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Abstract. Let (X,0) be a normal complex surface singularity. We define an
invariant pe (X, o) for (X, 0) in terms of pencils of compact complex curves. Similarly,
for a pair of (X,0) and h € mx , (the maximal ideal of Ox ,), we define an invariant
pe(X,0,h). We call pe(X,0) (resp. pe(X,o0,h)) the pencil genus of (X,0) (resp. a
pair of (X, 0) and h). In this paper, we give a method to construct pencils of compact
complex curves by gluing a resolution space of (X, 0) and resolution spaces of some
cyclic quotient singularities. Using this, we prove some formulae on pe(X, o0, h) and
estimate pe (X, 0). We also characterize Kodaira singularities in terms of pe(X, o0, h).

1. Introduction.

In the field of complex surface singularity theory, there have been several works until
now about relations between singularities and pencils (one parameter families) of alge-
braic curves. With respect to their relation, V. Kulikov [Ku] showed that unimodal and
bimodal singularities classified by V. I. Arnold [Arn] are obtained through a procedure
(see Definition 3.7 of this paper) from Kodaira’s list [Ko] of pencils of elliptic curves.
In addition, M. Reid [Rel] pointed out relations between minimally elliptic singularities
and pencils of elliptic curves. Further, generalizing the procedure of Kulikov, U. Karras
[Kal] introduced the notion of Kodaira singularities in terms of pencils of curves. He also
applied it to the deformation theory of surface singularities. In [St1], J. Stevens studied a
subclass of Kodaira singularities (called Kulikov singularities) and proved some relations
between them and deformations of curve singularities. In this paper, we also study some
relations between surface singularities and pencils of compact complex algebraic curves.

Before describing our main results, we review some facts and definitions. Let S
be a non-singular complex surface and A C C a small open disc around the origin.
If @ : S — A is a proper surjective holomorphic map with connected fibers and the
generic fiber S; := ®71(t) (t # 0) is a smooth curve of genus g, it is called a pencil of
curves of genus g. If ® : S — A is a pencil of curves, the intersection matrix of any
connected one-dimensional analytic proper subset E in supp(S,) is negative definite from
Zariski’s lemma ([BPV, p.90]). Hence F is contracted to a normal surface singularity by
Grauert’s result (|G, p.367]). In this paper, we consider the converse problem. Namely,
we will construct pencils of curves from resolution spaces of normal surface singularities
and holomorphic functions on them (Theorem 2.4).
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DEFINITION 1.1.  Let (X, 0) be a normal surface singularity and 7 : (X, E) — (X, 0)
a resolution. Let ® : S — A be a pencil of curves.

(i) If (S,supp(S,)) D (X, E) (i.e., S D X and supp(S,) D E), then ® is called a
pencil of curves including (X, E), where supp(S,) is the support of S,.

(ii) If h € mx, satisfies hom = ®, then ® is called a pencil of curves extending

hom or an extension of h o w. Namely it implies the following diagram:

(X, 0)

where supp(S,) O F and hom = ®| ;.

(iii) Under the situation of (ii), if there is no (—1) curve in supp(S,)\E which does
not intersect F, then we call ® a pencil of curves minimally extending how or a minimal
extension of hom.

DEFINITION 1.2.

(i) Let (X,o0) be a normal surface singularity and h € mx ,. If h defines a reduced
curve on X, then h is called a reduced element.

(ii) Let (R, m) be a commutative local ring and h a non-zero element of m. Then h
is called a perfect power element if there is an element g € m satisfying h = ¢* for some
positive integer k = 2.

In this paper, we prove that if h € mx , is not a perfect power element, then there
is a pencil of curves extending h o 7 (see Theorem 2.4). Here we can state the following
definition.

DEFINITION 1.3.  Let (X, 0) be a normal surface singularity.
(i) We define a holomorphic invariant for (X, o) as follows:

pe(X, 0) = min{the genus of a pencil of curves including a resolution of (X,0)}.

(ii) Let h € mx, be not a perfect power element. We also define a holomorphic
invariant for a pair of (X, 0) and h as follows:

Pe(X, 0, h) = min{the genus of a pencil of curves extending h o 7 for a resolution

7 of (X,0)}.

Then, p.(X,0) (resp. p.(X,o0,h)) is called the pencil genus of (X,0) (resp. a pair of
(X,0) and h).

REMARK 1.4. Let (X,0) be a normal isolated singularity. In general, if h € mx ,
is a reduced element, then it defines a one parameter smoothing of (X,0) ([Mahl,
p.150]). Using formal completion argument presented by M. Artin, E. Looijenga [Lo,
p.301] proved that if h € mx, is an element that gives a one parameter smoothing
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h : (X,0) — (C*,0), then there is a flat projective morphism ¢ : Z — C' and an
embedding ¢ : X — Z satisfying h = 1o ¢. In Section 2 of this paper, we prove a similar
result (see Theorem 2.4) in the case of dime(X,0) = 2 and h is not a perfect power
element by a different method. From this method we can compute p.(X, 0, h) for (X, o)
and h.

REMARK 1.5.
(i) Let (X,o0) be a normal isolated singularity. Let (X, E) = (X, 0) be an arbitrary

resolution. Then there is a pencil of curves S 2, A of genus p.(X,0) and including

(X,E). In fact, there is a pencil of curves S 2y A of genus pe(X,0) and including a
resolution space (X, E) of (X,0). There is a birational transformation go from X to X.
Thus, there is a complex surface S and a birational transformation S 2 S such that
olg =pand & := =doyp: S — A gives a pencil of curves. The genus of ® is pe(X,0)
and (X, E) C (S, supp(S, ))

(i) Let (X;, E(i)) = (Xi,0) be a resolution of a normal surface singularity for
i =1,2. If (X1,E(1)) D (X3, E(2)), then pe(X1,0) = pe(Xa,0). In fact, there is a
pencil of curves S; 24 A of genus p,(X1,0) and including (X, (1)) from (i). Then
(S1,s5upp(S1)e) O (X2, E(2)); hence po(X1,0) = pe(Xa,0). Further, if h; € my,, for
1=1,2 and hy o7r1|X2 = hg o mg, then p.(X1,0,h1) = pe(Xa,0, hs). In fact, if Sy A
is a pencil of curves of genus p. (X7, 0, h1) which is an extension of hy o7y, then hyomy =
hiom|g, = ®1]x,; hence pe(X1,0,h1) Z pe(X2,0, ha).

REMARK 1.6. For rational double points, p.(X,0) = 0 for any singularity of type
A, (n=1,2,...)or D,, (n=4,5,...), as shown in the following configurations:

O—--0cO—-OHJ and 8\/&---—0 c8><}—<>+@

On the other hand, we prove p.(X,0) =1 for a singularity of type E,, for n = 6,7 and 8
(see Proposition 3.12).

Let (X,0) be a normal surface singularity. Let 7 : (X, E) — (X, 0) be a resolution
and let £ = U:Zl E; be the irreducible decomposition. For an element h € mx,,
let (hom)g be the divisor defined by h o 7w on X. The exceptional part E(h o m) of
(hom)g is defined by E(how) = >.._, vg,(h o m)E;, where vg,(h o «) indicates the
vanishing order of how on E;. Let A(h o w) be the strict transform of the divisor
{h =10} in X by 7. If supp(A(hom)) = Uj 1 Cj is the irreducible decomposition, then
A(hom) =37"_ ve;(hom)C; and it is called the non-exceptional part of (h o). For
an effective cycle D = >""_, d;E; on F, the arithmetic genus of D is defined as

pa(D) =1+ %(DQ + K¢D), (1.1)

where K g is the canonical bundle (or divisor) on X. For the (Artin’s) fundamental cycle
Zg == min{D = >"!_, a;E;|la; > 0 and DE; < 0 for i} ([Art]), the value of p,(Zg) is



38 T. TOMARU

independent of the choice of a resolution, and so we put it p;(X, o) in this paper. The
positive cycle Mg := min{E(hom)|h € mx,} on E is called the mazimal ideal cycle on
E and we have Zg < Mg ([Y]). In this paper, My represents the maximal ideal cycle
on the minimal resolution.

From now on we explain our main results of this paper. In the following, let h € mx ,
be not a perfect power element; furthermore, assume that red(how) ¢ is a simple normal
crossing divisor on X.

In Section 2, we construct a pencil of curves ® : S — A of genus p.(X, 0, h) such
that ® is a minimal extension of h o 7 and all connected components of supp(S,)\F are
minimal P!-chains started from E (Theorem 2.4). By the properties of the pencil of
curves constructed from h o7 as in Theorem 2.4, we can characterize the numerical type
(i.e., the weighted dual graph and the coefficient for any irreducible component of the
singular fiber) of a pencil of curves of genus p.(X,o,h) which is an extension of hox
(Theorem 2.9). Also, using the construction of Theorem 2.4, we prove the following
equality (Corollary 2.12),

pfi(Xa 0, h) = 5(h) - T(h) + 1,

for a reduced element h € my ,, where 6(h) (resp. r(h)) is the conductor number (resp.
the number of irreducible components) of the curve singularity {h = 0} C X.
In Section 3, first we prove the following inequality (Theorem 3.5),

ps(X,0) = pe(X,0) = pa(Mx) + mult(X,0) — 1,

where mult(X, o) is the multiplicity. If p;(X,0) = pe(X, 0), then (X, 0) is called a weak
Kodaira singularity (Definition 3.6). From a result by U. Karras (cf. [Ka2, Lemma
3.4] and Proposition 3.10 (ii) of this paper), any Kodaira singularity is a weak Kodaira
singularity. Second, in Theorem 3.11, we characterize Kodaira singularities and Kulikov
singularities in terms of pencil genus. The statements are given by the existence of a good
function h € mx , satisfying the equality ps(X,0) = pe(X,0) = pe(X, 0, h). Third, we
compute p.(X,o0) for log-canonical singularities and rational triple points (Proposition
3.12 and 3.13).

In Section 4, we consider cyclic covers of normal surface singularities and pencil
genus for them. Let (Y,0) be a normal complex surface singularity and let h € my,
be a semi-reduced element (Definition 4.6). Let (X, 0) be a normalization of the cyclic
covering defined by 2™ = h over (Y, 0). We prove that there is a positive integer N, (Y, 0)
such that (X, o) is a weak Kodaira singularity satisfying ps(X,0) = pe(Y, 0, h) for any
positive integer n = Np(Y,0) (Theorem 4.12). Furthermore, we prove that if h is a
reduced element, then (X, 0) is a Kulikov singularity (Theorem 4.14).

Let (X, 0) be a normal hypersurface singularity defined by 2™ = f(z,y) and £ € n\n?,
where n is the maximal ideal (z,y) C C{x,y}. Let I,(¢, h) be the intersection multiplicity
of {h =0} and {¢ = 0} at {0} € C? (|BK, p.47], [Na, p.231]). In Section 5, a formula
of pe(X,o0,¢) is proven in terms of n and I,(¢,h) (Theorem 5.4).

NOTATIONS AND TERMINOLOGIES. Let M be a complex surface and let D =
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22:1 d;A; be a divisor on M, where each A; is a reduced and irreducible curve. In
this paper, we put supp(D) = U§:1 A; (the support of D), red(D) = 22:1 A; (the
reduced divisor of D) and Coeff4; D = d;. Futher, if A is a reduced divisor with
supp(A4) C supp(D), then we put supp(D)\A := supp(red(D) — A). Assume that
B = UjL; Ai; C supp(D), where m < r. Let D|p = 37, (Coeffa, D)A;;. Let
E = U;:1 E; C M be the irreducible decomposition of a compact algebraic curve E.
Suppose that E]2 < 0 for any j and F = Z;:l E; is a simple normal crossing divisor
on M. For (M, E), the weighted dual graph (=w.d.graph) 'y of E is a graph such that
each vertex of I'g represents an irreducible component F; weighted by EJ2 and g(Ej;)
(= genus), while each edge connecting to E; and Ej;, i # j, corresponds to point E; N E;.
For example, if E? = —b; and g(E;) = g; > 0 (resp. g; = 0), then E; corresponds to a
vertex that is configured as follows:

(resp. ) and (O means @

[9:]

For fundamental notations and terminologies, please refer [La3], [O] and [Re2].

2. Pencils of curves constructed from normal surface singularities.

With respect to the construction of pencils of curves, there are several results after
Kodaira’s work [Ko| for pencils of elliptic curves. For a given curve (not necessarily
irreducible) satisfying some condition, G. Winters [Wi] proved the existence of a pencil
of curves whose singular fiber is equal to the given curve. In [Kal] and [Ka2], U. Karras
constructed pencils of curves by gluing resolution spaces of Kodaira singularities and
open neighborhoods of some (—1) curves. Let (X, 0) be a normal surface singularity and
h € mx, not a perfect power element. This paper, generalizing his method, presents
a way to construct pencils of curves of genus p.(X,o,h) by gluing a resolution space of
(X, 0) and some cyclic quotient singularities.

Let us prepare some facts on cyclic quotient singularities. Let n and g be positive
integers. Let Gy, 4 be the cyclic group generated by (en,e?) (== (G e%) € GL(2,C)),

where e, = exp(zﬂT‘/jl). Then we obtain a cyclic quotient singularity (C?/G,, 4,0). It
is indicated by C,, 4. Also, we call it a cyclic quotient singularity of type C,, 4. However,
for reasons of our argument, we do not assume that n > ¢ and ged(n,q) = 1. Hence,
if ged(n,q) = r and n = rny and ¢ = rqq, then C, , = C,, 4, - In this paper, a non-
singular point is a cyclic quotient singularity; it is expressed by C . The cyclic quotient
singularity C,, ; has a good resolution whose w.d.graph is given as

(2.1)

where % =[[b1,...,b]] :==b1 — and by =2 1 and b; = 2 for ¢ = 2. Such a

by —
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good resolution is said to be the standard resolution of C, 4. If 1 £ ¢ < n, then by = 2
and the standard resolution equals the minimal resolution of Cj, 4; also by =1 if ¢ > n.
The standard resolution of a non-singular point C} g is designated a neighborhood of a
(—1) curve. For cyclic quotient singularities, please refer [Fu] and [Ri].

Every quotient singularity is a rational singularity. For rational singularities, the
following is known ([Li, Theorem 12.1]). Here we give a simple proof for it in the
category of complex geometry, which is indicated by M. Tomari.

LEMMA 2.1. Let 7: ()~(, E) — (X,0) be a resolution of a rational singularity. If
D is a divisor on X with DE; = 0 for any irreducible component E; of E, then D is
linearly equivalent to the zero divisor (i.e., there is a meromorphic function f on X with
D = {f =0}). Especially, if D is effective, then there is an element h € mx , such that
(hom)g =D.

Proor. From the exact sequence 0 — Z; — Oz — ﬁ’}( — 0, we have the
following:

0=H'(X,05) - H'(X,0%) S H*(X,Z3) — H*(X,0%) = 0.

We have H?(X,Zy) ~ @)_, H*(E;, Z) since X is contractible to E. Because the
isomorphic map H'(X, 0%) ~ @;_, H*(E;, Z) is given by the restriction of the first
Chern class of 04 (D) to E, it is given by D +— (DE,, ..., DE,). This yields the proof.

O

DEFINITION 2.2. Let E be supp(S,) for a pencil of curves ® : S — A or the
exceptional set of a resolution of a normal surface singularity. Let F' = |J,_, F; be the
irreducible decomposition of a one-dimensional analytic subset F of E.

(i) Ifr 2 3 and

1 ifj=i+1or (4,j5)=(1,r)
0 otherwise
for i # j, then F is called a cyclic chain. If r = 2 and F1F> = 2 and F; and F intersect
at two different points, then F is also called a cyclic chain.
(ii) Assume that the w.d.graph of F' is given as

Fy I, E,

If (E\F)F = E1F; =1 for an irreducible component E; of E\F, then F is said to be a
Pl-chain (of type (b1,...,b.)) started from Ey. If (E\F)F =2 and E1F} = E3F, = 1
for irreducible components Ey, E; of E\F, then F is said to be a P'-chain (of type
(b1,...,b)) between Ey and Es. For these cases, r is called the length of F', and F is
said to be a minimal P'-chain if b; < —2 for any i.
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DEFINITION 2.3. Let S be a non-singular complex surface and A C C a small
open disc around the origin. If ® : S — A is a proper surjective holomorphic map and
the generic fiber Sy := ®71(t) (¢ # 0) is a smooth curve (but not necessarily connected),
then it is called a quasi-pencil of curves.

If @ is a quasi-pencil of curves whose any fiber is connected, it is a pencil of curves.
If ®: S — A is a pencil of curves, then ®* : § — A (k = 2) is a quasi-pencil of curves,
but not a pencil of curves, because the general fiber is not connected. Conversely, using
Stein factorization, we can observe that if S, is a singular fiber of a quasi-pencil of curves,
then S, = kS, (as a formal sum of curves) for the singular fiber S, of a pencil of curves
and k = 1.

For a normal surface singularity (X, o) and not a perfect power element h € mx ,,
let 7 : (X, E) — (X, 0) be a resolution such that red(ho7) ¢ is simple normal crossing. In
the following, a pencil of curves extending ko is constructed by gluing X and standard
resolution spaces of cyclic quotient singularities.

THEOREM 2.4. Let (X,0) be a normal surface singularity and h € mx,. Let
7 : (X,E) — (X,0) be a good resolution such that red((h o m)) is a simple normal
crossing divisor on X. Then there exists a quasi-pencil of curves ® : S — A such that
|y = hom and all connected components of supp(S,)\E are minimal P*-chains started
from E. Further, if h is not a perfect power element, then ® : S — A above is a pencil
of curves extending h o .

PrOOF. Let (homyg = > @B + 35 ,7Cj where E = _, E; and
supp(A(h o)) = U§:1 C; are the irreducible decompositions of the exceptional set
and the non-exceptional part respectively. Let E;. be an irreducible component of

E intersecting C; for j = 1,...,s. Let (Vj;2z;1,252) be a local coordinate neigh-
borhood of aEZJ N C; in X such that E;; = {z;; = 0} and C; = {z;2 = 0} and
homly, = z;{ 2% on Vj. Consider a cyclic quotient singularity Cq, 7, for j = 1,...,s,

where a; = a;,/ gcd(aq;,7;) and 35 = v;/ ged(ay,, v;). Let (Y}, F;) be the standard reso-
lution oﬁf Ca, ; and Fj = Uij:l F} 1, the irreducible decomposition. Thereby, Fj% e = —0jks
where % = [[0j,1,---,05,¢]]. From Lemma 2.1, there is a holomorphic function h; on
)7j such th~at (hj)g,j =a,; Fjo+vFj1+ Zij:2 €;kF; 1, where Fjo is a non-exceptional
curve on Yj intersecting Fj 1 transversally and €;2,...,€;¢, are positive integers deter-

mined by (h;)y, Fjx = 0 for any k. Further, we choose a small open neighborhood W;
of FjoN Fj, in Y; and a local coordinate (w;1,w; o) on W such that Fj o = {w;; = 0}
and Fj71 = {wj72 = 0} and hj|Wj = w?ffwz’é. - g ~ ')
zj2 = wjo for each j, we can obtain a surface S = X UY; U---UY;/ ~ and a holo-
morphic function ® : S — C such that ®|;y = ho 7 and <I>|3~,j =hjforj=1,...,s.

Gluing V; and W; by z;1 = w;; and

Then A := supp(®~!(0)) = EU (U;:1 F}) is a one-dimensional compact analytic subset
of S. From [St] (or [Fi, p.56]), there are open neighborhoods S of A in S and A of {0}
in C, respectively, such that ® := ®|g : S — A is a proper holomorphic map. From
the construction we can easily see that ®|¢ = honw. For any point P € A, we can
choose a local coordinate (u,v) on an open neighborhood U of P such & = u*v® on U
for non-negative integers a and 3. Then the fiber S; = ®~1(t) is a non-singular curve
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for any ¢t € A — {o} if we take A is sufficiently small. Therefore ® : S — A is a desired
quasi-pencil of curves.

Next, assume that h is not a perfect power element. Consider the Stein factorization
of ® as

)

o

where ®' is proper and the fiber is connected and 7 is a finite map. Then 7 is given by
t =mn(v) = v"n1(v) (n = 1), where v is a coordinate on A and 7;(0) # 0. Because ®'| ¢
is a holomorphic map with ®'| ;(E) = 0, there exists g € mx, satisfying gom = ®’| 5.
Let u € Ox,, be a unit determined by wom = n; o ®| . Since there is u € Ox , with
u" = u, we have h = (g1)" from hor =®=no® =" . (0o ®) = (gonm)*(uom) =
(¢"u) om = (gui)" o w on X. Because h is not a perfect power element, we have n = 1;

S A

)

therefore, any fiber of ® is connected. Hence ® gives a pencil of curves. O
Here we give some examples to explain the procedure in Theorem 2.4.

EXAMPLE 2.5.

(i) Let (X,0) = (C%0) and hy = 22 + y3 and hy = 2°y*(x + y)?. Let o; :
(Xj,E(j)) — (C?,0) be the minimal embedded resolution of a curve singularity {h; =
0} for j =1,2. Let ®; : S(j) — A, be a pencil of curves constructed as in Theorem 2.4.
Then the divisor (h; 0 01) ¢, and the singular fiber S(1), is given as follows:

* 1 1
c7
3 2 6 3

2 6

where * indicates the strict transforms of irreducible components of {h; = 0}. Then we
have p,(S(1),) = 1 from (1.1) and the adjunction formula (i.e., KsE; = —E? +2g(E;) —
2). Also the divisor (hg 0 02) g, and the singular fiber S(2), is given as

* 2
I
5 11 4

Then we have p,(5(2),) = 5. In Theorem 2.9, we prove that the value of pa(S(j),) is
equals to pe(X, o0, h;). Hence p.(C?, 0,22 +y3) = 1 and p.(C?, 0, 2°y*(x + y)?) = 5.

(i) Let (X,0) = ({2% + y® + 25 = 0},0) (a rational double point of type Es).
(X,0) is a double covering over C? branched along a plane curve C := {y3 + z° = 0}.
Let V% C? the minimal embedded resolution of C. Taking the double coveing over
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V branched along ¢*(C) (total transform of C'), we can obtain the minimal resolution
(X,E) % (X,0) and the divisor (z o) ¢ (cf. [Tt2, Lemma 3.1] or [Lemma 4.3 in this
paper]). Similarly, we can obtain the divisors (y o 7) ¢ and (z o 7) ¢. Applying Theorem
2.4 for them, the singular fibers of the pencils of curves constructed from z,y and z are

ON . .
T: 8 y: 05 zZ: 03
O-O0-O-0-0-0-0  @O-O0-O00-000 00000000 -

5101512 9 6 3 1471086 4 2 24654 321

given as

Then we can see that p.(X,0,z) = 4, p.(X,0,y) = 2 and p.(X,0,z) = 1 from (1.1) and
the adjunction formula and Theorem 2.9.

REMARK 2.6. If (X,0) is a normal surface singularity with C*-action, then it
is known to construct pencils of curves including a resolution space of (X,0) using a
weighted projective space. For example, let (X,0) be the singularity of 2.5 (ii) and
X, = {22+ y>+2° = 0} € P(15,10,6,1). If weput P =[0:0:0: 1] € X,, then
(X,, P) ~ (X,0). Let v : P(15,10,6,1) — P! be a map defined by [z : y : 2 : w] —
[z : w'®]. Let 7 : S — X, be a resolution of (X,, P) and let ® : S — P! be a map
¥ om. Then ® is isomorphic to the pencil of curves determined by z in 2.5 (ii) near the
singular fiber ®~1([0 : 1]). In [Sa], K. Saito considered similar constructions of pencils
of curves in a slightly different situation.

All pencils of curves constructed as in Theorem 2.4 form a subclass of the class of
all pencils of curves. However, there is not a large gap between them. For these classes,
we prove the following.

THEOREM 2.7. Let ®: S — A be a pencil of curves. Let take a suitable successive
blowing-up S < S and choose a sufficiently small disc N’ (C A). Let d:=doo
and let consider a pencil of curves ® : S’ := &1 (A’) — A’. Then there is a normal
surface singularity (X1,0) and a cyclic quotient singularity (Xa,0) and resolutions my, :
(X, BE(k)) — (Xg,0) (k = 1,2) such that S is a gluing of X, and Xo and ® is an
extension of hy o m and ho o ma, where hy € mx, , s not a perfect power element and
hy € mx, o-

PROOF. By taking suitable successive blowing-up S = S, we may assume that
red(S,) is a simple normal crossing divisor and supp(S,) contains a P'-chain F' started
from E := supp(S,)\F and E N F is a non-singular point P of red(S,). Let E; (C E)
and F| (C F) be irreducible components with £y N F; = P. Let (U;u,v) be a small
open coordinate neighborhood in S around P such that E; = {u = 0} and F; = {v = 0}
in U. Let X; and X» be small open neighborhoods of E and F', respectively, such that
Xi1NXy =U. Let 7y : (Xk,E) — (Xk,0) be the contraction to a normal surface
singularity (k = 1,2). Then (X2, 0) is a cyclic quotient singularity. There is an element
hy € mx, o C Ox, o, With (I)|)Zk = hiom (k = 1,2). Therefore, 7, gives a good resolution
of (Xk,0) such that red((hy o k) 5, ) is simple normal crossing. By gluing (X1, hy0m)
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and (X3, hy o m3) on U by identification on S, we obtain a pencil of curves ® : §" — A’
satisfying 8’ € S and A’ C A and ®|g = P'.

If ® is a non-multiple pencil of curves, then h; is obviously not a perfect power
element; it completes the proof. Assume that ® is a multiple pencil of curves. Suppose
that hy is a perfect power element with hy = hg (¢ =2 2) for hg € mx, ,. If we put
Solx, = coFrlu 4+ YJi_y ¢iFi, then f|c; and so put ¢; = ¢;/¢ for i = 0,...,r. From
Lemma 2.1, there exists hy € mx, , with (hg o 7r2)|)~(2 =coEilu+>_, ¢ F;. If we put
§ := hg/hf, then § € Ux,.0\Mx, 0; and so there is §; € Ox,, with § = §%. Hence
ha = (61h4)?. On the other hand, we have hy o 1, = u®v® (k = 1,2) on U; thereby,
hzom = (81hy)ome = u®v° on U after choosing suitable branches h3 and hy. By gluing
as above, there is a quasi-pencil of curves ®; : S — A’ such that <I>1|)~(1 = hg om and
®1]5, = (01h4) o 2. Hence ®' = @ (¢ > 2) and then ' is a quasi-pencil of curves but
not a pencil of curves. This is a contradiction; thus h; is not a perfect power element. [J

From the proof above, we can see that if red(S,) is normal crossing and supp(S,)
contains a Pl-chain F and F N (supp(S,)\F) is a non-singular point of red(S,), then we
may assume that o in Theorem 2.7 is the identity map (i.e., S = S)

In the following, we prove that the genus of a pencil of curves obtained as in Theorem
2.4 is equal to p.(X, o0, h). We prepare the following lemma for it.

LEMMA 2.8. Let (X,E) — (X,0) be a good resolution of a normal surface sin-
gularity and let D = Z;:o d;E; be a cycle on U;:o E; (C E), where U;Zl E; is a
P'_chain started from Ey. Assume DE; =0 for j =1,...,r. Then KX(Z§:1 d;E;) =
do — di — ged(do, dv), where K¢ is the canonical bundle.

Proor. From DE; =0 for j=1,...,r, we have
dj —dj+1bj+1+dj+2 =0 fOl"j :0,...77’—1, (22)

where d,y1 := 0. Therefore,

=

r—

0= (dj —djp1bjt1 +djya) = do — dy — dp — > _ d;(b; — 2)
=0 j=1

do — dy —dr—KX<ZdjEj>
j=1

by the adjunction formula. From (2.2), we can easily check that d,. = ged(dp, d1); hence
this completes the proof. O

THEOREM 2.9. Let (X,0) be a normal surface singularity and let h € mx , not a
perfect power element. Let w : (X,E) — (X,0) be a good resolution such that red((h o
7)) is simple normal crossing on X. Suppose that ® : S — A is a pencil of curves
of genus g extending hom. If g = p.(X,0,h) and ® is minimally extending h o 7, then
any connected component of supp(S,)\E is a P'-chain. Conversely, if any connected

component of supp(S,)\E is a P'-chain, then g = p.(X,o,h). Therefore, any pencil of
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curves constructed from h o as in Theorem 2.4 is minimally extending h o ™ and the
genus is equal to pe(X,0,h).

PROOF.  Assume that g = p.(X,0,h) and ® is minimally extending h o w. We put
F = supp(S,)\E. By taking some blowing-ups on S, we may assume that red(S,) is
simple normal crossing.

From now on we show that there are no cyclic chains in supp(.S,) which contains at
least one irreducible component of F'. Suppose that there is a cyclic chain U;:o A; C
supp(S,) (i.e., 4;4;41 # 0 for ¢ = 0,...,7 — 1 and A, A9 # 0) such that Ay is an
irreducible component of F. Let B be the connected component of supp(S,)\Ag which
contains E. Let Y be a small neighborhood of B and let ¢ := ®|;. From the assumption
of the cyclic chain, we can choose Ay with §(AoNB) = 2 and so put AgNB = {Py,..., Ps}
(s 2 2). Similarly to Theorem 2.4, construct a pencil of curves ®” : S” — A with
Y € §” and ®"|5 = ¢ by gluing Y and resolution spaces of s cyclic quotient singularities
on small neighborhoods of Pi,...,P;. Let g, be the genus of ®”’. Let b = —A2 and
d = Coeff 4, S,. Let A;,,..., A;, be irreducible components of B which intersect Ay at
Py, ..., P, respectively, and let a; = CoeﬂAij S, for 5 =1,...,s. Then db 2 Zj.:l a;
Let Fj (j = 1,...,s) be a connected component of supp(SZ)\B; thus it is a P'-chain
started from A;,. Therefore, Lemma 2.8 implies that Kg(S;|r;) = aj —d—gcd(aj,d) =
a; —d — 1 for any j. Since we may assume that there are no (—1) curves in supp(S,)\
(BU Ap), we have

K SO K So +SO su
pe(X,0,h) =1+ 52 =1+ s(SolBua, 2| PP(S0)\(BUA))
> 1+ M — 1+ KS<SO‘B);_KS(dAO).

Since

Ko(Soln) = Ksv(S!]5) and db > 3 a,

j=1

1
pe(X;07h)_go: i(KSSO_KS”Sg) {KS dA(] ZKS// S |F }

;{d(b—Z) ~S y—d- 1)} > %{(S—Z)d—i—s} 0.

j=1

1\

Another hand, ®” : §” — A is an extension of hom and so g, 2 pe(X,0,h) from the
definition of p.(X, 0, h). This is a contradiction. Consequently, there are no cyclic chains
in supp(S,) containing an irreducible component of F.

Next we prove that any connected component of F is a P!-chain started from E.
We may assume that red(S,) is a simple normal crossing divisor and any irreducible
component of F is P'. Assume that there is a connected component G of F which
is not a P!-chain started from E. Since F' does not contain any cyclic chain, G is
a tree and it intersects E transversally at only one point. Further, we can easily see



46 T. TOMARU

that G contains an irreducible component A, such that supp(S,)\A, has a connected
component G, containing E and at least two other different P!-chains started from A,.
Let G1,...,G; be those P'-chains started from A, (s = 2). Let A; (resp E;) be the
irreducible component of G; (resp G,) intersecting A, for j = 1,...,s. Let b = —A2,
d = Coefty, S, and a; = Coeff4, S, for j = 1,...,s. Since ® is minimally extending
hom, G; does not contain any (—1) curve. Hence G, is not a (—1) curve or a P'-chain
of type (1,2,...,2). Then we can easily see that d does not divide a; for any j (so
ged(d, a;) < 2) Let Y be a small neighborhood of G, in S and let ¢ = ®|5. Let U be a
small neighborhood of a point G,N A, in Y. Let (Z, Up_1 ;) be the standard resolution
of a cyclic quotient singularity Cy g (N = bd — ijl a; = Coeff, S,). By gluing Y and
Z, we can construct a pencil $:8—A satisfying <i>|f/ = ¢. Hence d is an extension of
hom, and the genus § is greater than or equal to p.(X, 0, h). Also U?:l H; is the glued
L_chain started from G,, and we can say the following:

P
supp (S,) = G, U ( U Hj>, Sola, = Sola,, Coeffp, S, = N and Coeffy, S, = d,
j=1

where F; intersects H; in S. Lemma 2.8 implies that

L1 : .
02 po(X,0h) — = Q{KS(ZSAGJ.) T Ks(dA,) — Kg (Sl Hk)}
j=1

= 1{ i(d —a; — ged(d, a)) +d(b—2) = N +d + ged(N, d)}

21 4
j=1

S
= ;{Sd - chd(d,aj) —d+ gcd(N,d)}.
j=1
Then we have >-°_; ged(d, a;) +d = sd + ged(N,d) = sd + 1. Since ged(d,a;) < §,
it yields a contradiction: 0 = % —d+ 1 > 0. Hence any connected component of
supp(S,)\E is contracted to a P'-chain started from FE.

Now consider the converse. Let ® : S — A be a pencil of curves of genus g such
that @ is a minimal extension of h o7 and also any connected component of supp(S,)\E
is a P'-chain started from E. Let ® : S — A be a pencil of curves of genus p.(X, o, h)
such that @’ is also a minimal extension of h o w. From the proof above, any con-
nected component of supp(S,)\E is a P'-chain started from E. We may assume that
any connected component in supp(S,)\E and supp(S,)\E is a minimal P'-chain. Since
®|y = ®'|¢ = hom, any P'-chain in supp(S,)\E is equal numerically to the corre-
sponding one in supp(S))\E (i.e., same w.d.graph and same coefficients for any irre-

ducible component). It turns out that S, and S/ are numerically equal; consequently,
pe(X,0,h) =g. O

COROLLARY 2.10. Let (X,0) be a normal surface singularity and h € mx , not a
perfect power element. Let m : (X,E) — (X,0) be a good resolution and ® : S — A
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a pencil of curves of genus p.(X,o0,h) which is a minimal extension of h o w. Then
the numerical type of S, (i.e., Coeffg, S, for any E; C supp(S,) and the w.d.graph of
supp(S,)) is determined uniquely.

In the following, we prove a formula of p.(X, o, h).

THEOREM 2.11.  Let (X,0) be a normal surface singularity and h € mx , not a
perfect power element. Let m: (X, E) — (X, 0) be a resolution such that red((h o) ;)

is a simple normal crossing divisor. Let A(hom) = Zg(hl) v;C; and put C = Zr(h) Cj,
where C; is an irreducible component for any j. Let ni,...,n.) be positive mtegers

denoted by nj = vg, (hon) if B, intersects C;. Then

pe(X,0,h) =pa(E(hom) — E(hom)®
1 r(h)

- 2{(E(h07r) + E)YA(hom)—=C)+r(h)+ chd(nj,vj)}.

j=1
Further, if h is a reduced element, then
pe(X,0,h) = pa(E(h o)) — E(hom)* —r(h).

PrROOF. Let ® : S — A be a pencil of curves of genus p.(X,o0,h) which is a
minimal extension of hom. From Theorem 2.9, any connected component of supp(S,)\E
is a minimal P'-chain. Let F}, ..., F. (1) be such all connected components of supp(S,)\ E
and F; = U?:l Fjj such that C; C Fji. Then Coeffr,, S, = 7;. From Lemma 2.8,
Ks(So|F;) = nj —v; — ged(ny, ;) for any j. Since

r(h)

0=FE(hom)S, =E(hom) < (hom) —|—ZVJ ) E(hom)? +an7j,
Jj=1

we have

r(h)

E(hom)? Zn]’y]

Since

r(h)

So=FE(hom) +anS|FJ)

Jj=1

and

pe(X, 0, h) = pa(So)7
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we have

pe(X,0,h) — pa(E(hom)) + E(hom)?

- %{KS(SO Uity )+ Ehe ”)2}
r(h) r(h)
= ;{ ; (nj = — ged(ng, ;) — ;nﬂ]}
1r(h)
= =5 2+ D = D+ 1+ ged(n;, )}
) r(h)
= —2{(E(ho7r) + EYA(hom)—=C)+r(h)+ Zng(nj77j)}' N

Jj=1

Let (C,0) be a curve singularity and v : C' — C the normalization. The conductor
number §(C, 0) is defined by dimc(Os/v*Oc,) (cf. [BK, p.573], [Na, p. 120]).

COROLLARY 2.12.
(i) Let (X,0) be a normal surface singularity and h € mx , a reduced element. Let
d(h) be the conductor number of a curve singularity (X N{h = 0},0). Then

Pe(X,0,h) = 6(h) — r(h) + 1.
(i) For a generic element h € mx ,\m% ,, we have
Pe(X;0) = 0(h) —r(h) + 1.

(iii) Let (X,0) = {z" = h(x,y)} be a normal hypersurface singularity. Then
pe(X,0,2) = p.(C?,0,h) = §(h) —r(h) +1 =" L~

where p(h) is the Milnor number of a plane curve singularity ({h = 0},0) C (C?,0).

PROOF.

(i) From a result of M. Morales ([Mo, 2.1.2]), we have 6(h) = 1+ $E(hom)(E
(hom) — Kg). Then we have the equality of (i) from Theorem 2.11, and (ii) is obvious
from (ii).

(iii) From (i) and p(h) = 26(C,0) — r(C,0) 4+ 1 ([Mi, Section 10]), we complete the
proof. O

The Milnor number is the number of vanishing cycles and so it is defined for smooth-
able singularities. However, in the case of curve singularities, Buchweitz and Greuel [BG,
p. 244] generalized the definition of the Milnor number algebraically and showed that it
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is equal to 20(C,0) — r(C,0) + 1, where §(C,0) (resp r(C,0)) is the conductor number
(resp. the number of irreducible components) of a curve singularity (C,0). Hence, if
we assume u(h) is the Milnor number for a curve singularity {h = 0} on (X, 0) in the
sense of them, then we have also p.(X,0,h) = M in Corollary 2.12 (i). Here we
remark that we can obtain the values of p.(X, 0, h) of Example 2.5 using Corollary 2.12
(ii) and p({z* +y® = 0},0) = %

With respect to the equality of Corollary 2.12 (i), it is already known that §(h) =
r(h)—1 from Hironaka’s formula ([H, Lemma 1.2.2], [BG, p. 246]). Therefore, p.(X, o0, h)
gives the difference between 6(h) and r(h) — 1.

In [St1], J. Stevens proved that if h : (X,0) — (C,0) is a semistable smoothing
of a curve singularity X N {h = 0} and 7 : (X, E) — (X,0) is a resolution such that
(how)g is a reduced divisor, then p,(E) = §(h) —r(h)+ 1. From his result and Theorem
4.5 in this paper, we can give another proof of Corollary 2.12.

In the definition of p.(X,o0), we do not use elements of mx ,. However, there is
h € mx , not a perfect power element with p.(X, 0, h) = p.(X, 0).

THEOREM 2.13.  Let (X,0) be a normal surface singularity. Let ® : S — A be a
pencil of curves of genus pe(X,0) and including (X, E) for a resolution  : (X, E) —
(X,0).

(i) If h € mx, satisfies ®|¢ = hom, then h is not a perfect power element. Hence
we have the following:

Pe(X, 0) = min{p.(X, 0, h)|h € mx , is not a perfect power element }.

(il) If m is a good resolution, then any connected component of supp(S,)\E is a
minimal P*-chain after suitable contractions of (—1) curves in supp(S,)\E.

PrOOF.

(i) After taking suitable blowing-ups S = S, we have a good resolution 7’ :=
moo: (X,E') — (X,0) such that (S,supp(S,)) D (X', E’) for a pencil of curves
b =doc:S5 — Aand (hon') ¢, is simple normal crossing. Suppose that h is a perfect
power element. Let put h = h% (¢ = 2), where h; is not a perfect power element. Let
®’ : S — A be a pencil of curves of genus p.(X,0,h;) as in Theorem 2.4 which is a
minimal extension of hy o7’. Since £S!|g = So|g, £S5/, and S, are numerically equal from
Theorem 2.9 (i.e., both w.d.graphs are equal and the both coefficients for any irreducible
component are equal). Then we have p,(£5S)) = pa(S,) = pe(X, 0) and

1 £ pe(X,0,h1) = pa(S,) < pa(S)) = pe(X,0).

If pe(X,0,h1) 2 2, then p,(S,) < pa(£S)); therefore pe(X,0,h1) < pe(X,0). This is a
contradiction and so h is not a perfect power element. If p.(X, 0, h1) = 1, then p.(X,0) =
pe(X, 0, h1) for not a perfect power element hy from 0 < p.(X,0) < pe(X,0,h1) =1

(ii) As in the proof of (i), there exists h € mx, which is not a perfect power
element with h o7 = ®|¢ and p.(X,0,h) = p.(X,0). After contracting (—1) curves in
supp(S,)\E suitably, ® become a minimal extension of h o 7. From Theorem 2.9, we
complete our proof. O
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REMARK 2.14. It is not always true that there is a reduced element h with
pe(X,0,h) = pe(X,0). For example, let (X,0) = ({22 = y(2? + y"?)},0) (ie., a
rational double point of type D,, (n 2 4)). Then y is a non-reduced element. Let n =5
and consider a following embedded resolution o : V. — C? of a plane curve singularity
({y(2? + y*) = 0},0) C (C?,0) as follows:

L
-0 -
02 E3 E2 E1 E4

where C; (resp. Cb) indicates the strict transform of a curve {z? + y> = 0} (resp.
{y = 0}) in C2. We can easily see that (yoo)y = 2E; + Eo + 2E3 + E; + Co. By taking
a double covering of V given by 22 = yoo ([D], [Tt2]), we obtain the minimal resolution
(X,E) — (X, 0). Therefore, we can construct a pencil of curves S as follows:

1 1
+—0O-O c @+o{>o<g :
2 1 2 2 2 2 1

2 2 2

Then we have p,(S,) = 0. Hence p.(X,0,y) = 0 from Theorem 2.9. However, we have
pe(X,0,h) 2 1 for any reduced element h. We explain this according to the suggestion by
the referee. Assume p.(X,0,h) = 0. From Corollary 2.12, we have §(h) = r(h) —1. Then
(C,0) := (XN{h = 0}, 0) is a Gorenstein singularity because it is a complete intersection.
Also (C,0) is the ordinary n-tuple point of n = 2 or n = 3 ([BG, Lemma 1.2.4]). If (C, o)
is the ordinary 2-tuple point (i.e., (C,0) is isomorphic to ({z? + y? = 0},0) C C?),
then (X, 0) is isomorphic to a rational double point of type A,,. Therefore, (C,0) is the
ordinary 3-tuple point from the assumption on (X,0). From [Sal, Theorem 3.1], the
Cohen-Macaulay type (:= dime we,o/Me,owe,o) = mult(C,0) —1 = 2. Then (C, 0) is not
a Gorenstein singularity. This is a contradiction and so p.(X,0,h) > 0.

We also remark that if there is a reduced element h with p.(X,0,h) = p.(X,0) =
ps(X,0), then (X,0) is a Kulikov singularity (Definition 3.5 and Theorem 3.11 (ii)).
Therefore, from this and p.(D,,) = 0 (Section 1), we can also check that p.(X,0,h) = 1
for any reduced element h.

3. Some results on pencil genus for normal surface singularities.

In this section, first we estimate p.(X,0) for normal surface singularities (Theorem
3.5). Second we give a necessary and sufficient condition for normal surface singularities
to be Kodaira (or Kulikov) singularities (Theorem 3.11). Further, we determine the
values of log-canonical surface singularities and rational triple points (Propositions 3.12
and 3.13).

The following proposition was suggested by M. Tomari together with the proof. We
use it for the proof of Theorem 3.5.
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PROPOSITION 3.1.  Let (X,0) be a normal surface singularity. Then there exists
a resolution m : (X,E) — (X, 0) and a reduced element h € mx , such that m™*my , is
invertible and (h o) ¢ is simple normal crossing and E(h o) equals the mazimal ideal
cycle M .

PRrROOF. Let us consider the following commutative diagram:

(X,0) i X’ Sl X" S X,
v v (3.1)
(C?0) Z v

where 1 is a covering map with deg(¢) = mult(X, o), o is an embedded resolution of the
branch locus By, of ¢, X' is the fiber product X X2 V', ¢ is the normalization of X",
and ¢3 is a good resolution such that ¢p*my , is invertible for ¢ := ¢1 o ¢2 0 ¢3. From
the definition, mult(X,0) = e(mx 0, Ox,) ([Mah2]); thus e(mx,, Ox,) = deg(v) =
e((x,y), Ox,,), where z and y are coordinate functions of C?. Hence there is a positive
integer r with m?‘ol O% =mY ,(z,y)0% from Rees’s result ([Re, Theorem 3.2]). Then we
have 04 (My) = mx .03 = (x,y)0% because m*mx , is invertible. Therefore, E(ax +
By) = M for general elements o, 3 € C. Then we may assume that E(ax + fy) = M
and the line L(«,3) defined by {az + By = 0} in C? is not contained in the tangent
cone of By, at {o}. Let C? vy &0 &2V, = VY be a sequence of blowing-ups with
0 =o010---00, and let By := o7 ({0}). Then the strict transform of L(a, 8) by oy
intersects Iy transversally and it does not intersect By, on V;. Hence the strict transform
of L(a, B) by g 01 0 ¢y 0 5 intersects E transversally on X. If we put h = (az + fy) o,
then h is a reduced element and (h o 7) ¢ is simple normal crossing. o

Now let S — A be a pencil of curves and E = supp(S,). The fundamental cycle
Z g on E is defined as the smallest positive cycle D satisfying DE; < 0 for any irreducible
component E; of E. We show the existence according to [La2]. Let Dy (A =1,2) be a
positive cycle on E such that DyE; < 0 for any irreducible component E; of E. Such D,
always exists because ¢S, F; = 0 for any F; and any ¢ € N. Let D = 2?21 r; F;, where
r; = min{Coeff g, D1, Coeff g, Do} for i = 1,...,n. For any fixed j € {1,...,n}, we have
DEj = T’jEJZ + Zz’;ﬁj TiEZ'Ej < (Coeﬂ?E]. D]c).EJ2 + Zi;ﬁj(CoeﬁEi Dk)ElEJ = DkEj § 0,
where k = 1 if Coeffg; D1 < Coeffg, Dy and otherwise & = 2. Therefore, there exists
the minimal element Zg of the set {D > 0|DE; < 0fori=1,...,n}.

In the following, we prepare some facts for effective cycles on the exceptional set of
a resolution space or the support of the singular fiber of a pencil of curves. Let E be the
exceptional set of a resolution space of a normal surface singularity or E = supp(S,) for
the singular fiber S, of a pencil of curves.

DEFINITION 3.2. Let Dy, Dy be effective cycles on E with Dy < Ds. If there is a
sequence Zg = D1, 21 = Zo+ E;,,...,Zs = Zs_1+ E;, = Dy which satisfies Zi1E;; >0
for j = 1,...,s, then it is called a computation sequence from Dy to Ds. In this case,
a sequence E; ,..., E;_ is called the component sequence associated to the computation
sequence.
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LEMMA 3.3. Let D1, Dy be effective cycles on E with D1 < Ds.
(i) If there is a computation sequence from Dy to Dy as follows:

Zo=D,Z1 =D+ FEy,...,Zs=Zs 1+ E;,

then pa(Dl) é pa(Zl) § e § pa(Zs—l) § pa(DQ)'

(i) Under the condition (i), if pa(D1) = pa(D2), then E;; = P! and Z;j 1B =1
for any j.

(iii) If D is an effective cycle on E with D < Zg for the fundamental cycle Zg,
then there is a computation sequence from D to Zg.

(iv) Let Dy, Dy be effective cycles on E with Dy < Zg < Dy. If there is a compu-
tation sequence from Di to Do, then Zg = Ds.

PROOF.

(i) Since po(Z;) = pa(Zj-1) + pa(Ei;) + Zj—1E;; — 1 and p,(Es;) = 0, we have
PalZj1)  palZy) for j=1,...,5.

(ii) Consider the adjunction formula KsE;, = —Efj +2g9(E;;) — 2+ 20(E;;), where
0(Ejs;) is the degree of the conductor of £;; (i.e., the sum of the conductor numbers of
all singularities of E;;). We have p,(Z;_1) = pa(Z;) from (i); then Z; 1 E;; + g(E;;) —
1+0(E;;) =0. Since Z;_1E;; >0 and g(E;;) 2 0 and 6(&;;) = 0, we have Z; 1 E;, =1
and g(E;;) = 0 and §(E;,;) = 0. Then E;; is a non-singular rational curve.

(iii) The existence of a computation sequence is proven as in [La2, Proposition 4.1];
therefore, it is omitted.

(iv) Let Zy = D1,Z1,...,Zs = Do be a computation sequence. If Zp < Do,
then there is ¢ with £ < s such that Z, 1 £ Zg and Zy £ Zg. Then CoeffEié Zy =
CoeffEi‘Z Zg+1 and CoeﬂEu] g = CoeﬁEi[ Zo_q; thus Zy_1E;, £ ZgFE;,. This yields a

¢ =

contradiction: 1 § Zé—lEig § ZEEi[ é 0. Then ZE = DQ. O

PrROPOSITION 3.4. Let S — A be any pencil of curves of genus g and let A =
supp(9,)-

(i) So=¢Za (c€ N).

(ii) Let D be an effective cycle on A such that D £ (m — 1)Z4 and D £ mZy for
m € IN. Then there is a computation sequence from D to mZ,.

(iii) If D is an effective cycle on A with D £ S,, then p,(D) < g.

(iv) Suppose that the pencil of curves is minimal (i.e., S does not contain any (—1)
curve). If g 2 2 or it is a non-multiple elliptic pencil, then p,(D) < g for any effective
cycle D with D < S,,.

PROOF.

(i) From the definition of Z 4, we have S, 2 Z4 and then ¢ = 1if S, = Z4. Suppose
S, > Z4 and put Dy = S, — Z4. Hence 0 = 52 = Z% + 2Z4D; + D?. Then D? =0
because Z2,ZD; and D% are non-positive. If supp(D;) C A, then D; = 0 because
supp(D1) is an exceptional set. This contradicts D > 0; therefore, supp(D;) = A. Let
D, = 22=1 d;A;. For any irreducible component A; C A, we have D1 A; = 0 because
0= SOAZ = D1A7 + ZAA7 Also 0 = D% = Z::l d7D1A7 and so DlAz = 0 for any )
since d; > 0 for any i. Then Z4 < D; from the definition of the fundamental cycle. If
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Dy = Zy4, then S, = 2Z4. If Dy > Z4, then we put Dy = D1 — Z4 and continue the
process above. Because it stops after finite steps, we complete the proof.

(i) We can make a computation sequence of cycles as follows: Zy = D, Z; =
Zo+ Ay, Zo = Z1+ Aiy, ... with Z; 1 A;, > 0 for any j. Since that Z; < mZ4 for each
j, the sequence stops at a cycle Z, satisfying Z,A; < 0 for any A; C A; therefore,
Za < Zy. Ut Zo = Zy, then m = 1 and concludes the proof. If Z, < Z,, then
(Zg - ZA)Al = ZyA; < 0; therefore, Z4 < Zy — Zy. If 2Z4 = Zy, then m = 2 and
concludes the proof. If 274 < Z;, then (Zy — 2Z4)A; < 0. Hence, continuing this
argument, we can say that Z, = mZ,4. The above computation sequence connects D
and mZ 4.

(iii) If D is an effective cycle on A with D < S, then there is a positive integer m
as (ii) and mZ4 £ S,. Then there is a computation sequence:

Z():l)7 leD+Ai1a ey Zg:mZA:Zg_1+A¢Z.

From Lemma 3.3 (i), if g 2 1, then pa(D) < pa(mZ4) £ pa(S,) = g from mZ4 £ S, =
cZ 4. If g =0, then ¢ = 1 becasue any rational pencil is non-multiple. Hence m = 1 and
Pa(D) £ pa(Z4) = pa(S,) = 0. This completes the proof.

(iv) Assume that 0 < D < S, and p,(D) = g. Let m be a positive integer
such that D £ (m — 1)Z4 and D < mZs £ S,. From (ii), there is a computation
sequence Zg = D, Zy = Zy+ Aiy, Zo = 74 —|—A¢2,...,Zg =mly = Zyp_ 1+ Aig~ By
Lemma 3.3 (i), we have g = po(D) < pa(mZa) £ pa(S,) = ¢g. From Lemma 3.3 (ii),
0=mZsAi, = (Zi—1+Ai,)Ai, = 14+ A7 ; thereby, A;, is a (—1) curve, which contradicts
the minimality of S,. O

THEOREM 3.5. Let (X,0) be a normal surface singularity and let h a reduced
element of mx , satisfying the properties of Proposition 3.1. Then

pf(X7 0) é pe(X’ 0) é pa(MX) + mUIt(Xa 0) - T(h)

Especially, if (X,0) is a rational singularity, then 0 < pe(X,0) < mult(X,0) — 1. Also,
if (X, 0) is an elliptic singularity (i.e., py(X,0) =1), then 1 < p.(X,0) < mult(X, o).

PROOF. Let 7 : (X, E) — (X,0) be a resolution that satisfies the properties of
Proposition 3.1. From Theorem 2.11, we have p.(X,0) < po(E(hon))— E(how)?—r(h).
Also, we have —E(h o )? = mult(X,0) from [Wa, Theorem 2.7] because m*my , is
invertible. Also po(E(h o 7)) = pa(Myg) < po(Mx) from [Tm2, Proposition 3.9 (i)].
Then we have the inequality of the right hand side. Consider the left hand side. Let
(X,E) be a resolution of (X,0) and let S — A be any pencil of curves of genus g
including (X, E). From the definition of the fundamental cycle Z 5> we have Z, < S,,.
Since E C supp(S,), we have Z 5 < So. Then there is a computation sequence from Z
to S, by Lemma 3.3 (i), and ps(X,0) = pa(Zp) < pa(So) = g; therefore, pp(X,0) <
pe(X,0).

On the minimal resolution of every rational singularity, M x equals the fundamental
cycle ([Y]); thus po(Mx) = ps(X,0) = 0. For every elliptic singularity, we have p,(D) <
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1 for any positive cycle D on the exceptional set of any resolution. Thus, p,(Mx) < 1
([Wal). O

In the following, we consider the singularities that satisfy a minimality condition
pe(X,0) =ps(X,0).

DEFINITION 3.6. If (X, 0) satisfies pe(X,0) = ps(X,0) = g, then (X, 0) is called a
weak Kodaira singularity of genus g.

We remark that every Kodaira singularity in the sense of Karras [Kal] is a weak
Kodaira singularity (Proposition 3.10 (iii)). Here we recall the definition of Kodaira
singularities and Kulikov singularities.

DEFINITION 3.7 ([Kal], [St1], [St2]). Let ® : S — A be a pencil of curves of
genus g which has reduced components. Let Pi,..., P, € supp(S,) be non-singular
points of S, (i.e., they are contained in components whose coefficients of S, equal one
and also smooth points of red(S,)). Let S" % S be a finite number of blowing-ups with
centers Py, ..., P.. Let X be an open neighborhood of the proper transform E C S’ of
supp(S,) by o. By contracting E in X, we obtain a normal surface singularity (X, o).
Then, the contraction map ¢ : (X, E) — (X, 0) is a resolution of (X,0). If a normal
surface singularity is isomorphic to a singularity obtained in this way, then it is called
a Kodaira singularity of genus g (or Kodaira singularity associated to ®). Also, if o is
just one blowing-up at every center P; (¢ = 1,...,r) in the above construction, then
(X, 0) is called a Kulikov singularity of genus g (or Kulikov singularity associated to ®).
Moreover, if h € mx,, satisfies ho ¢ = ® 0 g, then h (or ho ) is called a projection
function of a Kodaira singularity (X, o).

Let ' be the w.d.graph of the exceptional set of the minimal good resolution of a
normal surface singularity. If there exists a Kodaira singularity whose w.d.graph for the
minimal good resolution is equal to I', then T is called a Kodaira graph.

The definitions shows that every Kulikov singularity is a Kodaira singularity, but
the converse is not true. Here, let us explain the procedure of the definition by drawing
the following figure:

y @
13 2 1 ) H—0—0
o000 < T b
\

(2] (1] (ii) Q_@ e e . . '

The figure of the left hand side is the w.d.graph of the singular fiber of a pencil of curves.
The figure (i) (resp. (ii)) of the right hand side is the w.d.graph associated to a Kulikov
(resp. Kodaira) singularity. Nevertheless, it depends on the choice of the center of the
blowing-up of the procedure above whether the singularity associated to the figure (ii) is
Kulikov or not.
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In Theorem 3.11, we characterize Kodaira or Kulikov singularities in terms of
pe(X,0,h). However, the author knows of no reference containing a concrete exam-
ple that distinguishes both classes. Then we prove the following and give a such example
as its application.

PROPOSITION 3.8.  Let (X, 0) be a normal surface singularity obtained by the con-
traction of the zero-section of a negative line bundle L on a non-singular algebraic curve
E.

(i) (X,o) is a Kodaira singularity if and only if L ~ —%_._, n;P; (linearly equiva-
lent), where n; > 0 for any i.

(ii) (X, o) is a Kulikov singularity if and only if L ~ —>"._, P;, where Py,..., Py
are r different points.

(iii) In the case of (i) (resp. (i), (X,0) is a Kodaira (resp. Kulikov) singularity
associated to the trivial pencil; it is obtained by taking n; blowing-up at Q; := (F;,0) €
EXxC fori=1,...,r, where ny = --- =n, = 1 in the case of (ii).

Proor.

(i) We prove the “if” part. Assume that Pi,..., P, are r different points. Let
® : Ex C — C be the trivial pencil. Consider a C*-action on E x C defined by
t-(p,z) = (p,tz) for t € C*. Then each point of E x {0} is a fixed point of this action.
By taking n; blowing-ups at (P;,0) in E x C for each i, we have o : S — Ex C. Let E be
the strict transform of E by o. Then we can easily check that C*-action is extended onto
S and each point of E is a fixed point for it (cf. [OrW, Section 1.2]). We can contract
E in S and obtain a Kodaira singularity (Y, 0) with C*-action. If (X, E) is the minimal
resolution, the normal bundle of E (resp. E) in X (resp. S)is L (resp. — > 1, niP;).
Since L ~ —Y"7_, n; P;, we have (X, 0) ~ (Y, 0) (i.e., holomorphically isomorphic). Then
(X, 0) is a Kodaira singularity.

Now we prove the “only if” part. There is a normal surface singularity (Y, 0) and a
pencil of curves ® : S — A including a resolution (Y, F) of (Y, 0) such that (Y, 0)~(X, 0)
and So|ly = F + 22:1 n;G;, where any G; is a non-exceptional irreducible component in
Y. Then there is a following diagram:

where 7 is the minimal resolution. Therefore, F' is an irreducible smooth curve which is
holomorphically isomorphic to E and S,|y = F + ", n;¢(G;). Then

ONS'OF:N*/y\F—i—ZniPZ' for P, :=o(G))NF (i=1,...,7).
i=1

Let (X, F) be the minimal resolution of (X, 0). Since there is a holomorphic isomorphism
¥ (Y, F)~(X,E), we have L = N ¢|p ~ ¢Npy|p ~ —2i_;n:P; on E, where
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P; :=¢(P;) for any i.

(ii) Assuming n; = 1 for any 4 in the argument of (i), we can prove “if” part
in the same manner. Thus we prove the “only if” part. From the definition of Kulikov
singularities, there is a normal surface singularity (Y, 0) and a pencil of curves & : S — A
including a resolution (Y, F') of (Y, 0) suc? that (Y, 0)~(X,0) and S,y = F + Z;Zl Gj,
where G; is contained in a (—1)-curve G; with Coeffi; S, =1 for j = 1,...,r. We
can consider the same diagram as (3.2). Let Fj, be an irreducible component in F
with Fj, NG # & (j = 1,...,r); therefore Coeffpij S, = 1. Let F, be an irreducible
component of F' with F' = ¢(F,) ~ E. Any connected component of F'\(F, UU;:1 G;) is
contracted to a non-singular point by . Therefore, if there is j € {1,...,r} with F;, #
F,, then Coeffp,ij S, = 2. This contradicts Coeffpij So = 1; thus F;, =--- = F; = F,.
Therefore, if we put Pj := FNo(Gy) (j = 1,...,7), each ¢(G;) is a (—1)-curve which
intersects F transversally at Pj and P; # P;ifi # j. Then 0 ~ S,F, = Ng,5|p+>1_; Pi;
thus (ii) is proven as in (i).

The proof of (iii) is contained in the proof of (i). O

EXAMPLE 3.9. Let F be a non-hyperelliptic curve and let P be any point of E.
Then there are no two points @1 and Qs in E with 2P ~ Q1+ Q2. Let L be the negative
line bundle associated to —2P, and let (X, 0) be a normal surface singularity obtained
by the blowing down of the zero-section of L. Then (X, 0) is a Kodaira singularity, but
not a Kulikov singularity from Proposition 3.8.

ProprosITION 3.10.

(i) ([Kal, Proposition 2.7]) Let E be the exceptional set of the minimal good reso-
lution of a normal surface singularity and Zg the fundamental cycle. Then the w.d.graph
I'r is a Kodaira graph if and only if Coeffg, Zg =1 for any E; with ZgE; < 0.

(ii) ([Kal, Theorem 2.9]) If (X,0) is a rational or minimally elliptic singularity
with K-graph, then it is a Kodaira singularity.

(iii) ([Ka2, Lemma 3.4]) If (X,0) is a Kodaira singularity of genus g, then
ps(X,0)=g.

Let (X,0) be a rational double point. If (X, o) is of type A,, then (X, 0) is a
Kulikov singularity (see Section 1). If (X, 0) is of type D,,, then p.(X,0) = 0 as noted
in Section 1. Then (X, 0) is a weak Kodaira singularity, but not a Kodaira singularity
from Proposition 3.10 (ii). If (X, o) is of type Es, E7 or Eg, then it is not a weak Kodaira
singularity (Proposition 3.12).

Under the situation of Definition 3.7, we can easily show that the fundamental cycle
Zp is equal to the strict transform o 1(S,). Hence, we have the equality ps(X,0) = g
of Proposition 3.10 (iii). From the definitions and 3.10 (iii), any Kodaira singularity is a
weak Kodaira singularity, although the converse is not true.

In the following, we consider necessary and sufficient conditions for a weak Kodaira
singularity to be a Kodaira or a Kulikov singularity.

THEOREM 3.11.  Let (X,0) be a normal surface singularity.
(i) (X,0) is a Kodaira singularity if and only if there exists h € mx , which is
not a perfect power element satisfying pe(X,0,h) = py(X,0) and E(how) = Zg, where
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71 (X,E) — (X,0) is a resolution such that red(h o) is simple normal crossing.
(ii) (X,0) is a Kulikov singularity if and only if there exists a reduced element
h € mx , with pe(X,0,h) = py(X, o).

Proor.

(i) Let consider the “only if part”. Assume that (X, o) is a Kodaira singularity. Let
h € mx_, be a projection function of (X,0) (i.e., there exists a resolution 7 : (X, F) —
(X,0) and a pencil of curves ® : S — A such that (X, E) C (S,supp(S,))) and hon =
®| ;). Also, from the definition of Kodaira singularities, we have E(h o m) = Zg and
Coeffg, E(h o) = Coeffg, Zg = 1 for an irreducible component F; with ZgFE; < 0.
Hence p.(X,0,h) = ps(X,0) and h is not a perfect power element.

Consider the “if part”. Theorem 2.4 allows construction of a pencil of curves ® : S —
A of genus ps(X,0) such that hom = ®| ¢ and any connected component of supp(S,)\E
is a minimal P'-chain. From the condition E(h o 7) = Zg and Proposition 3.4 (i), ®
is non-multiple. Suppose there is an irreducible component E; with ZgE;, < 0 and
Coeff, ZE = 2. From the construction of S, there is an irreducible component Fj;, of
supp(S,)\E with F; E; # 0. From Proposition 3.4 (i), and Lemma 3.3 (iii), there is a
computation sequence from Zg to S, as

ZO:ZE7 ZIZZE+Fi13"'7Z€:SO7

Since po(Zg) = ps(X,0) = pa(S,), we have ZgF;, = 1 from Lemma 3.3 (ii). However,
ZpF;, 2 2 from Coeffp, Zp = 2. This is a contradiction. Then Coeffp, Zp = 1 if
ZpE; < 0. We have Zg = E(hon) = S,|g from the assumption and ho7w = @[5,
and so Coeffg, S, = 1if ZgE; < 0. Let F(1),...,F(m) be connected components of
supp(So)\E. If F(i) := UL, Fij and b; j = —F?; for any i,j, then b;; 2 1 and b; j = 2
forj=2,...,r;. Supposethatby1=---=bs1 =1landbs41122,...,0,,1 2205 <
m). Suppose s < m. We have Coeffr, ; S, = 1 for any i > s and any j by considering a
computation sequence from Zg to S,. This is a contradiction: 0 = SoF; ., =1—b; ., <0
for i 2 s+ 1. Then s = m (i.e., by1 = -+ = by,1 = 1). Suppose there is ¢ such that
bio = =biy, =2and bj4,11 = 3 for t; < r;. From Proposition 3.4 (i), we have
SO‘F(i) = Zsupp(So)|F(i) = Z;;l(tl - _] + 2)Fi,j + Fi,ti+1 + -+ Fi,ri which yields a
contradiction: 0 = S,F;,, = € —b;,, < 0, where ¢ = 2 (resp. 1) if ;, = ¢; + 1 (resp.
ri >t;+1). Thenb; o =--- =b;,, = 2if r; 2 2. Therefore, any connected component of
supp(S,)\E is a minimal P!-chain of type (1) or (1,2,...,2). Then (X,0) is a Kodaira
singularity.

(ii) Let consider the “only if part”. Assume that (X, o) is a Kulikov singularity. Let
h € mx , be a projection function of (X, 0) (i.e., how = ®| ¢, where 7 : (X, E) — (X, 0)
is a resolution satisfying the properties of (i)). From (i), we have p.(X,0,h) = ps(X,0).
From the definition of Kulikov singularities, the non-exceptional part A(hom) is a reduced
divisor. Then £ is a reduced element.

Next we prove the “if part”. From Theorem 2.4, 2.9 and 2.13, there are a non-
multiple pencil of curves ® : S — A of genus py(X,0) and a good resolution 7 :
(X, E) — (X, 0) such that red(S,) is simple normal crossing and ®| ¢ = h o7 and any
connected component of supp(S,)\E is a minimal Pl-chain. Because h is a reduced
element, the length of any P!-chain in supp(S,)\E is one. Then we can put F =
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supp(S,)\E and F = (J;-, F;, where F; is a P! with Coeffp, S, = 1 for any ¢ and
F,NF; =@ fori+#j. Let ¢ : S — S be a successive contraction map of (—1) curves
in E such that E = ¢(F) is minimal (i.e., E contains no (—1) curve) and ¢|g\ g is an
isomorphism. We put F; = p(F;) fori = 1,...,m. It suffices to prove F? = —1 for any i.
Assume Zg+ 1" Fi < Zg,p = So. From Lemma 3.3 (iii), we can make a computation
sequence Zo = Zg + >0, Fi, Z1 = Zo + E}, ..., Zs = Zs—1 + B} = Zgp, where E],
is an irreducible component of £ U F. From Lemma 3.3 (i),

pf(Xa 0) :pa(ZE) :pa(ZE') é pa(Zs—l)
= pa(ZEuF - E;) < Pa(Zgur) = pe(X,0) = pf(Xv 0).

Therefore, —Ez(sz = (S, — E})E,. = (Zgup — E})E;. = 1 from Lemma 3.3 (ii).
Hence E; ¢ E since E is minimal. Then E; C F, thus yielding a contradiction:
1 = Coeff g S, = Coeffpr Zp,p 2 2. Then Zgup = Zp + Y-, Fi. By considering
a computation sequence Z;;, Zg+Fi, ..., Zg+ > " F, = S,, we have F2=...=
F2 = —1 from Lemma 3.3 (ii). Then (X,0) is a Kulikov singularity. O

The condition F(how) = Zg is necessary in Theorem 3.11 (ii). Because, in Remark
2.14 (i.e., (X,0) = ({22 = y(a®> + y"2)},0)), y € mx, is not a perfect power element
and pe(X,0,y) = ps(X,0) =0, but (X, 0) is not a Kodaira singularity.

In Remark 1.6, we explained that p.(X,0) = 0 for any rational double point of
type A, and D,,. In the following, we obtain the value of the pencil genus for rational
singularities with lower multiplicity.

PROPOSITION 3.12.  Rational double points of type Eg, E7 and Eg have p.(X,0) =
1. Further, all other log-canonical surface singularities except for them are weak Kodaira
singularities.

PrROOF. Let (X,0) be a rational double point of Es, E; or Fg. Every quotient
singularity is a taut singularity ([Lal]) (i.e., the analytic structure of (X, 0) is determined
by the weighted dual graph of the minimal good resolution). Then we can readily see
that the minimal resolution space of (X, 0) is included in the relatively minimal elliptic
pencil ([Kol); therefore, so we have p.(X,0) < 1. From Remark 1.5, p.(Es) < p.(E7) <
pe(Eg) < 1. Hence we need only to prove p.(Fs) = 1. Suppose p.(Fg) = 0 and let
® : S — A be a rational pencil with (S,supp(S,) D (X, E), where (X,E) — (X,0) is
the minimal resolution. Because the relatively minimal pencil of genus 0 is isomorphic
to the trivial pencil P! x A, we may assume that supp(S,)\E contains a (—1) curve
FEy intersecting . Let ' = F U Ey and let Zg,Zg + Ey,...,ZF be a computation
sequence from Zg to Zp. From Lemma 3.3 (i) and Proposition 3.4 (ii), 0 = p,(Zg) <
Pa(ZE + Eo) £ -+ = pa(ZF) = 0. From Lemma 3.3 (ii), we have ZgFEy = 1. Therefore,
Ej intersects E as follows:

O O O—O O @ :
Es Es Es E» FE E,
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Then a proper subset U?:o E; of F is an exceptional set by Zariski’s Lemma ([BPV,
p.90]). However, we can easily see that its intersection matrix of U?:o E; is not negative
definite. This is a contradiction; consequently, p.(Es) = 1.

Because log-canonical elliptic singularities are simple elliptic or cusp singularities,
they are minimally elliptic singularities. Hence they are Kodaira singularities from Propo-
sition 3.10 (ii). If a log-canonical rational singularity has a Kodaira graph, then it is a
Kodaira singularity from Proposition 3.10 (ii). It must be proven that all log-canonical ra-
tional singularities except for Eg, F7 and Eg are weak Kodaira singularities. We have the
classification of two-dimensional log-canonical singularities (cf. [Mak, p.237]). Hence,
we need to check the above for only log-canonical rational singularities which have not
Kodaira graphs. We show this for one case; other cases are treated similarly. Let (X, 0)
be a log-canonical rational singularity such that the w.d.graph associated to the minimal
resolution (X, E) 5 (X, 0) is given as the left side in the following:

E4 EQ

Let C; be a non-compact smooth complex curve X such that it intersects E; transversally
(] = 1,2). If we put D = 2Ey + 2E1 + 2F> + E3 + E4 + 2C7 + 2C5, then DE; =0 for

[\)

2
O

2
©

—_
—_
—_
[\
[\

Jj=0,1,...,4. From Lemma 2.1, there exists an element h € mx , such that (hom) ¢ = D.
Using the method of Theorem 2.4, we can construct a rational pencil as above. Then
(X, 0) is a weak Kodaira singularity of g = 0. O

In [Art, p.135], M. Artin exhausted the w.d.graphs associated to rational triple
points as follows:

(i) Ay (ii) (iii)

A —(D— A, AM@AM—@% An, %_ An,
(iv)

—O—O—%—O—O @@—é{}o %}O@W

(vii) (viii) (ix)

where A,, indicates O) — --- — (O (i.e., the w.d.graph is of P'-chain of length n > 0 and
of type (2,...,2)). In the following, we can determine the value of p.(X, o) for rational
triple points.

ProposITION 3.13.  If (X, 0) is a rational triple point whose w.d.graph is one of
(i)~(iv) (resp. (v)~(ix)), then pe(X,0) =0 (resp. pe(X,0) =1).
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PROOF. First we consider the cases of (i)—(iv). Let (X, 0) be a singularity of type
(iv) with n = 0. Let 7 : (X,E) — (X,0) be the minimal resolution. Consider a
following divisor D on X:

where * is a non-exceptional curve on X which intersects E transversally at one point.
From Lemma 2.1, there is an element h € mx,, such that D = (ho7)g. By gluing
suitably a neighborhood of (—1)-curve as in Theorem 2.4, we can construct a rational
pencil ® : S — A such that ®|¢ = hon. Then p.(X,0) = 0. We can prove the case of
n 2 1 similarly; in addition, we can prove cases of (ii)—(iv) similarly.

Second we consider cases of (v)—(ix). Let (X,0) be a singularity of type (v) with
n = 1. Consider the following divisor D on X:

where * is a non-exceptional curve on X. By gluing a suitable neighborhood of a (—=1)-
curve on a neighborhood of each * as above, we obtain an elliptic pencil. Then p.(X,0) <
1. Suppose p.(X,0) = 0. Then there is a rational pencil ® : S — A and a resolution
(X,E) — (X, 0) satisfying (X, E) C (S,supp(S,)). By the same way as in Proposition
3.12, we can easily show that there is a (—1) curve E, in supp(S,) which intersects E
transversally and ZgF, = 1. Hence the configuration of £ U E, is one of the following
figures:

O @
(v-1) (v-2) Q—@—O—g—o—o
O
(v-3)

For (v-1), we can easily see that the w.d.graph has a subgraph whose intersection matrix
is not negative definite. For (v-2) or (v-3), the configuration contains the w.d.graph
of rational double point of type Fg. Then p.(Eg) = 0 from Remark 1.5 (ii), but this
contradicts Proposition 3.12; thus p.(X,0) = 1. We can check other cases (vi)—(ix)
similarly. O

Here we propose the following problem:
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PROBLEM 3.14. TIs there a finite upper bound of p.(X, 0) for rational singularities?

EXAMPLE 3.15. Let (X,0) be a ration@l singularity of multiplicity 4 whose funda-
mental cycle Zx on the minimal resolution (X, E) is given by the left one of the following

figures:
1
?;3 2 2

2 3 45 4 3 2 1 12 3 4 5 4 3 2 1

Because (X, 0) is a rational singularity, there exists h € mx , with E(hom) = Zx = Mx.
Therefore, as in Theorem 2.4, we can construct a pencil of curves of genus 2 whose singular
fiber is figured by the right one above. Then p.(X,0) < 2. Suppose p.(X,0) £ 1 and
let ® : S — A be a pencil of curves of genus p.(X,0) and including a resolution of
(X,0). From Kodaira’s classification of elliptic pencils ([Ko]), we can see that there are
no minimal pencils of curves of genus ¢ < 1 whose singular fiber contains F. Hence
the pencil of curves is not minimal. After suitable contractions of (—1)-curves, we may
assume that there is a (—1) curve Ejy in supp(S,) intersecting E. If Ey intersects a (—2)-
curve of F, then it yields a contradiction. If Ey intersects the (—3)-curve of E, then the
w.d.graph of Fy U E is star-shaped and the intersection matrix is not negative definite
([P, p.185]). This yields a contradiction. Therefore, p.(X,0) = 2.

4. Pencil genus of cyclic coverings of normal surface singularities.

After fundamental results on surface singularities due to M. Artin, H. Laufer and
P. Wagreich, S. S. T. Yau [Y] introduced the notion of elliptic sequences for elliptic
surface singularities. He also considered a sequence (X,,0) = ({z5"%¢ = 22 + 3}, 0)
(n=1,2,3,... and ¢ = 3,5) of elliptic hypersurface singularities associated to an elliptic
sequence; thus pf(X,,0) = 1 for any n. Inspiring this, the author proved that if (X, 0) =
({z" = 2" 4+ y*},0) C (C3,0) is normal and n = lem(a,b), then pp(X,0) = 1{(a — 1)
(b—1) —ged(a,b) + 1} (Tt1, Theorem 4.4]). Further, in Theorem 4.5 in [Tt2], he also
proved that if (X,0) = ({2" = h(z,y)},0) C (C?,0) is normal and n is “sufficiently”
large, then (X, 0) is a Kodaira singularity of genus %

Let (Y, 0) be a normal complex surface singularity and let (X, 0) be a normalization of
the cyclic covering defined by 2™ = h over (Y, 0), where h € my, is a semi-reduced element
(Definition 4.6). In this section, we prove that (X, o0) is a weak Kodaira singularity
satisfying py(X, 0) = pe(Y, o, h) for “sufficiently” large positive integer n (Theorem 4.12).
Next, using the characterization of Kulikov singularities in Theorem 3.11, we prove that
if h is a reduced element, then (X, o0) is a Kulikov singularity for “sufficiently” large
positive integer n (Theorem 4.14). This is a generalization of Theorem 4.5 in [Tt2].

DEFINITION 4.1.  Let (Y,0) C (C¥,0) be a normal singularity and I its defining
ideal in C{y1,...,y~}. Further, let h € my, be an element and let assume that h €
C{yi1,...,yn} is correspondent to h. Let (X,0) (C (CNT1 0)) be a singularity defined



62 T. TOMARU
by the ideal generated by I and 2" — h(yy,...,yn) in C{y1,...,yn,2}. Then (X, o) is
called the n-fold cyclic covering of (Y, 0) defined by z™ = h.

In this paper, we usually assume that h is not a perfect power element. Then
(X, 0) of Definition 4.1 is irreducible ([TW1, Proposition 1.8]); also (X, 0) is a normal
singularity if and only if & is a reduced element in Oy, ([TW2, Theorem 3.2]).

Here we prepare some facts. Let (X, 0) be the normalization of the cyclic covering
(X,0) of normal surface singularity (Y,0) defined by 2" = h, where h € my,, is not a
perfect power element. Let o : (Y, E) — (Y,0) be a resolution such that (h o o)s is
simple normal crossing on Y. We can construct a good resolution of (X, 0) from (Y/, E)
and (hoo)y. By taking the fiber product of o and v, we have the following diagram:

(o) o 2 Pk )

wl i M / (4.1)

(Y,0) (V,E)

where 1 is the composition of the normalization map (X, 0) — (X, 0) and the restriction
to (X,0) = {2" = h(z1,...,zN)} of the projection map CN*! — CN ((xy,...,2N,2) —
(z1,...,2n)). Further, let X” be the normalization of X’ and then X" has only cyclic
quotient singularities. Let X be the minimal resolution of all cyclic quotient singularities
on X”. We put E = supp(F(hoo)) and C = supp(A(hoo)). If ¥/(Q) € EUC for
a point Q € X', Q is included in the singular locus of X’. ¢'(Q) is included in only
one or two irreducible components of £ U C'. A local coordinate (u,v) can be chosen in
a neighborhood of v/(Q) such that X’ is represented by 2" = u® or 2" = u%"’. The
singularity z" = u® is resolved by normalization ¢3. Hence we need only to resolve
singularities of type 2" = u®?® on X’ by ¢3. It is well-known that the normalization
of such singularities are cyclic quotient singularities ([BPV, p.83]), and we can easily
compute the type from a,b and n. Let us define three integers a1,b; and ny as follows:

4.2
ny = n/ ged(n,lem(a, b)). (4.2)

{al = a/ ged(a,lem(n, b)), by = b/ ged(b,lem(n,a)),

LEMMA 4.2 ([Tt2, Lemma 2.5]). Let k = ged(n, a,b). The normalization of {z" =

ub} is disjoint k cyclic quotient singularities of type C,, ., where u is an integer defined
by a1 +b1=0(n1) and 0 < < ny.

Let g € my, and put (go o)y = > i vE (g0 0)E; + 35 ve,(go0)Cy. Let E;
and é’j be the strict transform of E; and C; by 6 respectively. They are not necessarily
irreducible curves. With respect to the vanishing orders of z and g o o on E; and C'j, we
have the following.

LEMMA 4.3 ([Tt2, Lemma 3.1]). Let F' be an irreducible component E; or C; of
supp((g o o)) and F the strict transform of F' by 0. If we put ¢ = ¢1 0 ¢a 0 ¢3, then
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vg (hoo nv oo
vp(z09¢) = gcid(;,ip(h)oa)) and vp(goood) = 4gcd(ni;(g(ho)a))’

DEFINITION 4.4. Let ® : S — A be a pencil of curves of genus g, and let  : A’ — A
be a map given by t = n(s) = s”. Taking the fiber product of ® and 7 yields the following
diagram:

w1 S/ ﬁ S ﬁ S(n)7

o | , v | 5 (4.3)

A A’

where §' = S xa A’ and S” is the normalization of S’ and S(™ is the minimal resolution
of §”. Then ®( : §(") — A’ is a pencil of curves of genus g,. It is called the n-th root
fibration of ® ([BPV, pp.92-93]).

THEOREM 4.5.  Let (Y, 0) be a normal surface singularity and h € my,, not a perfect
power element. If (X, 0) is the normalization of the n-fold cyclic covering of (Y, 0) defined
by 2" = h for n > 1, then p.(X,0,2) = pe(Y,0,h), and so p.(X,0) < p.(Y,0,h).

PROOF. Let o : (Y,E) — (Y,0) be a resolution such that red((h o o)) is simple
normal crossing. Let ® : S — A be a pencil of genus p.(Y,0,h) constructed as in
Theorem 2.4 such that ® is an extension of hoo. Let ®) : §(®) — A’ be the n-th root
fibration of ®, and so its genus equals p.(Y, 0, k). From the construction of S, S
contains a good resolution space X of (X,0). If we put ¢ = ¢1 0 ¢ 0 p3 in (4.1) and
© = @1 0@y 03 in (4.3), then (<I>(”)|X)" =®oyp[g =hoood|lg = (z0¢)"; therefore,
we may assume that <I>(")| 5 = 20 ¢. Then we have the following commutative diagram:

CoA (X, 0) (X, E) C (S, supp(S5™))

Ao i el

CcoOA (Y,0) (Y,E) C (S,supp(S,))-

Since all connected components of supp(S,)\E are P'-chains and they are lifted to P*-
chains on supp(S’(()n)) by ¢, all connected components of supp(S((,n))\E are also P'-chains.
Since (™| = z 0 ¢, the genus of @™ is equal to p.(X, 0, 2) from Theorem 2.9. Hence
pe(X7O) gpe(Xvoﬂz):pe(YvOﬂh)' U

In this section, we give a sufficient condition for cyclic coverings of normal surface
singularities to be weak Kodaira singularities (Definition 3.6). Let (X, 0) be a normal
surface singularity and let 7 : (X, E) — (X, 0) be a resolution such that red((ho) 5 ) is
simple normal crossing. Let E = |J._; E; and supp(A(hom)¢) = J;_, C; be irreducible
decompositions.

DEFINITION 4.6.  Under the situation above, put a; = vg, (h o m) for any 4, b; =
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vg, (h o) for any j and Ny (m) = max{lem(a;, b;)|E;C; # 0}. Define a positive integer
Np(X,0) as follows:

i) Np(X,0) = min{Ny(7)|m is a resolution such that red(h o 7) is simple normal
(i) X

crossing}.
(ii) If ged(aq,...,ar,b1,...,bs) =1, then h is called a semi-reduced element.

The well-definedness of “semi-reduced” 1is obvious, because the value of
ged(ay, ..., an, by, ..., bs) is independent of the choice of w. In addition, any reduced
element is semi-reduced and any semi-reduced element is not a perfect power. Also, if h
is semi-reduced and ® is an extension of h o7, then ® is non-multiple.

In the following, we prepare some lemmas to prove the main result of this section
(Theorem 4.12).

LEMMA 4.7 ([Tt3, Lemma 1.3]).  For relatively prime positive integers n,q, let
% = [[b1,...,b]] be the continued fractional expansion. For a real number o, we have

n+qo
q+q"e’

[[bh...,b,,n_l,br —|—Oz]] =

where ¢’ and ¢" are denoted by q¢' =1(n), 0 < ¢ <n and n¢” =qq’ — 1.

For relatively prime positive integers a, b, let H(a,b) be the semi-group generated
by them. If n 2 (a —1)(b— 1), then n € H(a,b) ([OnW, Proposition 3]).

LEMMA 4.8. Let a,b be relatively prime positive integers and n € H(a,b). Then
there exist integers p, q and r uniquely which satisfy the following condition:

n=ap+bg+abr, 0<p<b 0Sqg<aand0=r.

PROOF. Assume that (p,q,r) and (p/, ¢’,7’) satisfy conditions above and ap+ bg+
abr = ap’ + bq’ + abr’. Suppose that (p,q) # (p',¢') and p # p’. Since a(p — p')+
b(qg—¢')+ab(r—1r") =0, we have blp — p’ and so b < p or b < p’. This is a contradiction.
Then (p,q) = (p',¢') and so r =1'. O

Suppose that n, a and b are relatively prime positive integers satisfying n 2 lem(a, b);
thereby, n € H(a,b). Let u be an integer defined by aup + b = 0(n) with 0 < p < n,
and let p,q and r be integers given by Lemma 4.8. Let p’ and ¢’ be integers defined by
pp’ = 1(b) and q¢’ = 1(a) respectively, where 1 £ p’ <band 1 < ¢ < a.

LEMMA 4.9.  Under the situation above,

[[dh .. -7d51717d81 + €59yCs9—1y+ -+ 761]]a ’LfT = 07
n
RN r—1
i —_—— )
([di,...,ds,—1,ds, +1,2,...,2,€e5, + 1,€5,-1,...,€1]] if r >0,

where a/q' = [[d1,...,ds,]] and b/p" = [[e1, ..., €s,]].
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PrROOF. Consider the case of r > 0. From b/p = [[es,, - .-, e1]] ([Ri]) and Lemma
47,

[[dl,...,dsl_l,dsl+1,2,...,2,652+1,652_17...,€1]]
b b
= dl,...,dsl_l,dsl+1,2,...,2,1+]; = ||di,...,dg,_1,ds, + ——o

rb+p
ap + bq + abr n

q/p+ bq// +q/b7a - q’p—l—bq” —|—q’br’

where ¢¢’ = aq” + 1. Also

a(q'p+bq" + q'br) + b= ¢ (ap + bg + abr) = ng’ = 0(n)
and 0 < ¢'p+bg” +¢'br < ap+ bg+ abr = n from ¢” < q.

Since p is determined uniquely by the relation ap + b = 0(n) and 0 < p < n, we have
w=¢p+bg" + ¢br. Then

n
Hdla-“vdsl—hdsl + 1,2,...,2,682 + 1,682_1,...,61” = ;

Because the case of r = 0 can be proven similarly, we omit the proof. O

Let X = {2" = u%’} C C? and assume n = ged(a,b). Let ay,b; and ng be positive
integers determined by (4.2). Hence two elements of them are always relatively prime.
By Lemma 4.2, the normalization of X is a cyclic quotient singularity C),, ,, where
aip+ b = 0(ny) and 0 < p < ny. Let (X,E) be the minimal resolution of X. Let
p,q and 7 be non-negative integers given by Lemma 4.8. Let p’, ¢’ be integers given by
pp’ = 1(b1), q¢ = 1(a1), 1 £p' < by and 1 £ ¢ < a;. Let a1/¢ = [[d1,...,ds,]] and

bi/p’ = [le1,...,es,]]. From Lemma 4.9, the configuration of supp(z) ¢ is given as
@ DT —O—,
cy Fy 11 o Fyqssm Cy
ifr; =0, and
(4.4)
e o e
Cl F1 e 31 Fsl+1 Fsl+r 1Fsl+'r 51+7‘+1 o sl+52+r 1 Cg
ifr; >0,

where C (resp. Cy) is the strict transform of {u = 0} (resp. {v = 0}).

n) and put

LEMMA 4.10. In the situation above, if we put A = ged(a,b)/ ged(a, b,
( ) = =

s3 = 81+ 82+ 71— 1, then Coeffry, (2) x = p'A, Coeff, (2) 5 = biA and vp, (2
vF, +r(2) g = A in (4.4).
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PROOF. From Lemma 4.3, Coeff (2) ¢ = a1A and Coeffs (2) x = biA. Let fo =
a1, f1 = ¢'X and fs,..., fs,—1 be positive integers that are inductively defined by
relations f; = d;—1fi—1— fi—2 (i =2,...,s1 —1). Further, let f; = A fori=s1,...,51+7r
and let fs;41 = b1\, fs; = P’A and fo,—1,..., fs;4r+1 be positive integers defined by

relf}tions fss—i = el—fss,iﬂ — fss—it2 inductively (i = 1,...,s2 — 1). If we put D =
JoC1+>°22 | fiFi+ fey41Ca, then DF; = 0forj =1,...,s3 and Coeff s, D = Coeffs, (2) ¢
for k = 1,2. Therefore, (2) ¢ = D, which completes the proof. O

Let ® : S — A be a non-multiple pencil of genus g. Let A = supp(S,) and
let A = Ule A; be the irreducible decomposition of A. Let Pi1,..., P € Ai,...,
Ps1,...,Ps . € A;, be Y 7 _, ji different non-singular points of red(S,). Let S % S be
a successive blowing-up started from those points such that it makes trees as follows:

Ck

where my, 22 (k=1,...,sand p=1,...,j). Let A = supp(S,) and let A; be the
strict transform of A;. Let E = (J:_, A)U(U;_, Uns U™t Frp(q)) and E = Ui, A =

g=1
supp(o;1S,), where 0,15, is the transform of S, (i.e., 0,15, = ZE:I(Coeﬂ‘Ai So)A;).

LEMMA 4.11. Ifc¢, = CoeffAik So Sl p+1 for any k and p, then the fundamental
cycle Zg is equal to

s gr tep

Doi=0."8o+> > > minfer bip =g+ 1} Frs(0)

k=1p=1q=1
and po(Zg) = g.

Proor. Let A(1),...,A(N) be the component sequence associated to a compu-
tation sequence of S,, where A(k) C {Ay,..., A} for any k. Let A(k) = o' A(k) for
k=1,...,N and let consider a sequence A(1),..., A(N). For a fixed k with 1 < k < s,
we assume that A(e;) = - = A(e,, ) = A;, and €] < --- < €., , where ¢} = Coeffa,, So.
Inserting Fj (1), ..., Fxp(fep — 6 + 1) between A(es) and A(es + 1) in the sequence
/Nl(l)7 . ,fl(N) forp=1,...,jx and 06 = 1,..., ¢k, we obtain a new sequence. Contin-
uing this process for £k = 1,...,s, we obtain the component sequence associated to a
computation sequence of Dy. The intersection number of Dy and any irreducible com-
ponent of F is non-positive. Hence Zg < Dy, and so

s Jk Lrp

Zp =Dy =015, + Z Z Zmin{ck,&w —q+1}Frp(q)

k=1p=1q=1
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from Lemma 3.3 (iv).

Next we compute pa(Zg). Let A’ == supp(Y.'_, A; — 3 25_, As,), and let A’ be the
strict transform of A’ by o. If E; is an irreducible component of A’, then ZgFE; = 0.
Hence we have the following;:

S

KgSo = Ks(Solar) + Y en(br —2) = Kg (Sol 1) + > cxlbr — 2),
k=1 k=1

S

s Jk
KgZp=Kg(Solx) + Y cnlbe+ik —2)+ D> (mrp—2),

k=1 k=1p=1
s Jk
Z% = — Z Z(Ck +mgp, — 2).
k=1p=1
Therefore, we have g — po(Zg) = 3(KsSo — K3y Zg — Z%) = 0. O

We explain the procedure above to compute Zg through the following example:

10 4, 4s
L A
A5 A, 2QA A A, 4 F(1) Fua(2) Fra3) P
;4 O—oO o—O0—0—(3 :
1 4
2 (g O——O0—+D
1 Az ) As Fy41(1) F>1(2)

Then Ay, As, ..., A7, A1, Ag, Ay, Ag, A1 is the component sequence (Definition 3.2) as-
sociated to a computation sequence of S,; thereby, A(1) = A(8) = A(12) = A; and
121(6) = A(ll) = AG- Let insert Fi7j7S into a sequence A17A27 [N 712177121171212’1214312167141
as follows:

Al; Fl,l(l), e 7F1,1(4),A27 oo ,Aﬁv F2,1(1)7 F2,1(2)3 FQ,Q(I),A7aA17
Fi1(1), F11(2), F11(3), Ag, Ay, A, Fo1(1), A1, F1 (1), F11(2).
This gives the component sequence associated to a computation sequence of Zp. A

similar lemma was proven in a slightly different situation ([Tt4, Lemma 2.4]).
Now we prove the main result of this section.

THEOREM 4.12.  Let (Y,0) C (C™,0) be a normal surface singularity and h € my,
a semi-reduced element (Definition 4.6). Let (X,0) be the normalization of the n-fold
cyclic covering of (Y,0) defined by 2™ = h. Ifn = Np(Y,0), then (X,0) is a weak
Kodaira singularity of genus p.(Y, o0, h).

PROOF. Leto : (Y, E) — (Y,0) be aresolution such that red((hoo)s ) is a simple
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normal crossing divisor and Ny (o) = N, (Y, 0). Let (X, E) be a good resolution of (X, 0)
constructed as in (4.1); then consider diagram (4.1) and use the notations there. Let
Uj=, Cj be the irreducible decomposition of the strict transform C' of red{h = 0}(C Y)
by o. For any Cj, let E;; be the irreducible component of £ with E;, N C; # & for
j=1,...,m. If we prove the following,

pa(ZE') :pe(Xa 0’2)7 (45)

then pf(X,0) = pa(Zz) = pe(X,0,2) = pe(Y, 0, h) by Theorem 4.5 and (X, 0) is a weak
Kodaira singularity of genus p.(Y,o0,h). This completes the proof; thereby, we prove
(4.5) in the following.

Let U; be a small open neighborhood of E;; N C; in Y, and let a; = vE, (hoo),
bj = vc,(hoo). Hence Ni(Y,0) = max{lem(a;,b;) | j = 1,...,m}. Let (u;,v;) be alocal
coordinate of U; such that E;; = {u; = 0} and C; = {v; = 0} in U;. Then ¢/~ (U;) =
{z" = uavaJ}. Let nj,a; and b; be integers given by n; = n/ged(n,lem(a;,b;)), a; =
a;j/ ged(aj,lem(n,b;)) and b; = b;/ ged(bj, lem(n,a;)) as in (4.2). Then two elements of
them are always relatively prime. Also, let 11; be an integer determined by

a;i; +b; =0(n;) and 0 < p; < nj.

Further we put ¢; = ged(n, a;,b;) and \; = ged(ay,b;)/¢;. Then (¢ o ¢2)~1(U;) is the
disjoint union of £; cyclic quotient singularities of type C,,, ,,, from Lemma 4.2.

From now on we assume n 2 Nj(Y,0). Then we have n; 2 a;b;\;. If n; =1, then
any connected component of ()’ o ¢2) ! (U;) is non-singular. Hence, we assume n; > 1 in
the following. From Lemma 4.8, there exist integers P> 4 and r; uniquely which satisfy
the conditions: n; = a;p; + bjq; + a;b;r;, 0 < p; < bj, 0 < g; < a; and 0 < r;. Hence
we have

)\j é Tj + 1. (46)

Let p; and g; be integers given byp]p] = 1(b)), q;q; = 1(a;), 1 = pj < bjand 1 < q; < aj.

Let a]/qj Hd],la cee d],Sl(J ]] b; /pj = [[e],la .. ej,Sz(J)]] and 53(3) = Sl(]) + 82(.7) +
r; —1. From (4.4), the divisor (z o ¢)5 estricted to the Pl-chain associated to the
minimal resolution of Cy,; ,,; is given as

aj\j : Aj
* —& - t (4

E;; - Fissgy+ G

where C; (resp. E~’Z]) is an irreducible component of §~1(C;) (vesp. 6~ *(E;,)) and o = 1if
rj >0, and a = e, ,,(;) otherwise. Gluing X and resolution spaces of Z ,ged(n, aj,b;)
cyclic quotient singularities as in Theorem 2.4, we can construct a pencﬂ of curves @ :
S — A that satisfies the following commutative diagram:
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(X,E) — (S,supp(S,)) .

z%iq)

A

Because h is semi-reduced, ® : S — A is a non-multiple pencil of curves of genus
pe(X,0,2) from Lemma 4.3 and Theorem 2.9. Therefore,

pa(ZE) é pe(Xa o, Z) (48)

Since piA; < bj\j, the configuration of (4.7) is embedded to a P!-chain started from E~ij
in supp(S,) as

@ oD G DG D

El]. ' Fjs109) - Fiser Gio Gia G

where éj - Gj’o,

( s3(j)+1 F )
k=1 J-k B
component of supp(S,)\E. From Lemma 4.7, we can easily check [[e;,,¢;) + 1,

€jsa(j)—1>+ €51, 1,051, .., 95¢,]] = 1. Therefore, after successive contractions of (—1)

% = [[Lg,...,94]] and g;p = 2 if & > 0. Then
J

U (Uz’: 0Gje) is a Pl-chain started from E‘ij which is a connected

curves of supp(S,)\E, we can get a pencil & : S’ — A of genus p.(Y,0,h) such that
the P!-chain started from E;, is given

ij FJ s1()—1 FJm(J)

After suitable blowing-ups S” = S’, we can construct a non-multiple pencil " = ® o7 :
S" — A of genus p.(X, o0, z) such that supp(S?) is given as follows:

aj 4G djis1(5) 1

Let H; be the union of all (—1) curves of the right hand side in the figure above; also, let
H =, H;. If we put E' = supp(SJ)\H, then p,(Zg) = p.(X,0,z) from (4.6) and
Lemma 4.11. The w.d.graph of E’ is embedded to the one of F as
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consequently, p,(Zg/) < pa(Zf). Hence pe(X,0,2) = pa(Zr) = pa(Zi) S pe(X,0,2)
from (4.8), thereby proving (4.5) and completing the proof. O

EXAMPLE 4.13.
(i) Let h = (x +y)z?y® and let V5 C? be a blowing-up at {0} € C?. Then

* 9 2
*Aé** C ;
1 6 3 1 6 3

and 80 p.(C?,0,h) = 1 and N,(C? 0) = 6. Let (X,0) be the normalization of a non-
normal singularity {z" = h} C (C?,0). From Theorem 4.12, (X, 0) is a weak Kodaira
singularity for any n = 6. Assume n = 6/ + 1 for £ = 1. Let (Y,0) = (C? 0) and
consider the diagram of (4.1). Then there are three cyclic quotient singularities of each
type Chnp, (J = 1,2,3), where py = £, pz = 2¢ and p3 = 3¢ from Lemma 4.2. Since
6%1 =[7,2,...,2]], 6@;1 =[4,2,...,2]] and % [[3,2,...,2]], the associated elliptic
pencil of curves which includes the minimal good resolution of (X, 0) is given as

Therefore, (X, 0) is a weak Kodaira elliptic singularity (but not a Kodaira singularity).
From Nemethi’s result ([Ne]), (X,0) is a maximally elliptic singularity with —Z% =6
(= mult(X, 0) =emb.dim.(X, 0)) and py(X,0) = £.

(ii) Let h = ay(x + y)® and let V5 C? be a blowing-up at {0} € C?. Then we
have

3)1

()3
b edie

5 1

1 5 1 1
and so we have p.(C?,0,h) = 2 and N,(C?,0) = 15. Let (X,0) be the normalization

of {z" = h} C (C3,0). From Theorem 4.12, (X,0) is a weak Kodaira singularity of
genus 2 for any n = 15. Assume n = 15¢ + 19 for £ = 0. Then we must consider three
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cyclic quotient singularities of each type Cy ., (j = 1,2,3), where 1 = po = 120415
and p3 = 6 + 7 from Lemma 4.2. Since 1519 — 2,2,2,3,2,...,2]] and L26+19

120+15 607
[[3,3,2,...,2,3,2]], the associated pencil of curves of genus 2 which includes the minimal
resolution of (X, o) is given as
=0 @ DOBRAGITIOOD
1 3 2 1 2 5
4321 11 1
3042
¢ —1 T~
-O-3-O——O+D)

(21: PO OBADCG 505004
4 3 2 11 1 1

THEOREM 4.14.  Let (Y, 0) be a normal surface singularity and h € my,, a reduced
element. Let (X,0) be the n-fold cyclic covering of (Y,0) defined by z™ = h. Ifn 2
Ny (Y,0), then (X,0) is a Kulikov singularity of genus §(h) — r(h) + 1 and z is the
projection function (Definition 3.7) for an associated pencil of curves and Z% = —r(h).

PROOF. Because h is reduced, (X,0) is normal ([TW2, Theorem 3.2]). Also,
(X,0) is a weak Kodaira singularity of genus §(h) — r(h) + 1 from Corollary 2.12 and
Theorems 4.5 and 4.12. Let o : (Y, E) — (Y,0) be a resolution such that red((h o o))
is a simple normal crossing divisor and Np (Y, 0) = Np (o). Consider diagram (4.1); then
¢ = ¢30¢y0 P : (X,E’) — (X, 0) is a good resolution such that (z o ¢)¢ is simple
normal crossing. From Lemma 4.3, z is a reduced element of Ox ,. By Theorem 3.11,
(X, 0) is a Kulikov singularity which has a projection function z. For non-exceptional
part A(z o ¢), supp(A(z o ¢)) has r(h) connected components and A(z o ¢) is a reduced
divisor. Since E(z o ¢) = Zp, we have 0 ~ (20 ¢)g = Zz + A(z 0 ¢); therefore,
Z% = 12; =—ZzMNzo¢)=—r(h). O

COROLLARY 4.15.  Let (Y,0) = {h(x,y,2) = 0} C C? be a normal hypersurface
singularity. If x is a reduced element of Oy, then a hypersurface singularity (X,o0) =
{h(z",y,z) = 0} is a Kulikov singularity of genus M and Z% = —r(f) if
n 2 N.(Y,0), where f := h(0,y,2) and p(f) and r(f) are defined for a plane curve
singularity ({f = 0}, 0).

COROLLARY 4.16 ([Tt2, Theorem 4.5]). Let (X,0) = {z" = h(z,y)} be a normal
hypersurface singularity with n > 1, where h € C{z,y}. If n = N,(C? o), then (X,0)
is a Kulikov singularity of genus M and Z% = —r(h).

ExAMPLE 4.17.  Let (Y,0) = {2® = (z + y?)(z + y*)} C (C?,0). This is a rational
double point of type Eg. Because p¢(Y,0) = 0 and p.(Y,0) = 1 from Proposition 3.12,
(Y,0) is not a weak Kodaira singularity. Consider two resolutions of (Y,0) such that
divisors determined by two reduced elements x and x> + y? are given as
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(z) : (z® +9?) :
O3 *1 *1
| O O
'
2 4 6 5 9 3 6 4 6 8 18 9

As in Theorem 2.4, we can construct two pencils of curves from them. Their singular
fibers are given as

1

o3
o0 D-®
2 4 6 5 9 3

o—=O
2 4 SO0—3)0—3)
O—0O " 6 4 ¢ 38
2 4

Then N, (Y,0) =9 and N,s1,2(Y,0) = 18, and we have p.(Y,0,z) = 4 and p.(Y,0,2° +
y?) = 6 from (1.1) and the adjunction formula and Theorem 2.9.

(i) Let (X,0) = {23 = (@™ +y*) (2" + y3)} C (C?,0) for n = 2. For n = 8,9 and
10, the cycles defined by (z) on the minimal good resolutions of (X, 0) are given as

n = 8: n=09: n = 10:

3¢ Gok? 68! iui
20_3(}'.:-(;9?{3)2325 D 51

A cycle above gives the fundamental cycle in each case. Though the w.d.graph is not a
Kodaira graph for n = 8, it is a Kodaira graph for n = 9 or 10. From Corollary 4.15,
(X, 0) is a Kulikov singularity of genus 4 if n =2 N,(Y,0) = 9.

(i) Let (X,0) be a complete intersection singularity {z® = (z + y?)(z + %), u" =
23 +y?} C (C*,0). From Theorem 4.14 and the configuration above for the divisor of
23 +y2, (X,0) is a Kulikov singularity of genus 6 if n = N3, ,2(Y,0) = 18. For example,
assume n = 18. Applying Lemmas 4.2 and 4.3 to the figure of the divisor (z3+y?) above
on a resolution space of (Y, 0), we can obtain the cycle E(uom) on the minimal resolution
(X,E) 5 (X,0) is given as

1 11 11 1 1 1 1
D-O0-0O0-B-0-000) -
[1] 4] 1]

5. Pencil genus of hypersurface singularities defined by 2™ = f(x,vy).

In this section we consider hypersurface singularities defined by 2" = f(x,y).
Though they construct a special class of normal surface singularities, they have been
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studied by many authors since Zariski’s work [Z]. In addition, all normal double points
(i.e., normal surface singularities of multiplicity 2) have 22 = f(z,y) as the defining equa-
tions, and there are many papers on them ([D], [Tm1] and their references). Hence, it
seems worth while to consider the pencil genus for singularities defined by 2™ = f(z,y).
We have already given a formula of p.(X, 0, h) in Section 2 (Theorem 2.11). However we
must to compute a resolution (X, E) and a divisor E(h o ) for obtaining the value of
pe(X, 0, h). Therefore, it is not so easy to get the value of p.(X, o0, h) even if (X, 0) is a
hypersurface singularity. In this section, we give a formula (Theorem 5.4) of p.(X, o, {)
for hypersurface singularities of type 2" = f(z,y) and £ € n\n?, where n is the maximal
ideal (z,y) C C{x,y}. The author proved the following ([Tt2, Theorem 4.1] and [Tt4,
Corollary 3.8]).

THEOREM 5.1.  Let (X,0) be a hypersurface singularity of type z™ = f(x,y). If
nlord(f), then (X,0) is a Kulikov singularity of genus M, where ord 18
2
the order of f at the origin.

In the situation above, for general elements « and 3 of C, ax + By is a projection
function for (X, 0). Since pe(X, 0, ax + By) = %W from Proposition 3.10 (iii),
Theorem 5.4 is a generalization of this formula (Corollary 5.5). In the following, let us
prepare two lemmas to prove Theorem 5.4.

LEMMA 5.2. Let (X,E) — (X,0) be a resolution of a Gorenstein surface singu-
larity and K ¢ the canonical divisor of X. Let U;Zl E; (C E) be a P'-chain started from
an irreducible component E, of E, and let b; = —EJQ- (1=j=r)andk; = Coeffp, K3
(05 <r). Assume thatby 21 andb; 22 (2 < j < r). Let % = [[b1,...,b]] and
ged(n,q) = 1. If @ is an integer with qg+1=0(n) and 0 = § < n, then k, = %.

PROOF. Let us prove this by induction on r. If r = 1,2, then the assertion
is easily checked; hence, we assume r = 3. Let g = n,6; = ¢ and let da,...,0, 11
be positive integers that are inductively determined by relations: d; = b;118;41 — di10
(¢=0,1,...,7—1), and let 6, = 1, d,+1 = 0. Hence 5%:_1 = [[biy..., b fori=1,2,...,r
and U;:Z E; is the exceptional set of a resolution (not necessarily minimal) for a cyclic
quotient singularity Cs, , s5,. Further, let €,41,..., €1 be non-negative integers those are
inductively determined by the following relations:

€r4+1 21, €p :br—l, €i—1 :bi—lfi_ei—i-l (7::7“,7“—1,...,2).

Then Z—; = [[b1,.--,br—1,b — 1]] and ged(e1,e2) = 1. Assume that e; = 2, and let ¢
be an integer with 0 < ¢ < €; and ezc = 1(e1). Then & = [[b, — 1,b,—1,...,b1]] and
ged(e,e1) = 1. Then % =L +1=[b,....0]] = %, where ¢’ is an integer defined by
qq¢’ = 1(n) and 0 < ¢’ < n. Hence ¢ = ¢’ and €;4+c¢ = n. Then ge;+1 = ¢(n—q")+1 = 0(n)
and so ¢ = €;. Therefore, d1e; + 1 = 0(d,). Similarly, we obtain §;+1€;41 + 1 = 0(6;) for
1 =0,...,7— 1. From the assumption of length » — 1 and r — 2, we have k, = ]“_67612“
and k, = ]“2_5723“. Since n = b16; — d2 and €1 = bieg — €3,
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b1—2=KXE1=k‘O—blk1+k2
:ko—bl(kr(sl+62—1)+k‘r(52+63—1
:kof(bﬂ;l752)/{77”7614*1)171:]{}0777]{7”7614*()171;

therefore, we have k, = o=+l

1
Next, assume that 0 < €; < 1. Then we can easily see that n = €1 +1, [[b1,...,b,]] =
[[1,2,. cy 2,61 + 2“ and ¢ = €;. Hence kg — k1 + ko = -1, k; — 2k 11 +kj42 =0 (j =
1,...,7—2) and k,_1 — (€1 +2)k, = €;. Taking their sum, we have ko— (€1 + 1)k, = 1 —1;
ko—e1+1 ko—q-‘rl. [

hence, k. = = g

LEMMA 5.3. Let (X,E) — (X,0) be a resolution of a normal surface singularity
and let f € mx ,. Let E' = ngl E;, (C E) be a P'-chain such that the divisor (for) ¢| g
s given as follows:

a d; . d, b

_* ,whereEfj:—bjforjzl,...,r.

Then d, = %W, where % =[[b1,...,b:]] and q¢’ =1(n) and 0 < ¢’ < n.

*.

PrROOF. We have a linear equation on d, ..., d, as follows:

—b1dy +da = —a
dj*bj+1dj+1+dj+2:0 (jil,...,T*Q)
dr—1 —brd, = _b7

The determinant of the coefficient matrix of the linear equation is equal to +n. From
Cramer’s formula, it completes the proof. O

Now we prove the main result of this section in the following. Let hq, ho be elements
of the maximal ideal n of C{x,y}. Let I,(h1,hz2) be the intersection multiplicity of
{h1 =0} and {hy = 0} at {0} € C? ([BK, p.47], [Na, p.231]).

THEOREM 5.4. Let (X,0) be a normal hypersurface singularity defined by z™ =
f(x,y). Let £ € n\n? and

0 =

{Io(gvfl) if O] f and f1 = f/L,
Lt f) iftqf.

Then

pe(X, 0,6) = (’I’L — 1)(10 — 1)2_'_ 1- ng(n,Io).
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PRrROOF. We prove the formula in the case of £ | f. Let f = £gy ... g\ be the irre-

ol
where, for any real number a € R, [a] is the least integer greater than or equal to a.
Let Y, =C? &2y, &2 ... ot Y be an iteration of blowing-ups such that the cen-
ter of o, is the origin P, = {0} € C? and the center of o (k = 1) is Py, := Ej N Ly,
(k =1,...,5 — 1), where Ey = 0, ',(Py—1) and Ly is the strict transform of L, by
0o0--00k—1 (k=1,...,5). Let Bj’k be the strict transform of Bj by 0,0-+-00,_1.
From the definition of s, L intersects Ej transversally and L, does not intersect Bj,s.

ducible decomposition and let B; = {g; = 0}, L, = {£ = 0} and s = max; <;<) |

If necessary, by taking suitable blowing-ups Y; <= - - 2t Y:, an embedded resolution
of the curve singularity ({f = 0},0) C (C?,0) is obtainable in which we assume that the
center of oy, (k=s,...,t —1)isnot Ps. Let ¢ =0go---00s_1 and 0 =0go---00¢_1.
Also, we put

multp, Bj,k if P, € Ek,
k= .
! 0 otherwise,

for k = 0,1,...,s. By M. Noether’s theorem ([BK, p.518]), we have vg (g; 0 0) =

ZZ;(l) myr = I,(¢,g;). Hence vg (foo) = Z;‘:l vp, (gjo00)+s= Z;‘:l Io(ﬁlgj) +s=
I, + s from vg (fod) =s. Also vy (fod) =wvg (Lod)=1. Let E; (resp. L) be the
strict transform of E, (resp. L) by o50---00;_1. Since o40---00;_; is an isomorphism
on an open neighborhood of L,

vg,(foo)=1,+s, wvg(loo)=sanduvg (foo)=wvg, (foo)=1. (5.1)
Now, consider the following diagram as in (4.1):

Y x C!

¢ U ¢3
(2,9,2) €C* D X - X e X"~ X C S,

I [

(CE,y)EC2:YO Y=Y A

where ¢ := ¢ 0 ¢3 0 ¢3 gives a good resolution of (X, 0) such that (f o ¢)¢ is a simple
normal crossing divisor. Also ® : S — A is a pencil of curves of genus p.(X,o0,¢) and
satisfying ®| ¢ f o 0 0§, which is constructed as in Theorem 2.4.

Let L; (resp. E;) C X be the strict transform of L; (resp. E;) by 6. Then L; is
an irreducible curve because ¢ | f. Let (U;u,v) be a local coordinate neighborhood of
E; N L; such that E; = {v = 0} and L; = {u = 0}. By the definition of s, we have
(,y) = o(u,v) = (u*~*v*, uv) on U because 0,0 ---00y_1 is an isomorphism on U. Let
put a = ged(n, I, +s),n1 = = and € = % Since X' is represented by z" = uvlots
on 6~ Y(U) from (5.1), its normalization is a cyclic quotient singularity Cp, »,—¢, from
Lemma 4.2, where €; is an integer with e; = e(n;) and 0 < €; < nj. ¢3 gives the
minimal resolution of C,, »,—c,; thereby, we have a Pl-chain U;Zl F; between Fy; and
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L; (Definition 2.2) of type (b1,...,b,) and so —2— = [[by,...,b,]].

n1—€14_
Since (X, 0) is a hypersurface singularity, the canonical divisor K ¢ is given by the

meromorphic 2-form w = deAdy and Supp(KX) =F (Cf [Re2]) From Vg, (foo) =I,+s,

Zn—1

X' is represented by an equation z" = v!ets around the general point of z//_l(E_'t) in
Y x C. Then X’ has a local parameterization n : (u,0) — (u,v,2) = (u,6™,0°).
Therefore,

(070 6)*(w) = —u*"tosdu A dv _ —nqu"du A df

on—1 T ogne—e—(s+1)ni+1"

If we put k, = Coeffg, K5 and k; = Coeffp, K5 for j =1,...,7, then

ko =ordg,(c06)"(w)=—ne+e+(s+1)n; —1

7(n71)(1071)7175+a'

From Lemma 5.1,

ko — 1
k, = L—i_, where €162 = 1(n1) and 0 < €3 < ny. (5.4)
ni

Let dj = vg;(foood) for j = 1,...,r. From (5.1) and Lemma 4.3, vg, (o0 0d) = n1s

and vy, (focod) =n. From (foood)3F; =0for j=1,...,7 and Lemma 5.3, we have

d. =n+s— aes. (5.5)
Let d, = W, no = m and g—; = [[e1,.--,¢m]], where ¢; 2 1 and ¢; = 2
for i = 2,...,m. Using the method of Theorem 2.4, a pencil of curves ® : S — A is
constructed by gluing X and the standard resolution space (W, G := JI~, G;) of a cyclic
quotient singularity Cy .., where G = —¢; for any i and L, C G; and ®|¢ = Lo 0.

For divisors (£ 0 0 0 §) ¢|r and S,|ruc = ®1(0)|Fuc, we have the following figure:

n18 dl e d'r n nis dl e dr n
D)@ < DLW - HD— )
E, F - F L E, F --- FE. G - G,
From Lemma 2.8,
Ks(So|l¢) = dr —n — ged(n,d,). (5.6)

Since 0 = SoF, = (So|gur + Sola)Fr = (So|lpur)Fr + n, we have (S,|pur)F, = —n.
Because the intersection number of S,|gur and any irreducible component of E U F
except for F. is zero, we have
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Ks(Solpur) = K5 (So|pur) = (Coeffp, K ¢)F(So|Eur)
=—kn=—ak,taea—a=n—-1)I,—1)—1+n—d,

from (5.3), (5.4) and (5.5). Hence I, + d, = 0(n). Therefore,

1 1
pe(X,0,0) =1+ iKSSo =1+ §{KS(SO\EUF) + Ks(Sola)}

1y %{(n— 1)(I, 1) — 1 — ged(n, dy) }

(n—1){I,—1)+1—ged(n,I,)
5 )

For the case of £1 f, we can prove the formula more easily than the case of £ | f. We
describe the outline of the proof. First we make an embedded resolution space of a curve
singularity {f = 0} and take an n-fold cyclic covering ¢’ : X’ — Y as above. However,
Ly is not contained in the ramification locus of 1’. Then L = (1')~!(L;) has X irreducible
components Lq,..., Ly, where A = ged(n, I, ) Furthermore, X" is non-singular near L
and ¢ is an isomorphlsm near L. By gluing X and resolution spaces of A cyclic quotient
singularities, we can construct a pencil ® : § — A. As above, we obtain the formula of
pe(X,0,0). O

COROLLARY 5.5. Let (X,0) = {z" = f(x,y)} be a normal surface singularity. For
general elements o, 3 € C,

(n—1)(ord(f) — 1) + 1 — ged(n, ord(f)).

pe(X,o,ozx—i—ﬁy) = 92

ExXAMPLE 5.6. Let f(z,y) = (2% + y*)y(y + 2*)(y + 2?) and let (X,0) = {z* =
f(x,y)} C C3. Then the fundamental cycle on the minimal resolution is given as

e

1 1 1

Consequently, (X,0) is an elliptic singularity. If we put fi = f/y and fo = f/(y +
2?), then I,(y, f1) = 7 and I,(y + 22, f2) = 6. Therefore, p.(X,0,az + By) = 2 from
Corollary 5.5, and p.(X,0,y) = 3 and p.(X, 0,y +2?) = 2 from Theorem 5.4. Two cycles
determined by y and y + 22 on the minimal resolution and their associated pencils are
given as

(y):

—Q—Q\/g :
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Kodaira’s classification of elliptic pencils confirms that no elliptic pencil contains the
exceptional set above. Then p.(X,0) 2 2 and so (X,0) is an elliptic singularity of
pe(X,0) = 2.

ACKNOWLEDGEMENTS. The author would like to thank the referees and the editor
for their careful reading of the manuscript and their many useful comments. The author
sincerely thanks Professors Tadashi Ashikaga, Masataka Tomari and Kei-ichi Watanabe
for their useful advice, stimulating conversations and encouragement beginning this work.
Especially, Professor Tomari informed Lemma 2.1 and his (or his and Watanabe’s) re-
sults and improved some parts of this paper. The author also would like to thank
Professors Romain Bondil, Akira Fujiki, Nobuo Hara, Shihoko Ishii, Kazuhiro Konno,
Lé Dung Trang, Noboru Nakayama, Mutsuo Oka, Oswald Riemenschneider, Jan Stevens
and Hajime Tsuji for stimulating conversations or communications. The author stayed at
University of Warwick for two months in summer 2001. In those pleasant circumstances,
he obtained several results which are important in this work. The author appreciates
Professor Mils Reid for several useful suggestions and his (and also other members) hos-
pitality.

References

[Arn] V. I. Arnold, Normal forms of functions, Invent. Math., 35 (1976), 87-109.

[Art] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1963), 129-138.

[AW] M. Artin and G. Winters, Degenerate fibres and stable reduction of curves, Topology, 10
(1971), 373-383.

[As] T. Ashikaga, Surface singularities on cyclic coverings and an inequality for the signature, J.
Math. Soc. Japan, 51 (1999), 485-521.

[BK] E. Brieskorn and H. Knorrer, Ebene Algebraiche Kurven, Birkhauser, 1981.

[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathe-
matik, Band 4, Springer-Verlag, 1984.

[BG] R. O. Buchweitz and G. M. Greuel, The Milnor number and deformations of complex curve
singularities, Invent. Math., 58 (1980), 241-281.
D] D. J. Dixon, The fundamental divisor of normal double points of surface, Pacific J. Math., 80

(1979), 105-115.
[EW] W. Ebeling and C. T. C. Wall, Kodaira singularities and an extension of Arnold’s strange
duality, Compositio Math., 56 (1985), 3-77.

[Fi] G. Fischer, Complex analytic geometry, Lecture notes in Math., 536, Springer, 1976.

[Fu] A. Fujiki, On resolution of cyclic quotient singularities, Publ. RIMS Kyoto Univ., 10 (1974),
293-328.

[G] H. Grauert, Uber Modifikationen und exceptionelle analytische Mengen. Math. Ann., 146
(1962), 311-368.

[H] H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem. Coll.
Sci. Univ. of Kyoto, 30 (1957).

[Kal] U. Karras, On pencils of curves and deformations of minimally elliptic singularities, Math.
Ann., 247 (1980), 43-65.

[Ka2] U. Karras, Methoden zur Berechnung von Algebraischen Invarianten und zur Konstruktion

von Deformationen Normaler Flachensingularitaten, Habilitationschrift, Dortmund, 1981.
[Ko] K. Kodaira, On compact analytic surfaces; II, Ann. of Math., 77 (1963), 563-626.
[Ku] V. S. Kulikov, Degenerate elliptic curves and resolution of uni- and bimodal singularities,
Funct. Anal. Appl., 9 (1975), 69-70.
[Lal] H. Laufer, Taut two-dimensional singularities, Math. Ann., 205 (1973), 131-164.
[La2] H. Laufer, On rational singularities, Amer. J. Math., 94 (1972), 597-608.
[La3] H. Laufer, On minimally elliptic singularities, Amer. J. Math., 99 (1977), 1257-1295.



[Sal]
[St]
[St1]

[St2]
[Tm1]

[Tm2)
[TW1]
[TW2]
[Tt1]

[Tt2]
[Tt3]

[Tt4]

Pencil genus for normal surface singularities 79

J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factor-
ization, Publ. Math. Inst. Hautes Etudes Sci., 36 (1969), 195-297.

E. Looijenga, Riemann-Roch and smoothing of singularities, Topology, 25 (1986), 293-302.
H. Matsumura, Commutative algebra, Benjamin, 1970 (second edn., 1980).

H. Matsumura, Commutative ring theory, Cambridge Univ. Press., 1986.

K. Matsuki, Introduction to the Mori Program, Springer-Verlag, 2002.

J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies., 61 (1968).

M. Morales, Calcul de quelques invariants des singularités de surface normale, Enseign. Math.,
31 (1983), 191-203.

M. Namba, Geometry of Projective Algebraic Curves, Marcel Dekker, 1984.

A. Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math., 137 (1999),
145-167.

T. Okuma, Plurigenera of surface singularities, Nova Science Publishers, New York, 2000.

I. Ono and Ki. Watanabe, On the singularity of 2P 4+y? 4 aP9 = 0, Sci. Rep. of Tokyo Kyouiku
Daigaku, 12 (1974), 124-128.

P. Orlik and P. Wagreich, Algebraic surface with k*-action, Acta Math., 138 (1977), 43-81.
H. Pinkham, Normal surface singularities with C*-action, Math. Ann., 227 (1977), 183-193.
D. Rees, a-transforms of local rings and a theorem on multiplicities, Proc. Cambridge Philos.
Soc., 57 (1961), 8-17.

M. Reid, Elliptic Gorenstein singularities of surfaces, Preprint, 1978.

M. Reid, Singularities and Surfaces, Complex Algebraic Geometry, las/Park City, Math. Se-
ries, 3, A.M.S. and Institute for Advanced Study, 1997, pp.91-120.

O. Riemenschneider, Deformationen von Quotientensingularitidten (nach zyklischen Gruppen).
Math. Ann., 209 (1974), 211-248.

K. Saito, Algebraic surfaces for regular systems of weights, Algebraic Geometry and Com-
mutative Algebra II - in honor of Masayoshi NAGATA (H. Hijikata et al., eds.), Kinokuniya,
Tokyo, 1987, pp.517-614.

J. Sally, Tangent cones at Gorenstein singularities, Compositio Math., 40 (1980), 167-175.
K. Stein, Analytische Zerlegungen Komplexer Rdum, Math. Ann., 132 (1956), 63-93.

J. Stevens, Elliptic Surface Singularities and Smoothings of curves, Math. Ann., 267 (1984),
239-249.

J. Stevens, Kulikov Singularities, Thesis, Leiden, 1985.

M. Tomari, A geometric characterization of normal 2-dimensional singularities of multiplicity
two with ps < 1, Publ. RIMS Kyoto Univ., 20 (1984), 1-20.

M. Tomari, A pg-formula and elliptic singularities, Publ. RIMS Kyoto Univ., 21 (1985), 297—
354.

M. Tomari and K-i. Watanabe, Normal Z,-graded rings and normal cyclic covers, Manuscripta
Math., 76 (1992), 325-340.

M. Tomari and K-i. Watanabe, Cyclic covers of normal graded rings, Kodai Math. J., 24
(2001), 436—457.

T. Tomaru, On Gorenstein surface singularities with fundamental genus py > 2 which satisfy
some minimality conditions, Pacific J. Math., 170 (1995), 271-295.

T. Tomaru, On Kodaira singularities defined by 2™ = f(z,y), Math. Z., 236 (2001), 133-149.
T. Tomaru, Pinkham-Demazure construction for two dimensional cyclic quotient singularities,
Tsukuba J. Math., 25 (2001), 75-83.

T. Tomaru, On some classes of weakly Kodaira singularities, In: Singularités Franco-
Japonaises, Proceedings of the 2nd Franco-Japanese singularity conference, CIRM, Mareeille-
Luminy, France, 2002, (ed. J.-P. Brasselet), Séminaires et Congres 10, Societe Mathematique
de France, 2005, pp. 323-340.

P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math., 92 (1970), 421-454.

G. Winters, On the existence of certain families of curves, Amer. J. Math., 96 (1974), 215-228.
S. S.-T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc., 257 (1980), 269—
329.

O. Zariski, On the linear connection index of the surface z = f(z,y), Proc. Nat. Acad. Sci.,
15 (1929), 494-501.



80

T. TOMARU

Tadashi TOMARU

School of Health Sciences

Gunma University

Showa-machi, Maebashi

Gunma, 371-8514

Japan

E-mail: ttomaru@health.gunma-u.ac.jp



