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Abstract. Let (X, o) be a normal complex surface singularity. We define an
invariant pe(X, o) for (X, o) in terms of pencils of compact complex curves. Similarly,
for a pair of (X, o) and h ∈ mX,o (the maximal ideal of OX,o), we define an invariant
pe(X, o, h). We call pe(X, o) (resp. pe(X, o, h)) the pencil genus of (X, o) (resp. a
pair of (X, o) and h). In this paper, we give a method to construct pencils of compact
complex curves by gluing a resolution space of (X, o) and resolution spaces of some
cyclic quotient singularities. Using this, we prove some formulae on pe(X, o, h) and
estimate pe(X, o). We also characterize Kodaira singularities in terms of pe(X, o, h).

1. Introduction.

In the field of complex surface singularity theory, there have been several works until
now about relations between singularities and pencils (one parameter families) of alge-
braic curves. With respect to their relation, V. Kulikov [Ku] showed that unimodal and
bimodal singularities classified by V. I. Arnold [Arn] are obtained through a procedure
(see Definition 3.7 of this paper) from Kodaira’s list [Ko] of pencils of elliptic curves.
In addition, M. Reid [Re1] pointed out relations between minimally elliptic singularities
and pencils of elliptic curves. Further, generalizing the procedure of Kulikov, U. Karras
[Ka1] introduced the notion of Kodaira singularities in terms of pencils of curves. He also
applied it to the deformation theory of surface singularities. In [St1], J. Stevens studied a
subclass of Kodaira singularities (called Kulikov singularities) and proved some relations
between them and deformations of curve singularities. In this paper, we also study some
relations between surface singularities and pencils of compact complex algebraic curves.

Before describing our main results, we review some facts and definitions. Let S

be a non-singular complex surface and ∆ ⊂ C a small open disc around the origin.
If Φ : S → ∆ is a proper surjective holomorphic map with connected fibers and the
generic fiber St := Φ−1(t) (t 6= 0) is a smooth curve of genus g, it is called a pencil of
curves of genus g. If Φ : S → ∆ is a pencil of curves, the intersection matrix of any
connected one-dimensional analytic proper subset E in supp(So) is negative definite from
Zariski’s lemma ([BPV, p. 90]). Hence E is contracted to a normal surface singularity by
Grauert’s result ([G, p. 367]). In this paper, we consider the converse problem. Namely,
we will construct pencils of curves from resolution spaces of normal surface singularities
and holomorphic functions on them (Theorem 2.4).
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Definition 1.1. Let (X, o) be a normal surface singularity and π : (X̃, E) → (X, o)
a resolution. Let Φ : S → ∆ be a pencil of curves.

(i) If (S, supp(So)) ⊃ (X̃, E) (i.e., S ⊃ X̃ and supp(So) ⊃ E), then Φ is called a
pencil of curves including (X̃, E), where supp(So) is the support of So.

(ii) If h ∈ mX,o satisfies h ◦ π = Φ, then Φ is called a pencil of curves extending
h ◦ π or an extension of h ◦ π. Namely it implies the following diagram:

⊂ S(X̃, E)(X, o)

∆

π

Φ,
h

¾

?

XXXXXXXXXz

where supp(So) ⊃ E and h ◦ π = Φ|X̃ .
(iii) Under the situation of (ii), if there is no (−1) curve in supp(So)\E which does

not intersect E, then we call Φ a pencil of curves minimally extending h◦π or a minimal
extension of h ◦ π.

Definition 1.2.

(i) Let (X, o) be a normal surface singularity and h ∈ mX,o. If h defines a reduced
curve on X, then h is called a reduced element.

(ii) Let (R, m) be a commutative local ring and h a non-zero element of m. Then h

is called a perfect power element if there is an element g ∈ m satisfying h = gk for some
positive integer k = 2.

In this paper, we prove that if h ∈ mX,o is not a perfect power element, then there
is a pencil of curves extending h ◦ π (see Theorem 2.4). Here we can state the following
definition.

Definition 1.3. Let (X, o) be a normal surface singularity.
(i) We define a holomorphic invariant for (X, o) as follows:

pe(X, o) = min{the genus of a pencil of curves including a resolution of (X, o)}.

(ii) Let h ∈ mX,o be not a perfect power element. We also define a holomorphic
invariant for a pair of (X, o) and h as follows:

pe(X, o, h) = min{the genus of a pencil of curves extending h ◦ π for a resolution

π of (X, o)}.

Then, pe(X, o) (resp. pe(X, o, h)) is called the pencil genus of (X, o) (resp. a pair of
(X, o) and h).

Remark 1.4. Let (X, o) be a normal isolated singularity. In general, if h ∈ mX,o

is a reduced element, then it defines a one parameter smoothing of (X, o) ([Mah1,
p. 150]). Using formal completion argument presented by M. Artin, E. Looijenga [Lo,
p. 301] proved that if h ∈ mX,o is an element that gives a one parameter smoothing
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h : (X, o) → (C1, o), then there is a flat projective morphism ψ : Z → C1 and an
embedding φ : X → Z satisfying h = ψ ◦φ. In Section 2 of this paper, we prove a similar
result (see Theorem 2.4) in the case of dimC(X, o) = 2 and h is not a perfect power
element by a different method. From this method we can compute pe(X, o, h) for (X, o)
and h.

Remark 1.5.

(i) Let (X, o) be a normal isolated singularity. Let (X̃, E) π−→ (X, o) be an arbitrary
resolution. Then there is a pencil of curves S

Φ−→ ∆ of genus pe(X, o) and including

(X̃, E). In fact, there is a pencil of curves Ŝ
Φ̂−→ ∆ of genus pe(X, o) and including a

resolution space (X̂, Ê) of (X, o). There is a birational transformation ϕ̄ from X̃ to X̂.
Thus, there is a complex surface S and a birational transformation S

ϕ−→ Ŝ such that
ϕ|X̃ = ϕ̄ and Φ := Φ̂ ◦ ϕ : S → ∆ gives a pencil of curves. The genus of Φ is pe(X, o)
and (X̃, E) ⊂ (S, supp(So)).

(ii) Let (X̃i, E(i)) πi−→ (Xi, o) be a resolution of a normal surface singularity for
i = 1, 2. If (X̃1, E(1)) ⊃ (X̃2, E(2)), then pe(X1, o) = pe(X2, o). In fact, there is a
pencil of curves S1

Φ1−−→ ∆ of genus pe(X1, o) and including (X̃1, E(1)) from (i). Then
(S1, supp(S1)o) ⊃ (X̃2, E(2)); hence pe(X1, o) = pe(X2, o). Further, if hi ∈ mXi,o for

i = 1, 2 and h1 ◦ π1|X̃2
= h2 ◦ π2, then pe(X1, o, h1) = pe(X2, o, h2). In fact, if S1

Φ1−−→ ∆
is a pencil of curves of genus pe(X1, o, h1) which is an extension of h1 ◦π1, then h2 ◦π2 =
h1 ◦ π1|X̃2

= Φ1|X̃2
; hence pe(X1, o, h1) = pe(X2, o, h2).

Remark 1.6. For rational double points, pe(X, o) = 0 for any singularity of type
An (n = 1, 2, . . . ) or Dn (n = 4, 5, . . . ), as shown in the following configurations:

⊂ ⊂-1 -1and .

On the other hand, we prove pe(X, o) = 1 for a singularity of type En for n = 6, 7 and 8
(see Proposition 3.12).

Let (X, o) be a normal surface singularity. Let π : (X̃, E) → (X, o) be a resolution
and let E =

⋃r
i=1 Ei be the irreducible decomposition. For an element h ∈ mX,o,

let (h ◦ π)X̃ be the divisor defined by h ◦ π on X̃. The exceptional part E(h ◦ π) of
(h ◦ π)X̃ is defined by E(h ◦ π) =

∑r
i=1 vEi

(h ◦ π)Ei, where vEi
(h ◦ π) indicates the

vanishing order of h ◦ π on Ei. Let Λ(h ◦ π) be the strict transform of the divisor
{h = 0} in X by π. If supp(Λ(h ◦ π)) =

⋃s
j=1 Cj is the irreducible decomposition, then

Λ(h ◦ π) =
∑s

j=1 vCj
(h ◦ π)Cj and it is called the non-exceptional part of (h ◦ π)X̃ . For

an effective cycle D =
∑r

i=1 diEi on E, the arithmetic genus of D is defined as

pa(D) := 1 +
1
2
(
D2 + KX̃D

)
, (1.1)

where KX̃ is the canonical bundle (or divisor) on X̃. For the (Artin’s) fundamental cycle
ZE := min{D =

∑r
i=1 aiEi|ai > 0 and DEi 5 0 for i} ([Art]), the value of pa(ZE) is
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independent of the choice of a resolution, and so we put it pf (X, o) in this paper. The
positive cycle ME := min{E(h ◦ π)|h ∈ mX,o} on E is called the maximal ideal cycle on
E and we have ZE 5 ME ([Y]). In this paper, MX represents the maximal ideal cycle
on the minimal resolution.

From now on we explain our main results of this paper. In the following, let h ∈ mX,o

be not a perfect power element; furthermore, assume that red(h◦π)X̃ is a simple normal
crossing divisor on X̃.

In Section 2, we construct a pencil of curves Φ : S → ∆ of genus pe(X, o, h) such
that Φ is a minimal extension of h ◦ π and all connected components of supp(So)\E are
minimal P 1-chains started from E (Theorem 2.4). By the properties of the pencil of
curves constructed from h ◦π as in Theorem 2.4, we can characterize the numerical type
(i.e., the weighted dual graph and the coefficient for any irreducible component of the
singular fiber) of a pencil of curves of genus pe(X, o, h) which is an extension of h ◦ π

(Theorem 2.9). Also, using the construction of Theorem 2.4, we prove the following
equality (Corollary 2.12),

pe(X, o, h) = δ(h)− r(h) + 1,

for a reduced element h ∈ mX,o, where δ(h) (resp. r(h)) is the conductor number (resp.
the number of irreducible components) of the curve singularity {h = 0} ⊂ X.

In Section 3, first we prove the following inequality (Theorem 3.5),

pf (X, o) 5 pe(X, o) 5 pa(MX) + mult(X, o)− 1,

where mult(X, o) is the multiplicity. If pf (X, o) = pe(X, o), then (X, o) is called a weak
Kodaira singularity (Definition 3.6). From a result by U. Karras (cf. [Ka2, Lemma
3.4] and Proposition 3.10 (ii) of this paper), any Kodaira singularity is a weak Kodaira
singularity. Second, in Theorem 3.11, we characterize Kodaira singularities and Kulikov
singularities in terms of pencil genus. The statements are given by the existence of a good
function h ∈ mX,o satisfying the equality pf (X, o) = pe(X, o) = pe(X, o, h). Third, we
compute pe(X, o) for log-canonical singularities and rational triple points (Proposition
3.12 and 3.13).

In Section 4, we consider cyclic covers of normal surface singularities and pencil
genus for them. Let (Y, o) be a normal complex surface singularity and let h ∈ mY,o

be a semi-reduced element (Definition 4.6). Let (X, o) be a normalization of the cyclic
covering defined by zn = h over (Y, o). We prove that there is a positive integer Nh(Y, o)
such that (X, o) is a weak Kodaira singularity satisfying pf (X, o) = pe(Y, o, h) for any
positive integer n = Nh(Y, 0) (Theorem 4.12). Furthermore, we prove that if h is a
reduced element, then (X, o) is a Kulikov singularity (Theorem 4.14).

Let (X, o) be a normal hypersurface singularity defined by zn = f(x, y) and ` ∈ n\n2,
where n is the maximal ideal (x, y) ⊂ C{x, y}. Let Io(`, h) be the intersection multiplicity
of {h = 0} and {` = 0} at {0} ∈ C2 ([BK, p. 47], [Na, p. 231]). In Section 5, a formula
of pe(X, o, `) is proven in terms of n and Io(`, h) (Theorem 5.4).

Notations and terminologies. Let M be a complex surface and let D =
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∑r
i=1 diAi be a divisor on M , where each Ai is a reduced and irreducible curve. In

this paper, we put supp(D) =
⋃r

j=1 Aj (the support of D), red(D) =
∑r

j=1 Aj (the
reduced divisor of D) and CoeffAj

D = dj . Futher, if A is a reduced divisor with
supp(A) ⊂ supp(D), then we put supp(D)\A := supp(red(D) − A). Assume that
B :=

⋃m
j=1 Aij ⊂ supp(D), where m < r. Let D|B =

∑m
j=1(CoeffAij

D)Aij . Let
E =

⋃r
j=1 Ej ⊂ M be the irreducible decomposition of a compact algebraic curve E.

Suppose that E2
j 5 0 for any j and E =

∑r
j=1 Ej is a simple normal crossing divisor

on M . For (M, E), the weighted dual graph (=w.d.graph) ΓE of E is a graph such that
each vertex of ΓE represents an irreducible component Ej weighted by E2

j and g(Ej)
(= genus), while each edge connecting to Ei and Ej , i 6= j, corresponds to point Ei ∩Ej .
For example, if E2

i = −bi and g(Ei) = gi > 0 (resp. gi = 0), then Ei corresponds to a
vertex that is configured as follows:

-bi

[gi]
-bi ) -2meansand .(resp.

For fundamental notations and terminologies, please refer [La3], [O] and [Re2].

2. Pencils of curves constructed from normal surface singularities.

With respect to the construction of pencils of curves, there are several results after
Kodaira’s work [Ko] for pencils of elliptic curves. For a given curve (not necessarily
irreducible) satisfying some condition, G. Winters [Wi] proved the existence of a pencil
of curves whose singular fiber is equal to the given curve. In [Ka1] and [Ka2], U. Karras
constructed pencils of curves by gluing resolution spaces of Kodaira singularities and
open neighborhoods of some (−1) curves. Let (X, o) be a normal surface singularity and
h ∈ mX,o not a perfect power element. This paper, generalizing his method, presents
a way to construct pencils of curves of genus pe(X, o, h) by gluing a resolution space of
(X, o) and some cyclic quotient singularities.

Let us prepare some facts on cyclic quotient singularities. Let n and q be positive
integers. Let Gn,q be the cyclic group generated by (en, eq

n)
(

:=
( en 0

0 eq
n

) ∈ GL(2,C)
)
,

where en = exp
(

2π
√−1
n

)
. Then we obtain a cyclic quotient singularity (C2/Gn,q, o). It

is indicated by Cn,q. Also, we call it a cyclic quotient singularity of type Cn,q. However,
for reasons of our argument, we do not assume that n > q and gcd(n, q) = 1. Hence,
if gcd(n, q) = r and n = rn1 and q = rq1, then Cn,q = Cn1,q1 . In this paper, a non-
singular point is a cyclic quotient singularity; it is expressed by C1,0. The cyclic quotient
singularity Cn,q has a good resolution whose w.d.graph is given as

. . . ,-b1 -b2 -br (2.1)

where n
q = [[b1, . . . , br]] := b1 − 1

b2 − 1
. . .

−
1
br

and b1 = 1 and bi = 2 for i = 2. Such a
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good resolution is said to be the standard resolution of Cn,q. If 1 5 q < n, then b1 = 2
and the standard resolution equals the minimal resolution of Cn,q; also b1 = 1 if q > n.
The standard resolution of a non-singular point C1,0 is designated a neighborhood of a
(−1) curve. For cyclic quotient singularities, please refer [Fu] and [Ri].

Every quotient singularity is a rational singularity. For rational singularities, the
following is known ([Li, Theorem 12.1]). Here we give a simple proof for it in the
category of complex geometry, which is indicated by M. Tomari.

Lemma 2.1. Let π : (X̃, E) −→ (X, o) be a resolution of a rational singularity. If
D is a divisor on X̃ with DEi = 0 for any irreducible component Ei of E, then D is
linearly equivalent to the zero divisor (i.e., there is a meromorphic function f on X̃ with
D = {f = 0}). Especially, if D is effective, then there is an element h ∈ mX,o such that
(h ◦ π)X̃ = D.

Proof. From the exact sequence 0 → ZX̃ → OX̃ → O∗
X̃
→ 0, we have the

following:

0 = H1
(
X̃, OX̃

) → H1
(
X̃, O∗

X̃

) δ−→ H2
(
X̃, ZX̃

) → H2
(
X̃, OX̃

)
= 0.

We have H2(X̃, ZX̃) ' ⊕r
i=1 H2(Ei,Z) since X̃ is contractible to E. Because the

isomorphic map H1(X̃, O∗
X̃

) ' ⊕r
i=1 H2(Ei,Z) is given by the restriction of the first

Chern class of OX̃(D) to E, it is given by D 7→ (DE1, . . . , DEr). This yields the proof.
¤

Definition 2.2. Let E be supp(So) for a pencil of curves Φ : S → ∆ or the
exceptional set of a resolution of a normal surface singularity. Let F =

⋃r
i=1 Fi be the

irreducible decomposition of a one-dimensional analytic subset F of E.
(i) If r = 3 and

FiFj =

{
1 if j = i + 1 or (i, j) = (1, r)

0 otherwise

for i 6= j, then F is called a cyclic chain. If r = 2 and F1F2 = 2 and F1 and F2 intersect
at two different points, then F is also called a cyclic chain.

(ii) Assume that the w.d.graph of F is given as

-b1 -b2 -br

F1 F2 Fr

· · ·
· · ·

.

If (E\F )F = E1F1 = 1 for an irreducible component E1 of E\F , then F is said to be a
P 1-chain (of type (b1, . . . , br)) started from E1. If (E\F )F = 2 and E1F1 = E2Fr = 1
for irreducible components E1, E2 of E\F , then F is said to be a P 1-chain (of type
(b1, . . . , br)) between E1 and E2. For these cases, r is called the length of F , and F is
said to be a minimal P 1-chain if bi 5 −2 for any i.



Pencil genus for normal surface singularities 41

Definition 2.3. Let S be a non-singular complex surface and ∆ ⊂ C a small
open disc around the origin. If Φ : S → ∆ is a proper surjective holomorphic map and
the generic fiber St := Φ−1(t) (t 6= 0) is a smooth curve (but not necessarily connected),
then it is called a quasi-pencil of curves.

If Φ is a quasi-pencil of curves whose any fiber is connected, it is a pencil of curves.
If Φ : S → ∆ is a pencil of curves, then Φk : S → ∆ (k = 2) is a quasi-pencil of curves,
but not a pencil of curves, because the general fiber is not connected. Conversely, using
Stein factorization, we can observe that if So is a singular fiber of a quasi-pencil of curves,
then So = kS̄o (as a formal sum of curves) for the singular fiber S̄o of a pencil of curves
and k = 1.

For a normal surface singularity (X, o) and not a perfect power element h ∈ mX,o,
let π : (X̃, E) → (X, o) be a resolution such that red(h◦π)X̃ is simple normal crossing. In
the following, a pencil of curves extending h ◦π is constructed by gluing X̃ and standard
resolution spaces of cyclic quotient singularities.

Theorem 2.4. Let (X, o) be a normal surface singularity and h ∈ mX,o. Let
π : (X̃, E) → (X, o) be a good resolution such that red((h ◦ π)X̃) is a simple normal
crossing divisor on X̃. Then there exists a quasi-pencil of curves Φ : S → ∆ such that
Φ|X̃ = h◦π and all connected components of supp(So)\E are minimal P 1-chains started
from E. Further, if h is not a perfect power element, then Φ : S → ∆ above is a pencil
of curves extending h ◦ π.

Proof. Let (h ◦ π)X̃ =
∑r

i=1 aiEi +
∑s

j=1 γjCj , where E =
⋃r

i=1 Ei and
supp(Λ(h ◦ π)) =

⋃s
j=1 Cj are the irreducible decompositions of the exceptional set

and the non-exceptional part respectively. Let Eij
be an irreducible component of

E intersecting Cj for j = 1, . . . , s. Let (Vj ; zj,1, zj,2) be a local coordinate neigh-
borhood of Eij

∩ Cj in X̃ such that Eij
= {zj,1 = 0} and Cj = {zj,2 = 0} and

h ◦ π|Vj = z
aij

j,1 z
γj

j,2 on Vj . Consider a cyclic quotient singularity Cāj ,r̄j for j = 1, . . . , s,
where āj = aij

/ gcd(aij
, γj) and γ̄j = γj/ gcd(aij

, γj). Let (Ỹj , Fj) be the standard reso-
lution of Cāj ,γ̄j and Fj =

⋃`j

k=1 Fj,k the irreducible decomposition. Thereby, F 2
j,k = −δj,k,

where āj

γ̄j
= [[δj,1, . . . , δj,`j

]]. From Lemma 2.1, there is a holomorphic function hj on
Ỹj such that (hj)Ỹj

= aij
Fj,0 + γjFj,1 +

∑`j

k=2 εj,kFj,k, where Fj,0 is a non-exceptional
curve on Ỹj intersecting Fj,1 transversally and εj,2, . . . , εj,`j

are positive integers deter-
mined by (hj)Ỹj

Fj,k = 0 for any k. Further, we choose a small open neighborhood Wj

of Fj,0 ∩ Fj,1 in Ỹj and a local coordinate (wj,1, wj,2) on Wj such that Fj,0 = {wj,1 = 0}
and Fj,1 = {wj,2 = 0} and hj |Wj

= w
aij

j,1 w
γj

j,2. Gluing Vj and Wj by zj,1 = wj,1 and
zj,2 = wj,2 for each j, we can obtain a surface S̄ = X̃ ∪ Ỹ1 ∪ · · · ∪ Ỹs/ ∼ and a holo-
morphic function Φ̄ : S̄ −→ C such that Φ̄|X̃ = h ◦ π and Φ̄|Ỹj

= hj for j = 1, . . . , s.
Then A := supp(Φ̄−1(o)) = E ∪ (

⋃s
j=1 Fj) is a one-dimensional compact analytic subset

of S̄. From [St] (or [Fi, p. 56]), there are open neighborhoods S of A in S̄ and ∆ of {o}
in C, respectively, such that Φ := Φ̄|S : S −→ ∆ is a proper holomorphic map. From
the construction we can easily see that Φ|X̃ = h ◦ π. For any point P ∈ A, we can
choose a local coordinate (u, v) on an open neighborhood U of P such Φ = uαvβ on U

for non-negative integers α and β. Then the fiber St = Φ−1(t) is a non-singular curve
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for any t ∈ ∆− {o} if we take ∆ is sufficiently small. Therefore Φ : S −→ ∆ is a desired
quasi-pencil of curves.

Next, assume that h is not a perfect power element. Consider the Stein factorization
of Φ as

S ∆ ,

∆̄
Φ′ η

Φ
-

Q
QQs ´

´́3

where Φ′ is proper and the fiber is connected and η is a finite map. Then η is given by
t = η(v) = vnη1(v) (n = 1), where v is a coordinate on ∆̄ and η1(0) 6= 0. Because Φ′|X̃
is a holomorphic map with Φ′|X̃(E) = 0, there exists g ∈ mX,o satisfying g ◦ π = Φ′|X̃ .
Let u ∈ OX,o be a unit determined by u ◦ π = η1 ◦ Φ′|X̃ . Since there is ū ∈ OX,o with
ūn = u, we have h = (gū)n from h ◦ π = Φ = η ◦ Φ′ = Φ′n · (η1 ◦ Φ′) = (g ◦ π)n(u ◦ π) =
(gnu) ◦ π = (gū)n ◦ π on X̃. Because h is not a perfect power element, we have n = 1;
therefore, any fiber of Φ is connected. Hence Φ gives a pencil of curves. ¤

Here we give some examples to explain the procedure in Theorem 2.4.

Example 2.5.

(i) Let (X, o) = (C2, o) and h1 = x2 + y3 and h2 = x5y4(x + y)2. Let σj :
(X̃j , E(j)) −→ (C2, o) be the minimal embedded resolution of a curve singularity {hj =
0} for j = 1, 2. Let Φj : S(j) → ∆j be a pencil of curves constructed as in Theorem 2.4.
Then the divisor (h1 ◦ σ1)X̃1

and the singular fiber S(1)o is given as follows:

-3 -1

*

-3 -1

-6

2 6 3

1

2 6 3

1

⊂ ,

where ∗ indicates the strict transforms of irreducible components of {h1 = 0}. Then we
have pa(S(1)o) = 1 from (1.1) and the adjunction formula (i.e., KSEi = −E2

i +2g(Ei)−
2). Also the divisor (h2 ◦ σ2)X̃2

and the singular fiber S(2)o is given as

-1

*

* *
115 4

2

115 4

2

-3 -3 -4

-6

4321

1

1
-1⊂ .

Then we have pa(S(2)o) = 5. In Theorem 2.9, we prove that the value of pa(S(j)o) is
equals to pe(X, o, hj). Hence pe(C2, o, x2 + y3) = 1 and pe(C2, o, x5y4(x + y)2) = 5.

(ii) Let (X, o) = ({x2 + y3 + z5 = 0}, o) (a rational double point of type E8).
(X, o) is a double covering over C2 branched along a plane curve C := {y3 + z5 = 0}.
Let V

σ−→ C2 the minimal embedded resolution of C. Taking the double coveing over
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V branched along σ∗(C) (total transform of C), we can obtain the minimal resolution
(X̃, E) π−→ (X, o) and the divisor (x ◦ π)X̃ (cf. [Tt2, Lemma 3.1] or [Lemma 4.3 in this
paper]). Similarly, we can obtain the divisors (y ◦ π)X̃ and (z ◦ π)X̃ . Applying Theorem
2.4 for them, the singular fibers of the pencils of curves constructed from x, y and z are
given as

Then we can see that pe(X, o, x) = 4, pe(X, o, y) = 2 and pe(X, o, z) = 1 from (1.1) and
the adjunction formula and Theorem 2.9.

Remark 2.6. If (X, o) is a normal surface singularity with C∗-action, then it
is known to construct pencils of curves including a resolution space of (X, o) using a
weighted projective space. For example, let (X, o) be the singularity of 2.5 (ii) and
X̄o := {x2 + y3 + z5 = 0} ⊂ P (15, 10, 6, 1). If we put P = [0 : 0 : 0 : 1] ∈ X̄o, then
(X̄o, P ) ' (X, o). Let ψ : P (15, 10, 6, 1) −→ P 1 be a map defined by [x : y : z : w] −→
[x : w15]. Let π : S −→ X̄o be a resolution of (X̄o, P ) and let Φ : S −→ P 1 be a map
ψ ◦ π. Then Φ is isomorphic to the pencil of curves determined by x in 2.5 (ii) near the
singular fiber Φ−1([0 : 1]). In [Sa], K. Saito considered similar constructions of pencils
of curves in a slightly different situation.

All pencils of curves constructed as in Theorem 2.4 form a subclass of the class of
all pencils of curves. However, there is not a large gap between them. For these classes,
we prove the following.

Theorem 2.7. Let Φ : S → ∆ be a pencil of curves. Let take a suitable successive
blowing-up S̃

σ−→ S and choose a sufficiently small disc ∆′ (⊂ ∆). Let Φ̃ := Φ ◦ σ

and let consider a pencil of curves Φ̃′ : S′ := Φ̃−1(∆′) → ∆′. Then there is a normal
surface singularity (X1, o) and a cyclic quotient singularity (X2, o) and resolutions πk :
(X̃k, E(k)) → (Xk, o) (k = 1, 2) such that S̃ is a gluing of X̃1 and X̃2 and Φ̃ is an
extension of h1 ◦ π1 and h2 ◦ π2, where h1 ∈ mX1,o is not a perfect power element and
h2 ∈ mX2,o.

Proof. By taking suitable successive blowing-up S̃
σ−→ S, we may assume that

red(S̃o) is a simple normal crossing divisor and supp(S̃o) contains a P 1-chain F started
from E := supp(S̃o)\F and E ∩ F is a non-singular point P of red(S̃o). Let E1 (⊂ E)
and F1 (⊂ F ) be irreducible components with E1 ∩ F1 = P . Let (U ;u, v) be a small
open coordinate neighborhood in S̃ around P such that E1 = {u = 0} and F1 = {v = 0}
in U . Let X̃1 and X̃2 be small open neighborhoods of E and F , respectively, such that
X̃1 ∩ X̃2 = U . Let πk : (X̃k, E) → (Xk, o) be the contraction to a normal surface
singularity (k = 1, 2). Then (X2, o) is a cyclic quotient singularity. There is an element
hk ∈ mXk,o ⊂ OXk,o with Φ|X̃k

= hk ◦πk (k = 1, 2). Therefore, πk gives a good resolution
of (Xk, o) such that red((hk ◦ πk)X̃k

) is simple normal crossing. By gluing (X̃1, h1 ◦ π1)
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and (X̃2, h2 ◦ π2) on U by identification on S̃, we obtain a pencil of curves Φ̃′ : S̃′ → ∆′

satisfying S′ ⊂ S and ∆′ ⊂ ∆ and Φ|S′ = Φ̃′.
If Φ is a non-multiple pencil of curves, then h1 is obviously not a perfect power

element; it completes the proof. Assume that Φ is a multiple pencil of curves. Suppose
that h1 is a perfect power element with h1 = h`

3 (` = 2) for h3 ∈ mX1,o. If we put
So|X̃2

= c0E1|U +
∑r

i=1 ciFi, then `|cj and so put c̄j = cj/` for i = 0, . . . , r. From
Lemma 2.1, there exists h4 ∈ mX2,o with (h4 ◦ π2)|X̃2

= c̄0E1|U +
∑r

i=1 c̄iF̄i. If we put
δ := h2/h`

4, then δ ∈ OX2,o\mX2,o; and so there is δ1 ∈ OX2,o with δ = δ`
1. Hence

h2 = (δ1h4)`. On the other hand, we have hk ◦ πk = uc0vc1 (k = 1, 2) on U ; thereby,
h3 ◦π1 = (δ1h4)◦π2 = uc̄0vc̄1 on U after choosing suitable branches h3 and h4. By gluing
as above, there is a quasi-pencil of curves Φ1 : S′ → ∆′ such that Φ1|X̃1

= h3 ◦ π1 and
Φ1|X̃2

= (δ1h4) ◦ π2. Hence Φ̃′ = Φ`
1 (` = 2) and then Φ̃′ is a quasi-pencil of curves but

not a pencil of curves. This is a contradiction; thus h1 is not a perfect power element. ¤

From the proof above, we can see that if red(So) is normal crossing and supp(So)
contains a P 1-chain F and F ∩ (supp(So)\F ) is a non-singular point of red(So), then we
may assume that σ in Theorem 2.7 is the identity map (i.e., S̃ = S)

In the following, we prove that the genus of a pencil of curves obtained as in Theorem
2.4 is equal to pe(X, o, h). We prepare the following lemma for it.

Lemma 2.8. Let (X̃, E) → (X, o) be a good resolution of a normal surface sin-
gularity and let D =

∑r
j=0 djEj be a cycle on

⋃r
j=0 Ej (⊂ E), where

⋃r
j=1 Ej is a

P 1-chain started from E0. Assume DEj = 0 for j = 1, . . . , r. Then KX̃(
∑r

j=1 djEj) =
d0 − d1 − gcd(d0, d1), where KX̃ is the canonical bundle.

Proof. From DEj = 0 for j = 1, . . . , r, we have

dj − dj+1bj+1 + dj+2 = 0 for j = 0, . . . , r − 1, (2.2)

where dr+1 := 0. Therefore,

0 =
r−1∑

j=0

(dj − dj+1bj+1 + dj+2) = d0 − d1 − dr −
r∑

j=1

dj(bj − 2)

= d0 − d1 − dr −KX̃

( r∑

j=1

djEj

)

by the adjunction formula. From (2.2), we can easily check that dr = gcd(d0, d1); hence
this completes the proof. ¤

Theorem 2.9. Let (X, o) be a normal surface singularity and let h ∈ mX,o not a
perfect power element. Let π : (X̃, E) → (X, o) be a good resolution such that red((h ◦
π)X̃) is simple normal crossing on X̃. Suppose that Φ : S → ∆ is a pencil of curves
of genus g extending h ◦ π. If g = pe(X, o, h) and Φ is minimally extending h ◦ π, then
any connected component of supp(So)\E is a P 1-chain. Conversely, if any connected
component of supp(So)\E is a P 1-chain, then g = pe(X, o, h). Therefore, any pencil of
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curves constructed from h ◦ π as in Theorem 2.4 is minimally extending h ◦ π and the
genus is equal to pe(X, o, h).

Proof. Assume that g = pe(X, o, h) and Φ is minimally extending h ◦ π. We put
F = supp(So)\E. By taking some blowing-ups on S, we may assume that red(So) is
simple normal crossing.

From now on we show that there are no cyclic chains in supp(So) which contains at
least one irreducible component of F . Suppose that there is a cyclic chain

⋃r
j=0 Aj ⊂

supp(So) (i.e., AiAi+1 6= 0 for i = 0, . . . , r − 1 and ArA0 6= 0) such that A0 is an
irreducible component of F . Let B be the connected component of supp(So)\A0 which
contains E. Let Ỹ be a small neighborhood of B and let ϕ := Φ|Ỹ . From the assumption
of the cyclic chain, we can choose A0 with ](A0∩B) = 2 and so put A0∩B = {P1, . . . , Ps}
(s = 2). Similarly to Theorem 2.4, construct a pencil of curves Φ′′ : S′′ −→ ∆ with
Ỹ ⊂ S′′ and Φ′′|Ỹ = ϕ by gluing Ỹ and resolution spaces of s cyclic quotient singularities
on small neighborhoods of P1, . . . , Ps. Let go be the genus of Φ′′. Let b = −A2

0 and
d = CoeffA0 So. Let Ai1 , . . . , Ais

be irreducible components of B which intersect A0 at
P1, . . . , Ps, respectively, and let aj = CoeffAij

So for j = 1, . . . , s. Then db =
∑s

j=1 aj .
Let Fj (j = 1, . . . , s) be a connected component of supp(S′′o )\B; thus it is a P 1-chain
started from Aij

. Therefore, Lemma 2.8 implies that KS′′(S′′o |Fj
) = aj−d−gcd(aj , d) 5

aj − d − 1 for any j. Since we may assume that there are no (−1) curves in supp(So)\
(B ∪A0), we have

pe(X, o, h) = 1 +
KSSo

2
= 1 +

KS(So|B∪A0 + So|supp(So)\(B∪A0))
2

= 1 +
KS(So|B∪A0)

2
= 1 +

KS(So|B) + KS(dA0)
2

.

Since

KS(So|B) = KS′′
(
S′′o |B

)
and db =

s∑

j=1

aj ,

pe(X, o, h)− go =
1
2
(
KSSo −KS′′S

′′
o

)
= 1

2

{
KS(dA0)−

s∑

j=1

KS′′
(
S′′o |Fj

)}

= 1
2

{
d(b− 2)−

s∑

j=1

(aj − d− 1)
}

= 1
2
{(s− 2)d + s} > 0.

Another hand, Φ′′ : S′′ → ∆ is an extension of h ◦ π and so go = pe(X, o, h) from the
definition of pe(X, o, h). This is a contradiction. Consequently, there are no cyclic chains
in supp(So) containing an irreducible component of F .

Next we prove that any connected component of F is a P 1-chain started from E.
We may assume that red(So) is a simple normal crossing divisor and any irreducible
component of F is P 1. Assume that there is a connected component G of F which
is not a P 1-chain started from E. Since F does not contain any cyclic chain, G is
a tree and it intersects E transversally at only one point. Further, we can easily see
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that G contains an irreducible component Ao such that supp(So)\Ao has a connected
component Go containing E and at least two other different P 1-chains started from Ao.
Let G1, . . . , Gs be those P 1-chains started from Ao (s = 2). Let Aj (resp E1) be the
irreducible component of Gj (resp Go) intersecting Ao for j = 1, . . . , s. Let b = −A2

o,
d = CoeffAo

So and aj = CoeffAj
So for j = 1, . . . , s. Since Φ is minimally extending

h ◦ π, Gi does not contain any (−1) curve. Hence Gi is not a (−1) curve or a P 1-chain
of type (1, 2, . . . , 2). Then we can easily see that d does not divide aj for any j (so
gcd(d, aj) 5 d

2 ). Let Ỹ be a small neighborhood of Go in S and let ϕ̂ = Φ|Ỹ . Let U be a
small neighborhood of a point Go∩Ao in Ỹ . Let (Z̃,

⋃p
j=1 Hj) be the standard resolution

of a cyclic quotient singularity CN,d (N = bd−∑s
j=1 aj = CoeffE1 So). By gluing Ỹ and

Z̃, we can construct a pencil Φ̂ : Ŝ −→ ∆ satisfying Φ̂|Ỹ = ϕ̂. Hence Φ̂ is an extension of
h ◦ π, and the genus ĝ is greater than or equal to pe(X, o, h). Also

⋃p
j=1 Hj is the glued

P 1-chain started from Go, and we can say the following:

supp
(
Ŝo

)
= Go ∪

( p⋃

j=1

Hj

)
, So|Go

= Ŝo|Go
, CoeffE1 Ŝo = N and CoeffH1 Ŝo = d,

where E1 intersects H1 in Ŝ. Lemma 2.8 implies that

0 = pe(X, o, h)− ĝ =
1
2

{
KS

( s∑

j=1

So|Gj

)
+ KS(dAo)−KŜ

(
Ŝo|Sp

k=1 Hk

)}

=
1
2

{ s∑

j=1

(d− aj − gcd(d, aj)) + d(b− 2)−N + d + gcd(N, d)
}

=
1
2

{
sd−

s∑

j=1

gcd(d, aj)− d + gcd(N, d)
}

.

Then we have
∑s

j=1 gcd(d, aj) + d = sd + gcd(N, d) = sd + 1. Since gcd(d, aj) 5 d
2 ,

it yields a contradiction: 0 = ds
2 − d + 1 > 0. Hence any connected component of

supp(So)\E is contracted to a P 1-chain started from E.
Now consider the converse. Let Φ : S −→ ∆ be a pencil of curves of genus g such

that Φ is a minimal extension of h ◦π and also any connected component of supp(So)\E
is a P 1-chain started from E. Let Φ′ : S′ −→ ∆ be a pencil of curves of genus pe(X, o, h)
such that Φ′ is also a minimal extension of h ◦ π. From the proof above, any con-
nected component of supp(S′o)\E is a P 1-chain started from E. We may assume that
any connected component in supp(S′o)\E and supp(So)\E is a minimal P 1-chain. Since
Φ|X̃ = Φ′|X̃ = h ◦ π, any P 1-chain in supp(So)\E is equal numerically to the corre-
sponding one in supp(S′o)\E (i.e., same w.d.graph and same coefficients for any irre-
ducible component). It turns out that So and S′o are numerically equal; consequently,
pe(X, o, h) = g. ¤

Corollary 2.10. Let (X, o) be a normal surface singularity and h ∈ mX,o not a
perfect power element. Let π : (X̃, E) → (X, o) be a good resolution and Φ : S → ∆
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a pencil of curves of genus pe(X, o, h) which is a minimal extension of h ◦ π. Then
the numerical type of So (i.e., CoeffEi

So for any Ei ⊂ supp(So) and the w.d.graph of
supp(So)) is determined uniquely.

In the following, we prove a formula of pe(X, o, h).

Theorem 2.11. Let (X, o) be a normal surface singularity and h ∈ mX,o not a
perfect power element. Let π : (X̃, E) −→ (X, o) be a resolution such that red((h ◦ π)X̃)
is a simple normal crossing divisor. Let Λ(h ◦ π) =

∑r(h)
j=1 γjCj and put C =

∑r(h)
j=1 Cj,

where Cj is an irreducible component for any j. Let n1, . . . , nr(h) be positive integers
denoted by nj = vEij

(h ◦ π) if Eij
intersects Cj. Then

pe(X, o, h) = pa(E(h ◦ π))− E(h ◦ π)2

− 1
2

{
(E(h ◦ π) + E)(Λ(h ◦ π)− C) + r(h) +

r(h)∑

j=1

gcd(nj , γj)
}

.

Further, if h is a reduced element, then

pe(X, o, h) = pa(E(h ◦ π))− E(h ◦ π)2 − r(h).

Proof. Let Φ : S −→ ∆ be a pencil of curves of genus pe(X, o, h) which is a
minimal extension of h◦π. From Theorem 2.9, any connected component of supp(So)\E
is a minimal P 1-chain. Let F1, . . . , Fr(h) be such all connected components of supp(So)\E
and Fj =

⋃tj

k=1 Fj,k such that Cj ⊂ Fj,1. Then CoeffFj,1 So = γj . From Lemma 2.8,
KS(So|Fj

) = nj − γj − gcd(nj , γj) for any j. Since

0 = E(h ◦ π)So = E(h ◦ π)
(

E(h ◦ π) +
r(h)∑

j=1

γjCj

)
= E(h ◦ π)2 +

r(h)∑

j=1

njγj ,

we have

E(h ◦ π)2 = −
r(h)∑

j=1

njγj .

Since

So = E(h ◦ π) +
r(h)∑

j=1

nj(So|Fj
)

and

pe(X, o, h) = pa(So),
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we have

pe(X, o, h)− pa(E(h ◦ π)) + E(h ◦ π)2

=
1
2

{
KS

(
So|Sr(h)

j=1 Fj

)
+ E(h ◦ π)2

}

=
1
2

{ r(h)∑

j=1

(
nj − γj − gcd(nj , γj)

)−
r(h)∑

j=1

njγj

}

= −1
2

r(h)∑

j=1

{
(nj + 1)(γj − 1) + 1 + gcd(nj , γj)

}

= −1
2

{
(E(h ◦ π) + E)(Λ(h ◦ π)− C) + r(h) +

r(h)∑

j=1

gcd(nj , γj)
}

. ¤

Let (C, o) be a curve singularity and ν : C̃ −→ C the normalization. The conductor
number δ(C, o) is defined by dimC(OC̃/ν∗OC,o) (cf. [BK, p. 573], [Na, p. 120]).

Corollary 2.12.

(i) Let (X, o) be a normal surface singularity and h ∈ mX,o a reduced element. Let
δ(h) be the conductor number of a curve singularity (X ∩ {h = 0}, o). Then

pe(X, o, h) = δ(h)− r(h) + 1.

(ii) For a generic element h ∈ mX,o\m2
X,o, we have

pe(X, o) 5 δ(h)− r(h) + 1.

(iii) Let (X, o) = {zn = h(x, y)} be a normal hypersurface singularity. Then

pe(X, o, z) = pe(C2, o, h) = δ(h)− r(h) + 1 =
µ(h)− r(h) + 1

2
,

where µ(h) is the Milnor number of a plane curve singularity ({h = 0}, o) ⊂ (C2, o).

Proof.

(i) From a result of M. Morales ([Mo, 2.1.2]), we have δ(h) = 1 + 1
2E(h ◦ π)(E

(h ◦ π)−KX̃). Then we have the equality of (i) from Theorem 2.11, and (ii) is obvious
from (ii).

(iii) From (i) and µ(h) = 2δ(C, o)− r(C, o) + 1 ([Mi, Section 10]), we complete the
proof. ¤

The Milnor number is the number of vanishing cycles and so it is defined for smooth-
able singularities. However, in the case of curve singularities, Buchweitz and Greuel [BG,
p. 244] generalized the definition of the Milnor number algebraically and showed that it
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is equal to 2δ(C, o) − r(C, o) + 1, where δ(C, o) (resp r(C, o)) is the conductor number
(resp. the number of irreducible components) of a curve singularity (C, o). Hence, if
we assume µ(h) is the Milnor number for a curve singularity {h = 0} on (X, o) in the
sense of them, then we have also pe(X, o, h) = µ(h)−r(h)+1

2 in Corollary 2.12 (i). Here we
remark that we can obtain the values of pe(X, o, h) of Example 2.5 using Corollary 2.12
(ii) and µ({xa + yb = 0}, o) = (a−1)(b−1)

2 .
With respect to the equality of Corollary 2.12 (i), it is already known that δ(h) =

r(h)−1 from Hironaka’s formula ([H, Lemma 1.2.2], [BG, p. 246]). Therefore, pe(X, o, h)
gives the difference between δ(h) and r(h)− 1.

In [St1], J. Stevens proved that if h : (X, o) −→ (C, o) is a semistable smoothing
of a curve singularity X ∩ {h = 0} and π : (X̃, E) −→ (X, o) is a resolution such that
(h◦π)X̃ is a reduced divisor, then pa(E) = δ(h)−r(h)+1. From his result and Theorem
4.5 in this paper, we can give another proof of Corollary 2.12.

In the definition of pe(X, o), we do not use elements of mX,o. However, there is
h ∈ mX,o not a perfect power element with pe(X, o, h) = pe(X, o).

Theorem 2.13. Let (X, o) be a normal surface singularity. Let Φ : S → ∆ be a
pencil of curves of genus pe(X, o) and including (X̃, E) for a resolution π : (X̃, E) −→
(X, o).

(i) If h ∈ mX,o satisfies Φ|X̃ = h ◦ π, then h is not a perfect power element. Hence
we have the following :

pe(X, o) = min{pe(X, o, h)|h ∈ mX,o is not a perfect power element }.

(ii) If π is a good resolution, then any connected component of supp(So)\E is a
minimal P 1-chain after suitable contractions of (−1) curves in supp(So)\E.

Proof.

(i) After taking suitable blowing-ups S̃
σ−→ S, we have a good resolution π′ :=

π ◦ σ : (X̃ ′, E′) −→ (X, o) such that (S̃, supp(S̃o)) ⊃ (X̃ ′, E′) for a pencil of curves
Φ̃ = Φ◦σ : S̃ −→ ∆ and (h◦π′)X̃′ is simple normal crossing. Suppose that h is a perfect
power element. Let put h = h`

1 (` = 2), where h1 is not a perfect power element. Let
Φ′ : S′ −→ ∆ be a pencil of curves of genus pe(X, o, h1) as in Theorem 2.4 which is a
minimal extension of h1 ◦π′. Since `S′o|E = So|E , `S′o and So are numerically equal from
Theorem 2.9 (i.e., both w.d.graphs are equal and the both coefficients for any irreducible
component are equal). Then we have pa(`S′o) = pa(So) = pe(X, o) and

1 5 pe(X, o, h1) = pa(S′o) 5 pa(`S′o) = pe(X, o).

If pe(X, o, h1) = 2, then pa(S′o) < pa(`S′o); therefore pe(X, o, h1) < pe(X, o). This is a
contradiction and so h is not a perfect power element. If pe(X, o, h1) = 1, then pe(X, o) =
pe(X, o, h1) for not a perfect power element h1 from 0 < pe(X, o) 5 pe(X, o, h1) = 1

(ii) As in the proof of (i), there exists h ∈ mX,o which is not a perfect power
element with h ◦ π = Φ|X̃ and pe(X, o, h) = pe(X, o). After contracting (−1) curves in
supp(So)\E suitably, Φ become a minimal extension of h ◦ π. From Theorem 2.9, we
complete our proof. ¤
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Remark 2.14. It is not always true that there is a reduced element h with
pe(X, o, h) = pe(X, o). For example, let (X, o) = ({z2 = y(x2 + yn−2)}, o) (i.e., a
rational double point of type Dn (n = 4)). Then y is a non-reduced element. Let n = 5
and consider a following embedded resolution σ : V −→ C2 of a plane curve singularity
({y(x2 + y3) = 0}, o) ⊂ (C2, o) as follows:

-1-1 -4

*

*

E1 E4E2E3

C1

C2

,

where C1 (resp. C2) indicates the strict transform of a curve {x2 + y3 = 0} (resp.
{y = 0}) in C2. We can easily see that (y ◦ σ)V = 2E1 + E2 + 2E3 + E4 + C2. By taking
a double covering of V given by z2 = y ◦σ ([D], [Tt2]), we obtain the minimal resolution
(X̃, E) → (X, o). Therefore, we can construct a pencil of curves S as follows:

-1⊂
2222

1

1
.∗

2222

1

1

Then we have pa(So) = 0. Hence pe(X, o, y) = 0 from Theorem 2.9. However, we have
pe(X, o, h) = 1 for any reduced element h. We explain this according to the suggestion by
the referee. Assume pe(X, o, h) = 0. From Corollary 2.12, we have δ(h) = r(h)−1. Then
(C, o) := (X∩{h = 0}, o) is a Gorenstein singularity because it is a complete intersection.
Also (C, o) is the ordinary n-tuple point of n = 2 or n = 3 ([BG, Lemma 1.2.4]). If (C, o)
is the ordinary 2-tuple point (i.e., (C, o) is isomorphic to ({x2 + y2 = 0}, 0) ⊂ C2),
then (X, o) is isomorphic to a rational double point of type An. Therefore, (C, o) is the
ordinary 3-tuple point from the assumption on (X, o). From [Sal, Theorem 3.1], the
Cohen-Macaulay type (:= dimC ωC,o/mC,oωC,o) = mult(C, o)−1 = 2. Then (C, o) is not
a Gorenstein singularity. This is a contradiction and so pe(X, o, h) > 0.

We also remark that if there is a reduced element h with pe(X, o, h) = pe(X, o) =
pf (X, o), then (X, o) is a Kulikov singularity (Definition 3.5 and Theorem 3.11 (ii)).
Therefore, from this and pe(Dn) = 0 (Section 1), we can also check that pe(X, o, h) = 1
for any reduced element h.

3. Some results on pencil genus for normal surface singularities.

In this section, first we estimate pe(X, o) for normal surface singularities (Theorem
3.5). Second we give a necessary and sufficient condition for normal surface singularities
to be Kodaira (or Kulikov) singularities (Theorem 3.11). Further, we determine the
values of log-canonical surface singularities and rational triple points (Propositions 3.12
and 3.13).

The following proposition was suggested by M. Tomari together with the proof. We
use it for the proof of Theorem 3.5.
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Proposition 3.1. Let (X, o) be a normal surface singularity. Then there exists
a resolution π : (X̃, E) −→ (X, o) and a reduced element h ∈ mX,o such that π∗mX,o is
invertible and (h ◦ π)X̃ is simple normal crossing and E(h ◦ π) equals the maximal ideal
cycle MX̃ .

Proof. Let us consider the following commutative diagram:

(X, o) X ′ X ′′ X̃,

(C2,o) V ′

ψ ψ′

φ1

σ

φ2 φ3¾

¾
? ?

¾ ¾

(3.1)

where ψ is a covering map with deg(ψ) = mult(X, o), σ is an embedded resolution of the
branch locus Bψ of ψ, X ′ is the fiber product X ×C2 V ′, φ2 is the normalization of X ′,
and φ3 is a good resolution such that φ∗mX,o is invertible for φ := φ1 ◦ φ2 ◦ φ3. From
the definition, mult(X, o) = e(mX,o,OX,o) ([Mah2]); thus e(mX,o,OX,o) = deg(ψ) =
e((x, y),OX,o), where x and y are coordinate functions of C2. Hence there is a positive
integer r with mr+1

X,o OX̃ = mr
X,o(x, y)OX̃ from Rees’s result ([Re, Theorem 3.2]). Then we

have OX̃(MX̃) = mX,oOX̃ = (x, y)OX̃ because π∗mX,o is invertible. Therefore, E(αx +
βy) = MX̃ for general elements α, β ∈ C. Then we may assume that E(αx + βy) = MX̃

and the line L(α, β) defined by {αx + βy = 0} in C2 is not contained in the tangent
cone of Bψ at {o}. Let C2 σ1←− V1

σ2←− · · · σs←− Vs = V ′ be a sequence of blowing-ups with
σ = σ1 ◦ · · · ◦ σs and let E1 := σ−1

1 ({o}). Then the strict transform of L(α, β) by σ1

intersects E1 transversally and it does not intersect Bψ on V1. Hence the strict transform
of L(α, β) by σ ◦ψ′ ◦φ2 ◦φ3 intersects E transversally on X̃. If we put h = (αx+βy)◦ψ,
then h is a reduced element and (h ◦ π)X̃ is simple normal crossing. ¤

Now let S −→ ∆ be a pencil of curves and E = supp(So). The fundamental cycle
ZE on E is defined as the smallest positive cycle D satisfying DEi 5 0 for any irreducible
component Ei of E. We show the existence according to [La2]. Let Dλ (λ = 1, 2) be a
positive cycle on E such that DλEi 5 0 for any irreducible component Ei of E. Such Dλ

always exists because cSoEi = 0 for any Ei and any c ∈ N . Let D =
∑n

i=1 riEi, where
ri = min{CoeffEi D1,CoeffEi D2} for i = 1, . . . , n. For any fixed j ∈ {1, . . . , n}, we have
DEj = rjE

2
j +

∑
i 6=j riEiEj 5 (CoeffEj

Dk)E2
j +

∑
i 6=j(CoeffEi

Dk)EiEj = DkEj 5 0,
where k = 1 if CoeffEj

D1 5 CoeffEj
D2 and otherwise k = 2. Therefore, there exists

the minimal element ZE of the set {D > 0|DEi 5 0 for i = 1, . . . , n}.
In the following, we prepare some facts for effective cycles on the exceptional set of

a resolution space or the support of the singular fiber of a pencil of curves. Let E be the
exceptional set of a resolution space of a normal surface singularity or E = supp(So) for
the singular fiber So of a pencil of curves.

Definition 3.2. Let D1, D2 be effective cycles on E with D1 < D2. If there is a
sequence Z0 = D1, Z1 = Z0 +Ei1 , . . . , Zs = Zs−1 +Eis

= D2 which satisfies Zj−1Eij
> 0

for j = 1, . . . , s, then it is called a computation sequence from D1 to D2. In this case,
a sequence Ei1 , . . . , Eis

is called the component sequence associated to the computation
sequence.
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Lemma 3.3. Let D1, D2 be effective cycles on E with D1 < D2.
(i) If there is a computation sequence from D1 to D2 as follows:

Z0 = D, Z1 = D + Ei1 , . . . , Zs = Zs−1 + Eis
,

then pa(D1) 5 pa(Z1) 5 · · · 5 pa(Zs−1) 5 pa(D2).
(ii) Under the condition (i), if pa(D1) = pa(D2), then Eij

= P 1 and Zj−1Eij
= 1

for any j.
(iii) If D is an effective cycle on E with D < ZE for the fundamental cycle ZE,

then there is a computation sequence from D to ZE.
(iv) Let D1, D2 be effective cycles on E with D1 < ZE 5 D2. If there is a compu-

tation sequence from D1 to D2, then ZE = D2.

Proof.

(i) Since pa(Zj) = pa(Zj−1) + pa(Eij
) + Zj−1Eij

− 1 and pa(Eij
) = 0, we have

pa(Zj−1) 5 pa(Zj) for j = 1, . . . , s.
(ii) Consider the adjunction formula KSEij = −E2

ij
+ 2g(Eij )− 2 + 2δ(Eij ), where

δ(Eij
) is the degree of the conductor of Eij

(i.e., the sum of the conductor numbers of
all singularities of Eij

). We have pa(Zj−1) = pa(Zj) from (i); then Zj−1Eij
+ g(Eij

) −
1 + δ(Eij

) = 0. Since Zj−1Eij
> 0 and g(Eij

) = 0 and δ(Eij
) = 0, we have Zj−1Eij

= 1
and g(Eij ) = 0 and δ(Eij ) = 0. Then Eij is a non-singular rational curve.

(iii) The existence of a computation sequence is proven as in [La2, Proposition 4.1];
therefore, it is omitted.

(iv) Let Z0 = D1, Z1, . . . , Zs = D2 be a computation sequence. If ZE < D2,
then there is ` with ` < s such that Z`−1 5 ZE and Z` 65 ZE . Then CoeffEi`

Z` =
CoeffEi`

ZE + 1 and CoeffEi`
ZE = CoeffEi`

Z`−1; thus Z`−1Ei`
5 ZEEi`

. This yields a
contradiction: 1 5 Z`−1Ei`

5 ZEEi`
5 0. Then ZE = D2. ¤

Proposition 3.4. Let S −→ ∆ be any pencil of curves of genus g and let A =
supp(So).

(i) So = cZA (c ∈ N).
(ii) Let D be an effective cycle on A such that D 65 (m − 1)ZA and D 5 mZA for

m ∈ N . Then there is a computation sequence from D to mZA.
(iii) If D is an effective cycle on A with D 5 So, then pa(D) 5 g.
(iv) Suppose that the pencil of curves is minimal (i.e., S does not contain any (−1)

curve). If g = 2 or it is a non-multiple elliptic pencil, then pa(D) < g for any effective
cycle D with D < So.

Proof.

(i) From the definition of ZA, we have So = ZA and then c = 1 if So = ZA. Suppose
So > ZA and put D1 = So − ZA. Hence 0 = S2

o = Z2
A + 2ZAD1 + D2

1. Then D2
1 = 0

because Z2
A, ZD1 and D2

1 are non-positive. If supp(D1) ( A, then D1 = 0 because
supp(D1) is an exceptional set. This contradicts D1 > 0; therefore, supp(D1) = A. Let
D1 =

∑r
i=1 diAi. For any irreducible component Ai ⊂ A, we have D1Ai = 0 because

0 = SoAi = D1Ai + ZAAi. Also 0 = D2
1 =

∑r
i=1 diD1Ai and so D1Ai = 0 for any i

since di > 0 for any i. Then ZA 5 D1 from the definition of the fundamental cycle. If
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D1 = ZA, then So = 2ZA. If D1 > ZA, then we put D2 = D1 − ZA and continue the
process above. Because it stops after finite steps, we complete the proof.

(ii) We can make a computation sequence of cycles as follows: Z0 = D, Z1 =
Z0 + Ai1 , Z2 = Z1 + Ai2 , . . . with Zj−1Aij > 0 for any j. Since that Zj 5 mZA for each
j, the sequence stops at a cycle Z` satisfying Z`Ai 5 0 for any Ai ⊂ A; therefore,
ZA 5 Z`. If ZA = Z`, then m = 1 and concludes the proof. If ZA < Z`, then
(Z` − ZA)Ai = Z`Ai 5 0; therefore, ZA 5 Z` − ZA. If 2ZA = Z`, then m = 2 and
concludes the proof. If 2ZA < Z`, then (Z` − 2ZA)Ai 5 0. Hence, continuing this
argument, we can say that Z` = mZA. The above computation sequence connects D

and mZA.
(iii) If D is an effective cycle on A with D 5 So, then there is a positive integer m

as (ii) and mZA 5 So. Then there is a computation sequence:

Z0 = D, Z1 = D + Ai1 , . . . , Z` = mZA = Z`−1 + Ai`
.

From Lemma 3.3 (i), if g = 1, then pa(D) 5 pa(mZA) 5 pa(So) = g from mZA 5 So =
cZA. If g = 0, then c = 1 becasue any rational pencil is non-multiple. Hence m = 1 and
pa(D) 5 pa(ZA) = pa(So) = 0. This completes the proof.

(iv) Assume that 0 < D < So and pa(D) = g. Let m be a positive integer
such that D 65 (m − 1)ZA and D 5 mZA 5 So. From (ii), there is a computation
sequence Z0 = D, Z1 = Z0 + Ai1 , Z2 = Z1 + Ai2 , . . . , Z` = mZA = Z`−1 + Ai`

. By
Lemma 3.3 (i), we have g = pa(D) 5 pa(mZA) 5 pa(So) = g. From Lemma 3.3 (ii),
0 = mZAAi`

= (Z`−1 +Ai`
)Ai`

= 1+A2
i`

; thereby, Ai`
is a (−1) curve, which contradicts

the minimality of So. ¤

Theorem 3.5. Let (X, o) be a normal surface singularity and let h a reduced
element of mX,o satisfying the properties of Proposition 3.1. Then

pf (X, o) 5 pe(X, o) 5 pa(MX) + mult(X, o)− r(h).

Especially, if (X, o) is a rational singularity, then 0 5 pe(X, o) 5 mult(X, o) − 1. Also,
if (X, o) is an elliptic singularity (i.e., pf (X, o) = 1), then 1 5 pe(X, o) 5 mult(X, o).

Proof. Let π : (X̃, E) −→ (X, o) be a resolution that satisfies the properties of
Proposition 3.1. From Theorem 2.11, we have pe(X, o) 5 pa(E(h◦π))−E(h◦π)2−r(h).
Also, we have −E(h ◦ π)2 = mult(X, o) from [Wa, Theorem 2.7] because π∗mX,o is
invertible. Also pa(E(h ◦ π)) = pa(MX̃) 5 pa(MX) from [Tm2, Proposition 3.9 (i)].
Then we have the inequality of the right hand side. Consider the left hand side. Let
(X̂, Ê) be a resolution of (X, o) and let S −→ ∆ be any pencil of curves of genus g

including (X̂, Ê). From the definition of the fundamental cycle ZÊ , we have ZÊ 5 So.
Since Ê ( supp(So), we have ZÊ < So. Then there is a computation sequence from ZÊ

to So by Lemma 3.3 (i), and pf (X, o) = pa(ZÊ) 5 pa(So) = g; therefore, pf (X, o) 5
pe(X, o).

On the minimal resolution of every rational singularity, MX equals the fundamental
cycle ([Y]); thus pa(MX) = pf (X, o) = 0. For every elliptic singularity, we have pa(D) 5
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1 for any positive cycle D on the exceptional set of any resolution. Thus, pa(MX) 5 1
([Wa]). ¤

In the following, we consider the singularities that satisfy a minimality condition
pe(X, o) = pf (X, o).

Definition 3.6. If (X, o) satisfies pe(X, o) = pf (X, o) = g, then (X, o) is called a
weak Kodaira singularity of genus g.

We remark that every Kodaira singularity in the sense of Karras [Ka1] is a weak
Kodaira singularity (Proposition 3.10 (iii)). Here we recall the definition of Kodaira
singularities and Kulikov singularities.

Definition 3.7 ([Ka1], [St1], [St2]). Let Φ : S → ∆ be a pencil of curves of
genus g which has reduced components. Let P1, . . . , Pr ∈ supp(So) be non-singular
points of So (i.e., they are contained in components whose coefficients of So equal one
and also smooth points of red(So)). Let S′ σ−→ S be a finite number of blowing-ups with
centers P1, . . . , Pr. Let X̃ be an open neighborhood of the proper transform E ⊂ S′ of
supp(So) by σ. By contracting E in X̃, we obtain a normal surface singularity (X, o).
Then, the contraction map ϕ : (X̃, E) −→ (X, o) is a resolution of (X, o). If a normal
surface singularity is isomorphic to a singularity obtained in this way, then it is called
a Kodaira singularity of genus g (or Kodaira singularity associated to Φ). Also, if σ is
just one blowing-up at every center Pi (i = 1, . . . , r) in the above construction, then
(X, o) is called a Kulikov singularity of genus g (or Kulikov singularity associated to Φ).
Moreover, if h ∈ mX,o satisfies h ◦ ϕ = Φ ◦ σ|X̃ , then h (or h ◦ ϕ) is called a projection
function of a Kodaira singularity (X, o).

Let Γ be the w.d.graph of the exceptional set of the minimal good resolution of a
normal surface singularity. If there exists a Kodaira singularity whose w.d.graph for the
minimal good resolution is equal to Γ, then Γ is called a Kodaira graph.

The definitions shows that every Kulikov singularity is a Kodaira singularity, but
the converse is not true. Here, let us explain the procedure of the definition by drawing
the following figure:

[1]

-1

3 2 11

[g]

[1]

-1-5

[g]-1

[1]

-1-5

[g]

-1

(i)

(ii)

-1

.

-3

The figure of the left hand side is the w.d.graph of the singular fiber of a pencil of curves.
The figure (i) (resp. (ii)) of the right hand side is the w.d.graph associated to a Kulikov
(resp. Kodaira) singularity. Nevertheless, it depends on the choice of the center of the
blowing-up of the procedure above whether the singularity associated to the figure (ii) is
Kulikov or not.
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In Theorem 3.11, we characterize Kodaira or Kulikov singularities in terms of
pe(X, o, h). However, the author knows of no reference containing a concrete exam-
ple that distinguishes both classes. Then we prove the following and give a such example
as its application.

Proposition 3.8. Let (X, o) be a normal surface singularity obtained by the con-
traction of the zero-section of a negative line bundle L on a non-singular algebraic curve
E.

(i) (X, o) is a Kodaira singularity if and only if L ∼ −∑r
i=1 niPi (linearly equiva-

lent), where ni > 0 for any i.
(ii) (X, o) is a Kulikov singularity if and only if L ∼ −∑r

i=1 Pi, where P1, . . . , Pd

are r different points.
(iii) In the case of (i) (resp. (ii)), (X, o) is a Kodaira (resp. Kulikov) singularity

associated to the trivial pencil; it is obtained by taking ni blowing-up at Qi := (Pi, 0) ∈
E ×C for i = 1, . . . , r, where n1 = · · · = nr = 1 in the case of (ii).

Proof.

(i) We prove the “ if ” part. Assume that P1, . . . , Pr are r different points. Let
Φ : E × C → C be the trivial pencil. Consider a C∗-action on E × C defined by
t · (p, z) = (p, tz) for t ∈ C∗. Then each point of E × {0} is a fixed point of this action.
By taking ni blowing-ups at (Pi, 0) in E×C for each i, we have σ : S̃ → E×C. Let Ẽ be
the strict transform of E by σ. Then we can easily check that C∗-action is extended onto
S̃ and each point of Ẽ is a fixed point for it (cf. [OrW, Section 1.2]). We can contract
Ẽ in S̃ and obtain a Kodaira singularity (Y, o) with C∗-action. If (X̃, E) is the minimal
resolution, the normal bundle of E (resp. Ẽ) in X̃ (resp. S̃) is L (resp. −∑r

i=1 niPi).
Since L ∼ −∑r

i=1 niPi, we have (X, o) ' (Y, o) (i.e., holomorphically isomorphic). Then
(X, o) is a Kodaira singularity.

Now we prove the “only if” part. There is a normal surface singularity (Y, o) and a
pencil of curves Φ : S → ∆ including a resolution (Ỹ , F ) of (Y, o) such that (Y, o)'(X, o)
and So|Ỹ = F +

∑r
i=1 niGi, where any Gi is a non-exceptional irreducible component in

Ỹ . Then there is a following diagram:

(Y, o) ∆ ,

(Ỹ , F )⊂

⊂

(S, supp(So))

(S̄, supp(S̄o))(Ȳ , F̄ )

ϕ ϕ

π

π̄

Φ

Φ̄

©©©¼

HHHY

HHHj

©©©*? ?
(3.2)

where π̄ is the minimal resolution. Therefore, F̄ is an irreducible smooth curve which is
holomorphically isomorphic to E and S̄o|Ȳ = F̄ +

∑r
i=1 niϕ(Gi). Then

0 ∼ S̄oF̄ = NF̄ /Ȳ |F̄ +
r∑

i=1

niP̄i for P̄i := ϕ(Gi) ∩ F̄ (i = 1, . . . , r).

Let (X̃, E) be the minimal resolution of (X, o). Since there is a holomorphic isomorphism
ψ : (Ȳ , F̄ )∼−→(X̃, E), we have L = NE/X̃ |E ' ψ∗NF̄ /Ȳ |F̄ ∼ −∑r

i=1 niPi on E, where
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Pi := ψ(P̄i) for any i.
(ii) Assuming ni = 1 for any i in the argument of (i), we can prove “if” part

in the same manner. Thus we prove the “only if” part. From the definition of Kulikov
singularities, there is a normal surface singularity (Y, o) and a pencil of curves Φ : S → ∆
including a resolution (Ỹ , F ) of (Y, o) such that (Y, o)'(X, o) and So|Ỹ = F +

∑r
j=1 Gj ,

where Gj is contained in a (−1)-curve G̃j with CoeffG̃j
So = 1 for j = 1, . . . , r. We

can consider the same diagram as (3.2). Let Fij
be an irreducible component in F

with Fij
∩ Gj 6= ∅ (j = 1, . . . , r); therefore CoeffFij

So = 1. Let Fo be an irreducible
component of F with F̄ = ϕ(Fo) ' E. Any connected component of F\(Fo∪

⋃r
j=1 Gj) is

contracted to a non-singular point by ϕ. Therefore, if there is j ∈ {1, . . . , r} with Fij
6=

Fo, then CoeffFij
So = 2. This contradicts CoeffFij

So = 1; thus Fi1 = · · · = Fir
= Fo.

Therefore, if we put P̄j := F̄ ∩ ϕ(Gj) (j = 1, . . . , r), each ϕ(G̃j) is a (−1)-curve which
intersects F̄ transversally at P̄j and P̄i 6= P̄j if i 6= j. Then 0 ∼ S̄oF̄o = NF̄ /S̄ |F̄ +

∑r
i=1 P̄i;

thus (ii) is proven as in (i).
The proof of (iii) is contained in the proof of (i). ¤

Example 3.9. Let E be a non-hyperelliptic curve and let P be any point of E.
Then there are no two points Q1 and Q2 in E with 2P ∼ Q1 +Q2. Let L be the negative
line bundle associated to −2P , and let (X, o) be a normal surface singularity obtained
by the blowing down of the zero-section of L. Then (X, o) is a Kodaira singularity, but
not a Kulikov singularity from Proposition 3.8.

Proposition 3.10.

(i) ([Ka1, Proposition 2.7]) Let E be the exceptional set of the minimal good reso-
lution of a normal surface singularity and ZE the fundamental cycle. Then the w.d.graph
ΓE is a Kodaira graph if and only if CoeffEi

ZE = 1 for any Ei with ZEEi < 0.
(ii) ([Ka1, Theorem 2.9]) If (X, o) is a rational or minimally elliptic singularity

with K-graph, then it is a Kodaira singularity.
(iii) ([Ka2, Lemma 3.4]) If (X, o) is a Kodaira singularity of genus g, then

pf (X, o) = g.

Let (X, o) be a rational double point. If (X, o) is of type An, then (X, o) is a
Kulikov singularity (see Section 1). If (X, o) is of type Dn, then pe(X, o) = 0 as noted
in Section 1. Then (X, o) is a weak Kodaira singularity, but not a Kodaira singularity
from Proposition 3.10 (ii). If (X, o) is of type E6, E7 or E8, then it is not a weak Kodaira
singularity (Proposition 3.12).

Under the situation of Definition 3.7, we can easily show that the fundamental cycle
ZE is equal to the strict transform σ−1

∗ (So). Hence, we have the equality pf (X, o) = g

of Proposition 3.10 (iii). From the definitions and 3.10 (iii), any Kodaira singularity is a
weak Kodaira singularity, although the converse is not true.

In the following, we consider necessary and sufficient conditions for a weak Kodaira
singularity to be a Kodaira or a Kulikov singularity.

Theorem 3.11. Let (X, o) be a normal surface singularity.
(i) (X, o) is a Kodaira singularity if and only if there exists h ∈ mX,o which is

not a perfect power element satisfying pe(X, o, h) = pf (X, o) and E(h ◦ π) = ZE, where
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π : (X̃, E) −→ (X, o) is a resolution such that red(h ◦ π)X̃ is simple normal crossing.
(ii) (X, o) is a Kulikov singularity if and only if there exists a reduced element

h ∈ mX,o with pe(X, o, h) = pf (X, o).

Proof.

(i) Let consider the “only if part”. Assume that (X, o) is a Kodaira singularity. Let
h ∈ mX,o be a projection function of (X, o) (i.e., there exists a resolution π : (X̃, E) −→
(X, o) and a pencil of curves Φ : S → ∆ such that (X̃, E) ⊂ (S, supp(So))) and h ◦ π =
Φ|X̃). Also, from the definition of Kodaira singularities, we have E(h ◦ π) = ZE and
CoeffEi

E(h ◦ π) = CoeffEi
ZE = 1 for an irreducible component Ei with ZEEi < 0.

Hence pe(X, o, h) = pf (X, o) and h is not a perfect power element.
Consider the “if part”. Theorem 2.4 allows construction of a pencil of curves Φ : S →

∆ of genus pf (X, o) such that h ◦π = Φ|X̃ and any connected component of supp(So)\E
is a minimal P 1-chain. From the condition E(h ◦ π) = ZE and Proposition 3.4 (i), Φ
is non-multiple. Suppose there is an irreducible component Eio with ZEEio < 0 and
CoeffEio

ZE = 2. From the construction of S, there is an irreducible component Fi1 of
supp(So)\E with Fi1Eio

6= 0. From Proposition 3.4 (i), and Lemma 3.3 (iii), there is a
computation sequence from ZE to So as

Zo = ZE , Z1 = ZE + Fi1 , . . . , Z` = So,

Since pa(ZE) = pf (X, o) = pa(So), we have ZEFi1 = 1 from Lemma 3.3 (ii). However,
ZEFi1 = 2 from CoeffEio

ZE = 2. This is a contradiction. Then CoeffEi
ZE = 1 if

ZEEi < 0. We have ZE = E(h ◦ π) = So|E from the assumption and h ◦ π = Φ|X̃ ,
and so CoeffEi

So = 1 if ZEEi < 0. Let F (1), . . . , F (m) be connected components of
supp(So)\E. If F (i) :=

⋃ri

j=1 Fi,j and bi,j = −F 2
i,j for any i, j, then bi,1 = 1 and bi,j = 2

for j = 2, . . . , ri. Suppose that b1,1 = · · · = bs,1 = 1 and bs+1,1 = 2, . . . , bm,1 = 2 (0 5 s 5
m). Suppose s < m. We have CoeffFi,j

So = 1 for any i > s and any j by considering a
computation sequence from ZE to So. This is a contradiction: 0 = SoFi,ri

= 1− bi,ri
< 0

for i = s + 1. Then s = m (i.e., b1,1 = · · · = bm,1 = 1). Suppose there is i such that
bi,2 = · · · = bi,ti = 2 and bi,ti+1 = 3 for ti < ri. From Proposition 3.4 (i), we have
So|F (i) = Zsupp(So)|F (i) =

∑ti

j=1(ti − j + 2)Fi,j + Fi,ti+1 + · · · + Fi,ri
which yields a

contradiction: 0 = SoFi,ri
= ε − bi,ri

< 0, where ε = 2 (resp. 1) if ri = ti + 1 (resp.
ri > ti +1). Then bi,2 = · · · = bi,ri

= 2 if ri = 2. Therefore, any connected component of
supp(So)\E is a minimal P 1-chain of type (1) or (1, 2, . . . , 2). Then (X, o) is a Kodaira
singularity.

(ii) Let consider the “only if part”. Assume that (X, o) is a Kulikov singularity. Let
h ∈ mX,o be a projection function of (X, o) (i.e., h◦π = Φ|X̃ , where π : (X̃, E) −→ (X, o)
is a resolution satisfying the properties of (i)). From (i), we have pe(X, o, h) = pf (X, o).
From the definition of Kulikov singularities, the non-exceptional part Λ(h◦π) is a reduced
divisor. Then h is a reduced element.

Next we prove the “if part”. From Theorem 2.4, 2.9 and 2.13, there are a non-
multiple pencil of curves Φ : S −→ ∆ of genus pf (X, o) and a good resolution π :
(X̃, E) −→ (X, o) such that red(So) is simple normal crossing and Φ|X̃ = h ◦ π and any
connected component of supp(So)\E is a minimal P 1-chain. Because h is a reduced
element, the length of any P 1-chain in supp(So)\E is one. Then we can put F =
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supp(So)\E and F =
⋃m

i=1 Fi, where Fi is a P 1 with CoeffFi
So = 1 for any i and

Fi ∩ Fj = ∅ for i 6= j. Let ϕ : S −→ S̄ be a successive contraction map of (−1) curves
in E such that Ē = ϕ(E) is minimal (i.e., Ē contains no (−1) curve) and ϕ|S\E is an
isomorphism. We put F̄i = ϕ(Fi) for i = 1, . . . , m. It suffices to prove F̄ 2

i = −1 for any i.
Assume ZĒ +

∑m
i=1 F̄i < ZĒ∪F̄ = S̄o. From Lemma 3.3 (iii), we can make a computation

sequence Z0 = ZĒ +
∑m

i=1 Fi, Z1 = Z0 + E′
i1

, . . . , Zs = Zs−1 + E′
is

= ZĒ∪F̄ , where E′
ij

is an irreducible component of Ē ∪ F̄ . From Lemma 3.3 (i),

pf (X, o) = pa(ZE) = pa(ZĒ) 5 pa(Zs−1)

= pa

(
ZĒ∪F̄ − E′

is

)
5 pa(ZĒ∪F̄ ) = pe(X, o) = pf (X, o).

Therefore, −E′
is

2 = (S̄o − E′
is

)E′
is

= (ZĒ∪F̄ − E′
is

)E′
is

= 1 from Lemma 3.3 (ii).
Hence E′

is
* Ē since Ē is minimal. Then E′

is
⊂ F̄ , thus yielding a contradiction:

1 = CoeffE′is
S̄o = CoeffE′is

ZĒ∪F̄ = 2. Then ZĒ∪F̄ = ZĒ +
∑m

i=1 Fi. By considering
a computation sequence ZĒ , ZĒ + F1, . . . , ZĒ +

∑m
i=1 Fi = So, we have F̄ 2

1 = · · · =
F̄ 2

m = −1 from Lemma 3.3 (ii). Then (X, o) is a Kulikov singularity. ¤

The condition E(h ◦π) = ZE is necessary in Theorem 3.11 (ii). Because, in Remark
2.14 (i.e., (X, o) = ({z2 = y(x2 + yn−2)}, o)), y ∈ mX,o is not a perfect power element
and pe(X, o, y) = pf (X, o) = 0, but (X, o) is not a Kodaira singularity.

In Remark 1.6, we explained that pe(X, o) = 0 for any rational double point of
type An and Dn. In the following, we obtain the value of the pencil genus for rational
singularities with lower multiplicity.

Proposition 3.12. Rational double points of type E6, E7 and E8 have pe(X, o) =
1. Further, all other log-canonical surface singularities except for them are weak Kodaira
singularities.

Proof. Let (X, o) be a rational double point of E6, E7 or E8. Every quotient
singularity is a taut singularity ([La1]) (i.e., the analytic structure of (X, o) is determined
by the weighted dual graph of the minimal good resolution). Then we can readily see
that the minimal resolution space of (X, o) is included in the relatively minimal elliptic
pencil ([Ko]); therefore, so we have pe(X, o) 5 1. From Remark 1.5, pe(E6) 5 pe(E7) 5
pe(E8) 5 1. Hence we need only to prove pe(E6) = 1. Suppose pe(E6) = 0 and let
Φ : S → ∆ be a rational pencil with (S, supp(So) ⊃ (X̃, E), where (X̃, E) −→ (X, o) is
the minimal resolution. Because the relatively minimal pencil of genus 0 is isomorphic
to the trivial pencil P 1 × ∆, we may assume that supp(So)\E contains a (−1) curve
E0 intersecting E. Let F = E ∪ E0 and let ZE , ZE + E0, . . . , ZF be a computation
sequence from ZE to ZF . From Lemma 3.3 (i) and Proposition 3.4 (ii), 0 = pa(ZE) 5
pa(ZE + E0) 5 · · · 5 pa(ZF ) = 0. From Lemma 3.3 (ii), we have ZEE0 = 1. Therefore,
E0 intersects E as follows:

-1
EoE1E2E3E5E6

E4

.
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Then a proper subset
⋃5

j=0 Ej of F is an exceptional set by Zariski’s Lemma ([BPV,
p. 90]). However, we can easily see that its intersection matrix of

⋃5
j=0 Ej is not negative

definite. This is a contradiction; consequently, pe(E6) = 1.
Because log-canonical elliptic singularities are simple elliptic or cusp singularities,

they are minimally elliptic singularities. Hence they are Kodaira singularities from Propo-
sition 3.10 (ii). If a log-canonical rational singularity has a Kodaira graph, then it is a
Kodaira singularity from Proposition 3.10 (ii). It must be proven that all log-canonical ra-
tional singularities except for E6, E7 and E8 are weak Kodaira singularities. We have the
classification of two-dimensional log-canonical singularities (cf. [Mak, p. 237]). Hence,
we need to check the above for only log-canonical rational singularities which have not
Kodaira graphs. We show this for one case; other cases are treated similarly. Let (X, o)
be a log-canonical rational singularity such that the w.d.graph associated to the minimal
resolution (X̃, E) π−→ (X, o) is given as the left side in the following:

-3

21

1

1

1
Eo

E3

E4

E1

E2

-3

2
1

1

-1

-1

2 2

2 2

.

Let Cj be a non-compact smooth complex curve X̃ such that it intersects Ej transversally
(j = 1, 2). If we put D = 2E0 + 2E1 + 2E2 + E3 + E4 + 2C1 + 2C2, then DEj = 0 for
j = 0, 1, . . . , 4. From Lemma 2.1, there exists an element h ∈ mX,o such that (h◦π)X̃ = D.
Using the method of Theorem 2.4, we can construct a rational pencil as above. Then
(X, o) is a weak Kodaira singularity of g = 0. ¤

In [Art, p. 135], M. Artin exhausted the w.d.graphs associated to rational triple
points as follows:

where An indicates ©− · · · −© (i.e., the w.d.graph is of P 1-chain of length n = 0 and
of type (2, . . . , 2)). In the following, we can determine the value of pe(X, o) for rational
triple points.

Proposition 3.13. If (X, o) is a rational triple point whose w.d.graph is one of
(i)–(iv) (resp. (v)–(ix)), then pe(X, o) = 0 (resp. pe(X, o) = 1).
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Proof. First we consider the cases of (i)–(iv). Let (X, o) be a singularity of type
(iv) with n = 0. Let π : (X̃, E) −→ (X, o) be the minimal resolution. Consider a
following divisor D on X̃:

-3

3333 2 1

1

* ,

where ∗ is a non-exceptional curve on X̃ which intersects E transversally at one point.
From Lemma 2.1, there is an element h ∈ mX,o such that D = (h ◦ π)X̃ . By gluing
suitably a neighborhood of (−1)-curve as in Theorem 2.4, we can construct a rational
pencil Φ : S → ∆ such that Φ|X̃ = h ◦ π. Then pe(X, o) = 0. We can prove the case of
n = 1 similarly; in addition, we can prove cases of (ii)–(iv) similarly.

Second we consider cases of (v)–(ix). Let (X, o) be a singularity of type (v) with
n = 1. Consider the following divisor D on X̃:

-3

3 2 1

*

*

2111

1

2
,

where ∗ is a non-exceptional curve on X̃. By gluing a suitable neighborhood of a (−1)-
curve on a neighborhood of each ∗ as above, we obtain an elliptic pencil. Then pe(X, o) 5
1. Suppose pe(X, o) = 0. Then there is a rational pencil Φ : S −→ ∆ and a resolution
(X̃, E) −→ (X, o) satisfying (X̃, E) ⊂ (S, supp(So)). By the same way as in Proposition
3.12, we can easily show that there is a (−1) curve Eo in supp(So) which intersects E

transversally and ZEEo = 1. Hence the configuration of E ∪ Eo is one of the following
figures:

-3 -1(v-1)

-1

(v-2) -3

-3-1(v-3)

For (v-1), we can easily see that the w.d.graph has a subgraph whose intersection matrix
is not negative definite. For (v-2) or (v-3), the configuration contains the w.d.graph
of rational double point of type E6. Then pe(E6) = 0 from Remark 1.5 (ii), but this
contradicts Proposition 3.12; thus pe(X, o) = 1. We can check other cases (vi)–(ix)
similarly. ¤

Here we propose the following problem:
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Problem 3.14. Is there a finite upper bound of pe(X, o) for rational singularities?

Example 3.15. Let (X, o) be a rational singularity of multiplicity 4 whose funda-
mental cycle ZX on the minimal resolution (X̃, E) is given by the left one of the following
figures:

-3

13 32 24 45

2

13 32 24 45

2

1

1

-3

.

Because (X, o) is a rational singularity, there exists h ∈ mX,o with E(h◦π) = ZX = MX .
Therefore, as in Theorem 2.4, we can construct a pencil of curves of genus 2 whose singular
fiber is figured by the right one above. Then pe(X, o) 5 2. Suppose pe(X, o) 5 1 and
let Φ : S −→ ∆ be a pencil of curves of genus pe(X, o) and including a resolution of
(X, o). From Kodaira’s classification of elliptic pencils ([Ko]), we can see that there are
no minimal pencils of curves of genus g 5 1 whose singular fiber contains E. Hence
the pencil of curves is not minimal. After suitable contractions of (−1)-curves, we may
assume that there is a (−1) curve E0 in supp(So) intersecting E. If E0 intersects a (−2)-
curve of E, then it yields a contradiction. If E0 intersects the (−3)-curve of E, then the
w.d.graph of E0 ∪ E is star-shaped and the intersection matrix is not negative definite
([P, p. 185]). This yields a contradiction. Therefore, pe(X, o) = 2.

4. Pencil genus of cyclic coverings of normal surface singularities.

After fundamental results on surface singularities due to M. Artin, H. Laufer and
P. Wagreich, S. S. T. Yau [Y] introduced the notion of elliptic sequences for elliptic
surface singularities. He also considered a sequence (Xn, o) = ({z6n+c = x2 + y3}, o)
(n = 1, 2, 3, . . . and c = 3, 5) of elliptic hypersurface singularities associated to an elliptic
sequence; thus pf (Xn, o) = 1 for any n. Inspiring this, the author proved that if (X, o) =
({zn = xa + yb}, o) ⊂ (C3, o) is normal and n = lcm(a, b), then pf (X, o) = 1

2{(a − 1)
(b− 1)− gcd(a, b) + 1} ([Tt1, Theorem 4.4]). Further, in Theorem 4.5 in [Tt2], he also
proved that if (X, o) = ({zn = h(x, y)}, o) ⊂ (C3, o) is normal and n is “sufficiently”
large, then (X, o) is a Kodaira singularity of genus µ(h)−r(h)+1

2 .
Let (Y, o) be a normal complex surface singularity and let (X, o) be a normalization of

the cyclic covering defined by zn = h over (Y, o), where h ∈ mY,o is a semi-reduced element
(Definition 4.6). In this section, we prove that (X, o) is a weak Kodaira singularity
satisfying pf (X, o) = pe(Y, o, h) for “sufficiently” large positive integer n (Theorem 4.12).
Next, using the characterization of Kulikov singularities in Theorem 3.11, we prove that
if h is a reduced element, then (X, o) is a Kulikov singularity for “sufficiently” large
positive integer n (Theorem 4.14). This is a generalization of Theorem 4.5 in [Tt2].

Definition 4.1. Let (Y, o) ⊂ (CN , o) be a normal singularity and I its defining
ideal in C{y1, . . . , yN}. Further, let h ∈ mY,o be an element and let assume that h̃ ∈
C{y1, . . . , yN} is correspondent to h. Let (X, o) (⊂ (CN+1, o)) be a singularity defined
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by the ideal generated by I and zn − h̃(y1, . . . , yN ) in C{y1, . . . , yN , z}. Then (X, o) is
called the n-fold cyclic covering of (Y, o) defined by zn = h.

In this paper, we usually assume that h is not a perfect power element. Then
(X, o) of Definition 4.1 is irreducible ([TW1, Proposition 1.8]); also (X, o) is a normal
singularity if and only if h is a reduced element in OY,o ([TW2, Theorem 3.2]).

Here we prepare some facts. Let (X, o) be the normalization of the cyclic covering
(X̄, o) of normal surface singularity (Y, o) defined by zn = h, where h ∈ mY,o is not a
perfect power element. Let σ : (Ỹ , E) → (Y, o) be a resolution such that (h ◦ σ)Ỹ is
simple normal crossing on Ỹ . We can construct a good resolution of (X, o) from (Ỹ , E)
and (h ◦ σ)Ỹ . By taking the fiber product of σ and ψ, we have the following diagram:

(X, o) X ′ X ′′ (X̃, Ẽ),

(Y, o) (Ỹ , E)

ψ ψ′

φ1

σ

φ2 φ3

δ

¾

¾
? ?

¾ ¾

©©©©©©¼
(4.1)

where ψ is the composition of the normalization map (X, o) −→ (X̄, o) and the restriction
to (X̄, o) = {zn = h(x1, . . . , xN )} of the projection map CN+1 → CN ((x1, . . . , xN , z) 7→
(x1, . . . , xN )). Further, let X ′′ be the normalization of X ′ and then X ′′ has only cyclic
quotient singularities. Let X̃ be the minimal resolution of all cyclic quotient singularities
on X ′′. We put E = supp(E(h ◦ σ)) and C = supp(Λ(h ◦ σ)). If ψ′(Q) ∈ E ∪ C for
a point Q ∈ X ′, Q is included in the singular locus of X ′. ψ′(Q) is included in only
one or two irreducible components of E ∪ C. A local coordinate (u, v) can be chosen in
a neighborhood of ψ′(Q) such that X ′ is represented by zn = ua or zn = uavb. The
singularity zn = ua is resolved by normalization φ2. Hence we need only to resolve
singularities of type zn = uavb on X ′ by φ3. It is well-known that the normalization
of such singularities are cyclic quotient singularities ([BPV, p. 83]), and we can easily
compute the type from a, b and n. Let us define three integers a1, b1 and n1 as follows:

{
a1 = a/ gcd(a, lcm(n, b)), b1 = b/ gcd(b, lcm(n, a)),

n1 = n/ gcd(n, lcm(a, b)).
(4.2)

Lemma 4.2 ([Tt2, Lemma 2.5]). Let k = gcd(n, a, b). The normalization of {zn =
uavb} is disjoint k cyclic quotient singularities of type Cn1,µ, where µ is an integer defined
by a1µ + b1 ≡ 0(n1) and 0 5 µ < n1.

Let g ∈ mY,o and put (g ◦ σ)Ỹ =
∑r

i=1 vEi
(g ◦ σ)Ei +

∑s
j=1 vCj

(g ◦ σ)Cj . Let Ẽi

and C̃j be the strict transform of Ei and Cj by δ respectively. They are not necessarily
irreducible curves. With respect to the vanishing orders of z and g ◦ σ on Ẽi and C̃j , we
have the following.

Lemma 4.3 ([Tt2, Lemma 3.1]). Let F be an irreducible component Ei or Cj of
supp((g ◦ σ)Ỹ ) and F̃ the strict transform of F by δ. If we put φ = φ1 ◦ φ2 ◦ φ3, then
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vF̃ (z ◦ φ) = vF (h◦σ)
gcd(n,vF (h◦σ)) and vF̃ (g ◦ σ ◦ δ) = nvF (g◦σ)

gcd(n,vF (h◦σ)) .

Definition 4.4. Let Φ : S → ∆ be a pencil of curves of genus go and let η : ∆′ → ∆
be a map given by t = η(s) = sn. Taking the fiber product of Φ and η yields the following
diagram:

S S′ S′′ S(n),

∆ ∆′
Φ Φ′

ϕ1

η

ϕ2 ϕ3

Φ(n)

¾

¾
? ?

¾ ¾
³³³³³³) (4.3)

where S′ = S×∆ ∆′ and S′′ is the normalization of S′ and S(n) is the minimal resolution
of S′′. Then Φ(n) : S(n) → ∆′ is a pencil of curves of genus go. It is called the n-th root
fibration of Φ ([BPV, pp. 92–93]).

Theorem 4.5. Let (Y, o) be a normal surface singularity and h ∈ mY,o not a perfect
power element. If (X, o) is the normalization of the n-fold cyclic covering of (Y, o) defined
by zn = h for n > 1, then pe(X, o, z) = pe(Y, o, h), and so pe(X, o) 5 pe(Y, o, h).

Proof. Let σ : (Ỹ , E) → (Y, o) be a resolution such that red((h ◦ σ)Ỹ ) is simple
normal crossing. Let Φ : S → ∆ be a pencil of genus pe(Y, o, h) constructed as in
Theorem 2.4 such that Φ is an extension of h ◦ σ. Let Φ(n) : S(n) → ∆′ be the n-th root
fibration of Φ, and so its genus equals pe(Y, o, h). From the construction of S(n), S(n)

contains a good resolution space X̃ of (X, o). If we put φ = φ1 ◦ φ2 ◦ φ3 in (4.1) and
ϕ = ϕ1 ◦ ϕ2 ◦ ϕ3 in (4.3), then (Φ(n)|X̃)n = Φ ◦ ϕ|X̃ = h ◦ σ ◦ δ|X̃ = (z ◦ φ)n; therefore,
we may assume that Φ(n)|X̃ = z ◦ φ. Then we have the following commutative diagram:

(X, o)∆′ (X̃, Ẽ) ⊂

⊂

⊃

⊃

C

C

(
S(n), supp(S(n)

o )
)

(
S, supp(So)

)
.(Y, 0)∆ (Ỹ , E)

ψη δ ϕ

φz

σh

¾

¾

¾

¾
? ? ? ?

Since all connected components of supp(So)\E are P 1-chains and they are lifted to P 1-
chains on supp(S(n)

o ) by ϕ, all connected components of supp(S(n)
o )\Ẽ are also P 1-chains.

Since Φ(n)|X̃ = z ◦ φ, the genus of Φ(n) is equal to pe(X, o, z) from Theorem 2.9. Hence
pe(X, o) 5 pe(X, o, z) = pe(Y, o, h). ¤

In this section, we give a sufficient condition for cyclic coverings of normal surface
singularities to be weak Kodaira singularities (Definition 3.6). Let (X, o) be a normal
surface singularity and let π : (X̃, E) −→ (X, o) be a resolution such that red((h◦π)X̃) is
simple normal crossing. Let E =

⋃r
i=1 Ei and supp(Λ(h ◦ π)X̃) =

⋃s
i=1 Cj be irreducible

decompositions.

Definition 4.6. Under the situation above, put ai = vEi
(h ◦ π) for any i, bj =
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vCj
(h ◦ π) for any j and Nh(π) = max{lcm(ai, bj)|EiCj 6= 0}. Define a positive integer

Nh(X, o) as follows:

(i) Nh(X, o) = min{Nh(π)|π is a resolution such that red(h ◦ π)X̃ is simple normal
crossing}.

(ii) If gcd(a1, . . . , ar, b1, . . . , bs) = 1, then h is called a semi-reduced element.

The well-definedness of “semi-reduced” is obvious, because the value of
gcd(a1, . . . , ar, b1, . . . , bs) is independent of the choice of π. In addition, any reduced
element is semi-reduced and any semi-reduced element is not a perfect power. Also, if h

is semi-reduced and Φ is an extension of h ◦ π, then Φ is non-multiple.
In the following, we prepare some lemmas to prove the main result of this section

(Theorem 4.12).

Lemma 4.7 ([Tt3, Lemma 1.3]). For relatively prime positive integers n, q, let
n
q = [[b1, . . . , br]] be the continued fractional expansion. For a real number α, we have

[[b1, . . . , br−1, br + α]] =
n + q′α
q + q′′α

,

where q′ and q′′ are denoted by qq′ ≡ 1(n), 0 < q′ < n and nq′′ = qq′ − 1.

For relatively prime positive integers a, b, let H(a, b) be the semi-group generated
by them. If n = (a− 1)(b− 1), then n ∈ H(a, b) ([OnW, Proposition 3]).

Lemma 4.8. Let a, b be relatively prime positive integers and n ∈ H(a, b). Then
there exist integers p, q and r uniquely which satisfy the following condition:

n = ap + bq + abr, 0 5 p < b, 0 5 q < a and 0 5 r.

Proof. Assume that (p, q, r) and (p′, q′, r′) satisfy conditions above and ap+ bq +
abr = ap′ + bq′ + abr′. Suppose that (p, q) 6= (p′, q′) and p 6= p′. Since a(p − p′)+
b(q− q′)+ab(r− r′) = 0, we have b|p− p′ and so b < p or b < p′. This is a contradiction.
Then (p, q) = (p′, q′) and so r = r′. ¤

Suppose that n, a and b are relatively prime positive integers satisfying n = lcm(a, b);
thereby, n ∈ H(a, b). Let µ be an integer defined by aµ + b ≡ 0(n) with 0 < µ < n,
and let p, q and r be integers given by Lemma 4.8. Let p′ and q′ be integers defined by
pp′ ≡ 1(b) and qq′ ≡ 1(a) respectively, where 1 5 p′ < b and 1 5 q′ < a.

Lemma 4.9. Under the situation above,

n

µ
=





[[d1, . . . , ds1−1, ds1 + es2 , es2−1, . . . , e1]], if r = 0,

[[d1, . . . , ds1−1, ds1 + 1,

r−1︷ ︸︸ ︷
2, . . . , 2, es2 + 1, es2−1, . . . , e1]] if r > 0,

where a/q′ = [[d1, . . . , ds1 ]] and b/p′ = [[e1, . . . , es2 ]].
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Proof. Consider the case of r > 0. From b/p = [[es2 , . . . , e1]] ([Ri]) and Lemma
4.7,

[[d1, . . . , ds1−1, ds1 + 1, 2, . . . , 2, es2 + 1, es2−1, . . . , e1]]

=
[[

d1, . . . , ds1−1, ds1 + 1, 2, . . . , 2, 1 +
b

p

]]
=

[[
d1, . . . , ds1−1, ds1 +

b

rb + p

]]

=
ap + bq + abr

q′p + bq′′ + q′br
=

n

q′p + bq′′ + q′br
,

where qq′ = aq′′ + 1. Also

a(q′p + bq′′ + q′br) + b = q′(ap + bq + abr) = nq′ ≡ 0(n)

and 0 < q′p + bq′′ + q′br < ap + bq + abr = n from q′′ < q.

Since µ is determined uniquely by the relation aµ + b ≡ 0(n) and 0 < µ < n, we have
µ = q′p + bq′′ + q′br. Then

[[d1, . . . , ds1−1, ds1 + 1, 2, . . . , 2, es2 + 1, es2−1, . . . , e1]] =
n

µ
.

Because the case of r = 0 can be proven similarly, we omit the proof. ¤

Let X = {zn = uavb} ⊂ C3 and assume n = gcd(a, b). Let a1, b1 and n1 be positive
integers determined by (4.2). Hence two elements of them are always relatively prime.
By Lemma 4.2, the normalization of X is a cyclic quotient singularity Cn1,µ, where
a1µ + b1 ≡ 0(n1) and 0 < µ < n1. Let (X̃, E) be the minimal resolution of X. Let
p, q and r be non-negative integers given by Lemma 4.8. Let p′, q′ be integers given by
pp′ ≡ 1(b1), qq′ ≡ 1(a1), 1 5 p′ < b1 and 1 5 q′ < a1. Let a1/q′ = [[d1, . . . , ds1 ]] and
b1/p′ = [[e1, . . . , es2 ]]. From Lemma 4.9, the configuration of supp(z)X̃ is given as

(4.4)

where C̃1 (resp. C̃2) is the strict transform of {u = 0} (resp. {v = 0}).

Lemma 4.10. In the situation above, if we put λ = gcd(a, b)/ gcd(a, b, n) and put
s3 = s1 + s2 + r− 1, then CoeffFS3

(z)X̃ = p′λ, CoeffC̃2
(z)X̃ = b1λ and vFs1

(z)X̃ = · · · =
vFs1+r(z)X̃ = λ in (4.4).
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Proof. From Lemma 4.3, CoeffC̃1
(z)X̃ = a1λ and CoeffC̃2

(z)X̃ = b1λ. Let f0 =
a1λ, f1 = q′λ and f2, . . . , fs1−1 be positive integers that are inductively defined by
relations fi = di−1fi−1−fi−2 (i = 2, . . . , s1−1). Further, let fi = λ for i = s1, . . . , s1 +r

and let fs3+1 = b1λ, fs3 = p′λ and fs3−1, . . . , fs1+r+1 be positive integers defined by
relations fs3−i = eifs3−i+1 − fs3−i+2 inductively (i = 1, . . . , s2 − 1). If we put D =
f0C̃1+

∑s3
i=1 fiFi+fs3+1C̃2, then DFj = 0 for j = 1, . . . , s3 and CoeffC̃k

D = CoeffC̃k
(z)X̃

for k = 1, 2. Therefore, (z)X̃ = D, which completes the proof. ¤

Let Φ : S −→ ∆ be a non-multiple pencil of genus g. Let A = supp(So) and
let A =

⋃t
i=1 Ai be the irreducible decomposition of A. Let P1,1, . . . , P1,j1 ∈ Ai1 , . . . ,

Ps,1, . . . , Ps,js ∈ Ais be
∑s

k=1 jk different non-singular points of red(So). Let S̃
σ−→ S be

a successive blowing-up started from those points such that it makes trees as follows:

where mk,p = 2 (k = 1, . . . , s and p = 1, . . . , jk). Let Ã = supp(S̃o) and let Ãi be the
strict transform of Ai. Let E = (

⋃t
i=1 Ãi)∪(

⋃s
k=1

⋃jk

p=1

⋃`k,p

q=1 Fk,p(q)) and Ē =
⋃t

i=1 Ãi =
supp(σ−1

∗ So), where σ−1
∗ So is the transform of So (i.e., σ−1

∗ So =
∑t

i=1(CoeffAi
So)Ãi).

Lemma 4.11. If ck = CoeffAik
So 5 `k,p +1 for any k and p, then the fundamental

cycle ZE is equal to

D0 := σ−1
∗ So +

s∑

k=1

jk∑
p=1

`k,p∑
q=1

min{ck, `k,p − q + 1}Fk,p(q)

and pa(ZE) = g.

Proof. Let A(1), . . . , A(N) be the component sequence associated to a compu-
tation sequence of So, where A(k) ⊂ {A1, . . . , As} for any k. Let Ã(k) = σ−1

∗ A(k) for
k = 1, . . . , N and let consider a sequence Ã(1), . . . , Ã(N). For a fixed k with 1 5 k 5 s,
we assume that Ã(ε1) = · · · = Ã(εck

) = Ãik
and ε1 < · · · < εck

, where ck = CoeffAεk
So.

Inserting Fk,p(1), . . . , Fk,p(`k,p − δ + 1) between Ã(εδ) and Ã(εδ + 1) in the sequence
Ã(1), . . . , Ã(N) for p = 1, . . . , jk and δ = 1, . . . , ck, we obtain a new sequence. Contin-
uing this process for k = 1, . . . , s, we obtain the component sequence associated to a
computation sequence of D0. The intersection number of D0 and any irreducible com-
ponent of E is non-positive. Hence ZE 5 D0, and so

ZE = D0 := σ−1
∗ So +

s∑

k=1

jk∑
p=1

`k,p∑
q=1

min{ck, `k,p − q + 1}Fk,p(q)
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from Lemma 3.3 (iv).
Next we compute pa(ZE). Let A′ := supp(

∑t
i=1 Ai −

∑s
k=1 Aik

), and let Ã′ be the
strict transform of A′ by σ. If Ei is an irreducible component of A′, then ZEEi = 0.
Hence we have the following:

KSSo = KS(So|A′) +
s∑

k=1

ck(bk − 2) = KX̃

(
S̃o|Ã′

)
+

s∑

k=1

ck(bk − 2),

KX̃ZE = KX̃

(
S̃o|Ã′

)
+

s∑

k=1

ck(bk + jk − 2) +
s∑

k=1

jk∑
p=1

(mk,p − 2),

Z2
E = −

s∑

k=1

jk∑
p=1

(ck + mk,p − 2).

Therefore, we have g − pa(ZE) = 1
2 (KSSo −KX̃ZE − Z2

E) = 0. ¤

We explain the procedure above to compute ZE through the following example:

Then A1, A2, . . . , A7, A1, A2, A4, A6, A1 is the component sequence (Definition 3.2) as-
sociated to a computation sequence of So; thereby, Ã(1) = A(8) = A(12) = Ã1 and
Ã(6) = A(11) = Ã6. Let insert Fi,j ’s into a sequence Ã1, Ã2, . . . , Ã7, Ã1, Ã2, Ã4, Ã6, Ã1

as follows:

Ã1, F1,1(1), . . . , F1,1(4), Ã2, . . . , Ã6, F2,1(1), F2,1(2), F2,2(1), Ã7, Ã1,

F1,1(1), F1,1(2), F1,1(3), Ã2, Ã4, Ã6, F2,1(1), Ã1, F1,1(1), F1,1(2).

This gives the component sequence associated to a computation sequence of ZE . A
similar lemma was proven in a slightly different situation ([Tt4, Lemma 2.4]).

Now we prove the main result of this section.

Theorem 4.12. Let (Y, o) ⊂ (CN , o) be a normal surface singularity and h ∈ mY,o

a semi-reduced element (Definition 4.6). Let (X, o) be the normalization of the n-fold
cyclic covering of (Y, o) defined by zn = h. If n = Nh(Y, o), then (X, o) is a weak
Kodaira singularity of genus pe(Y, o, h).

Proof. Let σ : (Ỹ , E) −→ (Y, o) be a resolution such that red((h◦σ)Ỹ ) is a simple



68 T. Tomaru

normal crossing divisor and Nh(σ) = Nh(Y, o). Let (X̃, Ẽ) be a good resolution of (X, o)
constructed as in (4.1); then consider diagram (4.1) and use the notations there. Let⋃m

j=1 Cj be the irreducible decomposition of the strict transform C of red{h = 0}(⊂ Y )
by σ. For any Cj , let Eij be the irreducible component of E with Eij ∩ Cj 6= ∅ for
j = 1, . . . , m. If we prove the following,

pa

(
ZẼ

)
= pe(X, o, z), (4.5)

then pf (X, o) = pa(ZẼ) = pe(X, o, z) = pe(Y, o, h) by Theorem 4.5 and (X, o) is a weak
Kodaira singularity of genus pe(Y, o, h). This completes the proof; thereby, we prove
(4.5) in the following.

Let Uj be a small open neighborhood of Eij
∩ Cj in Ỹ , and let aj = vEij

(h ◦ σ),
bj = vCj

(h◦σ). Hence Nh(Y, o) = max{lcm(aj , bj) | j = 1, . . . , m}. Let (uj , vj) be a local
coordinate of Uj such that Eij

= {uj = 0} and Cj = {vj = 0} in Uj . Then ψ′−1(Uj) =
{zn = u

aj

j vbj}. Let nj , āj and b̄j be integers given by nj = n/ gcd(n, lcm(aj , bj)), āj =
aj/ gcd(aj , lcm(n, bj)) and b̄j = bj/ gcd(bj , lcm(n, aj)) as in (4.2). Then two elements of
them are always relatively prime. Also, let µj be an integer determined by

ājµj + b̄j ≡ 0(nj) and 0 5 µj < nj .

Further we put `j = gcd(n, aj , bj) and λj = gcd(aj , bj)/`j . Then (ψ′ ◦ φ2)−1(Uj) is the
disjoint union of `j cyclic quotient singularities of type Cnj ,µj from Lemma 4.2.

From now on we assume n = Nh(Y, o). Then we have nj = āj b̄jλj . If nj = 1, then
any connected component of (ψ′ ◦φ2)−1(Uj) is non-singular. Hence, we assume nj > 1 in
the following. From Lemma 4.8, there exist integers pj , qj and rj uniquely which satisfy
the conditions: nj = ājpj + b̄jqj + āj b̄jrj , 0 5 pj < b̄j , 0 5 qj < āj and 0 5 rj . Hence
we have

λj 5 rj + 1. (4.6)

Let p′j and q′j be integers given by p′jpj ≡ 1(b̄j), q′jqj ≡ 1(āj), 1 5 p′j < b̄j and 1 5 q′j < āj .
Let āj/q′j = [[dj,1, . . . , dj,s1(j)]], b̄j/p′j = [[ej,1, . . . , ej,s2(j)]] and s3(j) = s1(j) + s2(j) +
rj − 1. From (4.4), the divisor (z ◦ φ)X̃ restricted to the P 1-chain associated to the
minimal resolution of Cnj ,µj

is given as

C̃j

-ej,1

Fj,s3(j)+1

· · ·∗ -dj,1

Fj,1 · · ·Ẽij

-dj,s1(j)-α · · ·
· · ·Fj,s1(j)

∗
ājλj q′jλj · · · λj · · · p′jλj b̄jλj

, (4.7)

where C̃j (resp. Ẽij
) is an irreducible component of δ−1(Cj) (resp. δ−1(Eij

)) and α = 1 if
rj > 0, and α = ej,s2(j) otherwise. Gluing X̃ and resolution spaces of

∑m
j=1 gcd(n, aj , bj)

cyclic quotient singularities as in Theorem 2.4, we can construct a pencil of curves Φ :
S −→ ∆ that satisfies the following commutative diagram:
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↪→ (S, supp(So)) .(X̃, Ẽ)

∆

Φ
z ◦ φ ?

HHHj

Because h is semi-reduced, Φ : S −→ ∆ is a non-multiple pencil of curves of genus
pe(X, o, z) from Lemma 4.3 and Theorem 2.9. Therefore,

pa

(
ZẼ

)
5 pe(X, o, z). (4.8)

Since p′jλj < b̄jλj , the configuration of (4.7) is embedded to a P 1-chain started from Ẽij

in supp(So) as

where C̃j ⊂ Gj,0,
p′j
b̄j

= [[1, g1, . . . , gtj
]] and gj,k = 2 if k > 0. Then

(
⋃s3(j)+1

k=1 Fj,k) ∪ (
⋃tj

`=0 Gj,`) is a P 1-chain started from Ẽij
which is a connected

component of supp(So)\Ẽ. From Lemma 4.7, we can easily check [[ej,s2(j) + 1,

ej,s2(j)−1, . . . , ej,1, 1, gj,1, . . . , gj,tj
]] = 1. Therefore, after successive contractions of (−1)

curves of supp(So)\Ẽ, we can get a pencil Φ′ : S′ −→ ∆ of genus pe(Y, o, h) such that
the P 1-chain started from Ẽij is given

∗ -dj,s1(j)−1 -dj,s1(j)

Ẽij
Fj,1 Fj,s1(j)−1 Fj,s1(j)

-dj,1 · · ·

· · ·

.

After suitable blowing-ups S′′ τ−→ S′, we can construct a non-multiple pencil Φ′′ = Φ′ ◦τ :
S′′ −→ ∆ of genus pe(X, o, z) such that supp(S′′o ) is given as follows:

Let Hj be the union of all (−1) curves of the right hand side in the figure above; also, let
H =

⋃m
k=1 Hj . If we put E′ = supp(S′′o )\H, then pa(ZE′) = pe(X, o, z) from (4.6) and

Lemma 4.11. The w.d.graph of E′ is embedded to the one of Ẽ as
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consequently, pa(ZE′) 5 pa(ZẼ). Hence pe(X, o, z) = pa(ZE′) 5 pa(ZẼ) 5 pe(X, o, z)
from (4.8), thereby proving (4.5) and completing the proof. ¤

Example 4.13.

(i) Let h = (x + y)x2y3 and let V
σ−→ C2 be a blowing-up at {0} ∈ C2. Then

-1∗ ∗
∗

1 6 3

2

-1
1 6 3

2

-6

-3

⊂ ;

and so pe(C2, o, h) = 1 and Nh(C2, o) = 6. Let (X, o) be the normalization of a non-
normal singularity {zn = h} ⊂ (C3, o). From Theorem 4.12, (X, o) is a weak Kodaira
singularity for any n = 6. Assume n = 6` + 1 for ` = 1. Let (Y, o) = (C2, o) and
consider the diagram of (4.1). Then there are three cyclic quotient singularities of each
type Cn,µj (j = 1, 2, 3), where µ1 = `, µ2 = 2` and µ3 = 3` from Lemma 4.2. Since
6`+1

` = [[7, 2, . . . , 2]], 6`+1
2` = [[4, 2, . . . , 2]] and 6`+1

3` = [[3, 2, . . . , 2]], the associated elliptic
pencil of curves which includes the minimal good resolution of (X, o) is given as

-1

-4

-3
-7

2`− 1

`− 1
2

3`− 1
2 2

3 3 3

111
-1

-1

-1

2

3
1 6· · ·

· · ·

· · ·

.· · ·

· · ·

· · ·

Therefore, (X, o) is a weak Kodaira elliptic singularity (but not a Kodaira singularity).
From Nemethi’s result ([Ne]), (X, o) is a maximally elliptic singularity with −Z2

X = 6
(= mult(X, o) =emb.dim.(X, o)) and pg(X, o) = `.

(ii) Let h = xy(x + y)3 and let V
σ−→ C2 be a blowing-up at {0} ∈ C2. Then we

have

-1∗ ∗
∗

1

3

-1
1

-3

⊂ ,

5 1
-5 -5

3

1

5 1

and so we have pe(C2, o, h) = 2 and Nh(C2, o) = 15. Let (X, o) be the normalization
of {zn = h} ⊂ (C3, o). From Theorem 4.12, (X, o) is a weak Kodaira singularity of
genus 2 for any n = 15. Assume n = 15` + 19 for ` = 0. Then we must consider three
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cyclic quotient singularities of each type Cn,µj
(j = 1, 2, 3), where µ1 = µ2 = 12` + 15

and µ3 = 6` + 7 from Lemma 4.2. Since 15`+19
12`+15 = [[2, 2, 2, 3, 2, . . . , 2]] and 12`+19

6`+7 =
[[3, 3, 2, . . . , 2, 3, 2]], the associated pencil of curves of genus 2 which includes the minimal
resolution of (X, o) is given as

` = 0 :

` ≥ 1 :

Theorem 4.14. Let (Y, o) be a normal surface singularity and h ∈ mY,o a reduced
element. Let (X, o) be the n-fold cyclic covering of (Y, o) defined by zn = h. If n =
Nh(Y, o), then (X, o) is a Kulikov singularity of genus δ(h) − r(h) + 1 and z is the
projection function (Definition 3.7) for an associated pencil of curves and Z2

X = −r(h).

Proof. Because h is reduced, (X, o) is normal ([TW2, Theorem 3.2]). Also,
(X, o) is a weak Kodaira singularity of genus δ(h) − r(h) + 1 from Corollary 2.12 and
Theorems 4.5 and 4.12. Let σ : (Ỹ , E) → (Y, o) be a resolution such that red((h ◦ σ)Ỹ )
is a simple normal crossing divisor and Nh(Y, o) = Nh(σ). Consider diagram (4.1); then
φ := φ3 ◦ φ2 ◦ φ1 : (X̃, Ẽ) → (X, o) is a good resolution such that (z ◦ φ)X̃ is simple
normal crossing. From Lemma 4.3, z is a reduced element of OX,o. By Theorem 3.11,
(X, o) is a Kulikov singularity which has a projection function z. For non-exceptional
part Λ(z ◦ φ), supp(Λ(z ◦ φ)) has r(h) connected components and Λ(z ◦ φ) is a reduced
divisor. Since Ẽ(z ◦ φ) = ZẼ , we have 0 ∼ (z ◦ φ)X̃ = ZẼ + Λ(z ◦ φ); therefore,
Z2

X = Z2
Ẽ

= −ZẼΛ(z ◦ φ) = −r(h). ¤

Corollary 4.15. Let (Y, o) = {h(x, y, z) = 0} ⊂ C3 be a normal hypersurface
singularity. If x is a reduced element of OY,o, then a hypersurface singularity (X, o) =
{h(xn, y, z) = 0} is a Kulikov singularity of genus µ(f)−r(f)+1

2 and Z2
X = −r(f) if

n = Nx(Y, o), where f := h(0, y, z) and µ(f) and r(f) are defined for a plane curve
singularity ({f = 0}, o).

Corollary 4.16 ([Tt2, Theorem 4.5]). Let (X, o) = {zn = h(x, y)} be a normal
hypersurface singularity with n > 1, where h ∈ C{x, y}. If n = Nh(C2, o), then (X, o)
is a Kulikov singularity of genus µ(h)−r(h)+1

2 and Z2
X = −r(h).

Example 4.17. Let (Y, o) = {z3 = (x + y2)(x + y3)} ⊂ (C3, o). This is a rational
double point of type E6. Because pf (Y, o) = 0 and pe(Y, o) = 1 from Proposition 3.12,
(Y, o) is not a weak Kodaira singularity. Consider two resolutions of (Y, o) such that
divisors determined by two reduced elements x and x3 + y2 are given as
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-3 -3-1

*

2 4 6 5 9 3

3 1

(x) :

4
-3

6
-3
86

*

18

1

9

(x3 + y2) :

42

-1 .42

As in Theorem 2.4, we can construct two pencils of curves from them. Their singular
fibers are given as

-3 -3-1
2 4 6 5 9 3

3 1

4
-3

6 86 18

1

9
42

-1 .42

-9 -18

-3

Then Nx(Y, o) = 9 and Nx3+y2(Y, o) = 18, and we have pe(Y, o, x) = 4 and pe(Y, o, x3 +
y2) = 6 from (1.1) and the adjunction formula and Theorem 2.9.

(i) Let (X, o) = {z3 = (xn + y2)(xn + y3)} ⊂ (C3, o) for n = 2. For n = 8, 9 and
10, the cycles defined by (x) on the minimal good resolutions of (X, o) are given as

A cycle above gives the fundamental cycle in each case. Though the w.d.graph is not a
Kodaira graph for n = 8, it is a Kodaira graph for n = 9 or 10. From Corollary 4.15,
(X, o) is a Kulikov singularity of genus 4 if n = Nx(Y, o) = 9.

(ii) Let (X, o) be a complete intersection singularity {z3 = (x + y2)(x + y3), un =
x3 + y2} ⊂ (C4, o). From Theorem 4.14 and the configuration above for the divisor of
x3 +y2, (X, o) is a Kulikov singularity of genus 6 if n = Nx3+y2(Y, o) = 18. For example,
assume n = 18. Applying Lemmas 4.2 and 4.3 to the figure of the divisor (x3 +y2) above
on a resolution space of (Y, o), we can obtain the cycle E(u◦π) on the minimal resolution
(X̃, E) π−→ (X, o) is given as

-3
[4]

-1
[1]

.
1

-1
[1]

1 11 11 1 11

5. Pencil genus of hypersurface singularities defined by zn = f(x, y).

In this section we consider hypersurface singularities defined by zn = f(x, y).
Though they construct a special class of normal surface singularities, they have been
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studied by many authors since Zariski’s work [Z]. In addition, all normal double points
(i.e., normal surface singularities of multiplicity 2) have z2 = f(x, y) as the defining equa-
tions, and there are many papers on them ([D], [Tm1] and their references). Hence, it
seems worth while to consider the pencil genus for singularities defined by zn = f(x, y).
We have already given a formula of pe(X, o, h) in Section 2 (Theorem 2.11). However we
must to compute a resolution (X̃, E) and a divisor E(h ◦ π) for obtaining the value of
pe(X, o, h). Therefore, it is not so easy to get the value of pe(X, o, h) even if (X, o) is a
hypersurface singularity. In this section, we give a formula (Theorem 5.4) of pe(X, o, `)
for hypersurface singularities of type zn = f(x, y) and ` ∈ n\n2, where n is the maximal
ideal (x, y) ⊂ C{x, y}. The author proved the following ([Tt2, Theorem 4.1] and [Tt4,
Corollary 3.8]).

Theorem 5.1. Let (X, o) be a hypersurface singularity of type zn = f(x, y). If
n|ord(f), then (X, o) is a Kulikov singularity of genus (n−1)(ord(f)−2)

2 , where ord(f) is
the order of f at the origin.

In the situation above, for general elements α and β of C, αx + βy is a projection
function for (X, o). Since pe(X, o, αx + βy) = (n−1)(ord(f)−2)

2 from Proposition 3.10 (iii),
Theorem 5.4 is a generalization of this formula (Corollary 5.5). In the following, let us
prepare two lemmas to prove Theorem 5.4.

Lemma 5.2. Let (X̃, E) −→ (X, o) be a resolution of a Gorenstein surface singu-
larity and KX̃ the canonical divisor of X̃. Let

⋃r
j=1 Ej (⊂ E) be a P 1-chain started from

an irreducible component Eo of E, and let bj = −E2
j (1 5 j 5 r) and kj = CoeffEj KX̃

(0 5 j 5 r). Assume that b1 = 1 and bj = 2 (2 5 j 5 r). Let n
q = [[b1, . . . , br]] and

gcd(n, q) = 1. If q̄ is an integer with qq̄ + 1 ≡ 0(n) and 0 = q̄ < n, then kr = ko−q̄+1
n .

Proof. Let us prove this by induction on r. If r = 1, 2, then the assertion
is easily checked; hence, we assume r = 3. Let δ0 = n, δ1 = q and let δ2, . . . , δr+1

be positive integers that are inductively determined by relations: δi = bi+1δi+1 − δi+2

(i = 0, 1, . . . , r−1), and let δr = 1, δr+1 = 0. Hence δi−1
δi

= [[bi, . . . , br]] for i = 1, 2, . . . , r

and
⋃r

j=i Ej is the exceptional set of a resolution (not necessarily minimal) for a cyclic
quotient singularity Cδi−1,δi . Further, let εr+1, . . . , ε1 be non-negative integers those are
inductively determined by the following relations:

εr+1 = 1, εr = br − 1, εi−1 = bi−1εi − εi+1 (i = r, r − 1, . . . , 2).

Then ε1
ε2

= [[b1, . . . , br−1, br − 1]] and gcd(ε1, ε2) = 1. Assume that ε1 = 2, and let c

be an integer with 0 < c < ε1 and ε2c ≡ 1(ε1). Then ε1
c = [[br − 1, br−1, . . . , b1]] and

gcd(c, ε1) = 1. Then ε1+c
c = ε1

c + 1 = [[br, . . . , b1]] = n
q′ , where q′ is an integer defined by

qq′ ≡ 1(n) and 0 < q′ < n. Hence c = q′ and ε1+c = n. Then qε1+1 = q(n−q′)+1 ≡ 0(n)
and so q̄ = ε1. Therefore, δ1ε1 + 1 ≡ 0(δo). Similarly, we obtain δi+1εi+1 + 1 ≡ 0(δi) for
i = 0, . . . , r − 1. From the assumption of length r − 1 and r − 2, we have kr = k1−ε2+1

δ1

and kr = k2−ε3+1
δ2

. Since n = b1δ1 − δ2 and ε1 = b1ε2 − ε3,



74 T. Tomaru

b1 − 2 = KX̃E1 = ko − b1k1 + k2

= ko − b1(krδ1 + ε2 − 1) + krδ2 + ε3 − 1

= ko − (b1δ1 − δ2)kr − ε1 + b1 − 1 = ko − nkr − ε1 + b1 − 1;

therefore, we have kr = ko−q̄+1
n .

Next, assume that 0 5 ε1 5 1. Then we can easily see that n = ε1+1, [[b1, . . . , br]] =
[[1, 2, . . . , 2, ε1 + 2]] and q̄ = ε1. Hence k0 − k1 + k2 = −1, kj − 2kj+1 + kj+2 = 0 (j =
1, . . . , r−2) and kr−1−(ε1+2)kr = ε1. Taking their sum, we have k0−(ε1+1)kr = ε1−1;
hence, kr = k0−ε1+1

ε1+1 = k0−q̄+1
n . ¤

Lemma 5.3. Let (X̃, E) −→ (X, o) be a resolution of a normal surface singularity
and let f ∈ mX,o. Let E′ =

⋃r
j=1 Eij (⊂ E) be a P 1-chain such that the divisor (f◦π)X̃ |E′

is given as follows:

-b1 -br· · ·* *

a d1 · · · dr b

, where E2
ij

= −bj for j = 1, . . . , r.

Then dr = a+bq′

n , where n
q = [[b1, . . . , br]] and qq′ ≡ 1(n) and 0 < q′ < n.

Proof. We have a linear equation on d1, . . . , dr as follows:





−b1d1 + d2 = −a

dj − bj+1dj+1 + dj+2 = 0 (j = 1, . . . , r − 2)

dr−1 − brdr = −b,

The determinant of the coefficient matrix of the linear equation is equal to ±n. From
Cramer’s formula, it completes the proof. ¤

Now we prove the main result of this section in the following. Let h1, h2 be elements
of the maximal ideal n of C{x, y}. Let Io(h1, h2) be the intersection multiplicity of
{h1 = 0} and {h2 = 0} at {0} ∈ C2 ([BK, p. 47], [Na, p. 231]).

Theorem 5.4. Let (X, o) be a normal hypersurface singularity defined by zn =
f(x, y). Let ` ∈ n\n2 and

Io :=

{
Io(`, f1) if ` | f and f1 = f/`,

Io(`, f) if ` - f .

Then

pe(X, o, `) =
(n− 1)(Io − 1) + 1− gcd(n, Io)

2
.
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Proof. We prove the formula in the case of ` | f . Let f = `g1 . . . gλ be the irre-
ducible decomposition and let B̄j = {gj = 0}, L̄o = {` = 0} and s = max15j5λ

⌈ Io(`,gj)
ord(gj)

⌉
,

where, for any real number a ∈ R, dae is the least integer greater than or equal to a.
Let Yo = C2 σo←− Y1

σ1←− · · · σs−1←−−− Ys be an iteration of blowing-ups such that the cen-
ter of σo is the origin Po = {0} ∈ C2 and the center of σk (k = 1) is Pk := Ēk ∩ L̄k

(k = 1, . . . , s − 1), where Ēk = σ−1
k−1(Pk−1) and L̄k is the strict transform of L̄o by

σo ◦ · · · ◦ σk−1 (k = 1, . . . , s). Let B̄j,k be the strict transform of B̄j by σo ◦ · · · ◦ σk−1.
From the definition of s, L̄s intersects Ēs transversally and L̄s does not intersect B̄j,s.
If necessary, by taking suitable blowing-ups Ys

σs←− · · · σt−1←−−− Yt, an embedded resolution
of the curve singularity ({f = 0}, o) ⊂ (C2, o) is obtainable in which we assume that the
center of σk (k = s, . . . , t− 1) is not Ps. Let σ̄ = σ0 ◦ · · · ◦ σs−1 and σ = σ0 ◦ · · · ◦ σt−1.
Also, we put

mj,k =

{
multPk

B̄j,k if Pk ∈ L̄k,

0 otherwise,

for k = 0, 1, . . . , s. By M. Noether’s theorem ([BK, p. 518]), we have vĒs
(gj ◦ σ) =∑s−1

k=0 mj,k = Io(`, gj). Hence vĒs
(f ◦ σ̄) =

∑λ
j=1 vĒs

(gj ◦ σ̄) + s =
∑λ

j=1 Io(`, gj) + s =
Io + s from vĒs

(` ◦ σ̄) = s. Also vL̄s
(f ◦ σ̄) = vL̄s

(` ◦ σ̄) = 1. Let Ēt (resp. L̄t) be the
strict transform of Ēs (resp. L̄s) by σs ◦ · · · ◦σt−1. Since σs ◦ · · · ◦σt−1 is an isomorphism
on an open neighborhood of L̄t,

vĒt
(f ◦ σ) = Io + s, vĒt

(` ◦ σ) = s and vL̄t
(f ◦ σ) = vL̄t

(` ◦ σ) = 1. (5.1)

Now, consider the following diagram as in (4.1):

(x, y, z) ∈ C3 ⊃ X X ′
∪

Ỹ ×C1

X ′′ X̃ ⊂ S,

(x, y) ∈ C2 = Yo Ỹ = Yt ∆

ψ ψ′ Φ

φ1

σ

φ2 φ3

δ

¾

¾
?? ? ?

¾¾

©©©©©¼
(5.2)

where φ := φ1 ◦ φ2 ◦ φ3 gives a good resolution of (X, o) such that (f ◦ φ)X̃ is a simple
normal crossing divisor. Also Φ : S −→ ∆ is a pencil of curves of genus pe(X, o, `) and
satisfying Φ|X̃f ◦ σ ◦ δ, which is constructed as in Theorem 2.4.

Let Lt (resp. Et) ⊂ X̃ be the strict transform of L̄t (resp. Ēt) by δ. Then Lt is
an irreducible curve because ` | f . Let (U ;u, v) be a local coordinate neighborhood of
Ēt ∩ L̄t such that Ēt = {v = 0} and L̄t = {u = 0}. By the definition of s, we have
(x, y) = σ(u, v) = (us−1vs, uv) on U because σs ◦ · · · ◦ σt−1 is an isomorphism on U . Let
put α = gcd(n, Io + s), n1 = n

α and ε = Io+s
α . Since X ′ is represented by zn = uvIo+s

on δ−1(U) from (5.1), its normalization is a cyclic quotient singularity Cn1,n1−ε1 from
Lemma 4.2, where ε1 is an integer with ε1 ≡ ε (n1) and 0 < ε1 < n1. φ3 gives the
minimal resolution of Cn1,n1−ε1 ; thereby, we have a P 1-chain

⋃r
j=1 Fj between Et and
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Lt (Definition 2.2) of type (b1, . . . , br) and so n1
n1−ε1

= [[b1, . . . , br]].
Since (X, o) is a hypersurface singularity, the canonical divisor KX̃ is given by the

meromorphic 2-form ω = dx∧dy
zn−1 and supp(KX̃) = E (cf. [Re2]). From vĒt

(f ◦σ) = Io+s,
X ′ is represented by an equation zn = vIo+s around the general point of ψ′−1(Ēt) in
Ỹ × C. Then X ′ has a local parameterization η : (u, θ) 7→ (u, v, z) = (u, θn1 , θε).
Therefore,

(σ ◦ δ)∗(ω) =
−us−1vsdu ∧ dv

zn−1
=
−n1u

s−1du ∧ dθ

θnε−ε−(s+1)n1+1
.

If we put ko = CoeffEt
KX̃ and kj = CoeffFj

KX̃ for j = 1, . . . , r, then

ko = ordEt
(σ ◦ δ)∗(ω) = −nε + ε + (s + 1)n1 − 1

= − (n− 1)(Io − 1)− 1− s + α

α
. (5.3)

From Lemma 5.1,

kr =
ko − ε2 + 1

n1
, where ε1ε2 ≡ 1(n1) and 0 < ε2 < n1. (5.4)

Let dj = vFj
(`◦σ◦δ) for j = 1, . . . , r. From (5.1) and Lemma 4.3, vEt

(`◦σ◦δ) = n1s

and vLt
(` ◦ σ ◦ δ) = n. From (` ◦ σ ◦ δ)X̃Fj = 0 for j = 1, . . . , r and Lemma 5.3, we have

dr = n + s− αε2. (5.5)

Let d̄r = dr

gcd(n,dr) , n2 = n
gcd(n,dr) and d̄r

n2
= [[c1, . . . , cm]], where c1 = 1 and ci = 2

for i = 2, . . . , m. Using the method of Theorem 2.4, a pencil of curves Φ : S −→ ∆ is
constructed by gluing X̃ and the standard resolution space (W,G :=

⋃m
i=1 Gi) of a cyclic

quotient singularity Cd̄r,n2
, where G2

i = −ci for any i and Lt ⊂ G1 and Φ|X̃ = ` ◦ σ ◦ δ.
For divisors (` ◦ σ ◦ δ)X̃ |F and So|F∪G = Φ−1(o)|F∪G, we have the following figure:

From Lemma 2.8,

KS(So|G) = dr − n− gcd(n, dr). (5.6)

Since 0 = SoFr = (So|E∪F + So|G)Fr = (So|E∪F )Fr + n, we have (So|E∪F )Fr = −n.
Because the intersection number of So|E∪F and any irreducible component of E ∪ F

except for Fr is zero, we have
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KS(So|E∪F ) = KX̃(So|E∪F ) = (CoeffFr
KX̃)Fr(So|E∪F )

= −krn = −αko + αε2 − α = (n− 1)(Io − 1)− 1 + n− dr

from (5.3), (5.4) and (5.5). Hence Io + dr ≡ 0(n). Therefore,

pe(X, o, `) = 1 +
1
2
KSSo = 1 +

1
2
{
KS(So|E∪F ) + KS(So|G)

}

= 1 +
1
2
{
(n− 1)(Io − 1)− 1− gcd(n, dr)

}

=
(n− 1)(Io − 1) + 1− gcd(n, Io)

2
.

For the case of ` - f , we can prove the formula more easily than the case of ` | f . We
describe the outline of the proof. First we make an embedded resolution space of a curve
singularity {f = 0} and take an n-fold cyclic covering ψ′ : X ′ −→ Ỹ as above. However,
L̄t is not contained in the ramification locus of ψ′. Then L = (ψ′)−1(L̄t) has λ irreducible
components L1, . . . , Lλ, where λ = gcd(n, Io). Furthermore, X ′′ is non-singular near L

and φ2 is an isomorphism near L. By gluing X̃ and resolution spaces of λ cyclic quotient
singularities, we can construct a pencil Φ : S −→ ∆. As above, we obtain the formula of
pe(X, o, `). ¤

Corollary 5.5. Let (X, o) = {zn = f(x, y)} be a normal surface singularity. For
general elements α, β ∈ C,

pe(X, o, αx + βy) =
(n− 1)(ord(f)− 1) + 1− gcd(n, ord(f))

2
.

Example 5.6. Let f(x, y) = (x2 + y3)y(y + x2)(y + x3) and let (X, o) = {z2 =
f(x, y)} ⊂ C3. Then the fundamental cycle on the minimal resolution is given as

-4
1

11 1 2 2

.

Consequently, (X, o) is an elliptic singularity. If we put f1 = f/y and f2 = f/(y +
x2), then Io(y, f1) = 7 and Io(y + x2, f2) = 6. Therefore, pe(X, o, αx + βy) = 2 from
Corollary 5.5, and pe(X, o, y) = 3 and pe(X, o, y+x2) = 2 from Theorem 5.4. Two cycles
determined by y and y + x2 on the minimal resolution and their associated pencils are
given as

-4
3 2 2 2

1

12
-4

2 2 2

1

12

2

1

-1

.

(y): (y + x2):
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Kodaira’s classification of elliptic pencils confirms that no elliptic pencil contains the
exceptional set above. Then pe(X, o) = 2 and so (X, o) is an elliptic singularity of
pe(X, o) = 2.
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[G] H. Grauert, Über Modifikationen und exceptionelle analytische Mengen. Math. Ann., 146

(1962), 311–368.

[H] H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem. Coll.

Sci. Univ. of Kyoto, 30 (1957).

[Ka1] U. Karras, On pencils of curves and deformations of minimally elliptic singularities, Math.

Ann., 247 (1980), 43–65.

[Ka2] U. Karras, Methoden zur Berechnung von Algebraischen Invarianten und zur Konstruktion

von Deformationen Normaler Flachensingularitaten, Habilitationschrift, Dortmund, 1981.

[Ko] K. Kodaira, On compact analytic surfaces; II, Ann. of Math., 77 (1963), 563–626.

[Ku] V. S. Kulikov, Degenerate elliptic curves and resolution of uni- and bimodal singularities,

Funct. Anal. Appl., 9 (1975), 69–70.

[La1] H. Laufer, Taut two-dimensional singularities, Math. Ann., 205 (1973), 131–164.

[La2] H. Laufer, On rational singularities, Amer. J. Math., 94 (1972), 597–608.

[La3] H. Laufer, On minimally elliptic singularities, Amer. J. Math., 99 (1977), 1257–1295.



Pencil genus for normal surface singularities 79

[Li] J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factor-

ization, Publ. Math. Inst. Hautes Études Sci., 36 (1969), 195–297.

[Lo] E. Looijenga, Riemann-Roch and smoothing of singularities, Topology, 25 (1986), 293–302.

[Mah1] H. Matsumura, Commutative algebra, Benjamin, 1970 (second edn., 1980).

[Mah2] H. Matsumura, Commutative ring theory, Cambridge Univ. Press., 1986.

[Mak] K. Matsuki, Introduction to the Mori Program, Springer-Verlag, 2002.

[Mi] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies., 61 (1968).

[Mo] M. Morales, Calcul de quelques invariants des singularités de surface normale, Enseign. Math.,

31 (1983), 191–203.

[Na] M. Namba, Geometry of Projective Algebraic Curves, Marcel Dekker, 1984.

[Ne] A. Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math., 137 (1999),

145–167.

[O] T. Okuma, Plurigenera of surface singularities, Nova Science Publishers, New York, 2000.

[OnW] I. Ono and Ki. Watanabe, On the singularity of zp +yq +xpq = 0, Sci. Rep. of Tokyo Kyouiku

Daigaku, 12 (1974), 124–128.

[OrW] P. Orlik and P. Wagreich, Algebraic surface with k∗-action, Acta Math., 138 (1977), 43–81.

[P] H. Pinkham, Normal surface singularities with C∗-action, Math. Ann., 227 (1977), 183–193.

[Re] D. Rees, a-transforms of local rings and a theorem on multiplicities, Proc. Cambridge Philos.

Soc., 57 (1961), 8–17.

[Re1] M. Reid, Elliptic Gorenstein singularities of surfaces, Preprint, 1978.

[Re2] M. Reid, Singularities and Surfaces, Complex Algebraic Geometry, Ias/Park City, Math. Se-

ries, 3, A.M.S. and Institute for Advanced Study, 1997, pp. 91–120.

[Ri] O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen).
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