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Abstract. We study the prototype model of the boundary value problem

div(|∇u|m−2∇u) + uavb = 0 in Ω,

div(|∇v|m−2∇v) + ucvd = 0 in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ Rn (n ≥ 2) is a connected smooth domain, and the exponents m > 1
and a, b, c, d ≥ 0 are non-negative numbers. Under appropriate conditions on the
exponents m, a, b, c and d, and on the domain Ω, a variety of results on a priori
estimates, existence and non-existence of positive solutions have been established.

1. Introduction.

In the article [15], the author studied the existence of positive solutions for strongly
coupled systems of semi-linear elliptic differential equations. The purpose of the current
paper is to extend the studies in [15] to systems with quasi-linear operators as principal
parts. More precisely, our main objective is to obtain existence of a positive solution for
the system (1.1) below.

Let Ω ⊂ Rn (n ≥ 2) be a connected smooth domain. Consider the following systems
of quasi-linear elliptic differential equations

∆mu + uavb = 0 in Ω,

∆mv + ucvd = 0 in Ω,
(1.1)

where u, v ≥ 0, m > 1 and

∆m· = div(|∇ · |m−2∇·)

is the m–Laplace operator, and a, b, c and d are non-negative numbers. We are concerned
with the question of existence of a non-negative and non-trivial (vector-valued)1 function
u = (u, v) satisfying (1.1). In the sequel, we use bold face letters to denote vector values.

A function u ∈ W 1,m
loc (Ω)∩C(Ω) is said to be a weak solution (weak super-solution),

or simply a solution (super-solution), of (1.1) if
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−
∫
|∇u|m−2∇u · ∇ϕ1 +

∫
uavbϕ1 = (≤)0

−
∫
|∇v|m−2∇v · ∇ϕ2 +

∫
ucvdϕ2 = (≤)0

for all Φ = (ϕ1, ϕ2) ∈ C∞0 (Ω) (Φ = (ϕ1, ϕ2) ∈ C∞0 (Ω) non-negative). Whenever Ω is
bounded, we associate (1.1) with the homogeneous Dirichlet boundary condition

u = v = 0, x ∈ ∂Ω

and, naturally, it is understood that solutions of (1.1) will be in the space W 1,m
0 (Ω) ∩

C0(Ω). All solutions considered in this paper are weak solutions in the above sense. For
simplicity, we shall also assume that Ω is connected.

The goal of this paper is to develop existence and non-existence and, moreover, a
priori estimate results on positive solutions of (1.1). Throughout the entire paper, we
shall assume that the non-negative exponents a, b, c and d satisfy

min(b, c) > 0 (i.e., fully-coupled).

Furthermore, we shall only consider the ‘super-linear’ case in which

β := bc− αδ > 0 where α := m− 1− a, δ := m− 1− d. (1.2)

When, in addition,

a + d > 0,

then (1.1) is called strongly-coupled, a term used in [15]. For convenience, for m < n,
denote

m∗ :=
n(m− 1)
n−m

, m∗ :=
n(m− 1) + m

n−m
.

(m∗ = m∗ = ∞ if m ≥ n).
We are now ready to state our results. The first result is a Liouville type non-

existence theorem on exterior domains. We say that a domain Ω ⊂ Rn is exterior if
Ω ⊃ {x ∈ Rn | |x| > R} for some R > 0 and Ω 6= Rn.

Theorem 1.1. Let Ω ⊂ Rn be exterior. Then (1.1) does not admit any positive
super-solutions, provided that one of the following holds:

A). n ≤ m.
B). n > m, min(α, δ) > 0 and

max{b + δ, c + α} >
nβ

mm∗
. (1.3)
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C). n > m, δ ≤ 0 < α and

max
{

β

c− δ
, c + α

}
>

nβ

mm∗
. (1.4)

D). n > m, α ≤ 0 < δ and

max
{

b + δ,
β

b− α

}
>

nβ

mm∗
. (1.5)

E). n > m, max(α, δ) ≤ 0 and

min(a + b, c + d) < m∗. (1.6)

Remarks.

1. Case B) was proved in [1] (see [1, Theorem 5.3, p. 41]) for a more general version
of (1.1), where different exponents m1 = p and m2 = q (associated with the m-Laplace
operator) were used in the equations (1.1)1 and (1.1)2 respectively.

2. When δ < 0 < α and b+ δ > c+α, (1.3) is weaker than (1.4) since max{b+ δ, c+
α} = b + δ > β/(c− δ) (they are equivalent if δ = 0 or b + δ ≤ c + α). Similarly, (1.3) is
weaker than (1.5) for α < 0 < δ and b + δ < c + α. There are similar relations between
(1.3) and (1.6).

3. In Case C), (1.4) amounts to (1.6), provided b+ δ ≥ c+α since a+ b ≥ c+ d and
β/(c−δ) ≥ c+α, and similarly (1.5) amounts to (1.6) in Case D), provided b+δ ≤ c+α.
Also note, if min(α, δ) ≥ 0, then (1.3) is stronger than (1.6). However, in general (i.e.,
no restrictions on α and δ), (1.3) does not yield any upper bound for the quantities a,
b, c and d. In fact, under (1.3) and the condition β > 0, all four quantities a, b, c and d

could be arbitrarily large simultaneously.

As in [15], with the aid of Theorem 1.1, we shall utilize the blow-up method to derive
supremum a priori estimates for non-negative monotone solutions of (1.1) on bounded
domains. Fixing a positive function h(x) = (h1(x), h2(x)) ∈ C(Ω), consider the system
of equations

∆mu + uavb + th1(x) = 0 in Ω,

∆mv + ucvd + th2(x) = 0 in Ω, (1.7)

u = 0 on ∂Ω,

where t ≥ 0 and Ω is a bounded domain in Rn. Define2

C = {u ∈ C0(Ω) | u ≥ 0; u, v monotone in Ω}.

Then we have the following supremum a priori estimates.

2See Definitions 2.1–2.3 in section 2 for details on the definition of monotone functions.
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Theorem 1.2. Let Ω ⊂ Rn be an uniformly normal domain and let γ′ ∈ (0, 1) be
the Holder exponent associated with ∂Ω (see precise definition in section 2). Assume

min(a, d) ≥ m− 1.

Suppose that either condition A) or condition E) in Theorem 1.1 holds. If E) holds, we
further assume that

max(a, d) < m∗.

Then there exists a positive constant C > 0 depending on the structural constants and h

such that

t + max
x∈Ω

u(x) + max
x∈Ω

v(x) ≤ C

for all non-negative solutions u of (1.7) which are monotone in Ω (i.e., u ∈ C ).
Furthermore, there exist γ = γ(n,m, a, b, c, d,Ω) ∈ (0, γ′) and C =

C(n,m, a, b, c, d,Ω, t, h) > 0 such that u ∈ C1,γ(Ω) and there holds

‖u‖1,γ,Ω ≤ C

for all non-negative solutions u of (1.7) which are monotone in Ω (i.e., u ∈ C ).

Remark. The condition min(a, d) ≥ m − 1, equivalent to max{α, δ} ≤ 0, is
removed in [16]. As a result, Theorem 1.2, as well as Theorem 1.3 below, remains valid
under any one of the five alternatives given in Theorem 1.1.

Theorem 1.2 provides crucial estimates for the subclass of the so-called monotone
solutions of (1.1) which turn out to be sufficient for establishing existence of a positive
solution (see Theorem 1.3 below). However, the results seem far from optimum, even
in the case of m = 2 (see [15], [16] and the references therein). In this regard, both
a presence of the m−Laplace operator (m 6= 2) and a strong coupling (i.e., lack of a
variational structure) play a key role.

With the aid of the a priori estimates of Theorem 1.2, we are able to employ a fixed
point theorem to prove existence of a positive solution for (1.1) on bounded domains.

Below is the main existence result of the paper.

Theorem 1.3. Let Ω ⊂ Rn be an uniformly normal domain and suppose that
all conditions of Theorem 1.2 are satisfied. Then (1.1), coupled with the homogeneous
Dirichlet boundary conditions, has a positive solution u.

Theorem 1.3 is, to the best knowledge of the author, the first existence result of non-
radial solutions for a general (1.1) (i.e., with no variational structure). When Ω = B is an
Euclidean ball, existence of a positive radial solution was obtained in [2] for (1.1) under
a set of conditions including max(a, d) ≤ m − 1. Several existence and non-existence
results were also obtained in [4], [5] if (1.1) has a variational structure. In the above
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mentioned works, two different exponents m1 = p and m2 = q (associated with the
m-Laplace operator) were used in the equations (1.1)1 and (1.1)2 respectively.

A fixed point theorem is used to prove Theorem 1.3 and the priori estimates of
Theorem 1.2 are crucial. In the literature, it has been traditional (in the non-radial case)
to derive estimates for all positive solutions in this regard. An elementary yet useful
observation here is that one only needs estimates for a (certain) subclass of positive
solutions to obtain existence. Based on this observation, we in section 2 introduce a
cone (C ) of so-called monotone functions on an uniformly normal domain and show that
the m-Laplace operator preserves such a monotonicity. With this new ingredient, we
are able to establish the desired a priori estimates for elements in the class of monotone
functions and consequently prove Theorem 1.3. This clearly offers a new perspective in
this direction, which could be particularly useful for handling systems in the absence of
traditional estimates.

The class of uniformly normal domains is rather broad. For instance, it includes
bounded convex domains whose boundary has non-negative curvatures (but the convexity
is not necessary though). Evidently, Euclidean balls, ellipsoids and rectangular boxes,
etc., are included.

It is worth to point out that our approach applies to general quasi-linear coopera-
tive elliptic systems which, in particular, need not have a variational structure (in fact,
(1.1) does not have a variational structure for ‘almost all’ a, b, c, d values). Indeed, the
principal terms ∆mu in (1.1)1 and ∆mv in (1.1)2 can be replaced by div(A(x, u,∇u))
and div(B(x, v,∇v)) respectively. The pure power terms uavb and ucvd may be replaced
by general functions f(x, u, v,∇u,∇v) and g(x, u, v,∇u,∇v) which are cooperative (see
for example [14], [15] for precise meaning). Moreover, systems consisting of more than
two equations can be treated.

The paper is structured as follows: We consider some preliminary results in section
2. The non-existence result (Theorem 1.1) is proved in Section 3. In Section 4, we
establish the desired a priori estimates 1.2. Finally, in section 5, we prove the existence
result Theorem 1.3.

Acknowledgements. The author wishes to thank the referee for his/her careful
reading of the manuscript and many useful comments, which lead to corrections and
modifications of some of the original proofs and results.

2. Preliminaries.

In this section, we discuss some preliminary results which will be used later. We
use C > 0 throughout to denote generical positive constants depending on structural
constants and arguments inside the parentheses, which may vary from one to another.

Let Ω ⊂ Rn be a domain. Suppose that f(x, u) ∈ C(Ω×R) and c(x), g(x) ∈ L∞(Ω)
are real functions. Consider

∆mu + c(x)|u|m−2u + f(x, u) + g(x) = 0 in Ω. (2.1)

We first present four lemmas regarding (2.1), being special cases of classical results
for quasi-linear elliptic equations. The first one is the Ck,γ-regularity, k = 0, 1. For k ≥ 0
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(integer) and γ ∈ [0, 1), we use

‖u‖k,γ,Ω = max
0≤|η|≤k

sup
x∈Ω

|Dηu(x)|+ max
|η|=k

sup
x,y∈Ω,x 6=y

|Dηu(x)−Dηu(y)|
|x− y|γ

to denote the standard Ck,γ-norms on Ω, where η = (η1, . . . , ηn) is an n-index of non-
negative integers, with |η| = η1 + · · ·+ ηn.

Lemma 2.1 (Ck,γ-estimate). Let u ∈ L∞(Ω) be a solution of (2.1) and suppose
f ≡ 0. Then the following conclusions hold.

A). For any sub-domain Ω′ ⊂⊂ Ω, there exist

γ = γ
(
n,m, ‖c‖L∞(Ω),min{1,dist(Ω′, ∂Ω)}) ∈ (0, 1)

and

C = C
(
γ, n,m, ‖c‖L∞(Ω),min{1,dist(Ω′, ∂Ω)},Ω′) > 0

such that u ∈ C1,γ(Ω′) and

‖u‖1,γ,Ω′ ≤ C
(‖g‖1/(m−1)

L∞(Ω) + ‖u‖L∞(Ω)

)
.

B). If, in addition, assume that Ω is a bounded domain with Ck,γ′-boundary for some
γ′ ∈ (0, 1) and k = 0, 1 and u vanishes on ∂Ω and c, g ∈ L∞(Ω). Then there exist

γ = γ(n,m, ‖c‖L∞(Ω),Ω) ∈ (0, γ′]

and

C = C(γ, n,m, ‖c‖L∞(Ω),Ω) > 0

such that u ∈ Ck,γ(Ω), k = 0, 1, and

‖u‖k,γ,Ω ≤ C
(‖g‖1/(m−1)

L∞(Ω) + ‖u‖L∞(Ω)

)
.

For a proof of Lemma 2.1, we refer the reader to [6], [8], [12] and the references
therein. ¤

The second lemma is the Harnack inequality.

Lemma 2.2 (Harnack Inequality). Let u ≥ 0 be a solution of (2.1) and suppose
f ≡ 0. Then for any sub-domain Ω′ ⊂⊂ Ω, there exists

C = C
(
n, Ω′,Ω,min{1,dist(Ω′, ∂Ω)}, ‖c‖L∞(Ω)

)
> 0
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such that

sup
Ω′

u ≤ C
(

inf
Ω′

u + ‖g‖1/(m−1)
L∞(Ω)

)
.

Proof. This follows directly from (a slight variation of) the combination of The-
orems 5, 6 and 9 of [10]. ¤

The third lemma is Liouville type non-existence results.

Lemma 2.3 (Liouville Theorems). Let Ω = Rn. Suppose

c(x) ≡ 0, g(x) ≡ κ(Const.) ≥ 0, f(x, u) ≥ 0 for u ≥ 0.

Then there hold

A). Any non-negative solution u of (2.1) must be constant if κ = 0 and f ≡ 0.
B). Any non-negative solution u of (2.1) must be constant if κ ≥ 0, f ≥ 0 and n ≤ m.
C). If κ > 0, then (2.1) admits no non-negative solution.
D). Suppose κ = 0 and f(x, u) = cup for some c > 0 and p ∈ (0,m∗). Then any

non-negative solution u of (2.1) must be identically zero.

Proof. A) and B) are the classical Liouville theorems, see for instance Theorem
II(a) [11].

Part C) follows directly from Lemma 2.8 [11]. Indeed, suppose the contrary and
let u be a non-negative solution of (2.1). Then Lemma 2.8 of [11] implies u ≡ 0 since
κ > 0.3 This in turn shows that κ = 0, which is an immediate contradiction.

Part D) was proved in [1] when p ≤ m∗ and later extended to the above full range
in [11], see for example Theorems I and II(c) [11]. ¤

The last lemma concerning (2.1) is a strong maximum principle.

Lemma 2.4 (Strong Maximum Principle). Let u be a non-negative solution of (2.1).
Suppose g(x) ≥ 0 and f(x, u) ≥ 0 for u ≥ 0. Then either u ≡ 0 or u > 0 on Ω.

Proof. This is due to [13], see also Theorem 1 [9]. ¤

We shall also need the following weak comparison principle.

Lemma 2.5 (Weak Comparison Principle). Let u and v be continuous functions in
W 1,m

loc (Ω) and satisfy the distribution inequality

∆mu + h(u) ≥ ∆mv + h(v), (2.2)

where h is a non-increasing function. Suppose that u ≤ v on ∂Ω. Then u ≤ v in Ω.

3Lemma 2.8 was proved for ∆mu + up ≤ 0 with p ∈ (0, m − 1) in [11]. A slight modification shows

the arguments are valid for the inequality ∆mu + κ ≤ 0 with κ > 0.
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Proof. The result is standard and well-known (cf. [11, Lemma 2.2]) and we
sketch a proof here for the reader’s convenience. Suppose the contrary, that is,

w = (u− v)+ 6≡ 0.

Multiply (2.2) by the test function w ∈ W 1,m
0 (Ω) and integrate over Ω to obtain

∫

Ω

(|∇u|m−2∇u− |∇v|m−2∇v
)∇w ≤

∫

Ω

(h(u)− h(v))w.

Plainly, (h(u) − h(v))w ≤ 0 for all x ∈ Ω since h is non-increasing by assumption. It
follows that there exists C > 0 such that

C

∫

Ω

(|∇u|+ |∇v|)m−2|∇w|2 ≤
∫

Ω

(h(u)− h(v))w ≤ 0.

In turn, we have

∇w ≡ 0 =⇒ w ≡ 0.

This is a contradiction and completes the proof. ¤

We next introduce the notion of uniformly normal domains and the class of monotone
functions on an uniformly normal domain. For σ ∈ R and ν ∈ Sn−1 (a direction in Rn),
denote by Γσ,ν the hyperplane

Γσ,ν = {x ∈ Rn |x · ν = σ}.

For a fixed ν ∈ Sn−1, denote

Ωσ,ν = {x ∈ Ω |x · ν > σ},

the positive cap of Ω with respect to Γσ,ν (in the direction of ν).
Let xσ,ν be the reflection in Γσ,ν of a point x in Rn, that is,

xσ,ν = x + 2(σ − x · ν)ν,

and similarly let Ωσ,ν be the reflection in Γσ,ν of a set Ω in Rn,

Ωσ,ν = {xσ,ν |x ∈ Ω}.

Now, let Ω be a bounded domain with C1,γ′ -boundary4 for some γ′ ∈ (0, 1). For

4The regularity requirement that ∂Ω is of class of C1,γ′ can be relaxed. For example, rectangular

boxes maybe considered.
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z ∈ ∂Ω, denote the (unit) outer-normal νz = ν(z) at z and put

σz := sup
x∈Ω

{x · νz} ≥ zν := z · νz.

Definition 2.1. Let z ∈ ∂Ω. We say that Ω is normal at z if there exists σ′ < zν

such that for all σ ∈ (σ′, σz)

(Ωσ,νz
)σ,νz ⊂ Ω.

Next, we put

βz = β(z) := inf
{
σ ∈ R | (Ωt,νz

)t,νz ⊂ Ω for all t ∈ (σ, σz)
} ∈ (−∞, zν), (2.3)

provided that Ω is normal at z.
For a bounded smooth domain Ω with C1,γ-boundary (for simplicity), we can intro-

duce the following notion of uniform normality.

Definition 2.2. Let Ω be a bounded domain with C1,γ′ -boundary for some γ′ ∈
(0, 1). We say that Ω is uniformly normal if Ω is normal at every z ∈ ∂Ω, and there holds

δ0 = δ0(Ω, ∂Ω) := inf
z∈∂Ω

{zν − β(z)} > 0, (2.4)

where zν = z · νz and νz is the (unit) outer-normal at z and β(z) is given by (2.3).
We shall refer to γ′ the Holder exponent associated with ∂Ω.

Let Ω be uniformly normal. We can introduce the class of monotone functions as
follows.

Definition 2.3. Let Ω be uniformly normal and let g(x) be a non-negative con-
tinuous function on Ω. We say that g is monotone in Ω if for all z ∈ ∂Ω and for all
σ ∈ (βz, σz)

g(xσ,νz ) ≥ g(x), x ∈ Ωσ,νz
.

We denote by MO(Ω) the set of all monotone functions on Ω.

We conclude this section with two lemmas on properties of the operator (−∆m)−1

(with homogeneous Dirichlet boundary data).

Lemma 2.6. Let Ω be a bounded domain with C1,γ′-boundary for some γ′ ∈ (0, 1).
Then there exists γ0 ∈ (0, γ′) such that the operator

(−∆m)−1 : C(Ω) 7→ C1,γ0(Ω) ∩ C0(Ω)

is well-defined and continuous.
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Proof. The proof is standard, but we sketch here for the reader’s convenience.
For g(x) ∈ C(Ω), clearly the boundary value problem

∆mu + g(x) = 0 in Ω,

u = 0 on ∂Ω

has a unique solution u ∈ W 1,m
0 (Ω). Thus (−∆m)−1 is well-defined with u(x) =

(−∆m)−1(g(x)). By Lemma 2.1, there exist

γ = γ(n,m, Ω) ∈ (0, γ′], C = C(γ, n,m, Ω) > 0,

where γ′ ∈ (0, 1) is given in the Lemma, such that u ∈ C1,γ(Ω) and there holds

‖u‖1,γ,Ω ≤ C‖g‖1/(m−1)

C(Ω)
(2.5)

for all g ∈ C(Ω). Take γ0 = γ/2 ∈ (0, 1). Suppose for contradiction that

(−∆m)−1 : C(Ω) 7→ C1,γ0(Ω) ∩ C0(Ω)

is not continuous. Then there exist g0(x) ∈ C(Ω), a sequence of functions {gl(x)} ⊂
C(Ω), and ul(x) = (−∆m)−1(gl(x)) and u0(x) = (−∆m)−1(g0(x)) such that

lim
l→∞

‖gl − g0‖C(Ω) = 0, lim inf
l→∞

‖ul − u0‖1,γ0,Ω > 0. (2.6)

Without loss of generality, we assume

‖gl‖C(Ω) ≤ ‖g0‖C(Ω) + 1.

Then, by (2.5), the set {ul(x)} is bounded in C1,γ(Ω) ∩ C0(Ω). By the Ascoli-Arzela
theorem, {ul} converges to some u ∈ C1,γ0(Ω) in C1,γ0(Ω) (up-to a subsequence). Fix
any function ϕ ∈ C∞0 (Ω). Using ϕ as a test function in the corresponding equations
∆mul(x) + gl(x) = 0 and letting l → ∞, one readily deduces that ∆mu(x) + g0(x) = 0,
namely, u = (−∆m)−1(g0(x)) = u0. This is an immediate contradiction to (2.6) and
completes the proof. ¤

The next lemma shows that (−∆m)−1 preserves the class of monotone functions.

Lemma 2.7. Suppose that Ω is uniformly normal and g ∈ MO(Ω). Let u be a
solution of

∆mu + g(x) = 0 in Ω,

u = 0 on ∂Ω.
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Then u ∈ MO(Ω).

Proof. By Lemmas 2.4 and 2.5, u is either strictly positive or identically zero on
Ω since g(x) ≥ 0. Thus we assume u > 0 (nothing left to prove if u ≡ 0). It remains to
show

u(x) ≤ u(xσ,νz ), x ∈ Ωσ,νz
(2.7)

for all z ∈ ∂Ω and all σ ∈ (βz, σz).
Fix z ∈ ∂Ω and σ ∈ (βz, σz), put

v(x) = u(xσ,νz ), x ∈ Ωσ,νz .

We want to show

u(x)− v(x) ≤ 0, x ∈ Ωσ,νz
. (2.8)

By the assumption, g ∈ MO(Ω), that is,

−g(x) ≥ −g(xσ,νz ), x ∈ Ωσ,νz
.

It follows that

−g(x) = ∆mu ≥ ∆mv = −g(xσ,νz ), in Ωσ,νz
,

u ≤ v, on ∂(Ωσ,νz ),

since u > 0 in Ω. Thus (2.8) follows from Lemma 2.5 at once.
Since σ ∈ (βz, σz) and z ∈ ∂Ω are arbitrary, (2.7) is valid. In particular, u ≥ 0

belongs to MO(Ω) and the proof is complete. ¤

3. Non-existence.

In this section, we prove a Liouville type non-existence result for positive super-
solutions of (1.1) on exterior domains. Throughout this section, we assume that Ω is
exterior, that is, Ω ⊃ {|x| > R > 0} for some R > 0 and Ω 6= Rn. The letter C will be
used throughout to denote generic positive constants, which may vary from line to line
and only depend on arguments inside the parentheses or are otherwise clear from the
context. Also r = |x| will be used throughout this section.

We begin with technical lemmas. Recall that β > 0 throughout.

Lemma 3.1. Let u be a continuous positive solution of the inequality

∆mu ≤ 0, x ∈ Ω.

Then there exists a constant C = C(m,n, u,R) > 0 such that for r > 2R
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u(x) ≥ Cr−(n−m)/(m−1),

provided n > m, while

lim inf
x→∞

u(x) > 0,

if n ≤ m.

Proof. This is Lemma 2.3 [11]. ¤

By a super-solution u = (u, v) of (1.1), we mean

−
∫
|∇u|m−2∇u · ∇ϕ1 +

∫
uavbϕ1 ≤ 0

−
∫
|∇v|m−2∇v · ∇ϕ2 +

∫
ucvdϕ2 ≤ 0

(3.1)

for all non-negative Φ = (ϕ1, ϕ2) ∈ C∞0 (Ω). By Bs = Bs(x0) we mean a ball of radius
s > 0 and center x0. In the sequel, we assume that (the closure of) the ball Bs(x0) of
radius s is contained in Ω. By ξ we mean a radially symmetric C2 cut-off function on
B1(0), see for example [11]. For s > 0, put

u = inf
Bs

u(x) > 0, v = inf
Bs

v(x) > 0.

We have the following type of upper-bounds for positive super-solutions of (1.1).

Lemma 3.2. Let u be a positive super-solution of (1.1) in Ω. Then there exists a
positive constant C = C(n,m, a, b, c, d) > 0 such that for s > 0

1. If min(α, δ) > 0, then

u ≤ Cs−m(b+δ)/β , v ≤ Cs−m(c+α)/β .

2. If α > 0 ≥ δ, then

ucv−δ ≤ Cs−m, v ≤ Cs−m(c+α)/β .

3. If δ > 0 ≥ α, then

u ≤ Cs−m(b+δ)/β , u−αvb ≤ Cs−m.

4. If max(α, δ) ≤ 0, then

ucv−δ ≤ Cs−m, u−αvb ≤ Cs−m.
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Proof. Fix s > 0 and x0 ∈ Ω. For k, l > m and e, f > 0, one uses the test
function Φ = (ξku−e, ξlv−f ) ≥ 0 (ξ = ξ(|x − x0|/s)) in (3.1) to deduce that (cf. (2.8),
[11, Lemma 2.4])

e

2

∫
ξku−e−1|∇u|m +

∫
ξkua−evb ≤ Cs−m

∫
ξk−mum−1−e, (3.2)

and

f

2

∫
ξlv−f−1|∇v|m +

∫
ξlucvd−f ≤ Cs−m

∫
ξl−mvm−1−f . (3.3)

By (1.2),

max{c− α, b− δ} > 0, (m− 1− b− d)α = (δ − b)α < b(c− α). (3.4)

We next proceed to prove Cases 1-2), with 3-4) being similar and left to the reader.

Case 1). We further divide the proof into two cases.

Case 1-i). min{c−α, b− δ} ≥ 0. By (3.4), without loss of generality, assume c > α,
b ≥ δ. Taking e = a > 0 and f = d > 0 in (3.2) and (3.3), respectively, yields

∫
ξkvb ≤ Cs−m

∫
ξk−muα,

∫
ξluc ≤ Cs−m

∫
ξl−mvδ. (3.5)

By Holder’s inequality and (3.5), we have (taking k, l = k + m large and noting c > α,
b ≥ δ)

∫
ξkvb ≤ Cs−m

∫
ξk−muα ≤ Csn(1−αc−1)−m ·

( ∫
ξk+muc

)αc−1

≤ Csn(1−αc−1)−m(1+αc−1)

( ∫
ξkvδ

)αc−1

≤ Csn(1−αc−1)−m(1+αc−1)+nαc−1(1−δb−1)

( ∫
ξkvb

)αδb−1c−1

= Csnb−1c−1β−m(1+αc−1)

( ∫
ξkvb

)αδb−1c−1

.

If c ≥ α and b > δ, one derives the above inequality similarly by taking k = l + m large.
In turn, there holds for all k large

∫
ξkvb ≤ Csn−mb(c+α)/β , (3.6)
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since β > 0. Similarly, one deduces for all l large

∫
ξluc ≤ Csn−mc(b+δ)/β . (3.7)

It follows that

v ≤ inf
x∈Bs/2

v ≤ C

(
s−n

∫

Bs/2

vb

)1/b

≤ C

(
s−n

∫
ξkvb

)1/b

≤ Cs−m(c+α)/β ,

and

u ≤ inf
x∈Bs/2

u ≤ C

(
s−n

∫

Bs/2

uc

)1/c

≤ C

(
s−n

∫
ξluc

)1/c

≤ Cs−m(b+δ)/β .

This completes the proof of case 1-i).

Case 1-ii). min{c − α, b − δ} < 0. We first prove (3.6). By (3.4), without loss of
generality, assume c > α and b < δ. Fix an f ∈ R such that

min{0,m− 1− b} < f < m− 1 and 0 < (f − d)α < b(c− α), (3.8)

which is possible since

αd > 0, b(c− α) > 0, (m− 1− d)α = δα > 0 and (m− 1− b− d)α < b(c− α).

For l, k > 0 to be determined later, with the help of (3.8) and the Holder inequality, we
use (3.3) to deduce that

∫
ξlucvd−f ≤ Cs−m

∫
ξl−mvm−1−f

≤ Csn−m−n(m−1−f)/b

( ∫
ξkvb

)(m−1−f)b−1

, (3.9)

provided

bl ≥ (m− 1− f)k + mb; (3.10)

and

∫
ξ[(k−m)c−lα]/(c−α)v(f−d)α/(c−α)

≤ Csn[1−(f−d)α/b(c−α)]

( ∫
ξkvb

)(f−d)α/b(c−α)

, (3.11)
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provided

αbl ≤ (bc− α(f − d))k −mbc. (3.12)

Plainly, for any fixed f ∈ R, there holds

(m− 1− f)kα + mbα < (bc− α(f − d))k −mbc,

provided k > mb(c+α)/β > 0, since α, β > 0. It follows that for every f ∈ R+ satisfying
(3.8) and every k > mb(c + α)/β, we can choose an l > 0 so that (3.8), (3.10) and (3.12)
hold simultaneously. Consequently (3.9) and (3.11) hold simultaneously for the triple
f, k, l. Hence similarly as in 1-i), using (3.5)1, (3.9) and (3.11), direct computations yield
(noting c > α)

∫
ξkvb ≤ Cs−m

∫
ξk−muα = Cs−m

∫
(ξlvd−f ) · uα · (ξk−l−mv−(d−f)

)

≤ Cs−m

( ∫
ξlucvd−f

)αc−1

·
( ∫

ξ[(k−m)c−lα]/(c−α)v(f−d)α/(c−α)

)(c−α)c−1

≤ Csnb−1c−1β−m(1+αc−1)

( ∫
ξkvb

)αδb−1c−1

.

Therefore (3.6) holds for all k > mb(c + α)/β.
Next we prove (3.7). Rewrite (3.3) with f = d > 0

∫
|∇w|m +

∫
ξluc ≤ Clms−m

∫
ξ−mwm, (3.13)

where w = ξl/mvδ/m and C = C(m,n, d). For simplicity, assume m < n, with the case
m ≥ n being similar. For ε ∈ (0,m) and

p =
nm

(n−m)(m− ε)
>

n

n−m
> 1, p′ =

p

p− 1
∈ (1, n/m),

we apply the Holder, Sobolev and Young inequalities to deduce

∫
ξ−mwm =

∫
(ξ−mwε) · wm−ε ≤

( ∫
(ξ−mwε)p′

)1/p′

·
( ∫

wnm/(n−m)

)1/p

≤ C(n,m)
( ∫

(ξ−mwε)p′
)1/p′

·
( ∫

|∇w|m
)(m−ε)/m

≤ K(ε)sm−m2/ε

( ∫
ξlεp′/m−mp′vδεp′/m

)m/p′ε

+ ε2msm

∫
|∇w|m. (3.14)
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Fix any k > 0 so that (3.6) holds. Since δ > 0, we may choose l, ε > 0 so that

l1/2 ≥ max
{
δp′C−1/2m/mb,C1/2m(m2 + δk/b), C−1/2m

}

ε = l−1/2C−1/2m(∈ (0, 1]),

where C > 0 was given in (3.13). It follows that

εδp′ ≤ mb, ε2mClm ≤ 1, (lεp′/m−mp′) ≥ δεp′k/mb. (3.15)

Substituting (3.14) into (3.13), with the help of (3.15) and the Holder inequality if nec-
essary, we deduce that for l > 0 large

∫
ξluc ≤ K(ε)s−m2/ε

( ∫
ξlεp′/m−mp′vδεp′/m

)m/p′ε

≤ K(ε)s−m2/ε · sn[1−δεp′/bm]m/p′ε ·
( ∫

ξkvb

)δ/b

≤ K(ε)sn−mc(b+δ)/β ,

where we have used (3.6). This is (3.7) and the rest of the proof follows similarly as in
1-i) and is left to the reader, which completes the proof of case 1).

Case 2). By (3.5)2, we immediately have

uc ≤ inf
x∈Bs/2

uc ≤ Cs−n

∫

Bs/2

uc ≤ Cs−n

∫
ξluc

≤ Cs−n−m

∫
ξl−mvδ ≤ Cs−m sup

x∈Bs

vδ =
Cs−m

v−δ
,

since δ ≤ 0. It follows that

ucv−δ ≤ Cs−m.

To prove the other inequality, we again consider two cases.

2-i). c ≥ α > 0. Then one proceeds exactly as in 1-i) to derive

vb ≤ Cs−n

∫
ξkvb ≤ Cs−n−m

∫
ξk−muα ≤ Cs−nαc−1−m

( ∫
ξluc

)αc−1

≤ Cs−m(1+αc−1) ·
(

s−n

∫
ξl−mvδ

)αc−1

≤ Cs−m(1+αc−1) · vαδc−1
,

since δ ≤ 0. This implies the second inequality.

2-ii). 0 < c < α. Then one proceeds as in 1-ii) to rewrite (3.2) with e = a > 0
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∫
|∇w|m +

∫
ξkvb ≤ Ckms−m

∫
ξ−mwm,

where w = ξk/muα/m and C = C(m,n, a). Arguing similarly as in 1-ii), one derives

∫
ξkvb ≤ K(ε)sn(1−α/c)−m ·

( ∫
ξluc

)α/c

≤ K(ε)sn(1−α/c)−m(1+α/c)

( ∫
ξl−mvδ

)α/c

,

and the rest follows. The proof is complete. ¤

Now we are ready to prove the non-existence result Theorem 1.1.

Proof of Theorem 1.1. Since β > 0, Lemmas 3.1 and 3.2 apply. We argue by
contradiction. Suppose that (1.1) has a positive super-solution u. Take a sequence of
points {xi} ⊂ Rn such that ri = |xi| > 3R and ri →∞. Put Bi = Bri/2(xi) and

ui = inf
Bi

u(x), vi = inf
Bi

v(x).

Case A). n ≤ m. By Lemma 3.2, one infers that there exist ε > 0 and C > 0 such
that

min{ui, vi} ≤ Cr−ε
i , i = 1, 2, . . . .

Since n ≤ m, Lemma 3.1 implies that there exists C > 0 such that

min{ui, vi} ≥ C, i = 1, 2, . . . .

This is an immediate contradiction since ri →∞, as required.

Case B). n > m, min{α, δ} > 0 and (1.3) holds. By Lemma 3.1, noting n > m,
there exist yi, zi ∈ Bi and C > 0 such that

ri ≤ 2|yi| ≤ 4ri, ri ≤ 2|zi| ≤ 4ri,

u(yi) = ui ≥ C|yi|−(n−m)/(m−1) ≥ Cr
−(n−m)/(m−1)
i (3.16)

and

v(zi) = vi ≥ C|zi|−(n−m)/(m−1) ≥ Cr
−(n−m)/(m−1)
i . (3.17)

By Lemma 3.2, Case 1), there holds

ui ≤ Cr
−m(b+δ)/β
i , vi ≤ Cr

−m(c+α)/β
i (3.18)

for some C > 0 independent of i. It follows that, by combining (3.16)–(3.18),
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r
−(n−m)/(m−1)
i ≤ Cr

−m(b+δ)/β
i , r

−(n−m)/(m−1)
i ≤ Cr

−m(c+α)/β
i .

In turn,

r
max(b+δ,c+α)−β(n−m)/m(m−1)
i ≤ C.

But this is impossible since max(b + δ, c + α) − β(n − m)/m(m − 1) > 0 by (1.3) and
ri →∞.

Case C). n > m, α > 0 ≥ δ and (1.4) holds. Using the lower bounds Lemma 3.1,
one has (noting −δ ≥ 0)

uc
iv
−δ
i ≥ Cr

−(c−δ)(n−m)/(m−1)
i , vi ≥ Cr

−(n−m)/(m−1)
i .

On the other hand, using the upper bounds Lemma 3.2-2), we have

uc
iv
−δ
i ≤ Cr−m

i , vi ≤ Cr
−m(c+α)/β
i .

Combining the above inequalities yields (noting c− δ > 0),

r
−(n−m)/(m−1)
i ≤ Cr

−m/(c−δ)
i , r

−(n−m)/(m−1)
i ≤ Cr

−m(c+α)/β
i .

That is,

r
max(β/(c−δ),c+α)−β(n−m)/m(m−1)
i ≤ C.

This, again, yields an immediate contradiction since max(β/(c − δ), c + α) − β(n −
m)/m(m− 1) > 0 by (1.4) and ri →∞.

Case D). n > m, α ≤ 0 < δ and (1.5) holds. The proof is an asymmetric analogue
to Case C) and left to the reader.

Case E). n > m, α ≤ 0, δ ≤ 0 and (1.6) holds. The proof is a combination of Cases
C) and D) and again left to the reader, noting that in this case (1.6) is equivalent to the
inequality

max
{

1
c− δ

,
1

b− α

}
>

n−m

m(m− 1)
. ¤

4. A priori estimates.

We shall assume that Ω is an uniformly normal domain throughout this section and
denote by γ′ ∈ (0, 1) the Holder exponent associated with ∂Ω. For p = (p1, p2) ≥ 0 and
u = (u1, u2) ≥ 0, put
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up = up1
1 up2

2 .

Fixing a positive function h(x) = (h1(x), h2(x)) ∈ C(Ω), consider the system of equations

∆mui + upi + thi(x) = 0 in Ω,

u = 0 on ∂Ω,
(4.1)

where t ≥ 0, pi = (pi1, pi2) ≥ 0, i = 1, 2, and u = (u1, u2). We shall derive supremum a
priori estimates for the class of non-negative monotone solutions u of (4.1), and continue
to use the notations from section 3.

As in the introduction, define

C = {u ∈ C0(Ω) | u ≥ 0; u1, u2 monotone in Ω}.

Let u ∈ C be a positive solution of (4.1). For i = 1, 2, write

ni(x) := upi(x)u−(m−1)
i (x),

and

Ui := max
x∈Ω

ui(x) > 0, Ni := sup
x∈Ω

ni(x) > 0.

We have the following supremum a priori estimates.

Theorem 4.1. Let u ∈ C be a solution of (4.1). Suppose that the exponents
pi = (pi1, pi2) ≥ 0 satisfy the conditions

min(p11, p22) ≥ m− 1,

and

β := p12 · p21 − ((m− 1)− p11)((m− 1)− p22) > 0.

Moreover, assume that one of the following holds:

A). n ≤ m.
B). n > m and

min(p11 + p12, p21 + p22) < m∗, max(p22, p11) < m∗.

Then there exists C > 0 depending on the structural constants and h (independent of u

or t) such that

t + U1 + U2 ≤ C. (4.2)



412 H. Zou

Furthermore, there exist positive constants γ = γ(n,m, Ω) ∈ (0, γ′) and C =
C(n,m, pi,Ω) > 0 such that u ∈ C1,γ(Ω) and there holds

‖u‖1,γ,Ω ≤ C.

Remark. This is Theorem 1.2 given in the introduction.

Proof. This is an extension of Theorem 4.1 of semi-linear case in [15] to the
quasi-linear case and the proof is based on a blow-up argument (cf. [7], [14]). Suppose
for contradiction that (4.2) is false. Then there exist a sequence of non-negative solutions
ul = (u1,l(x), u2,l(x)) ∈ C of (4.1) and a corresponding sequence of numbers tl ≥ 0 such
that

0 < tl + max
x∈Ω

u1,l(x) + max
x∈Ω

u2,l(x) →∞.

As in [15], without loss of generality, we assume in the sequel that ul > 0 is strictly
positive and

lim
l→∞

U1,l = lim
l→∞

max{U1,l, U2,l} = ∞, (4.3)

where we use ni,l(x), Ui,l and Ni,l, corresponding to ul, to denote the various quantities
given at the beginning of this section.

Since p11, p22 ≥ m− 1 and p12 · p21 > ((m− 1)− p11)((m− 1)− p22) ≥ 0, we have

min{p12, p21} > 0, min
i=1,2

{|pi|, |qi|} > m− 1, (4.4)

where qi := (p1i, p2i), i = 1, 2.
By our assumption, Ω is uniformly normal and {ul} are monotone in Ω. That is,

for all z ∈ ∂Ω and for all γ ∈ (βz, γz)

ul(xγ,νz ) ≥ ul(x), x ∈ Ωγ,νz .

In particular, there exists δ0 > 0 (cf. (2.4)) such that

max
x∈Ω

ui,l(x) = max
x∈Ω0

ui,l(x), i = 1, 2; l = 1, 2, . . . ,

where

Ω0 = (Ω\Ωδ0) := {x ∈ Ω | dist(x, ∂Ω) ≥ δ0}.

It follows, with the help of (4.4), the assumption pii ≥ m − 1 and the monotonicity of
ul, that there exist ξi,l ∈ Ω0 and ζi,l ∈ Ω0 such that
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Ui,l = ui,l(ξi,l) = max
x∈Ω

ui,l(x), Ni,l = ni,l(ζi,l) = max
x∈Ω

ni,l(x)

for i = 1, 2; l = 1, 2, . . . . In particular,

min{dist(ξi,l, ∂Ω),dist(ζi,l, ∂Ω)} ≥ δ0. (4.5)

In the sequel, passing to a subsequence if necessary, we assume that all sequences
(of numerals) converge to a non-negative quantity including infinity. Moreover, we shall
assume h ≡ (1, 1) for convenience.

For zl ∈ Ω and Ql ≥ 1 to be determined later, make the change of variables

vi,l(y) =
ui,l(x)
ui,l(zl)

, y = (x− zl)Ql; l = 1, 2, . . . (4.6)

and

Ωl := {y ∈ Rn | y = (x− zl)Ql, x ∈ Ω}; τl := dist(zl, ∂Ω)Ql = dist(0, ∂Ωl). (4.7)

Clearly

vl(0) = (v1,l(0), v2,l(0)) ≡ (1, 1), l = 1, 2, . . . . (4.8)

By direct calculations, vl satisfies

∆mvi,l + Q−m
l ni,l(y)vm−1

i,l + Q−m
l tlu

−(m−1)
i,l (zl) = 0 in Ωl,

vl = 0 on ∂Ωl,
(4.9)i,l

for i = 1, 2 and l = 1, 2, . . . , where (abusing notation)

ni,l(y) = ni,l(x) = upi

l (x)u−(m−1)
i,l (x) = upi

l

(
zl + yQ−1

l

)
u
−(m−1)
i,l

(
zl + yQ−1

l

)
.

Denote5

N̄i = lim
l→∞

Ni,l ∈ [0,∞], i = 1, 2.

We divide the proof into three cases.

Case I). N̄1 = 0. We claim that either

tlU
−(m−1)
1,l → 0 or max

{
N2,l, tlu

−(m−1)
2,l (ξ1,l)

} →∞. (4.10)

5It is understood that the convergence (here and in the sequel) is up-to a subsequence.
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Suppose tlU
−(m−1)
1,l → c > 0 and N2,l → N̄2 < ∞. Then we have

t−1
l = O

(
U
−(m−1)
1,l

)
and U

|q1|−(m−1)
1,l u

|q2|−(m−1)
2,l (ξ1,l) ≤ N1,lN2,l = o(1).

It follows that

t−1
l = O

(
U
−(m−1)
1,l

)
and u2,l(ξ1,l) = o

(
U

((m−1)−|q1|)/(|q2|−(m−1))
1,l

)
.

Therefore

t−1
l um−1

2,l (ξ1,l) = o
(
[U ((m−1)−|q1|)/(|q2|−(m−1))

1,l ]m−1
) ·O(U−(m−1)

1,l )

= o
(
[U (2(m−1)−|q1|−|q2|)/(|q2|−(m−1))

1,l ]m−1
)

= o(1),

since 2(m− 1)−|q1|− |q2| < 0, |q2|− (m− 1) > 0 by (4.4) and U1,l →∞. This is (4.10).
Next we further consider two sub-cases in accordance with (4.10).

Sub-case I-1). tlU
−(m−1)
1,l → 0. In (4.6), take

zl = ξ1,l, Ql ≡ 1.

Plainly

0 ≤ v1,l(y) ≤ 1,
∣∣Q−m

l n1,l(y)vm−1
1,l

∣∣ ≤ N1,l = o(1),
∣∣Q−m

l tlU
−(m−1)
1,l

∣∣ = tlU
−(m−1)
1,l = o(1)

uniformly for all y ∈ Ωl.
Without loss of generality, assume Ωl = Ω for all l ≥ 1 (they possibly differ by a

translation). Applying Lemma 2.1-B) to the first equations (4.9)1,l on Ωl = Ω, we see
that there exists γ ∈ (0, 1) such that the sequence {v1,l} are bounded in the Banach
space C1,γ(Ω) ∩ C0(Ω). It follows, by the Ascoli-Arzela theorem, that there exists v ∈
C1,γ/2(Ω) ∩ C0(Ω) such that

lim
l→∞

v1,l(y) = v(y), v(0) = lim
l→∞

v1,l(0) = 1

in C1,γ/2(Ω) ∩ C0(Ω). Fix any function ϕ ∈ C∞0 (Ω). Taking ϕ as a test function in the
first equations (4.9)1,l and letting l →∞, one immediately deduces that v satisfies

∆mv = 0, in Ω,

v = 0, on ∂Ω.

It follows at once that v ≡ 0 in Ω, which contradicts the fact v(0) = 1.
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Sub-case I-2). max{N2,l, tlu
−(m−1)
2,l (ξ1,l)} → ∞. Now take

zl =





ζ2,l if N2,l ≥ tlu
−(m−1)
2,l (ξ1,l),

ξ1,l if N2,l < tlu
−(m−1)
2,l (ξ1,l),

and

Qm
l = max

{
N2,l, tlu

−(m−1)
1,l (zl), tlu

−(m−1)
2,l (zl)

} →∞.

By (4.5) and (4.7),

τl = Qldist(zl, ∂Ω) ≥ Qlδ0 →∞, Bτl
(0) ⊂ Ωl → Rn. (4.11)

By the choices of Ql, we have

∣∣Q−m
l ni,l(y)

∣∣ ≤ 1,
∣∣Q−m

l tlu
−(m−1)
i,l (zl)

∣∣ ≤ 1, (4.12)

uniformly for i = 1, 2 and for all y ∈ Ωl.
Fix any R > 0 and any compact subset Γ ⊂ BR(0) ⊂ Rn. Applying the Harnack

inequality Lemma 2.2 to the equations (4.9)i,l with Ω = BR+1(0) and Ω′ = Γ, with
the aid of (4.12), we obtain that vl are uniformly bounded on Γ for l sufficiently large
(so BR+1(0) ⊂ Ωl) since vl(0) = (1, 1). Similarly as in I-1), applying Lemma 2.1-A) to
the equations (4.9)i,l with Ω = BR+1(0) and Ω′ = Γ, with the aid of (4.12), we deduce
that there exists an γ ∈ (0, 1) such that {vl} are bounded in the Banach space C1,γ(Γ).
Since Γ is arbitrary, one then uses the Ascoli-Arzela theorem to infer that there exists
v ∈ C

1,γ/2
loc (Rn) such that

lim
l→∞

vl(y) = v(y) ≥ 0, v(0) = (1, 1)

uniformly on Γ (in C1,γ/2-topology), noting this time Ωl → Rn by (4.11). Moreover, by
the choices of Ql, there exist constants δ1, δ2, κ1, κ2 ≥ 0 such that for i = 1, 2

lim
l→∞

Q−m
l tlu

−(m−1)
i,l (zl) = δi, (4.13)

and

lim
l→∞

Q−m
l ni,l(y)vm−1

i,l (y) = lim
l→∞

Q−m
l ni,l(zl)vpi

l (y) = κiv
pi(y) (4.14)

uniformly on Γ, with δ1 + δ2 + κ1 + κ2 ≥ 1 > 0. For any function ϕ ∈ C∞0 (Rn), fix Γ
so that supp(ϕ) ⊂ Γ, where supp(ϕ) is the support of ϕ and thus compact. Using ϕ as
a test function in the equations (4.9)i,l for l sufficiently large (so Γ ⊂⊂ Ωl) and letting
l → ∞, one readily verifies that the limiting function v satisfies the following limiting
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equations

∆mvi + κiv
pi(y) + δi = 0 in Rn, i = 1, 2,

where we have used the limits (4.13) and (4.14). Applying Lemma 2.3 to each equation
above respectively, one sees that δ1 = δ2 = 0 since κ1, κ2, δ1, δ2 ≥ 0 and v(y) ≥ 0. It
follows that

∆mvi + κiv
pi(y) = 0 in Rn

with κ1 + κ2 ≥ 1 > 0. If both κ1 and κ2 are positive, then Theorem 1.1 applies to
the above system by our assumptions and consequently v(y) ≡ 0, a contradiction to
v(0) = (1, 1). Therefore either κ1 or κ2 must be zero. If, say, κ1 = 0, then κ2 = 1
and v1(y) ≡ 1 by Lemma 2.3 since ∆mv1 = 0 and v1(0) = 1. Thus the second equation
(noting v1 ≡ 1) reduces to

∆mv2 + vp22
2 (y) = 0 in Rn.

If m ≥ n, then v2 ≡ 1 (noting v2(0) = 1) by Lemma 2.3, which implies κ2 = 0, a
contradiction. If m < n, then 0 < p22 < m∗ by our assumption. Thus v2(y) ≡ 0 by
Lemma 2.3. This is again impossible since v2(0) = 1.

This completes the proof of Case I).

Case II). N̄1 = ∞. In (4.6), take

Nl = max{N1,l, N2,l}, zl = ζi,l if Nl = Ni,l,

and

Qm
l = max

{
Nl, tlu

−(m−1)
1,l (zl), tlu

−(m−1)
2,l (zl)

} →∞.

We omit the rest of the proof which is essentially the same as in Case I-2).

Case III). N̄1 ∈ (0,∞). We claim that

max
{
N2,l, tlU

−(m−1)
1,l , tlU

−(m−1)
2,l

} →∞. (4.15)

Suppose for contradiction that (4.15) is false. Then there exists C > 0 such that

max
{
N1,l, N2,l, tlU

−(m−1)
1,l , tlU

−(m−1)
2,l

} ≤ C.

Namely, there holds

|ni,l(x)| ≤ C,
∣∣tlU−(m−1)

i,l

∣∣ ≤ C (4.16)
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uniformly for x ∈ Ω, i = 1, 2 and l = 1, 2, . . . . For i = 1, 2 and l = 1, 2, . . . , rewrite (4.1)
into

∆mwi,l + ni,l(x)wm−1
i,l + tlU

−(m−1)
i,l = 0 in Ω,

wl = 0 on ∂Ω,

where wi,l(x) = ui,l(x)/Ui,l. Applying the Harnack inequality Lemma 2.2 to the above
system on Ω, with the help of (4.16), we derive that there exists C > 0 (independent of
l) such that

max
x∈Ω0

ui,l(x) ≤ C min
x∈Ω0

ui,l(x), i = 1, 2; l = 1, 2, . . . . (4.17)

By the definition of N1,l and (4.17), there exist Cl, Dl ∈ [1/(2C), 2C] such that

u2,l(ξ1,l) = Clu2,l(ζ1,l) = Cl

[
u

(m−1)−p11
1,l (ζ1,l)N1,l

]1/p12

= Cl[DlU1,l]((m−1)−p11)/p12
(
N̄

1/p12
1 + o(1)

)
,

since p12 > 0 by (4.4) and since ξ1,l, ζ1,l ∈ Ω0. It follows that

N2,l ≥ n2,l(ξ1,l) = Up21
1,l u

p22−(m−1)
2,l (ξ1,l)

= Cσ1
l Dσ2

l U
p21−((m−1)−p11)((m−1)−p22)/p12
1,l

(
N̄

(p22−(m−1))/p12
1 + o(1)

) →∞

since p21p12 > ((m − 1) − p11)((m − 1) − p22) and U1,l → ∞, where σ1 and σ2 are real
numbers. This contradicts (4.16) and so (4.15) holds.

With (4.15) available, now take

zl =





ζ2,l if max
{
N2,l, tlU

−(m−1)
1,l , tlU

−(m−1)
2,l

}
= N2,l,

ξ1,l if max
{
N2,l, tlU

−(m−1)
1,l , tlU

−(m−1)
2,l

}
= tlU

−(m−1)
1,l

ξ2,l if max
{
N2,l, tlU

−(m−1)
1,l , tlU

−(m−1)
2,l

}
= tlU

−(m−1)
2,l .

Qm
l = max

{
N2,l, tlu

−(m−1)
1,l (zl), tlu

−(m−1)
2,l (zl)

} →∞.

Then the rest of the proof proceeds again similarly as in Case I-2) and is left to the
reader.

In conclusion, the contradictions we just derived imply that the hypothesis (4.3) is
false and therefore the a priori estimate (4.2) must be valid.

The C1,γ-estimate follows directly from Lemma 2.1 and the proof is complete. ¤

Proof of Theorem 1.2. It is precisely Theorem 4.1 by taking p11 = a, p12 = b,
p21 = c and p22 = d. ¤
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5. Existence.

In this section, we prove the existence result – Theorem 1.3. As in [14], we shall
apply a fixed point theorem and the a priori estimates obtained in section 4 are crucial.

Throughout this section, we assume that Ω ⊂ Rn is an uniformly normal domain.
By Lemma 2.1, there exists γ = γ(n,m, Ω) ∈ (0, γ′), where γ′ ∈ (0, 1) is the Holder
exponent associated with ∂Ω, such that all non-negative continuous solutions of (1.1) are
in the space C1,γ(Ω) ∩ C0(Ω). For γ0 = γ/2, put

X := C(Ω), Y := C1,γ0(Ω) ∩ C0(Ω).

Both X and Y are Banach spaces equipped with the standard norm. Define

C = {u ∈ C0(Ω) | u ≥ 0; u, v ∈ MO(Ω)}. (5.1)

One readily verifies that C is a cone in X. Clearly, for u ∈ C one has

u ≥ 0; U = max
x∈Ω

u(x) = max
x∈Ω0

u(x), V = max
x∈Ω

v(x) = max
x∈Ω0

v(x) (5.2)

and

Ni,l = max
x∈Ω

ni,l(x) = max
x∈Ω0

ni,l(x), (5.3)

where Ω0 is given in section 4. Denote

G := (−∆m)−1I : X 7→ Y,

with the homogeneous Dirichlet data, where I is the 2× 2 identity matrix. By Lemmas
2.1 and 2.6, G : X 7→ Y is well-defined, continuous and bounded. Set

T (u) := (|u|a|v|b, |u|c|v|d) : X 7→ X.

One readily verifies that T is continuous and bounded.
Now consider the operator

F = G ◦ T : X → Y ↪→ X.

the operator F is continuous and compact since G ◦ T : X → Y is continuous and
bounded and the embedding Y ↪→ X is compact (and continuous). In the sequel, ‖ · ‖
denotes the standard norm on X, i.e., the supremum norm on Ω.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Proceeding exactly as in [14], we apply Proposition
4.1 (due to [3]) from [14] to the compact operator F on the cone C and divide the proof
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into five steps.

Step 1. F (0) = 0 and the map F is C -preserving. It is obvious F (0) = 0 since
T (0) = 0 and G(0) = 0. It remains to show that F is C -preserving.

Let u ∈ C and put v = (ū, v̄) = F (u). Therefore

∆mū + g1(x) = 0, in Ω,

∆mv̄ + g2(x) = 0, in Ω,

ū = v̄ = 0, on ∂Ω.

where

g1(x) = uavb, g2(x) = ucvd.

Plainly, u(x) ∈ MO(Ω) and v(x) ∈ MO(Ω) since u ∈ C . Thus one readily deduces that
both g1 and g2 belong to the class MO(Ω) since a, b, c, d ≥ 0. Therefore Lemma 2.7
applies and one concludes that both ū and v̄ belong to the class MO(Ω). Consequently,
v ∈ C and F : C 7→ C is a C -cone preserving map.

Step 2. For t ∈ [0, 1], there exists a positive number r such that u 6= tF (u) for
‖u‖ = r. Consider u = tF (u), that is,

∆mu + tuavb = 0, in Ω,

∆mv + tucvd = 0, in Ω,

u = v = 0, on ∂Ω.

Multiply by the first equation by u, second by v and integrate over Ω and add to obtain

∫

Ω

(|∇u|m + |∇v|m) = t

∫

Ω

(ua+1vb + ucvd+1) =
∫

Ω

o(|u|m + |v|m)

as ‖u‖ → 0, since min(a + b, c + d) > m− 1. It follows that there exists r0 > 0 such that
the equation u = tF (u) has no solution in Br0(0)− {0} for all t ∈ [0, 1].

Step 3. There exist positive numbers t0 and R and a vector u0 ∈ C − {0} such
that

u 6= F (u) + tu0 (5.4)

for t ≥ t0 and u ∈ C with ‖u‖ ≤ R.
Let ϕ be a (fixed) positive function in the class MO(Ω) (i.e., the distance function

to the boundary). Take

φ = (−∆m)−1ϕ, u0 = (φ, φ) ∈ C − {0}.
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Obviously φ ∈ MO(Ω) by Lemma 2.7. Thus u0 ∈ C . Consider the equation

u = F (u) + tu0, (5.5)

that is,

∆mu + uavb + tϕ = 0, in Ω,

∆mv + ucvd + tϕ = 0, in Ω.

By Theorem 1.2 (taking h1 = h2 = ϕ), there exists C > 0 such that

t + ‖u‖ ≤ C.

Take t0 = C + 1. Then (5.4) holds as long as t ≥ t0. Note particularly that the choice of
R > 0 can be arbitrary.

Step 4. There exists a positive number R such that (5.4) holds for all t ≥ 0 and
u ∈ C with ‖u‖ = R. Just take R = C + 1 in Step 3 and the result follows.

Step 5. Now we can finish the proof by applying Proposition 4.1 in [14]. Plainly,
taking X = X, C = C and T = F , one readily verifies that all conditions of Proposition
4.1 are satisfied by Steps 1–4 above. Therefore the mapping F has a fixed point w ∈ C
with ‖w‖ ∈ [r,R], which is a non-negative solution of (1.1), with at least one non-
vanishing component (‖w‖ ≥ r > 0).

It remains to show w = (w1, w2) > 0. By the strong maximum principle Lemma
2.4, both w1 and w2 must be either strictly positive or identically zero. On the other
hand, since b > 0 and c > 0, none of w’s components can vanish identically unless w ≡ 0.
Thus w > 0 is a positive solution of (1.1) and the proof is complete. ¤
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