duction morphism $\rho:Xarrow X’$ is the blowing-up of $X’$ at $t$ points, and

as observed in sec. 2, if $S’=\rho(A)$ then

(3.0.0) $t=K_{S’}^{2}-K_{A^{2}}=K_{S’}^{2}-k$ .
The general properties of (X’, $L’$ ) have been worked out in [LPS, sec. 3]. Here
we recall the situation for the convenience of the reader. Let $X’=P(e)$ and let
$F$ be a fibre of $\phi:X’arrow P^{1}$ . Since $L_{F}’=O_{P2}(2)$ according to (3.0), we have
$(K_{X’}+2L’)_{F}=O_{P2}(1)$ and so we can assume that $\mathcal{E}=\emptyset*(K_{X’}+2L’)$ . For shortness
let $\xi$ be the tautological bundle of $\mathcal{E}$ ; then

(3.0.1) $\xi=K_{X’}+2L’$ .

Note that

$2\xi=2(K_{X’}+2L’)=2K_{X’}+3L’+L’=\phi^{*}H+L’$

is the sum of a nef and an ample line bundle, hence $\xi$ is ample and so is 6.
Therefore

(3.0.2) $\mathcal{E}=\oplus_{t=1}$ $3o_{P1}(a_{i})$ , where $a_{i}>0(i=1,2,3)$ .
By the canonical bundle formula

$K_{X’}=-3\xi+(\alpha-2)F$ , where $\alpha=c_{1}(\mathcal{E})=a_{1}+a_{2}+a_{3}$ .
From (3.0.1) and the relation above we see that

(3.0.3) $L’=2\xi+(1-(\alpha/2))F$ .
In particular, $re$calling also (3.0.2), we have that

(3.0.4) $\alpha$ is even and $\geqq 4$ .
On the other hand the basic relation for the tautological bundle $\xi$ gives $\xi^{3}=\alpha$

and thus, by adjunction,

$K_{S’}^{2}=(K_{X’}+L’)^{2}L’=(-\xi+((\alpha/2)-1)F)^{2}(2\xi+(1-(\alpha/2))F)=5-(\alpha/2)$ .
So recalling (3.0.0) we get

(3.0.5) $t+k=5-(\alpha/2)$ .
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AS $t\geqq 0$ and $k\geqq 1$ , by combining (3.0.4) with (3.0.5) we get only the following
possibilities:

$\alpha=8$ , with $(k, t)=(1,0)$ ;

$\alpha=6$ , with $(k, t)=(1,1)$ or $(2, 0)$ ;

$\alpha=4$ , with $(k, t)=:(1,2),$ $(2,1)$ , or $(3, 0)$ .
Cases with $k=2$ have already been studied in [LPS, sec. 3]. The case with
$k=3$ simply corresponds to the reduction of the pair found in case $\alpha=4,$ $k=2$

in the same study and the corresponding line bundle $L$ is in fact very ample
in this case. Moreover note that for $\alpha=6,4$ , in case $k=1$ we get a pair (X, $L$ )

the contraction of a $(-1)$-plane of which gives rise to the corresponding pair
found for $k=2$ . In these cases it only remains to decide about the very
ampleness of $L$ . We now show that the line bundles $L$ occurring for these
pairs are in fact very ample.

$ln$ case $\alpha=6,$ $k=1,$ $(X, L)$ has the pair (X’, $L’$) $=(P^{1}\cross P^{2}, O_{P1_{\cross P2}}(2,2))$ as
simple reduction [LPS, (3.2.5)]. Let $x\in X’$ be the point blown-up by $\rho$ . To
show that the line bundle $L=\rho^{*0}p1_{X}p2(2,2)-\rho^{-1}(x)$ is very ample on $X$, consider
the Segre embedding $s:X’arrow P^{5}$ and note that $O_{p1_{X}p2(1},1$ ) $=s^{*}O_{p\epsilon}(1)$ . Let $\theta$ :
$Parrow P^{5}$ be the $blowarrow up$ of $P^{5}$ at the point $s(x)$ and let $E_{x}$ be the corresponding
exceptional divisor. Then, looking at the inclusion of $X$ in $P$, we get $L=$

$\rho^{*}\mathcal{O}_{P1_{X}pz(2},2)-\rho^{-1}(x)=(\theta^{*}O_{P5}(2)-E_{x})_{X}$ . Thus $L$ is very ample since the line
bundle $\theta^{*}O_{P5}(2)-E_{x}$ is very ample on $P$, as shown in [LPS, (0.5; 1)].

In case $\alpha=4$, with $k=1$ , the reduction (X’, $L’$) of (X, $L$ ) is the following
pair [LPS, (3.2.6)] : $X’$ is $P^{3}$ blown-up along a line I via $a$ and $L’=\sigma^{*}O_{P3}(2)+F$.
Let $x’,$ $y’\in X’$ be the points blown-up by $\rho$ . We already know from [LPS] that
neither $x=\sigma(x’)$ nor $y=a(y’)$ can lie on I. Look at the composite morphism
$\beta=\rho\circ a$ : $Xarrow P^{3}$ , which exhibits $X$ as $P^{3}$ blown-up along a line I and two
points $x,$ $y\not\in l$ . Since $F=\sigma^{*}\mathcal{O}_{P3}(1)-a^{-1}(I)$ , we have

$L=\beta^{*}O_{ps}(3)-\beta^{-1}(x)-\beta^{-1}(y)-\beta^{-1}(I)$ .
So the lines $\langle x, y\rangle$ and I are skew; otherwise it would be $L\beta^{-1}(\langle x, y\rangle)=0$,
contradicting the ampleness. Thus $x,$ $y$ and I are three totally disjoint linear
subspaces of $P^{3}$ and (0.3) applies. Hence $L$ is very ample.

So it only remains to look at the new case $\alpha=8$ . $ln$ this case (X, $L$) $=$

(X’, $L’$ ) since $t=0$ , and $L=2\xi-3F=2(\xi-F)-F$, by (3.0.2). So from the ample-
ness of $L+F$ it follows that $\mathcal{E}\mathfrak{U}p1(-1)$ is ample. Th $e$refore, recalling (3.0.2)

we get $a_{i}-1>0(i=1,2,3)$ , so that, up to exchanging the summands, we get
only the following possibilities for $\mathcal{E}$ :
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i) $\mathcal{E}=\mathcal{O}_{P1}(2)\oplus \mathcal{O}_{P1}(2)\oplus \mathcal{O}_{P1}(4)$ ,

ii) $e=O_{P^{1}}(2)\oplus O_{P^{1}}(3)\oplus O_{P1}(3)$ ,

Note that $\mathcal{E}=e’\mathfrak{U}_{P1}(2)$ , where $\mathcal{E}’$ is either $O_{P1^{\oplus 2}}\oplus O_{P1}(2)$ or $O_{P1}\oplus O_{P1}(1)^{\oplus 2}$

according to cases i) and ii). Let $\xi’$ be the tautological bundle of $\mathcal{E}’$ ; then
$\xi’=\xi-2F$ and so we get $L=2\xi’+F=\xi’+(\xi’+F)$ . Note that $\xi’$ is spanned, since
$\mathcal{E}’$ is so; moreover $(\xi’+F)$ is very ample since it is the tautological bundle of
$\mathcal{E}’\otimes O_{P1}(1)$ , which is a direct sum of very ample line bundles. This shows that
$L$ is very ample in both cases i), ii). Notice that, according to [Ha, sec. 3],
$X’$ is the desingularization of a quadric cone of $P^{4}$ having as vertex a line in
case i), a point in case ii).

All the above proves the following

(3.1) THEOREM. Let (X, $L$ ) be as in (2.4.i), let (X;, $L’$ ) be its reduction and
let $t$ be the number of blowing-ups the reduction morphism $\rho$ : $Xarrow X’$ factors
through. Then:

(3.1.1) $X’$ is a minimal desingulanzation $\mu:X’arrow Q$ of a quadnc cone of $P^{4}$ of
rank 3 or 4, $L’=\mu^{*}O_{Q}(2)+F,$ $F$ being the proper transfom of a plane of
$Q$ , and $(k, t)=(1,0)$ .

(3.1.2) (X’, $L’$ ) $=(P^{2}\cross P ‘, O_{Pz_{\cross P}1}(2,2))$ and $(k, t)=(2,0)$ or $(1, 1)$ ;

(3.1.3) $X’$ is the blow-up $\sigma$ : $X’arrow P^{\mathfrak{g}}$ along a line I, $L’=\sigma^{*}O_{P3}(2)+F$, Fbeing the
proper transform of a plane through I, and $(k, t)=(1,2),$ $(2,1)$ or (30);

for $t\geqq 1$ the points blown-up by $\rho$ do not lie on $\sigma^{-1}(I)$ and if $t=2$ their
images in $P^{3}$ generate a line skew with I.

4. More on quadric fibrations.

In order to give a better description of pairs as in (2.4.e), in this section
we specialize the quadric fibrations (X, $L$ ) considered in sec. 1 to the case of
3-folds. So let (X, $L$ ) be a quadric fibration over $P^{1}$ with $n=3$ and let
$\pi:P=P(\mathcal{E})arrow P^{1}$ be the $P^{3}$-bundle in which $X$ embeds fibrewise as in (1.5).

Let us start with the following useful

(4.1) REMARK. Let things be as in (1.0.1) with $n=3$ and let (X, $L$ ) be a
quadric fibration embedded fibrewise in $P(\mathcal{E})$ . If $2a_{1}<b$ then $a_{0}+a_{3}\geqq b$ and
$a_{1}+a_{2}\geqq b$ .

PROOF. By assumption, in view of the isomorphism

(4.1.1) $\Gamma(P(e), 2\xi-bF)\cong\Gamma(P ‘, \mathcal{E}^{(2)}\otimes O_{p1}(-b))=\oplus_{0\not\leqq i\leq j\leq 3}\Gamma(O_{P1}(a_{i}+a_{j}-b))$
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every fibre of $X$ has an equation containing neither the term $z_{1^{2}}$ nor, a fortiori,
the terms $z_{0}z_{1}$ and $z_{0}^{2}$ . Assum $e$ that $a_{0}+a_{3}<b$ then the equation would also
contain neither $z_{0}z_{3}$ nor $z_{0}z_{2}$ . Similarly, assuming $a_{1}+a_{2}<b$ then the equation
would not contain the term ZlZ2. In both cases it turns out that every fibre of
$X$ would be a singular quadric, a contradiction.

(4.2) THEOREM. Let $\mathcal{E}$ be as in (1.0.1) with $n=3$ and, keeping the same
notation as in (1.0.5), set $\mathcal{L}=[2\xi-bF]$ .

A) Assume that $2a_{1}<b$ . Then there is a smooth element $X$ in $|\mathcal{L}|$ if and
only if $a_{0}+a_{3}=a_{1}+a_{2}=b$ .

B) Assume that $2a_{1}\geqq b$ ; then
$B_{1})$ if $a_{0}+a_{2}\geqq b$ then there is a smooth element $X$ in $|X|$ ;
B2) if $a_{0}+a_{2}<b$ then there is a smooth element $X$ in $|X|$ if and only if $a_{0}+a_{3}=b$ .

PROOF. Case A). Let $a_{0}+a_{3}=a_{1}+a_{2}=b$ ; then there are two sections
generating $\Gamma(O_{P^{1}}(a_{0}+a_{3}-b))$ and $\Gamma(\mathcal{O}_{P^{1}}(a_{1}+a_{2}-b))$ respectively. Hence in view
of the isomorphism (4.1.1) we can choose an element $X$ of $|\mathcal{L}|$ whose restriction
to every fibre of $P(\mathcal{E})$ has $z_{0}z_{3}-z_{1}z_{2}=0$ as equation. Of course such an $X$ is
smooth. To prove the converse assume that there is a smooth $X\in|\mathcal{L}|$ . Consider
$Y:=P(O(a_{0})\oplus \mathcal{O}(a_{1}))$ . Note that $Y\subset P$ ; moreover $Y\subset X$ . Indeed let $C$ be the
section of $Yarrow P^{1}$ , corresponding to the surjection

$O_{P^{1}}(a_{0})\oplus O_{P1}(a_{1})arrow \mathcal{O}_{P^{1}}(a_{1})$ .
Then

$C^{2}-a_{1}-a_{0}\geqq 0$ and $\xi C=a_{1}$ ,

by (0.7.1). Since $CX=C(2\xi-bF)=2a_{1}-b<0$ we see that $C$ and all deformations
of $C$ are in $X$ . On the other hand, since $C^{2}\geqq 0,$ $C$ has deformations in $Y$ cover-
ing an open set of $Y$ . It thus follows that $Y\subset X$ . Now consider the exact
sequence of the normal bundles

$0arrow N_{Y\mathfrak{l}X}arrow N_{Y\mathfrak{l}P}arrow(N_{XIP})_{Y}arrow 0$ .

Since $N_{X1P}=\mathcal{L}$ , tensoring the above sequence by $\mathcal{L}^{-1}$ we see that $c_{2}(N_{Y\{P}\otimes \mathcal{L}^{-1})$

$=0$ . On the other hand we know by (0.8) that

$N_{Y1P}=\pi_{Y^{*}}(\mathcal{O}(-a_{2})\oplus O(-a_{3}))\otimes\xi_{Y}$ .

We thus get $0=(-\xi+(b-a_{2})F)(-\xi+(b-a_{3})F)Y=a_{2}+a_{3}-2b+\xi^{2}Y=\delta-2b$, by
(0.7.1). Hence $a_{0}+a_{1}+a_{2}+a_{3}=2b$ . Recalling (4.1), this gives $a_{0}+a_{3}=a_{1}+a_{2}=b$ .

Case B). It is immediate to check by using [BS1, p. 74] that the line bundle
$\mathcal{L}=[2\xi-bF]$ is spanned if and only if $2a_{0}\geqq b$ . So we can assume that $2a_{0}<b$ .
First consider subcase Bl). Under the condition $a_{0}+a_{2}\geqq b$ , the isomorphism (4.1.1)
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shows that given any fibre $F$ of $\pi$ , there certainly are global sections of $\mathcal{L}$

which $re$strict to non-zero multiples of the monomials $z_{0}z_{i}$ for $j=2,3$ and $z_{i}z_{j}$

for lSi\leqq j$3, but not of the monomial $z_{0}^{2}$ . The base locus of the surviving
monomials is the point $(1: 0:0:0)$ . Thus, as a set, the base locus of $X$ is the
section $C:=P(o(a_{0}))$ corresponding to the surjection $\mathcal{E}arrow O_{P1}(a_{0})$ . According to
(0.6) a general section $s\in\Gamma(X)$ will have a smooth zero set if the differential
$d_{C}s\in\Gamma(N\mathfrak{F}\otimes X)$ is nowhere zero on $C$ . Note that, by (0.8), under the identifi-
cation given by $\pi_{C^{*}}$ we get

(4.2.1) $N_{c}^{*}\otimes \mathcal{L}\cong(O_{P1}(a_{1})\oplus O_{P^{1}}(a_{2})\oplus O_{p1}(a_{3}))\otimes(-\xi_{C})\otimes(2\xi-bF)_{c}$

$=\mathcal{O}_{P1}(a_{0}+a_{1}-b)\oplus O_{p1}(a_{0}+a_{2}-b)\oplus O_{P1}(a_{0}+a_{3}-b)$ .
So the differentials of the global sections span a 2-dimensional vector subbundle
of $N_{c}^{*}\otimes X$ . Actually, in local coordinates, the section corresponding to the
monomial $z_{0}z_{j}$ goes to $dz_{j}$ . Thus we can choose a global section $s\in\Gamma(X)$ whose
differential vanishes nowhere on $C$ .

Finally consider subcase B2). Since $a_{0}+a_{2}<b$, the isomorphism (4.1.1) shows
that given any fibre $F$ of $\pi$ , there are global sections of $X$ which restrict to
non-zero multiples of the monomials $z_{0}z_{3}$ and $z_{i}z_{j}$ for $1\leqq i\leqq j\leqq 3$ , and no other
monomials are restrictions of global sections of $\mathcal{L}$ . As before we thus see that
the base locus of $|\mathcal{L}|$ is still $C$ as a set. Now, looking at (4.2.1) we see that
the differentials on $C$ of the global sections of $\mathcal{L}$ span only the subbundle of
$N_{c}^{*}\otimes \mathcal{L}$ given by $O_{P^{1}}(a_{0}+a_{3}-b)$ , which corresponds to the differential of the
monomial $z_{0}z_{3}$ . So we will have a general section, whose differential vanishes
nowhere on $C$ , if and only if the subbundle $O_{P^{1}}(a_{0}+a_{3}-b)$ is the trivial bundle,
i.e. if and only if $a_{0}+a_{3}=b$ . This concludes the proof in view of (0.6).

From now on assume that (X, $L$ ) is as in $(2.4.e)$ , i.e.

(4.3) a smooth element $A\in|L|$ is a Del Pezzo surface.

(4.4) PROPOSITION. Let things be as above and assume that (4.3) holds. If
$2a_{1}<b$ then $a_{3}=a_{2}=a_{1}+1=a_{0}+1$ and $a_{0}+a_{3}=b$ , implying in Particular that $b$ is
odd and $\delta=2b$ .

PROOF. Let $Y:=P(O(a_{0})\oplus \mathcal{O}(a_{1}))$ . As shown in the proof of (4.2), case A),

we have that $Y\subset X$ . Since $A\in\xi_{X}|$ , it meets $Y$ along a curve $C$ and then
$-K_{A}C>0$ since $A$ is Del Pezzo. By adjunction recalling (1.3.1) this gives

(4.4.1) $(\xi-(\delta-2-b)F)\xi Y\geqq 1$ .
By using (0.7.1) we get $\xi^{2}Y=a_{0}+a_{1}$ , so tbat (4.4.1) yields

$b+1_{q}\geqq a_{2}+a_{3}$ .
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On the other hand by (4.1) we have the inequalities $a_{1}+a_{2}\geqq b$ and $a_{0}+a_{3}\geqq b$ .
Putting together all these inequalities we get

$b+1\geqq a_{2}+a_{3}\geqq b-a_{1}+a_{3}\geqq 2a_{1}+1-a_{1}+a_{3}=a_{1}+a_{3}+1\geqq a_{1}+a_{2}+1\geqq b+1$ ,

and similarly $b+1\geqq a_{2}+a_{3}\geqq a_{1}+a_{3}+1\geqq a_{0}+a_{3}+1\geqq b+1$ , so that all the above
inequalities are equalities. This proves the assertion.

(4.5) PROPOSITION. Let things be as above and assume that (4.3) holds.
Then $b+3\geqq 2a_{3}$ . In particular, if $2a_{1}\geqq b$, then $a_{3}-a_{1}\leqq 1$ .

PROOF. Let $Z:=P(o(a_{0})\oplus O(a_{1})\oplus O(a_{2}))$ and note that $Zmee$ts $X$ along a
surface. This surface intersects $A$ along a curve and by ampleness $-K_{A}$ has
to $re$strict positively to it. Since $A\in|\xi_{X}|$ , recalling (1.3.1) this gives

(4.5.1) $(2\xi-bF)\xi(\xi-(\delta-2-b)F)Z$ lli 1.

AS $\xi^{3}Z=a_{0}+a_{1}+a_{2}$ by (0.7.1) and $\xi^{2}FZ=1$ , we get from (4.5.1) that

$2(a_{0}+a_{1}+a_{2})-b-2(\delta-2-b)\geqq 1$ ,

which proves the assertion.

The above discussion allows us to list the possible invariants occurring for
pairs as in (2.4.e). Note tbat the first 5 pairs corresponding to the invariants
listed in (1.6) do really fit into case (2.4.e), by (1.6, ii), and by [Ful] there are
no more pairs with $g=2$ . So the following statement takes care of the remaining
case $g\geqq 3$ . It follows by combining the list in (1.5) witb the smoothness condi-
tions given by (4.2) and finally checking the conditions of (4.4), (4.5).

(4.6) THEOREM. Let (X, $L$) be a quadric fibmtion as in $(2.4.e)$ , let $P(\mathcal{E})$ be
the $P^{3}$-bundle over $P^{1}$ in which $X$ embeds fibrewise and keep notation as in (1.5).

If $g\geqq 3$ , then only the following invanants can occur (where *stands for $X$ being
a bundle):

$k$ $b$ $\delta$

$a_{0}$ $a_{1}$ $a_{2}$ $a_{3}$
$d$

$g$

4 4 8 1 2 2 3 12 3 $*$

2 2 2 2 $*$

3 3 7 1 2 2 2 11 3
5 10 2 2 3 3 15 4 $*$

2 2 6 1 1 2 2 10 3
4 9 1 2 3 3 14 4

2 2 2 3
6 12 2 3 3 4 18 5 $*$

3 3 3 3 $*$

1 1 5 1 1 1 2 9 3
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Continued.

$k$ $b$ $\delta$

$a_{0}$ $a_{1}$ $a_{2}$ $a_{3}$
$d$

$g$

1 3 8 1 2 2 3 13 4
2 2 2 2

5 11 1 3 3 4 17 5
2 3 3 3

7 14 3 3 4 4 21 6 $*$

Note that in cases $k=2$ and 3 the above result improves the description
given in [LPS, (4.4)] and in [LPSI, (3.3.1)].

5. More on scrolls.

This section is devoted to the study of pairs (X, $L$ ) as in case $(2.4.f)$

satisfying $k\geqq 2$ . Let $\pi:Xarrow S$ be the morphism expressing $X$ as a $P^{1}$-bundle
over a smooth surface $S$ ; we have $K_{X}+2L=\pi^{*}H$ for an ample $H\in Pic(S)$ .
Note also that $H$ is spanned, since so is $K_{X}+2L$ [SV, (0.1)]. We have
$X=P(\mathcal{E})$ , where $\mathcal{E}=\pi_{*}L$ is a very ample rank-2 vector bundle on $S$ , since so
is its tautological line bundle $L$ on $X$ . Moreover $(S, \det \mathcal{E})$ is simply the
reduction of $(A, L_{A})$ ; so, as to the invariants $d=d(X, L)$ and $g=g(X, L)$ we
have

$d=d(A, L_{A})=d(S, \det \mathcal{E})-c_{2}(\mathcal{E})$ , $g=g(A, L_{A})=g(S, \det \mathcal{E})$ .

Recall that $K_{X}+L=-\mathcal{H}\in Pic(X)$ , where according to (2.1) $\mathcal{H}$ is nef since
we assume that $k=K_{A^{2}}\geqq 2$ . In this case $-K_{X}$ is ample, so that $X$ is a Fano
bundle.\yen This makes our analysis relatively easy, due to $[SzW]$ .

(5.1) THEOREM. Let (X, $L$ ) be as in (2.4.f) and assume that $X$ is Fano. Then
the data $S,$ $e$ and the invanants $d,$ $g$ are those listed in the following table,
according to the corresponding values of $k$ .

$k$ $S$ $\mathcal{E}$ $d$
$g$

5 $P^{2}$ $O_{P2}(2)^{\oplus 2}$ 12 3
4 $P^{2}$ given by $0arrow O_{p2}(2)arrow \mathcal{E}arrow \mathscr{I}_{x}(2)arrow 0$ 11 3
3 $P^{2}$ given by $0arrow O_{P2^{\oplus 2}}arrow O_{p2}(1)^{\oplus 4}arrow \mathcal{E}arrow 0$ 10 3

$P^{1}\cross P^{1}$ $O_{P^{1}\cross P^{1}}(1,2)\oplus O_{p1_{\cross}p1}(2,1)$ 13 4
2 $P^{2}$ $T_{P2}(1)$ 18 6

$P^{2}$ given by $0arrow \mathcal{O}_{p2}(-1)arrow \mathcal{O}_{p2}(1)^{\oplus s}arrow \mathcal{E}arrow 0$ 9 3
$P^{1}\cross P^{1}$ given by $0arrow O_{P^{1}\cross P1}arrow \mathcal{O}_{P^{1}\cross P1(1},1)^{\oplus 3}arrow earrow 0$ 12 4

$F_{1}$ $\beta^{*}T_{P2}\otimes[2s+3f]$ ( $\beta$ : $F_{1}arrow P^{2}$ being the blowing-up) 15 5.
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In the above table $\mathscr{I}_{x}$ stands for the ideal sheaf of a point $x$ , while $s,$ $f$ denote
the section of minimal self-intersection and a fibre of $F_{1}$ respectively.

PROOF. Since $X$ is Fano we have to check the list in $[SzW]$ . We call $\mathscr{F}$

the vector bundle in $[SzW]$ , so that $\mathcal{E}=\mathscr{F}\otimes \mathcal{L}$ for a suitable line bundle $\mathcal{L}$ on $S$ .
Note that in all cases $S$ is a Del Pezzo surface by (2.3), since it is dominated
by tbe De1 Pezzo surface $A\in|L|$ via $\pi_{1A}$ . First let us prove the following

(5.1.1) LEMMA. If $\mathcal{E}=\mathcal{L}\oplus \mathcal{L}$ , then $(S, \mathcal{L})=(P^{2}, O_{P2}(2))$ (which gives $nse$ to the
first case in (5.1) $)$ .

PROOF. We have that $X=P(\mathcal{E})=S\cross P^{1}$ . Let $q:Xarrow P^{1}$ be the second
projection and call $F$ any fibre of it. So $(K_{X})_{F}=K_{F}$ . Let $D$ be the effective
divisor cut out on $F$ by $A$ . Then $K_{A}D<0$ since $-K_{A}$ is ample and then by
adjunction we get

$0>(K_{X}+L)D=(K_{X}+L)_{F}D=(K_{F}+L_{F})D$ ,

which shows tbat $K_{F}+L_{F}$ is not nef. Therefore $(F, L_{F})$ is either $(P^{2}, O_{p2}(2))$ ,
$(P^{2}, \mathcal{O}_{P2}(1)),$ $(P^{1}\cross P^{1}, O_{P1_{\cross}P1}(1,1))$ or a scroll. Note that $(F, L_{F})=(S, \mathcal{L})$ under
the isomorphism induced by $\pi$ , as we see by restricting to $F$ the canonical
bundle formula $K_{X}+2L=\pi^{*}(K_{S}+c_{1}(\mathcal{E}))=\pi^{*}(K_{S}+2X)$ . So $(S, \mathcal{L})$ is on $e$ of the
four pairs above. In order to prove that the last three cases cannot happen, it
is enough to show that $K_{S}+2\mathcal{L}$ is ample. But this follows from the fact that
$K_{F}+2L_{F}=(K_{X}+2L)_{F}=(\pi^{*}H)_{F}$ is ample, so being $H$ on $S$ .

Contlnuing the proof of (5.1). In view of (5.1.1) all cases corresponding to
$\mathscr{F}=O_{S}\oplus \mathcal{O}_{S}$ listed in $[SzW]$ are ruled out apart from case 3) there which gives
rise to the first case in (5.1). As to the remainin $g$ cases in $[SzW]$ check the
condition $c_{2}(\mathcal{E})=c_{1}(\mathcal{E})^{2}-L_{A^{2}}=K_{S^{2}}-K_{\Lambda^{2}}$ for the Fano bundle $\pi:X=P(\mathcal{E})arrow S$ ,
with $L=\mathcal{O}_{P(\mathcal{E})}(1)$ in order to determine the normalizing bundle $X$ . This check
leads to the cases listed in (5.1) and the following ones:

(5.1.2) $k$ $S$

6 $P^{2}$

4 $P^{1}\cross P^{1}$

3 $P^{2}$

3 $F_{1}$

2 $P^{1}\cross P^{1}$

1 $P^{2}$

$e$

$O_{P2}(3)\oplus O_{P2}(1)$

$O_{P1_{X}p1(2},2)\oplus O_{P1xP1}(1,1)$

$O_{P2}(3)\oplus O_{P2}(2)$

$[2s+3f]\oplus[s+2f]$

$O_{P1_{X}p1(2},2)\oplus O_{P1xP1}(2,1)$

$\mathcal{O}_{P2}(4)\oplus O_{p2}(2)$ .

Note that in the first 5 cases $\mathcal{E}=[-K_{S}]\oplus \mathscr{M}$ . They are thus ruled out in view
of the following



524 A. LANTERI, M. PALLESCHI and A. J. SOMMESE

(5.1.3) LEMMA. Let things be as above. If $\mathcal{E}=[-K_{S}]\oplus \mathscr{M}$ , then $A$ cannot
be a $Del$ Pezzo surface.

PROOF. We have $K_{X}=-2L+\pi^{*}(K_{s}+det\mathcal{E})=-2L+\pi^{*}\mathscr{M}$ . So $-(K_{X}+L)=$

$L-\pi^{*}\mathscr{M}$ is the tautological bundle for the projectivization of $\mathcal{E}’=[-K_{S}-\mathscr{M}]\oplus O_{S}$

and then it is trivial when restricted to the section $\Sigma$ of $\pi$ corresponding to the
surjection $\mathcal{E}’arrow \mathcal{O}_{S}$ . Then by adjunction we see that $-K_{A}$ cannot be ample.

Concluding the proof of (5.1). The same argument for proving (5.1.3) rules
out also case $k=1$ in the table above; actually $-(K_{X}+L)$ is the tautological
bundle of $e’=Op2(1)\oplus O_{P2}(-1)$ ; if $\Sigma$ stands for the section correspondin $g$ to the
surjection $\mathcal{E}’arrow \mathcal{O}_{p2}(-1)$ , we thus see that $(-K_{A})_{\Sigma_{\cap}}A$ is negative, a contradiction.

So it only remains to show that all cases listed in the statement of (5.1) do
really occur. As to the 4 cases corresponding to $k=2$ this was shown in [LPS,

sec. 5]. We prove the same in the remaining cases.
Let $k=5$ . In this case, $-(K_{X}+L)$ is the tautological bundle of $\mathcal{E}’=O_{P2}(1)^{\oplus 2}$ ,

hence it is very ample, so bein $g\mathcal{E}’$ . This shows that every smooth element $A$

of $|L|$ is a Del Pezzo surface.
Let $k=4$ . We prove that $\mathcal{H}=-(K_{X}+L)$ is ample. By adjunction this

implies that for every smooth element $A$ of $|L|,$ $-K_{A}=\mathcal{H}_{A}$ is ample, hence $A$

is a Del Pezzo surface. By contradiction assume that $X$ contains a curve $C$ on
which $\mathcal{H}$ fails to be ample. Recalling that $\mathcal{H}$ is nef since $4=k>1$ , we thus get

(5.1.4) $\mathcal{H}C=0$ .
Note that $\mathcal{H}$ is the tautological bundle of $\mathcal{E}’=\mathcal{E}(-1)$ . Since $C$ is not a fibre of
$\pi$ we have that $D=\pi(C)$ is a curve and $\mathcal{E}_{D}’$ is not ample. Restrict to $D$ the
exact sequence defining $e’$ : the first term is $O_{P2}(1)_{D}$ , which is ample, while the
third one is $\mathscr{I}_{x}(1)_{D}$ , which is ample unless $D$ is a line through $x$ , in which case
it is simply $O_{D}$ . So $D$ is a line through $x$ and this sequence reads as follows:

$0arrow O_{p1}(1)arrow O_{P1}(1)\oplus O_{p1}arrow \mathcal{O}_{P1}arrow 0$ .
Hence $\pi^{-1}(D)$ is the Segre-Hirzebruch surface $F_{1}$ and $C$ is the fundamental
section on it, corresponding to the surjection $\mathcal{O}_{P1}(1)\oplus O_{p1}arrow O_{P1}$ . We have $K_{X}=$

$-2L+\pi^{*}(K_{S}+\det \mathcal{E})$ ; moreover de $t\mathcal{E}=O_{p2}(4)$ as we see from the exact sequence
defining $\mathcal{E}$ , since $x$ , which is $0$-dimensional, does not affect the computation of
$c_{1}$ . Therefore $\mathcal{H}=-(K_{X}+L)=L-\pi^{*}O_{p2}(1)$ and so (5.1.4) implies that $0=$

$(L-\pi^{*}\mathcal{O}_{P2}(1))C=LC-O_{P2}(1)D=LC-1$ , i.e.

(5.1.5) $LC=1$ .

NOW look at the normal bundle $N$ of $C$ in $X$ . We have the exact sequence
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$0arrow O_{C}(-1)arrow Narrow O_{C}(1)arrow 0$ ,

$\mathcal{O}_{C}(-1)$ being the normal bundle of $C$ inside $\pi^{-1}(D)=F_{1}$ and $O_{C}(1)$ being the
pull-back of the normal bundle of the line $D$ in $P^{2}$ . We thus get by adjunction

$-2=K_{X}C+\deg(\det N)=K_{X}C$ .
Tbis, recalling (5.1.5), gives $(K_{X}+L)C=-1$ , which contradicts (5.1.4).

Let $k=3$ . There are two cases. In the former case note that $P(\mathcal{O}_{p2}(1)^{\oplus 4})$

$=P^{2}\cross P^{3}$ Segre embedded in $P^{11}$ by means of the tautological bundle. From
the exact sequence defining $\mathcal{E}$ we tbus see that $X$ is the intersection of it with
two general hyperplanes of $P^{11}$ . Thus every smooth element $A$ of $|L|$ is a
Del Pezzo surface.

NOW come to the second case. Let $\mathcal{H}=-(K_{X}+L)$ again and note that $\mathcal{H}$

is the tautological bundle of $\mathcal{E}’=O_{P1_{X}P1}(0,1)\oplus \mathcal{O}_{P1xP1}(1,0)$ ; so $\mathcal{H}$ is spanned.
Note that $\mathcal{H}$ restricts as $O_{P1}(1)$ to the fibres of $\pi$ . So, if $X$ contains an irreduc-
ible curve $C$ such that $\mathcal{H}_{C}$ is trivial, then $D=\pi(C)$ is a curve and $\mathcal{E}_{D}’$ is not
ample. As $\mathcal{E}’$ is the sum of the pull-backs of two ample line bundles via the
projections of $P^{1}xP^{1}$ on the factors, we see that $D$ must be either a horizontal
or a vertical factor of $P^{1}xP^{1}$ . Without loss of generality we can assume
$D=P^{1}$ to be vertical. Thus $\mathcal{E}_{D}’=\mathcal{O}_{P1}(1)\oplus \mathcal{O}_{P1}$ . Note that the tautological bundle
of $\mathcal{E}_{D}’$ is $\mathcal{H}_{\pi^{-1_{(D)}}}$ ; also $C$ corresponds to the surjection $\mathcal{O}_{p1}(1)\oplus \mathcal{O}_{p1}arrow O_{P1}$ . So
$\pi^{-1}(D)=F_{1}$ and $C$ is the fundamental section on it. Now let $S_{1}$ be the surface
in $X$ swept out by those curves $C$ , as $D$ varies amon $g$ the vertical fibres of
$P^{1}\cross P^{1}$ . Note that $C^{2}=0$ in $S_{1}$ and in fact $S_{1}=P^{1}\cross P^{1}$ , with $C$ as vertical
fibre. Similarly there is a surface $S_{2}$ in $X$ generated in the same way as $D$

varies among the horizontal fibres of $P^{1}\cross P^{1}$ . The above argument shows that
the only curves to which $\mathcal{H}$ restricts trivially are the vertical fibres of $S_{1}$ and
the horizontal fibres of $S_{2}$ . As $L$ is very ample, the general $e$ lement $A\in|L|$

cuts $S_{1},$ $S_{2}$ along smooth curves and so does not contain curves like $C$ . Thus,
by adjunction, $-K_{A}=\mathcal{H}_{A}$ is ample. So the general element of $|L|$ is Del Pezzo.

Appendix. Del Pezzo manifolds as ample divisors.

Del Pezzo manifolds have been classified by Fujita [Fu]. Let $A$ be a Del
Pezzo $n$ -fold; then $-K_{A}=(n-1)h$ , where $h$ is an ample element of $Pic(A)$ . Let
$d(A)=d(A, h)$ . Here we assume that $A$ is contained as an ample divisor in a
smooth projective $(n+1)$-fold $X$ and we classify pairs (X, $L$), where $L=[A]$ ,

under the assumption that $n=\dim A\geqq 3$ . The $re$sults are summarized in the
following table, where in the last column an indication for the argument provin $g$

the result is given. Here $V_{n}$ stands for the cone over the Veronese manifold
$(P^{n-1}, O_{P}(2))$ .
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$d(A)$ $A$ $\dim A$ $X$ $L$ where

1 $\pi:Aarrow V_{n}$ any $\Pi:Xarrow V_{n+1}$ $\Pi*o_{V}(1)$ (A.1, i)
double cover double cover

2 $\pi:Aarrow P^{n}$ any $\{$

double cover

$\Pi:Xarrow P^{n+1}$ $\Pi*o_{P}(1)$ (A.l, i)
double cover

$Q^{n+1}$ $O_{Q}(1)$ (A.2)

$P^{n+1}$ $O_{P}(2)$ (A.2)

3 $cubichypersurfaceofP^{n+1}$
any $\{$

cubic hypersurface $O_{X}(1)$ (A.l, i)
of $P^{n+2}$

$P^{n+1}$ $O_{P}(3)$ (A.l, iii)

of two quadrics
4

$completeintersectioninP^{n+2}$

any
$\{$

complete lntersection $O_{X}(1)$ (A.l, i)
of two quadrics

in $P^{n+3}$

$Q^{n+1}$ $O_{Q}(2)$ (A.l, ii)

$i$ hyperplanes of
$G=G(1,4)\subset P^{9}$

5 section $G\cap H^{i}$ with 3, 4, 5, 6

$\{$

Pl\"ucker embedded
$(i=0,1,2,3)$

6 $P^{1}\cross P^{1}\cross P^{1}$ 3
$P(T_{P2})$ 3
$P^{2}\cross P^{2}$ 4

7 $B_{p}(P^{3})$ 3

8 $P^{3}$ 3

$noifi=0G\cap H^{i-1}ifi>0$
$o_{X}^{-}(1)\}$ (A. 1, i)

no (A.3)
$P^{2}\cross P^{2}$ $O_{P2xP2}(1,1)$ (A.4)

no (A.3)

no (A.5)

$P^{4}$ $O_{P}(1)$ (A. 1, iv)

Note that $L$ is very ample except in cases $d(A)=1$ and $d(A)=2$ when the
double cover $\Pi:Xarrow P^{n+1}$ has a branch locus of degree $2b,$ $b\geqq 2$ . Obviously,
when $b=1$ the pair (X, $\Pi*o_{P}(1)$ ) coincides with $(Q^{n+1}, \mathcal{O}_{Q}(1))$ .

(A.1) PROPOSITION. Let $A$ be a $Del$ Pezzo $n$-fold contained as an ample
$dimSor$ in a smooth projective $(n+1)$-fold $X$ and let $L=[A]$ . Assume that $Pic(A)$

$=Z$. Then (X, $L$ ) is either

i) a $Del$ Pezzo $(n+1)$ -fold of the same degree,
ii) $(Q^{n+1}, O_{Q}(2))$ ,

iii) $(P^{n+1}, O_{P}(3))$ , or
iv) $(P^{4}, \mathcal{O}_{P}(1))$ .

PROOF. Let $-K_{A}=(n-1)h$ , where $h$ is an ample element of $Pic(A)$ . As
$n\geqq 3$ we have $Pic(X)\cong Pic(A)=Z$, by the Lefschetz theorem ; let $\mathcal{H}\in Pic(X)$ be
the element such that $\mathcal{H}_{A}=h$ . Note that $\mathcal{H}$ is ample. Assume that $h$ generates
$Pic(A)$ ; then $\mathcal{H}$ generates Pic(X) and so we can write $L=a\mathcal{H}$ and $K_{X}=r\mathcal{H}$ for
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some integers $r$ and $a>0$ . By adjunction we have

$(^{*})$ $(n-1)h=-K_{A}=-(K_{X}+L)_{A}=-(r+a)\mathcal{H}_{A}=-(r+a)h$ ,

hence $-K_{X}=(n-1+a)\mathcal{H}=(\dim X-(2-a))\mathcal{H}$ , which implies $a\leqq 3$ by well known
properties of Fano manifolds. Since $a\geqq 1$ , we get the following possibilities:

i) $a=1$ , in which case by definition $X$ is a Del Pezzo manifold and $d(X, \mathcal{H})$

$=\mathcal{H}^{n+1}=\mathcal{H}^{n}L=\mathcal{H}_{A^{n}}=d(A)$ ;
ii) $a=2$ , in which case (X, $\mathcal{H}$ ) $=(Q^{n+1}, O_{Q}(1))$ by the Kobayashi-Ochiai theorem

[KO] and $2=d(X, \mathcal{H})=\mathcal{H}^{n+1}=\mathcal{H}^{n}L/2=\mathcal{H}_{A}^{n}/2=d(A)/2$ , hence $d(A)=4$ ;
iii) $a=3$ , in which case (X, $\mathcal{H}$ ) $=(P^{n+1}, O_{P}(1))$ by the Kobayashi-Ochiai theorem

[KO] and $1=d(X, \mathcal{H})=\mathcal{H}^{n+1}=\mathcal{H}^{n}L/3=\mathcal{H}_{A^{n}}/3=d(A)/3$ , hence $d(A)=3$ .
Thus in all the above cases the assertion follows from Fujita’s classification

[Fu, I, II and III]. Recall that in case $d(A)=1$ , we have $Pic(A)=Z$ [Is, (6.11)].

NOW assume that $h$ does not generate $Pic(A)=Z$ ; note that this happens just
when $d(A)=8$, in which case $h\in 2Pic(A)$ . Let $\mathcal{G}$ denote the positive generator
of Pic(X) and set $L=\alpha \mathcal{G}$ and $K_{X}=\rho \mathcal{G}$ for some integers $\rho$ and $\alpha>0$ as before.
Then adjunction gives $-K_{X}=(4+\alpha)\mathcal{H}$ , hence $\alpha=1$ and then $X=P^{4}$ by [KO],

with $L=\mathcal{G}=\mathcal{O}_{P}(1)$ . This gives case iv).

Note that (A.1) covers cases $d(A)=1,3,4,5,8$ and partially case $d(A)=2$ .

(A.2) In case $d(A)=2$ , when $A$ is a quadric, the above argument still works
with a small modification. In fact in this case we have $-K_{A}=nh$ . Modifying
$(^{*})$ accordingly this gives $-K_{X}=(n+a)\mathcal{H}$ , which implies $a\leqq 2$ . Now use again
[KO] ; then case $a=1$ gives (X, $L$ ) $=(Q^{n+1}, O_{Q}(1))$ , while in case $a=2$ we get
(X, $L$ ) $=(P^{n+1}, O_{P}(2))$ .

In case $d(A)=6$ , if $A$ is a product the assertion is an immediate consequence
of the following fact:

(A.3) PROPOSITION ( $[S1$ , Prop. IV]). Let $A$ be a projective $n$ -fold, which is
a product, contained as an ample divisor inside a projective $(n+1)$ -fold. Then $A$

has exactly two factors, one of which has dimension 1.

(A.4) For the case $A=P(T_{p2})$ we first recall the followin $g$ fact

(A.4.1) PROPOSITION ( $[FSaSo, (2.0)]$ . Let $P$ : $Aarrow P^{2}$ be a $P^{1}$-bundle con-
tained as an ample dimsor in a projective4–fold X. If $A\neq P^{1}\cross P^{2}$ then $p$

extends to a morphism $P:Xarrow P^{2}$ gimng $X$ the stmcture of a $P^{2}$-bundle.

Recall also that one can realize $A$ as the obvious incidence correspondence
in $P^{2}xP^{2*}$ , where $P^{2*}$ stands for the dual projective plane; this endows $A$

with two distinct $P^{1}$-bundle structures on $P^{2}$ , from which $X$ inherits two
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distinct $P^{2}$-bundle structures, due to (A.4.1). This implies that $X=P^{2}\cross P^{2}$ in
view of [Sa]. Moreover as $P_{1A}=p$ , we conclude that $A\in|\mathcal{O}_{pz_{X}p2(1},1$ ) $|$ . Note
that in fact $X=P(8)$ , where $e$ is the extension of $T_{P}$a defined by the Euler
sequence.

(A.5) We finally come to case $d(A)=7$ . In this case $A=B_{p}(P^{3})$ is the
blow-up of $P^{3}$ at a point $p$ . Let $X$ be a smooth 4-fold containing $A$ as an
ample divisor; then by [Fu2, (7.15) and (7.16)] there exists a projective 4-fold
$Y$ containing $P^{3}$ as an ample divisor such that $X$ is the blow-up of $Y$ at $p$ . It
thus follows that $Y=P^{4}$ ($e.g$ . see [Sl, p. 67]) and so $X$ has a structure of a
$P^{1}$-bundle over $P^{\mathfrak{g}}$ . On the other hand $A$ has a structure of $P^{1}$ -bundle over
$P^{2}$ ; in fact $A=P(O_{pz}\oplus O_{pz}(-1))$ . Therefore by (A.4.1) $X$ would also be a
$P^{2}$-bundle over $P^{2}$ , which gives a contradiction since the two $P$-bundle struc-
tures of $X$ are topologically not compatible.
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