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Abstract. We find explicit multiplicity-free branching rules of some series of
irreducible finite dimensional representations of simple Lie algebras g to the fixed
point subalgebras gσ of outer automorphisms σ. The representations have highest
weights which are scalar multiples of fundamental weights or linear combinations
of two scalar ones. Our list of pairs of Lie algebras (g, gσ) includes an exceptional
symmetric pair (E6, F4) and also a non-symmetric pair (D4, G2) as well as a number
of classical symmetric pairs. Some of the branching rules were known and others are
new, but all the rules in this paper are proved by a unified method. Our key lemma
is a characterization of the “middle” cosets of the Weyl group of g in terms of the
subalgebras gσ on one hand, and the length function on the other hand.

1. Introduction and statement of main theorems.

1.1.
One of the fundamental problems in representation theory is to understand the

irreducible decomposition of a given representation. A typical case arises as the de-
composition of the restriction π|H for an irreducible representation π of a group G to
its subgroup H. Its irreducible decomposition is called a branching rule. In general,
there may appear complicated multiplicities in branching rules, which would then cause
difficult combinatorial problems for actual calculations.

The branching rule is said to be multiplicity-free, if any irreducible representation of
H occurs in π|H at most one. Multiplicity-free branching rules are not only in good order
but also revealing geometric background of the representation [14]. As was emphasized
in [13], the multiplicity-free branching rules are a special class of representations, for
which one may expect a simple and detailed study of its own and of which one may hope
powerful applications of representation theory to other fields of mathematics.

Multiplicity-free branching rules of finite dimensional representations in some classi-
cal cases were obtained by Macdonald [17], Stembridge [22], Okada [18] and many others
as the case may be. We note that there are combinatorial algorithms to obtain branch-
ing rules for finite dimensional representations of classical groups, such as Littlewood-
Richardson rule and the algorithm of Koike–Terada [15], but such algorithms involve
too many cancellations for actual computations in general cases. Instead, Okada uses
new combinatorial formulas on minors due to Ishikawa–Wakayama [7] to obtain explicit
branching rules [18].
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Kobayashi recently obtained an abstract theorem of multiplicity-free branching rules
for both infinite and finite dimensional representations for a general symmetric pair
(G,H) [11], [12], [13]. Multiplicity-free branching rules of infinite dimensional discrete
series representations π|H were obtained by Kostant and Schmid for compact group H

[21], and by Kobayashi for general H [11].
Kobayashi’s method is geometric and gives a conceptual explanation why branching

rules become multiplicity-free in a wide setting. It should be interesting to obtain explicit
formulas if the representations are known a priori to be multiplicity-free. In this paper,
we take up branching problem including some exceptional Lie algebras, which one can
tell to be multiplicity-free a priori by [12]. It should be noted that this problem does
not arise from combinatorial problems, but from a geometric results, although our proof
of main results uses combinatorial techniques.

In order to find explicit branching rules, we take a new approach based on combina-
torial results of quotients of Weyl groups. That is, we find a characterization of what we
call the “middle” cosets of the Weyl group in three ways (Lemma 6.1), by which we find
explicit branching rules of certain finite dimensional representations (see Theorem 1.2).
Some of these branching rules were predicted by Kobayashi [12], [11] and a part of the
results were found by other mathematicians including Okada, Proctor, Krattentharler,
Želobenko [16], [18], [19], [23], through combinatorial methods, quite recently.

Our method is also combinatorial, but is different from the previous known methods.
Furthermore, its applications include the rules for the exceptional symmetric pair (E6, F4)
and the non-symmetric pair (D4, G2).

1.2. Main results.
Let g be a complex simple Lie algebra and σ be an outer automorphism of g, that

is, σ is an automorphism of g which induces a non-trivial automorphism of the Dynkin
diagram of g (see Section 2 for the details). Then gσ := {X ∈ g|σX = X} becomes
a Lie subalgebra in g. In fact, gσ becomes a simple Lie algebra as is observed in the
classification of (g, gσ) (see Lemma 2.8). We note that (g, gσ) is a symmetric pair (i.e.
σ2 = id) except for (g, gσ) = (so(8,C), g2).

We denote by L (λ) ≡ L (g, λ) the irreducible finite dimensional representation of the
complex simple Lie algebra g with the highest weight λ, and by L (λ) |gσ the restriction
to the subalgebra gσ. Let {$j}n

j=1 and {$′
j′}n′

j′=1 be the set of fundamental weights, of
the complex Lie algebras g and gσ, which are labeled in Table 1 at the end of Section 2,
respectively. The labeling follows Bourbaki [2].

The main results of this paper is to give the branching rules L (λ) |gσ for the above
pair (g, gσ) and some special highest weight λ.

Theorem 1.1. For any k ∈ N , we have the following irreducible decomposition.

(1) (sl(2m,C) ↓ sp(m,C))

L (A2m−1, k$1) |Cm
= L (A2m−1, k$2m−1) |Cm

= L (Cm, k$′
1) (m ≥ 2). (2A)

(2) (so(2m,C) ↓ so(2m− 1,C))

L (Dm, k$m−1) |Bm−1= L (Dm, k$m) |Bm−1= L
(
Bm−1, k$′

m−1

)
(m ≥ 4). (4A)
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Theorem 1.2. For any k, l ∈ N , we have the following irreducible decomposition:

(1) (sl(2m,C) ↓ sp(m,C))

L (A2m−1, k$1 + l$2) |Cm
= L (A2m−1, k$2m−1 + l$2m−2) |Cm

=
l⊕

s=0

L (Cm, k$′
1 + s$′

2) (m ≥ 2). (2B)

(2) (sl(2m + 1,C) ↓ so(2m + 1,C))

L (A2m, k$1) |Bm
= L (A2m, k$2m) |Bm

=
⊕

0≤s≤k
s≡k mod 2

L (Bm, s$′
1) (m ≥ 1).

(3B)

(3) (so(2m,C) ↓ so(2m− 1,C))

L (Dm, k$1) |Bm−1=
k⊕

s=0

L (Bm−1, s$
′
1) (m ≥ 4). (4B)

(4) (e6 ↓ f4)

L (E6, k$1) |F4= L (E6, k$6) |F4=
k⊕

s=0

L (F4, s$
′
4) . (5B)

(5) (so(8,C) ↓ g2)

L (D4, k$1) |G2= L (D4, k$3) |G2= L (D4, k$4) |G2=
k⊕

s=0

L (G2, s$
′
1) . (6B)

Remark 1.3. Some of these branching rules were preciously known by different
methods such as the Borel–Weil theory, eigenvalues of Casimir operators, formulas of
minor determinants, and so on (see, for example, [10], [16], [18], [19], [23]), summarized
as follows:

(1) The author learned a geometric proof of Theorem 1.1 via the Borel–Weil theory
by Kobayashi [10, Example 5.2]. For this, we use a special case (i.e. q = 0)
of the following isomorphism of homogeneous spaces U(2p, 2q)/U(2p − 1, 2q) '
Sp(p, q)/Sp(p− 1, q) and SO(2p, 2q)/U(p, q) ' SO(2p− 1, 2q)/U(p− 1, q).

(2) The rules (4A) and (4B) are proved by Želobenko [23, X Theorem 3, XVIII The-
orem 3], via eigenvalues of Casimir operators.

(3) The rule (2A) is proved by Proctor [19, Lemma 4].
(4) The rule (4A) is proved by Okada [18, Theorem 2.2(1)], using combinatorial for-

mulas of minor determinants.
(5) The rule (2B) is proved by Krattentharler [16, Theorem 1].



154 H. Alikawa

Remark 1.4. Koike–Terada [15] gave general formulas of the restrictions from
GL(n) to SO(n) and from GL(2n) to Sp(n). By using their formulas, we can give an
alternative proof of (2A), (2B) and (3B). However, as remarked in [18], this approach
does not always work for actual computations in some multiplicity-free branching rules,
because their general formulas may involve many cancellations.

Remark 1.5. The above equation labels are related to the case labels in Lemma 2.8
as follows. (¤ A) is the branching rules in which an irreducible representation stays
irreducible, and (¤ B) the multiplicity-free branching rules in which the decomposition
is a sum with one parameter for the Lie algebra pair labeled ¤ in Lemma 2.8.

1.3.
Our paper is organized as follows. In Section 2, we give a quick review of basic

properties of outer automorphisms and explicit data to use in this paper (Table 1). In
Section 3, we review Satake’s theorem and Chevalley’s lemma without proof and we
obtain a map between the some representatives of quotients of the two Weyl groups
involved. In Section 4, we give the framework of the proof of Theorems 1.1 and 1.2 by
deforming Weyl’s character formula, although two facts to be proved will be postponed
to the later sections. In Section 5, we prove one of the postponed fact in Section 4.3. The
lemma is proved by comparison between ∆+r∆+

λ and ∆′+r∆′+
λ′ . In Section 6 we prove

the other postponed lemma (Lemma 6.1) in Section 4. This lemma is the characterization
of the “middle” cosets of the Weyl group involved.

In this paper, N is a set of non-negative integers {0, 1, 2, . . . }.

Acknowledgment. I wish to thank my supervisor, Professor Kobayashi
Toshiyuki for many helpful suggestions and warm encouragement from the early stage of
this work. I also thank Professor Naito Satoshi and Doctor Sagaki Daisuke for their sug-
gestions and discussion. In particular, Professor Naito suggested me to find the formula
of the non-symmetric (D4, G2) (Theorem 1.2(6B)).

2. Outer automorphisms of simple Lie algebras.

In this section, we give a quick review on basic properties of outer automorphisms
of a simple Lie algebra. Most of the results in this section can be found in Helgason [5,
Chapter X] or Kac [8, Sections 7 and 8].

Let g be a complex simple Lie algebra and σ be an automorphism of g of finite order.
Then gσ := {X ∈ g|σX = X} becomes a Lie subalgebra in g. We remark that the pair
(g, gσ) is a symmetric pair, if the order of σ is two.

Lemma 2.1. There exists a σ-stable Cartan subalgebra h of g such that hσ := {X ∈
h|σX = X} becomes a Cartan subalgebra of gσ.

Remark 2.2. We refer the proof to Helgason [5, Chapter X Lemma 5.3].

For a σ-stable Cartan subalgebra h, we define the action of σ on h by restriction,
and also on h∗ by identifying h and h∗ via a non-degenerate invariant bilinear form on g.
Furthermore, we naturally identify (hσ)∗ with (h∗)σ.
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Lemma 2.3. There exists a positive system ∆+ ≡ ∆+(g, h) such that σ∆+ = ∆+.

Lemma 2.4 (Cartan [3]). The group AutC g/ IntC g is isomorphic to the group of
automorphisms of the Dynkin diagram of g.

Remark 2.5. We refer the proof of Lemma 2.3 and Lemma 2.4 to Knapp [9,
Theorem 7.8].

Lemma 2.4 leads us to the concept of outer automorphisms.

Definition 2.6. We say an automorphism σ of g of finite order is outer, if σ

induces a non-trivial automorphism of the Dynkin diagram of g.

Remark 2.7. Lemma 2.4 implies that there exists an outer automorphism of g, if
and only if its Dynkin diagram admits a non-trivial automorphism. This is the case if g

is of type An, Dn or E6.

Lemma 2.8 (Helgason [5, Chapter X Example 2]). If σ is an outer automorphism
of a simple Lie algebra g, then (g, gσ) is isomorphic to the one of the followings:

Case 1 (A2, A1) (' (sl(3,C), so(3,C))).

Case 2 (A2m−1, Cm) (' (sl(2m,C), sp(m,C))).

Case 3 (A2m, Bm) (' (sl(2m + 1,C), so(2m + 1,C))).

Case 4 (Dm, Bm−1) (' (so(2m,C), so(2m− 1,C))).

Case 5 (E6, F4).

Case 6 (D4, G2).

We tell from the above list that the Lie subalgebra gσ is simple.
For each pair (g, gσ) in Lemma 2.8, we choose a σ-stable Cartan subalgebra h of g

such that hσ is a Cartan subalgebra of gσ (Lemma 2.1).
Let ∆ ≡ ∆(g, h) be the root system of g with respect to h. Likewise, let ∆′ ≡

∆(gσ, hσ) be that of gσ with respect to hσ. We fix a positive system ∆+ such that
σ∆+ = ∆+ (Lemma 2.3).

Lemma 2.9. There is a unique positive system ∆′+ ≡ ∆+(gσ, hσ) with the following
property : if α is a simple root for ∆+, then α|hσ becomes a simple root for ∆′+.

Proof. The positive system ∆′+ is given in Helgason [5, Chapter X Example 2]
and Kac [8, Sections 7.9 and 7.10]. The necessary data is given in Table 1 at the end of
this section. ¤

We shall take a positive system ∆′+ as in Lemma 2.9.
In later sections, the following formula of the restriction of λ ∈ h∗ will be useful.

The proof is an easy consequence of linear algebra.

Lemma 2.10. Let λ ∈ h∗ and let m be the order of σ ∈ GL(h∗). Then λ|hσ =
1
m

∑m−1
j=0 σjλ.
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We give the data of the restrictions of outer automorphisms in Table 1, which are
obtained in Helgason [5, Chapter X, Example 2] and Kac [8, Sections 7.9 and 7.10].

Let {αj}n
j=1 and {$j}n

j=1 denote the simple system and the set of fundamental
weights for g. Likewise, {α′j′}n′

j′=1 and {$′
j′}n′

j′=1 denote those for gσ.
In the first column at Table 1, we write the Dynkin diagrams of ∆ := ∆(g, h)

and ∆′ := ∆(gσ, hσ), whose labeling follows Bourbaki [2], Planche. The second column
describes the induced action of σ on simple roots of g. In the third column, the restriction
of simple roots of g from h to hσ is given in terms of simple roots for gσ. At the fourth
column, the restriction of fundamental weights of g from h to hσ is given in terms of
fundamental weights for gσ.

3. Satake’s theorem and Chevalley’s lemma.

In the rest of this paper, the pair (g, gσ) is one of the pairs listed in Section 2. For
the root systems ∆ ≡ ∆(g, h) and ∆′ ≡ ∆(gσ, hσ), we choose compatible positive systems
∆+ and ∆′+ as in Lemma 2.9.

In this section, we review two theorems on Weyl groups, which are called Satake’s
theorem and Chevalley’s lemma. Satake’s theorem gives a connection between the Weyl
groups of the root systems attached to the pair (g, h) and (gσ, hσ). Chevalley’s lemma
gives generators of a fixed subgroup of a highest weight in Weyl groups. Using these
theorems, we obtain the relationship between the sets of certain right cosets of the Weyl
groups of (g, h) and (gσ, hσ) (Lemma 3.3).

3.1.
Let W be the Weyl group of the root system (h∗,∆), and W ′ be that of ((hσ)∗,∆′).

The subgroup W̃ = {w ∈ W |σw = wσ} in W is isomorphic to W ′ by the following
Satake’s theorem.

Satake’s theorem. W̃ → W ′, w 7→ w|(h∗)σ is a group isomorphism.

Remark 3.1.

(1) Satake proved the above theorem in a more general context, that is, for a Cartan
involution σ [20, Appendix Proposition A].

(2) Fuchs–Ray–Schweigert generalized the above theorem for automorphisms of
Dynkin diagrams of generalized Kac–Moody Lie algebras [4, Proposition 3.3].

3.2.
We recall Chevalley’s lemma for a reduced abstract root space (V, ∆) and its Weyl

group W . Let ∆+ be a positive system of (V, ∆). For λ ∈ V , we define a subgroup
Wλ := {w ∈ W |wλ = λ} in W .

Chevalley’s lemma. If λ ∈ V is dominant, that is 〈λ, α〉 ≥ 0 for all α ∈ ∆+,
the subgroup Wλ is generated by the simple reflections sα such that 〈λ, α〉 = 0.

Remark 3.2. We refer the proof to Knapp [9, Proposition 2.72].
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Table 1. Data of outer automorphisms.



158 H. Alikawa

3.3.
We obtain Lemma 3.3, by applying Satake’s theorem and Chevalley’s lemma.

Lemma 3.3. Let λ ∈ h∗ be dominant for ∆+, and put λ′ = λ|hσ . Then,

(1) λ′ is dominant for ∆′+.
(2) Put W̃λ := W̃ ∩Wλ, then we obtain W̃λ = W̃ ∩Wλ′ . Therefore, the image of the

restriction of (W̃ → W ′) to W̃λ is W ′
λ′ .

(3) The following commutative diagram of groups:

W ′ ∼←− W̃ ↪→ W
↪→ ↪→ ↪→

W ′
λ′

∼←− W̃λ ↪→ Wλ

induces a natural injective map on the right cosets:

W ′/W ′
λ′ ↪→ W/Wλ.

Proof.

(1) We tell, by seeing Table 1, that the restriction of a fundamental weight of g from
h to hσ becomes a positive multiple of a fundamental weight of gσ. Thus, if λ ∈ h∗

is dominant for ∆+, λ′ = λ|hσ is dominant for ∆′+.
(2) By Lemma 2.10, we have λ′ = 1

m

∑m−1
j=0 σjλ where m is the order of σ.

If w ∈ W̃λ, then wσjλ = σj(wλ) = σjλ. Thus

wλ′ =
1
m

m−1∑

j=0

w(σjλ) =
1
m

m−1∑

j=0

σjλ = λ′.

We conclude w ∈ W̃ ∩Wλ′ .
Conversely, if w ∈ W̃ ∩Wλ′ , we can assume w is a simple reflection w = sα such

that 〈α, λ′〉 = 0 by Chevalley’s lemma. Then,

0 = 〈α, λ′〉 =
〈

α,
1
m

m−1∑

j=0

σjλ

〉
=

1
m

m−1∑

j=0

〈σjα, λ〉.

Then 〈σjα, λ〉 = 0 for all j, because λ is dominant and σjα ∈ ∆+. In particular,
〈α, λ〉 = 0. Then w = sα ∈ W̃λ by Chevalley’s lemma.

Thus we conclude the claim W̃λ = W̃ ∩Wλ′ .
(3) W ′ ' W̃ and W ′

λ′ ' W̃ ∩ Wλ′ is obvious by Satake’s theorem. We have the
commutative diagram, because W̃λ = W̃ ∩ Wλ′ . Thus we obtain the natural
bijective maps

W ′/W ′
λ′ ' W̃/W̃λ′ ' W̃/W̃λ.
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Then we obtain the natural injective maps W ′/W ′
λ′ ↪→ W/Wλ. ¤

4. Calculation of character formula.

The aim of this section is to obtain the deformation (8) and (9) of Weyl’s character
formulas by using the denominator formula and to give the framework of the proof of
Theorems 1.1 and 1.2.

4.1.
Let us recall the notation in the previous sections. Let g be a complex simple Lie

algebra, and σ be an outer automorphism of g. Then gσ is also a simple Lie algebra. As
in Lemma 2.9, we fix compatible positive systems ∆+ and ∆′+ with respect to Cartan
subalgebras h ⊃ hσ of g ⊃ gσ. Let W be the Weyl group of ∆ and W ′ that of ∆′.

For a dominant weight λ ∈ h∗, we choose a complete system of representatives Wλ

of W/Wλ and for λ′ = λ|hσ and W ′λ′ of W ′/W ′
λ′ , respectively.

Let ρ := 1
2

∑
α∈∆+ α and ρ′ := 1

2

∑
α′∈∆′+ α′. Let d and d′ be the Weyl’s denomina-

tor of g and gσ respectively and by χg (λ) the character of the irreducible representation
L (λ) of g with the highest weight λ. Likewise by χgσ (λ′) that of gσ with λ′.

4.2.
We deform Weyl’s character formulas of χg (λ) and χgσ (λ′) to obtain (8) and (9).
By Weyl’s character formula,

χg (λ) = d−1
∑

w∈W

ε(w)ew(λ+ρ). (1)

We obtain by decomposing w ∈ W to w = w1w2 where w1 ∈ Wλ and w2 ∈ Wλ,

χg (λ) = d−1
∑

w1∈W λ

( ∑

w2∈Wλ

ε(w1w2)ew1w2λ+w1w2ρ

)
. (2)

Because w2λ = λ for w2 ∈ Wλ,

χg (λ) = d−1
∑

w1∈W λ

(
ε(w1)ew1λ

( ∑

w2∈Wλ

ε(w2)ew1w2ρ

))
. (3)

By Chevalley’s lemma, Wλ is the Weyl group generated by the root reflections of
∆+

λ := {α ∈ ∆+|〈α, λ〉 = 0}. We can apply Weyl’s denominator formula to Wλ and
obtain

∑

w2∈Wλ

ε(w2)ew2ρ = eρ
∏

α∈∆+
λ

(1− e−α). (4)

We extend the action of W to the ring Z < h∗ >, naturally. By applying w1 ∈ Wλ to
both sides of (4),
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∑

w2∈Wλ

ε(w2)ew1w2ρ = ew1ρ
∏

α∈∆+
λ

(1− e−w1α). (5)

The substitution of (5) into (3) yields,

χg (λ) = d−1
∑

w1∈W λ

(
ε(w1)ew1λ

(
ew1ρ

∏

α∈∆+
λ

(1− e−w1α)
))

. (6)

We obtain w1 · d = ε(w1)d because d =
∑

w∈W ε(w)ewρ. Then,

χg (λ) =
∑

w1∈W λ

w1 ·
(

d−1eλ+ρ
∏

α∈∆+
λ

(1− e−α)
)

. (7)

Weyl’s denominator formula d =
∏

α∈∆+ eρ(1− e−α) implies

χg (λ) =
∑

w1∈W λ

w1 ·
(

eλ
∏

α∈∆+\∆+
λ

(1− e−α)−1

)
. (8)

We remark that
(
eλ

∏
α∈∆+\∆+

λ
(1− e−α)−1

)
is Wλ-invariant and (8) is independent

of the choice of a system of representatives Wλ.
In the same way, we calculate χgσ (λ′). Then,

χgσ (λ′) =
∑

w′1∈W ′λ′
w′1 ·

(
eλ′

∏

α∈∆′+\∆′+
λ′

(1− e−α)−1

)
. (9)

4.3. Framework of proof of main theorems.
We give the framework of the proof of Theorems 1.1 and 1.2 by using (8) and (9)

which are deformation of Weyl’s character formulas, although several facts to be proved
are postponed to Section 5 and Section 6.

4.3.1
Theorem 1.1 follows from the identity of characters, namely the following lemmas.

Lemma 4.1. For k ∈ N ,

χA2m−1 (k$1) |Cm = χCm (k$′
1) (m ≥ 2), (2A′-1)

χA2m−1 (k$2m−1) |Cm
= χCm

(k$′
1) (m ≥ 2). (2A′-2)

Lemma 4.2. For k ∈ N ,

χDm (k$m−1) |Bm−1 = χBm−1

(
k$′

m−1

)
(m ≥ 4), (4A′-1)

χDm
(k$m) |Bm−1 = χBm−1

(
k$′

m−1

)
(m ≥ 4). (4A′-2)
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We give the framework of the proof of Lemmas 4.1 and 4.2 by several steps.

Step 0:
If k = 0, the statements are clear, because both sides of equations of (2A′-1), (2A′-2),

(4A′-1) and (4A′-2) are the characters of trivial representations. We assume k is a positive
integer. If the equation (2A′-1) is proved, we obtain (2A′-2) by applying σ to (2A′-1).
Similarly, if (4A′-1), we obtain (4A′-2). Thus, the remainder to be proved are (2A′-1)
and (4A′-1).

We apply the deformation of Weyl’s character formulas (8) and (9) to the both side
of (2A′-1) and (4A′-1), respectively. Then, the summation parameters of the left hand
side are Wλ and those of the right hand side are W ′λ′ .

Suppose (g, gσ, λ) = (A2m−1, Cm, k$1) (k ∈ N \ {0}) or (Dm, Bm−1, k$m−1) (k ∈
N \ {0}) below.

Step 1 (correspondence between the summation parameters):
We prove, in this step, that the number of Wλ ' W/Wλ equals that of W ′λ′ '

W ′/W ′
λ′ on a case basis.

For (g, gσ, λ) = (A2m−1, Cm, k$1) (k ∈ N \ {0}),

](W/Wλ) =
(2m)!

(2m− 1)!
= 2m, ]

(
W ′/W ′

λ′
)

=
m! · 2m

(m− 1)! · 2m−1
= 2m.

For (g, gσ, λ) = (Dm, Bm−1, λ = k$m−1) (k ∈ N \ {0}),

](W/Wλ) =
m! · 2m−1

m!
= 2m−1, ]

(
W ′/W ′

λ′
)

=
(m− 1)! · 2m−1

(m− 1)!
= 2m−1.

Then we obtain ](W/Wλ) = ](W ′/W ′
λ′) in each case.

Step 2 (correspondence of the first term):
The following equality holds:

(
eλ

∏

α∈∆+\∆+
λ

(1− e−α)−1

)∣∣∣∣
hσ

=
(

eλ′
∏

α∈∆′+\∆′+
λ′

(1− e−α)−1

)
. (10)

We shall postpone the proof of (10) to Section 5. The proof is comparison between
∆+ \∆+

λ and ∆′+ \∆′+
λ′ on a case basis.

Step 3:
The equation (10) is equality between the summands for w1 = 1 in (8) and (9).
Applying w1 ∈ W̃λ to both sides of (10), we obtain the following equation.

w1 ·
(

eλ
∏

α∈∆+\∆+
λ

(1− e−α)−1

)∣∣∣∣
hσ

= w1 |hσ ·
(

eλ′
∏

α∈∆′+\∆′+
λ′

(1− e−α)−1

)
. (11)
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Then, we obtain (2A′-1) and (4A′-1) and prove Lemmas 4.1 and 4.2, if the postponed
fact (10) is proved. We postpone the proof to Section 5.

4.3.2
Theorem 1.2 follows from the identity of characters, namely the following lemmas.

Lemma 4.3. For l ∈ N and k ∈ N \ {0},

χA2m−1 (l$1) |Cm
= χCm

(l$′
1) , (2B′-1)

χA2m−1 (l$2m−1) |Cm
= χCm

(l$′
1) , (2B′-2)

χA2m−1 (l$1 + k$2)− χA2m−1 (l$1 + (k − 1)$2) |Cm= χCm (l$′
1 + l$′

2) , (2B′-3)

χA2m−1 (l$2m−1 + k$2m−2)− χA2m−1 (l$2m−1 + (k − 1)$2m−2) |Cm

= χCm (l$′
1 + l$′

2) . (2B′-4)

Lemma 4.4. For k ∈ N \ {0, 1},

χA2m
(0) |Bm

= χBm
(0) , (3B′-1)

χA2m ($1) |Bm= χBm ($′
1) , (3B′-2)

χA2m
(k$1)− χA2m

((k − 2)$1) |Bm
= χBm

(k$′
1) , (3B′-3)

χA2m (k$2m)− χA2m ((k − 2)$2m) |Bm= χBm (k$′
1) . (3B′-4)

Lemma 4.5. For k ∈ N \ {0},

χDm
(0) |Bm−1= χBm−1 (0) , (4B′-1)

χDm (k$1)− χDm ((k − 1)$1) |Bm−1= χBm−1 (k$′
1) . (4B′-2)

Lemma 4.6. For k ∈ N \ {0},

χE6 (0) |F4= χF6 (0) , (5B′-1)

χE6 (k$1)− χE6 ((k − 1)$1) |F4= χF4 (k$′
1) , (5B′-2)

χE6 (k$6)− χE6 ((k − 1)$6) |F4= χF4 (k$′
1) . (5B′-3)

Lemma 4.7. For k ∈ N \ {0},

χD4 (0) |G2= χG2 (0) , (6B′-1)

χD4 (k$1)− χD4 ((k − 1)$1) |G2= χG2 (k$′
1) , (6B′-2)

χD4 (k$3)− χD4 ((k − 1)$3) |G2= χG2 (k$′
1) , (6B′-3)

χD4 (k$4)− χD4 ((k − 1)$4) |G2= χG2 (k$′
1) . (6B′-4)
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We give the framework of the proof of Lemmas 4.3, 4.4, 4.5, 4.6 and 4.7 by several
steps.

Step 0:
Since the characters of trivial representation are 0, the equations (3B′-1), (4B′-1),

(5B′-1) and (6B′-1) are clear. The equations (2B′-1) and (2B′-2) were proved in
Lemma 4.1. L (A2m, $1) and L (Bm, $1) are the standard representations, respectively;
that are the same representation C2m+1. Then we obtain L (A2m, $1) |Bm = L (Bm, $1),
that is (3B′-2). If (2B′-3) is proved, we obtain the equation (2B′-4) by applying σ to
(2B′-3). Similarly, we need not prove the equations (3B′-4), (5B′-3), (6B′-3) and (6B′-4).
Thus, the remainder to be proved are (2B′-3), (3B′-3), (4B′-2), (5B′-2) and (6B′-2).

Suppose (g, gσ, λ, $) is one of the following cases:

(g, gσ, λ, $) =





(A2m−1, Cm, l$1 + k$2, $2)

(A2m, Bm, k$1, $1)

(Dm, Bm−1, k$1, $1)

(E6, F4, k$1, $1)

(D4, G2, k$1, $1),

where k, l ∈ N \ {0}.

Step 1 (correspondence between the summation parameters):
Put an integer q as the following:

q =

{
2 for (A2m, Bm, k$1, $1)

1 otherwise.
(12)

By the deformation (8) of Weyl’s character formula of g, the left-hand side of any of
(2B′-2), (3B′-3), (4B′-2), (5B′-2) and (6B′-2) is the form:

∑

w1∈W λ

w1 ·
(

eλ
∏

α∈∆+\∆+
λ

(1− e−α)−1 · (1− e−q$)
)∣∣∣∣

hσ

=
∑

w1∈W ′λ′
w1 ·

(
eλ

∏

α∈∆+\∆+
λ

(1− e−α)−1 · (1− e−q$)
)∣∣∣∣

hσ

+
∑

w1∈W λ\W ′λ′
w1 ·

(
eλ

∏

α∈∆+\∆+
λ

(1− e−α)−1 · (1− e−q$)
)∣∣∣∣

hσ

.

Our key technique (Lemma 6.1) is the equality e−w1$|hσ = 1 for w1 ∈ Wλ r W ′λ′

by choosing a specific system of representatives (minimal coset representatives). We
postpone the proof of the lemma to Section 6.

Lemma 6.1 implies that the second term vanishes. Thus the left-hand side of any of
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(2B′-2), (3B′-3), (4B′-2), (5B′-2) and (6B′-2) is the form:

∑

w1∈W ′λ′
w1 ·

(
eλ

∏

α∈∆+\∆+
λ

(1− e−α)−1 · (1− e−q$)
)∣∣∣∣

hσ

. (13)

On the other hand, by the deformation (9) of Weyl’s character formula of gσ, the
right-hand side of any of (2B′-2), (3B′-3), (4B′-2), (5B′-2) and (6B′-2) is the form:

∑

w1∈W ′λ′
w1 ·

(
eλ′

∏

α∈∆′+\∆′+
λ′

(1− e−α)−1

)
. (14)

Step 2 (correspondence of the first term):
The following equality holds:

eλ
∏

α∈∆+\∆+
λ

(1− e−α)−1 · (1− e−q$)
∣∣∣∣
hσ

= eλ′
∏

α∈∆′+\∆′+
λ′

(1− e−α)−1. (15)

We shall postpone the proof of (15) to Section 5. The proof is comparison between
∆+ \∆+

λ and ∆′+ \∆′+
λ′ on a case basis.

Step 3:
The equation (15) is equality between the summands for w1 = 1 in (13) and (14).
Applying w1 ∈ W ′λ′ to both sides of (15), we obtain the following equation.

w1 ·
(

eλ
∏

α∈∆+\∆+
λ

(1−e−α)−1 · (1−e−q$)
)∣∣∣∣

hσ

= w1|hσ

(
eλ′

∏

α∈∆′+\∆′+
λ′

(1−e−α)−1

)
. (16)

Then, we obtain (2B′-2), (3B′-3), (4B′-2), (5B′-2) and (6B′-2) and Lemmas 4.3, 4.4,
4.5, 4.6 and 4.7, if the postponed facts e−w1$|hσ = 1 for w1 ∈ Wλ rW ′λ′ (Lemma 6.1)
and (15) are proved. We postpone the proofs to Section 5 and Section 6.

5. Comparison of positive roots.

In this section, we prove the equations (10) and (15) which are remained in previous
section by comparing the restriction of the elements in ∆+ r ∆+

λ with the elements in
∆′+ r∆′+

λ′ on a case basis. That is, we obtain the following lemma.

Lemma 5.1.

(1) Suppose (g, gσ, λ) is one of the following cases:

(g, gσ, λ) =

{
(A2m−1, Cm, k$1)

(Dm, Bm−1,k$m−1),
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where k ∈ N \ {0}. Then the restriction map

(·)|hσ :
(
∆+ \∆+

λ

) → (
∆′+ \∆′+

λ′
)

(17)

is bijective.
(2) Suppose

(g, gσ, λ, $) = (A2m, Bm, k$1, $1),

where k ∈ N \ {0} and l ∈ N . Then the restriction map

(·)|hσ :
(
∆+ \∆+

λ

) → (
(∆′+ \∆′+

λ′ ) t {2$|hσ}) (18)

is bijective.
(3) Suppose (g, gσ, λ) is one of the following cases:

(g, gσ, λ, $) =





(A2m−1, Cm, l$1 + k$2, $2),

(Dm, Bm−1, k$1, $1),

(E6, F4, k$1, $1),

(D4, G2, k$1, $1),

where k ∈ N \ {0}. Then the restriction map

(·)|hσ :
(
∆+ \∆+

λ

) → (
∆′+ \∆′+

λ′
)

(19)

is onto. Furthermore, we have $|hσ ∈ ∆′+ r ∆′+
λ′ and the map is one-to-one to

(∆′+ \∆′+
λ′ ) \ {$|hσ} and two-to-one to {$|hσ}.

Proof. Let us prove Lemma 5.1 by describing the subsets ∆+\∆+
λ and ∆′+\∆′+

λ′ .
The labeling of the simple roots here (see Table 1) follows that of Bourbaki [2].

(1) We give the list of the elements of ∆+ r ∆+
λ and their restriction to hσ for

(g, gσ, λ) = (A2m−1, Cm, k$1) or (Dm, Bm−1, k$m−1).

(g, gσ, λ) = (A2m−1, Cm, k$1)
elements of ∆+ \∆+

λ restriction to hσ

j−1∑
ν=1

αν (2 ≤ j ≤ m + 1)
j−1∑
ν=1

α′ν

j−1∑
ν=1

αν (m + 2 ≤ j ≤ 2m)
j−1∑
ν=1

α′ν +
m−1∑

ν=j

2α′ + α′m
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(g, gσ, λ) = (Dm, Bm−1, k$m−1)
elements of ∆+ \∆+

λ restriction to hσ

m−1∑

ν=i

αν (1 ≤ i ≤ m− 1)
m−1∑

ν=i

α′ν

m∑

ν=i

αν (1 ≤ i ≤ m− 2)
m−2∑

ν=i

α′ν + 2α′m

j−1∑

ν=i

αν +
m−2∑

ν=j

2αν + αm−1 + αm

j−1∑

ν=i

α′ν +
m−2∑

ν=j

2α′ν + 2α′m−1

(1 ≤ i < j ≤ m− 2)

Hence we obtain Lemma 5.1(1), because the restriction to hσ of the elements of
∆+ r∆+

λ correspond to the elements of ∆′+ r∆′+
λ′ .

(2) We give the list of the elements of ∆+ r ∆+
λ and their restriction to hσ for

(g, gσ, λ, $) = (A2m, Bm, k$1, $1). In the following list, the element with frame
means that it is a scalar multiple of $|hσ . We have $|hσ =

∑m
ν=1 αν because

$|hσ = $′
2 (see Table 1) and an easy computation implies $′

2 =
∑m

ν=1 αν .

(g, gσ, λ, $) = (A2m, Bm, k$1, $1)
elements of ∆+ \∆+

λ restriction to hσ

j−1∑
ν=1

αν (2 ≤ j ≤ m + 1)
j−1∑
ν=1

α′ν

(m + 2 ≤ j ≤ 2m)
2m−j+1∑

ν=1

αν +
m∑

ν=2m−j+2

2α′ν

(j = 2m + 1)
m∑

ν=1

2α′ν

The element with frame is 2$|hσ .
Thus, the above table completes the proof of Lemma 5.1(2).

(3) We give the lists of the elements of ∆+ r ∆+
λ and their restriction to hσ ac-

cording to (g, gσ, λ, $) = (A2m−1, Cm, k$2, $2), (A2m−1, Cm, l$1 + k$2, $2),
(Dm, Bm−1, k$1, $1), (E6, F4, k$1, $1) and (D4, G2, k$1, $1). In the following
lists, the element with frame means that it is a scalar multiple of $|hσ . The ex-
plicit form of the restriction $|hσ (e.g. α′1 +

∑m−1
ν=2 2α′ν + α′m) can be found by

using Table 1 and by a computation of fundamental weights of gσ for each case.
We abbreviate k1α1 + · · ·+knαn to k1 · · · kn for (g, gσ, λ, $) = (E6, F4, k$1, $1)

and (D4, G2, k$1, $1) for convenient.
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(g, gσ, λ, $) = (A2m−1, Cm, k$2, $2)

elements of ∆+ \∆+
λ restriction to hσ

j−1X
ν=1

αν (3 ≤ j ≤ m + 1)

j−1X
ν=1

α′ν

(m + 2 ≤ j ≤ 2m− 2)

2m−jX
ν=1

α′ν +

m−1X
ν=2m−j+1

2α′ν + α′m

(j = 2m− 1) α′1 +

m−1X
ν=2

2α′ν + α′m

(j = 2m)

m−1X
ν=1

2α′ν + α′m

j−1X
ν=2

αν (3 ≤ j ≤ m + 1)

j−1X
ν=2

α′ν

(m + 2 ≤ j ≤ 2m− 2)

2m−jX
ν=2

α′ν +

m−1X
ν=2m−j+1

2α′ν + α′m

(j = 2m− 1)

m−1X
ν=2

2α′ν + α′m

(j = 2m) α′1 +

m−1X
ν=2

2α′ν + α′m

(g, gσ, λ, $) = (A2m−1, Cm, l$1 + k$2, $2)

elements of ∆+ \∆+
λ restriction to hσ

j−1X
ν=1

αν (2 ≤ j ≤ m + 1)

j−1X
ν=1

α′ν

(m + 2 ≤ j ≤ 2m− 2)

2m−jX
ν=1

αν +

m−1X
ν=2m−j+1

2α′ν + α′m

(j = 2m− 1) α′1 +

m−1X
ν=2

2α′ν + α′m

(j = 2m)

m−1X
ν=1

2α′ν + α′m

j−1X
ν=2

αν (3 ≤ j ≤ m + 1)

j−1X
ν=2

α′ν

(m + 2 ≤ j ≤ 2m− 2)

2m−jX
ν=2

α′ν +

m−1X
ν=2m−j+1

2α′ν + α′m

(j = 2m− 1)

m−1X
ν=2

2α′ν + α′m

(j = 2m) α1 +

m−1X
ν=2

2α′ν + α′m
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(g, gσ, λ, $) = (Dm, Bm−1, k$1, $1)

elements of ∆+ \∆+
λ restriction to hσ

j−1X
ν=1

αν (2 ≤ j ≤ m− 1)

j−1X
ν=1

α′ν

(j = m + 1)

m−2X
ν=1

α′ν + 2α′m−1

(j = m)

m−1X
ν=1

α′ν

j−1X
ν=1

αν +

m−2X
ν=j

2αν + αm−1 + αm (2 ≤ j ≤ m− 1)

j−1X
ν=1

α′ν +

m−1X
ν=j

2α′ν

m−2X
ν=1

αν + αm

m−1X
ν=1

α′ν

(g, gσ, λ, $) = (E6, F4, k$1, $1)
elements of ∆+ \∆+

λ restriction to hσ

100000 0001
101000 0011
101100 0111
101110 0121
101111 0122
111100 1111
111110 1121
111111 1122
111210 1221
111211 1222
112210 1231
112211 1232

111221 1232
112221 1242
112321 1342
122321 2342

(g, gσ, λ, $) = (D4, G2, k$1, $1)
elements of ∆+ \∆+

λ restriction to hσ

1000 10
1100 11
1110 21
1111 31
1211 32
1101 21
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By definition, the elements with frame means that it is a scalar multiple of
$|hσ . It turns out that this is exactly $|hσ itself for all the cases in (3). Moreover
the framed element $|hσ appears twice. We have that ∆′+ r ∆′+

λ′ contains the
fundamental weight $|hσ of gσ in each case. Thus, the above tables complete the
proof of Lemma 5.1(3). ¤

Thus we have proved (10) and (15) which were postponed in Section 4.

6. Characterization of some representative of a quotient of the Weyl
groups involved.

In this section, we obtain the key lemma (Lemma 6.1) of this paper which was post-
poned in the proof of Theorem 1.2 in Section 4.3.2(Step 1) after reviewing the definitions
of the minimal coset representatives and the weak Bruhat order for Weyl groups.

6.1.
Let us review what is called minimal coset representatives of W/Wλ. For a dominant

weight λ ∈ V , we define a subset of W by Wλ =: {w ∈ W |l(ws) > l(w) for all s ∈ Wλ},
where l is the length function on W . Then the composition of Wλ ↪→ W → W/Wλ

becomes a bijective map Wλ ∼→ W/Wλ, so that Wλ gives a complete set of representatives
of W/Wλ. Moreover, w ∈ Wλ is the unique element of smallest length in the coset
wWλ and we may call the set Wλ minimal coset representatives (see Humphreys [6,
Section 1.10]).

6.2.
We review the definition of the weak Bruhat order on the Weyl group W and that

of the Hasse diagram of a partial ordered set (P,≤).
We recall the weak Bruhat order ≤ on W . For u,w ∈ W , we shall say u ≤ w, if there

exist simple reflections sj1 , . . . , sjt such that l(sj1 · · · sjiu) = ji + l(u) for 1 ≤ ji ≤ jt and
sj1 · · · sjt

u = w, where l is the length function on W . (The usual Bruhat order is defined
by changing simple reflections into root reflections in the definition of the weak Bruhat
order.)

We restrict the weak Bruhat order to the minimal coset representatives Wλ and also
call the weak Bruhat order.

6.3.
Below in Lemma 6.1, we take a specific highest weight λ and a fundamental weight

$ for each simple Lie algebra g of type A2m−1, A2m, Dm and E6:

λ =





l$2 or k$1 + l$2 (A2m−1)

k$1 (A2m)

k$1 (Dm)

k$1 (E6)

$ =





$2 (A2m−1)

$1 (A2m)

$1 (Dm)

$1 (E6).

(20)

We draw the Hasse diagram of Wλ for the highest weight λ above (20). The cover
relation of x and y in Wλ with the weak Bruhat order is that y = sjx with sj a simple
reflection sαj

and l(y) = l(x) + 1. Moreover, we label the edge j, as following:
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c

c
j

The Hasse diagram of (Wλ,≤) in each case is drawn at the end and some of the
vertices are marked with filled black nodes, which we call black circles. The black circles
represent the elements that satisfy the conditions in Lemma 6.1. We call the correspond-
ing cosets in W/Wλ the “middle cosets”.

6.4.
We draw the Hasse diagram of Wλ at the end of this section by studying the lexi-

cographic order on the orbits W · λ. In particular, the Hasse diagrams of Wλ have been
studied as the weight diagrams of minuscule weights, except Figure 3.

We remark that the top vertex is the identity element of the Weyl group.
In Figure 3, there are two sheets of the one of Figure 1. We do not draw edges

between two sheets to be easy to see, although corresponding elements of each sheet are
connected with labeled edge. The top vertex of the left sheet is the identity element and
the top of the right is s1.

6.5.
Lemma 6.1. For the fundamental weight $ in (20) and the highest weight λ in

(20) in each case, the following three conditions for w ∈ Wλ are equivalent.

(1) w 6∈ W̃λ.

(2) w$|hσ = 0.

(3) w is a black circle in Figures at the end of this section.

Remark 6.2. The black circles appeared in the condition (3) mean the vertices
marked with filled black nodes in Figures at the end of this section.

Proof of ((2) =⇒ (1)). By Lemma 2.10, the condition (2) is equivalent to∑m−1
j=0 σj(w$) = 0, where m is the order of σ. If w ∈ W̃λ, we obtain the following

equation, because wσ = σw:

0 =
m−1∑

j=0

σj(w$) = w

( m−1∑

j=0

σj$

)
.

Then $|hσ = 1
m

∑m−1
j=0 σj$ = 0.

On the other hand, $|hσ is a fundamental weight of gσ by Table 1. In particular,
$|hσ 6= 0. This is contradiction. ¤

Proof of ((3) =⇒ (2)). The proof is studied on a case basis. The black circles
are the vertices marked with filled black nodes in at the end of this section.

For (g, gσ, λ) = (A2m−1, Cm, l$2)(l ≥ 1), if we put t = s2m−1s2m−2 . . . s3s2, then
the black circles in Figure 1 are

t1 := t and tj := sj−1s2m−j+1tj−1 (2 ≤ j ≤ m),
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and the fundamental weight $ in (20) is

$2 =
m− 1

m
α1 +

2m− 2
m

α2 + · · ·+ m + 1
m

αm−1 +
m

m
αm

+
m− 1

m
αm+1 + · · ·+ 2

m
α2m−2 +

1
m

α2m−1.

Then

t$2 =
m− 1

m
α1 +

m− 2
m

α2 + · · ·+ 1
m

αm−1 + 0 · αm

+
−1
m

αm+1 + · · ·+ −(m− 1)
m

α2m−1.

We obtain t$2 + σt$2 = 0. We obtain the conclusion by the following claim.

Claim 6.3. If µ + σµ = 0, then sjs2m−jµ + σsjs2m−jµ = 0 (j = 1, . . . , m).

Because s2m−j = σsjσ and sjs2m−j = s2m−jsj , we obtain

σsjs2m−j = σsj(σsjσ) = (σsjσ)sjσ = s2m−jsjσ.

Then

sjs2m−jµ + σsjs2m−jµ = sjs2m−j(µ + σµ) = 0.

Thus we proved the claim.
Then we obtain tj$2 + σtj$2 = 0 (j = 1, . . . , m), inductively.
For (g, gσ, λ) = (A2m−1, Cm, k$1 + l$2) (k, l ≥ 1), put t = s2m−1s2m−2 . . . s2 and

t′ = ts1, then the black circles in Figure 3 are:

t1 := t, tj := sj−1s2m−1tj−1 (2 ≤ j ≤ m), and t′j := tjs1 (1 ≤ j ≤ m).

By the previous case, tj$2 + σtj$2 = 0. Then t′j$2 + σt′j$2 = 0, because s1$2 = $2.
For (g, gσ, λ) = (A2m, Bm, k$1) (k ≥ 1), the black circle in Figure 4 is

t1 = sm . . . s2s1,

and the fundamental weight $ in (20) is

$1 =
2m

2m + 1
α1 + · · ·+ m + 1

2m + 1
αm

+
m

2m + 1
αm+1 + · · ·+ 1

2m + 1
α2m.

Then,
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t1$1 =
−1

2m + 1
α1 + · · ·+ −m

2m + 1
αm

+
m

2m + 1
αm+1 + · · ·+ 1

2m + 1
α2m.

We obtain t1$1 + σt1$1 = 0.
For (g, gσ, λ) = (Dm, Bm−1, k$1) (k ≥ 1), the black circles in Figure 5 are:

t1 = sm−1sm−2 . . . s2s1 and t2 = smsm−2 . . . s2s1,

and the fundamental weight $ in (20) is

$1 = α1 + · · ·+ αm−2 +
1
2
αm−1 +

1
2
αm.

Then,

t1$1 =
−1
2

αm−1 +
1
2
αm and t2$1 =

1
2
αm−1 − 1

2
αm.

We obtain t1$1 + σt1$1 = 0 and t2$1 + σt2$1 = 0.
For (g, gσ, λ) = (E6, F4, k$1) (k ≥ 1), the black circles in Figure 6 are:

t1 = s1s3s4s2s5s4s3s1, t2 = s6s3s4s2s5s4s3s1 and t3 = s5s6s4s2s5s4s3s1,

and the fundamental weight $ in (20) is

$1 =
4
3
α1 + α2 +

5
3
α3 + 2α4 +

4
3
α5 +

2
3
α6.

Then,

t1$1 =
−2
3

α1 +
−1
3

α3 +
1
3
α5 +

2
3
α6.

t2$1 =
1
3
α1 +

−1
3

α3 +
1
3
α5 +

−1
3

α6.

t3$1 =
1
3
α1 +

2
3
α3 +

−2
3

α5 +
−1
3

α6.

We obtain t1$1 + σt1$1 = t2$1 + σt2$1 = t3$1 + σt3$1 = 0.
For (g, gσ, λ) = (D4, G2, k$1) (k ≥ 1), the black circles in Figure 5 at the end of

this section are:

t1 = s3s2s1 and t2 = s4s2s1,

and the fundamental weight in (20) is



Branching rules 173

$1 = α1 + α2 +
1
2
α3 +

1
2
α4.

Then,

t1$1 =
−1
2

α3 +
1
2
α4, t2$1 =

1
2
α3 − 1

2
α4.

We obtain t1$1 + σt1$1 + σ2t1$1 = 0 and t2$1 + σt2$1 + σ2t2$1 = 0.
Thus we obtain the conclusion in all the cases. ¤

Proof of ((1) =⇒ (3)). We prove that the number of Wλ r W ′λ′ equals the
number of black circles on a case basis. That is, we calculate

]
(
Wλ rW ′λ′) = ](W/Wλ)− ]

(
W ′/W ′λ′),

for each λ in (20).
For (g, gσ, λ) = (A2m−1, Cm, l$2) (l ≥ 1),

]
(
Wλ rW ′λ′) =

(2m)!
2 · (2m− 2)!

− m! · 2m

2 · (m− 2)! · 2m−2
= m.

For (g, gσ, λ) = (A2m−1, Cm, k$1 + l$2) (k, l ≥ 1),

]
(
Wλ rW ′λ′) =

(2m)!
(2m− 2)!

− m! · 2m

(m− 2)! · 2m−2
= 2m.

For (g, gσ, λ) = (A2m, Bm, k$1) (k ≥ 1),

]
(
Wλ rW ′λ′) =

(2m + 1)!
(2m)!

− m! · 2m

(m− 1)! · 2m−1
= 1.

For (g, gσ, λ) = (Dm, Bm−1, k$1) (k ≥ 1),

]
(
Wλ rW ′λ′) =

m! · 2m−1

(m− 1)! · 2m−2
− (m− 1)! · 2m−2

(m− 2)! · 2m−2
= 2.

For (g, gσ, λ) = (E6, F4, k$1) (k ≥ 1),

]
(
Wλ rW ′λ′) =

27 · 34 · 5
5! · 24

− 27 · 32

3! · 23
= 3.

For (g, gσ, λ) = (D4, G2, k$1) (k ≥ 1),

]
(
Wλ rW ′λ′) =

4! · 23

3! · 22
− 22 · 3

2
= 2. ¤
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We have proved all the facts postponed in Section 4. Thus we complete the proof of
Theorems 1.1 and 1.2.
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Figure 1. W k$2 (g = A2m−1).

We draw the diagram of W k$2 (g = A7) for convenience.

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@@ @

@
@

@@
¡

¡
¡

¡
¡

¡
¡

¡¡

¡
¡

¡
¡

¡
¡

¡¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡ ¡

¡
¡

¡¡
b

b

b

r

b

b

b

b

b

b

b

b

b

b

b

r

b

b

b

b

b

b

b

r

b

b

b
r

2

1

3

2

4

3

5

4

6

5

7

6

3

1

4

2

5

3

6

4

7

5

4

1

5

2

6

3

7

4

5

1

6

2

7

3

6

1

7

2

7

1

Figure 2. W k$2 (g = A7).
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Figure 3. W k$1+l$2 (g = A2m−1). The top of the left is 1 and that of the right is s1.
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Figure 6. W k$1 (g = E6).
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