
J. Math. Soc. Japan
Vol. 57, No. 1, 2005

Special values of the spectral zeta functions
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Abstract. In this paper, we establish the formulas expressing the special values of the spec-
tral zeta functionζ∆(n) of the Laplacian∆ on some locally symmetric Riemannian manifold
Γ \G/K in terms of the coefficients of the Laurent expansion of the corresponding Selberg zeta
function. As an application, we give a numerical estimation of the first eigenvalue of∆ by comput-
ing the valuesζ∆(n) numerically, whenΓ \G/K is a Riemann surface withΓ being the quaternion
group.

1. Introduction.

Let G be a connected non-compact semisimple Lie group of real rank one with finite center,
K a maximal compact subgroup ofG, andΓ a discrete subgroup ofG such thatΓ \G/K < ∞.
We denote byλ j the eigenvalue of the Laplacian onΓ \G/K such that0 = λ0 < λ1 < .. . andn j

the multiplicity of λ j . We define the spectral zeta functionζ∆(s) by

ζ∆(s) =
∞

∑
j=1

n jλ−s
j Res> d/2, (1.1)

whered = dim(G/K). WhenΓ \G/K is a compact Riemann surfaces of genus1 ≥ 2, the val-
ues{ζ∆(n)}n≥2 satisfy a certain formula which assures thatζ∆(n) is expressed by the (higher)
Euler-Selberg constants and the special values of the Riemann zeta functionζ (s) (see, [HIKW ]
or [St]). Here the Euler-Selberg constants are defined as the coefficients of the Laurent expansion
of the Selberg zeta functionZΓ (s) (for the definition, see (2.5)). These are analogues to the Euler
constantγ which is a constant term of the Laurent expansion of the Riemann zeta function. Sim-
ilar to the expressionγ = limx→∞(∑n<x 1/n− logx), the Euler-Selberg constants are expressed
as the sum over the hyperbolic conjugacy classes ofΓ (see (2.8); see also [H]).

The aim of this paper is to establish an explicit description ofζ∆(n) by the Euler-Selberg
constants for locally symmetric Riemannian manifolds. In principal, this relation can be obtained
by the determinant expression of the Selberg zeta function (see Remark 2.2). In fact, using
the trace formula here, we first show that the valueζ∆(n) is explicitly written in terms of the
Euler-Selberg constants and the special values of the Riemann zeta functionζ (s) for a compact
locally symmetric Riemannian manifold (see Theorem 2.1). Furthermore, we also deal with
some non-compact cases. Actually, we establish the formulas ofζ∆(n) whenΓ is eitherSL2(ZZZ)
or the congruence subgroup ofSL2(ZZZ) (see Theorem 4.2). Since no explicit descriptions of the
scattering matrices are known in general, it is hard to obtain a similar formula very explicitly for
a non-compact case generally, though the idea for obtaining such a formula is the same as, e.g.,
theSL2(ZZZ) case.
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In the last section we give a numerical computation ofζ∆(n) for the quaternion groups. By
virtue of Theorem 4.1, the calculation is reduced to that of the (higher) Euler-Selberg constants.
In order to calculate the (higher) Euler-Selberg constants for the quaternion group cases, we
use the arithmetic expression of the Selberg zeta function obtained in [AKN ]. This method is
regarded as a generalization of the discussion for calculation forSL2(ZZZ) in [H]. Since the growth
of the sequence{ζ∆(n)}n≥2 depends mainly on the first eigenvalueλ1 of the Laplacian∆, we
also discuss a numerical estimation of the eigenvalueλ1.

2. Preliminaries and main result.

LetGbe a connected non-compact semisimple Lie group with finite center, andK a maximal
compact subgroup ofG. We putd = dim(G/K). We denote byg, k the Lie algebras ofG, K
respectively andg = k+p a Cartan decomposition with respect to the Cartan involutionθ . Letap

be a maximal abelian subspace ofp. Throughout this paper we assume thatrank(G/K) = 1, that
is, dimap = 1. We extendap to aθ -stable maximal abelian subalgebraa of g, so thata = ap +ak,
whereap = a∩p andak = a∩ k. We putA = expa, Ap = expap andAk = expak.

We denote bygCCC, aCCC the complexification ofg, a respectively. LetΦ be the set of roots of
(gCCC,aCCC), Φ+ the set of positive roots inΦ , P+ = {α ∈ Φ+|α 6≡ 0 on ap}, andP− = Φ+−P+.
We putρ = 1/2∑α∈P+ α. For h∈ A and linear formλ on a, we denote byξλ the character of
a given byξλ (h) = expλ (logh). Let Σ be the set of restrictions toap of the elements ofP+.
Then the setΣ is either of the form{β} or {β ,2β} with some elementβ ∈ Σ . We fix an element
H0 ∈ ap such thatβ (H0) = 1, and putρ0 = ρ(H0).

Let Γ be a co-compact torsion free discrete subgroup ofG. We denote byC(Γ ) a complete
set of representatives ofΓ -conjugacy classes of semisimple elements inΓ , Prim(Γ ) a set of
primitive hyperbolic conjugacy classes ofΓ , andZ(Γ ) a center ofΓ . Forγ ∈C(Γ ), we denote by
δγ an element ofPrim(Γ ) such thatγ = δ j

γ for some integerj ≥ 1, h(γ) an element ofA which is
conjugate toγ, andhp(γ), hk(γ) the elements ofAp, Ak respectively such thath(γ) = hp(γ)hk(γ).
Let N(γ) be a norm ofγ given byN(γ) = exp(β (log(hp(γ)))), andD(γ) the function defined by
D(γ) = N(γ)2ρ0 ∏α∈P+ |1−ξα(h(γ))−1|.

We denote byµ(s) the Plancherel measure ofG/K. For convenience, we write

α =

{
1,

2,
ρ̂0 =

{
ρ0,

ρ0/2,
µ̄(r) =

{
µ(r) if G = SO(n,1),

2µ(2r) if G 6= SO(n,1).
(2.1)

The functionµ̄(r) is expressed by the form

µ̄(s) := πC−1
G P(r)σ(r),

whereCG, P(r) andσ(r) are as follows (see, e.g. [Mi ] or [Wi ]).

G d ρ0 ρ̂0 CG σ(r)

SO(2m−1,1) 2m−1 m−1 m−1 24m−6Γ (m−1/2)2 1

SO(2m,1) 2m m−1/2 m−1/2 24m−4Γ (m)2 tanhπr

SU(2m−1,1) 4m−2 2m−1 m−1/2 24m−5Γ (2m−1)2 tanhπr

SU(2m,1) 4m 2m m 24m−5Γ (2m)2 cothπr

SP(m,1) 4m 2m+1 m+1/2 24m−1Γ (2m)2 tanhπr

F4 16 11 11/2 219Γ (8)2 tanhπr
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G P(r)

SO(2m−1,1) r 2 ∏m−2
j=1 (r 2 + j 2)

SO(2m,1) r ∏m−1
j=1 {r 2 +( j−1/2)2}

SU(2m−1,1) r ∏m−1
j=1 {r 2 +( j−1/2)2}2

SU(2m,1) r 3 ∏m−1
j=1 (r 2 + j 2)2

SP(m,1) r{r 2 +(m−1/2)2}∏m−1
j=1 {r 2 +( j−1/2)2}2

F4 r(r 2 +1/4)2(r 2 +9/4)2(r 2 +25/4)(r 2 +49/4)(r 2 +81/4)

(2.2)

Let λ j be the eigenvalue of the Laplacian∆ on Γ \G/K such that0 = λ0 < λ1 < λ2 < .. .,
r j the number given byλ j = ρ2

0 + r 2
j , andn j the multiplicity of λ j . We define the spectral zeta

functionζ∆(s) of ∆ by

ζ∆(s) =
∞

∑
j=1

n jλ−s
j s>

d
2
. (2.3)

We assume thatf is a function whose Fourier transform̂f (r) = 1/2π
∫ ∞
−∞ f (x)eixrdxsatisfies

that f̂ (r) = f̂ (−r), f̂ is holomorphic in{|Im r| ≤ ρ0 +δ}, and f̂ (r) = O(|r|−d−δ ) as|r| → ∞ for
someδ > 0. Then, the following formula (the Selberg trace formula,see, e.g. [Ga]) holds.

∑
j≥0

f̂ (r j) = ∑
γ∈C(Γ )−Z(Γ )

logN(δγ)D(γ)−1N(γ)ρ0 f (logN(γ))

+
1

4π
vol(Γ \G)[Z(Γ )]

∫ ∞

−∞
f̂ (r)µ(r)dr. (2.4)

Then the Selberg zeta function is defined as follows.

ZΓ (s) = ∏
δ∈Prim(Γ )

∏
λ∈L

(
1−ξλ (h(δ ))−1N(δ )−s)mλ Res> 2ρ0, (2.5)

whereL is the semi-lattice of linear forms ona given byL =
{

∑l
i=1miαi |αi ∈ P+,mi ∈ ZZZ≥0

}
, mλ

denotes the number of distinctl -tuples(m1, . . . ,ml ) such thatλ = ∑l
i=1miαi ∈ L. The logarithmic

derivative ofZΓ (s) can be written by

Z′Γ (s)
ZΓ (s)

= ∑
γ∈C(Γ )−Z(Γ )

logN(δγ)D(γ)−1N(γ)2ρ0−s Res> 2ρ0. (2.6)

It is known thatZ′Γ (s)/ZΓ (s) has a simple pole ats= 2ρ0, and the Laurent expansion ats= 2ρ0

is written as

Z′Γ (s)
ZΓ (s)

=
1

s−2ρ0
+ γ̃(0)

Γ +
∞

∑
k=1

γ̃(k)
Γ (s−2ρ0)k. (2.7)

Here, the coefficient̃γ(0)
Γ is called the Euler-Selberg constant, andγ̃(k)

Γ (k≥ 1) the Euler-Selberg
constant of orderk or simply the higher Euler-Selberg constant. These values have the following
expressions (see [H]).



220 Y. HASHIMOTO

γ̃(k)
Γ =

(−1)k

k!
lim
x→∞

{
∑

γ∈C(Γ )−Z(Γ )
N(γ)<x

logN(δγ)D(γ)−1(logN(γ))k− (logx)k+1

k+1

}
. (2.8)

The main result of this paper is to provide expressions of the values of the spectral zeta function
ats= n > d/2 in terms of the Euler-Selberg constants above andζ (n)’s.

THEOREM 2.1. For n > d/2, we have

(2ρ0)2nζ∆(n) =
n−1

∑
k=0

(−1)k
(

2n−k−2
n−1

)
(2ρ0)k+1 γ̃(k)

Γ −
(

2n−1
n−1

)
+[Z(Γ )]vol(Γ \G)I (n)

G ,

where

I (n)
G : = C−1

G ×





n

∑
l=2

A(n)
l

(
ζ (l)− 1

2

2ρ0

∑
k=1

k−l
)
− 1

2
A(n)

0 , if G 6= SO(2m−1,1),

π
(d−1)/2

∑
m=1

(−1)m−1p2m

min(2m,n−1)

∑
q=0

(−2)q

(2m−q)!

(
2n−q−2

n−1

)

if G = SO(2m−1,1),

A(n)
l : = (2ρ̂0)l

d/2

∑
m=1

(−1)m−1ρ̂2m−1
0 p2m−1

min(n−l ,2m−1)

∑
q=0

(
2m−1

q

)(
2n− l −q−1

n−1

)
(−2)q,

and pm’s are determined byP(r) = ∑d−1
m=1 pmrm.

REMARK 2.1. By using the trace formula (2.4), the spectral zeta functionζ∆(s) is ana-
lytically continued to the whole complex planeCCC as a function which is holomorphic except for
possibly simple poles ats= d/2−k (0≤ k≤ [d/2]) (see [Ra] and [Wi ]). In this analytical con-
tinuation, the contribution of the hyperbolic elements vanishes ats=−n (n≥ 0), henceζ∆(−n)
is expressed only by the contribution of the identity element, especially a sum of the Bernoulli
numbers (see [BW]). On the other hand, ats= n > d/2, since the contribution of the hyperbolic

elements does not disappear,ζ∆(n) is expressed bỹγ(k)
Γ .

REMARK 2.2. When we denote byζ∆(s,x) := ∑ j≥0n j(λ j + x)−s, it is known that there
exists a meromorphic functionGΓ (s) such that

exp

(
− ∂

∂z
ζ∆(z,s(2ρ0−s))

∣∣
z=0

)
= ZΓ (s)GΓ (s). (2.9)

Here,GΓ (s) is called the Gamma factor and is explicitly calculated in [Ku ]. Since the left hand
side of (2.9) is interpreted as the zeta regularized determinant of∆− s(2ρ0− s), the formula
(2.9) is called the determinant expression of the Selberg zeta function (see, e.g. [Vo]). When
we take the Laurent expression ats= 2ρ0 of the logarithmic derivative of (2.9) and compare the

coefficients of the both sides, we can obtain certain formulas which relateζ∆(n)’s with γ̃(k)
Γ ’s.

However, in this paper, we shall not use this idea but apply the trace formula (2.4) directly

to prove Theorem 2.1, because the formζ∆(n) = ∑γ̃(k)
Γ is immediately obtained by the trace

formula.
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3. Proof of Theorem 2.1.

Let n > d/2 anda > ρ0. Putting

f̂ (r) = (r 2 +a2)−n,

f (x) = e−a|x|
n−1

∑
k=0

1
k!

(
2n−k−2

n−1

)
(2a)−2n+k+1|x|k

into the trace formula (2.4), we obtain

(a2−ρ2
0)−n + ∑

j≥1
(λ j +a2−ρ2

0)−n =
n−1

∑
k=0

(
2n−k−2

n−1

)
(2a)−2n+k+1 (−1)k

k!

(
Z′Γ
ZΓ

)(k)

(a+ρ0)

+
vol(Γ \G)[Z(Γ )]

4π

∫ ∞

−∞
(r 2 +a2)−nµ(r)dr. (3.1)

Since

(a2−ρ2
0)−n =

n−1

∑
k=0

(
2n−k−2

n−1

)
(2a)−2n+k+1{(a−ρ0)−(k+1) +(a+ρ0)−(k+1)}, (3.2)

it follows that

−(a2−ρ2
0)−n +

n−1

∑
k=0

(
2n−k−2

n−1

)
(2a)−2n+k+1 (−1)k

k!

(
Z′Γ
ZΓ

)(k)

(a+ρ0)

=
n−1

∑
k=0

(
2n−k−2

n−1

)
(2a)−2n+k+1

{
(−1)k

k!

(
Z′Γ
ZΓ

)(k)

(a+ρ0)− (a−ρ0)−k−1− (a+ρ0)−k−1

}
.

Hence if we take the limita→ ρ0 in (3.1), we obtain

ζ∆(n) =
n−1

∑
k=0

(
2n−k−2

n−1

)
(2ρ0)−2n+k+1(−1)kγ̃(k)

Γ − (2ρ0)−2n
(

2n−1
n−1

)

+
vol(Γ \G)[Z(Γ )]

4π

∫ ∞

−∞
(r 2 +ρ2

0)−nµ(r)dr. (3.3)

Now we calculate the following definite integral.

In =
∫ ∞

−∞
(r 2 +ρ2

0)−nµ(r)dr.

The caseG = SO(2m−1,1): Sinceµ(r) is a polynomial (see (2.2)),In is a definite integral of a
rational function. Hence, we can obtain the following formula easily.

In = 2π2C−1
G (2ρ0)−2n

(d−1)/2

∑
l=1

(−1)l−1p2l

min(2l ,n−1)

∑
q=0

(−2)q+1

(2l −q)!

(
2n−q−2

n−1

)
. (3.4)

The caseG 6= SO(2m−1,1): First, we rewriteIn as



222 Y. HASHIMOTO

In = α−2n
∫ ∞

−∞
(r 2 + ρ̂2

0)−nµ̄(r)dr,

whereα, ρ̂0 andµ̄(r) are defined in (2.1). We calculateIn by using the residue theorem. Since
µ̄(r) has simple poles ats= ρ̂0 +k for k≥ 0 (see (2.2)), we have

In = 2π iα−2n
∞

∑
k=0

Res
s=i(ρ0+k)

(s2 + ρ̂2
0)−nµ̄(s)

= 2πC−1
G

∞

∑
k=0

π iα−2n Res
s=i(ρ0+k)

(s2 + ρ̂2
0)−nP(s)σ(s) =: 2πC−1

G

∞

∑
k=0

I (k)
n . (3.5)

Since the order of the pole ats= iρ̂0 of the integrand inIn is n+1, I (0)
n is calculated as follows.

I (0)
n =

α−2n

n!
lim

s→iρ̂0

dn

dsn

{
(s+ iρ̂0)−niP(s)π(s− iρ̂0)σ(s)

}

=
α−2n

n!
lim
s→0

[ n

∑
l=0

(
n
l

)
dl

dsl (πscothπs)
n−l

∑
m=0

(
n− l

m

)
dm

dsm iP(s+ iρ̂0)
dn−l−m

dsn−l−m(s+2iρ̂0)−n
]
.

It is easy to see that

(bl :=)
1
l !

lim
s→0

dl

dsl (πscothπs) =





1 if l = 0,

0 if l is odd,

−2(−1)l/2ζ (l) if l is even,

lim
s→0

dm

dsm iP(s+ iρ̂0) =
d−m−1

∑
q=0

m!
q!

pq+mi(iρ̂0)q,

lim
s→0

dn−l−m

dsn−l−m(s+2iρ̂0)−n = (−1)n−l−m(2n− l −m−1)!
(n−1)!

(2iρ̂0)−2n+l+m.

Hence we obtain

I (0)
n =

α−2n

n!

n

∑
l=0

(
n
l

)
l !bl

n−l

∑
m=0

(
n− l

m

)d−m−1

∑
q=0

m!
q!

pq+mi(iρ̂0)q(−1)n−l−m

× (2n− l −m−1)!
(n−1)!

(2iρ̂0)−2n+l+m

= (2ρ0)−2n
n

∑
l=0

i l (−1)l (2ρ̂0)l bl

d−1

∑
m=0

im+1ρ̂m
0 pm

×
min(n−l ,m)

∑
q=0

(
m
q

)(
2n− l −q−1

n−1

)
(−1)qρ̂−q

0 (2ρ̂0)q

= (2ρ0)−2n
{
−A(n)

0 +
n

∑
l=2

A(n)
l (1+(−1)n)ζ (l)

}
. (3.6)

On the other hand, sinces= i(ρ̂0 +k) (k≥ 1) is a simple pole, it follows that
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I (k)
n = α−2n(ρ̂2

0 − (ρ̂0 +k)2)−n
iP

(
i(ρ̂0 +k)

)
. (3.7)

We now writeiP
(
i(ρ̂0 +k)

)
by

iP
(
i(ρ̂0 +k)

)
=





d−1

∑
m=0

pmim+1
m

∑
q=0

(
m
q

)
ρ̂m−q

0 kq,

d−1

∑
m=0

pmim+1
m

∑
q=0

(
m
q

)
(−ρ̂0)m−q(k+2ρ̂0)q.

(3.8)

Hence, using (3.2) and (3.8), we have

I (k)
n = α−2n

d−1

∑
m=0

im+1pm

m

∑
q=0

n

∑
l=1

(
2n− l −1

n−1

)(
m
q

)
(2ρ̂0)−2n+l ρ̂m−q

0

×{
(−1)l kq−l +(−1)m−q(k+2ρ̂0)q−l}

= (2ρ0)−2n
d−1

∑
m=0

i(iρ̂0)mpm

m

∑
q=0

n

∑
l=1

(
2n− l −1

n−1

)(
m
q

)
2l (−1)qρ̂ l−q

0

×{
(−k)q−l − (k+2ρ̂0)q−l}.

If we put

al =
(

2n− l −1
n−1

)
2l ,

b(m)
q =

(
m
q

)
(−1)q,

ct = ρ̂ t
0

{
(−k)−t − (k+2ρ̂0)−t},

em = i(iρ̂0)mpm,

we have

I (k)
n = (2ρ0)−2n

d−1

∑
m=0

em

n

∑
l=1

m

∑
q=0

al b
(m)
q cl−q. (3.9)

We rewrite the sum (3.9) as

I (k)
n = (2ρ0)−2n

[
∑

m≤n
em

{ m

∑
l=1

cn−l

l

∑
q=0

an−qb(m)
l−q +

n

∑
l=m+1

cn−l

m

∑
q=0

am+n−l−qb(m)
m−q

+
n+m

∑
l=n+1

cn−l

m+n−l

∑
q=0

am+n−l−qb(m)
m−q

}
+ ∑

m>n
em

{ n

∑
l=1

cl−m

l

∑
q=0

al−qb(m)
m−q

+
m

∑
l=n+1

cl−m

n

∑
q=0

an−qb(m)
n+m−l−q +

n+m

∑
l=m+1

cl−m

n+m−l

∑
q=0

an−qb(m)
n+m−l−q

}]
.

Since the sum∑k≥1 I (k)
n converges (see, (3.7)), the coefficients ofct for t ≤ 1 must be disappeared.

Hence we have
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I (k)
n = (2ρ0)−2n

[
∑

m≤n
em

{ n

∑
l=n−m

cl

n−l

∑
q=0

aq−l b
(m)
q +

n−m−1

∑
l=2

cl

m

∑
q=0

aq−l b
(m)
q

}

+ ∑
m>n

em

n

∑
l=2

cl

n−l

∑
q=0

aq−l b
(m)
q

]

= (2ρ0)−2n
n

∑
l=2

cl

d−1

∑
m=1

em

min(n−l ,m)

∑
q=0

aq−l b
(m)
q

= (2ρ0)−2n
n

∑
l=2

A(n)
l

{− (−k)−l +(k+2ρ̂0)−l}. (3.10)

Therefore, combining (3.6) and (3.10), we obtain

I (0)
n +

∞

∑
k=1

I (k)
n = (2ρ0)−2n

{ n

∑
l=2

A(n)
l (1+(−1)l )ζ (l)−A(n)

0

+
n

∑
l=2

A(n)
l

(
(1− (−1)l )ζ (l)−

2ρ̂0

∑
k=1

k−l
)}

= (2ρ0)−2n
{ n

∑
l=2

A(n)
l

(
2ζ (l)−

2ρ̂0

∑
k=1

k−l
)
−A(n)

0

}
. (3.11)

This completes the proof of Theorem 2.1 ¤

4. The caseGGG === SSSLLL222(((RRR))).

WhenG= SL2(RRR) andΓ is a co-compact torsion free discrete subgroup ofSL2(RRR), Theorem
2.1 is written as

ζ∆(n) =
n−1

∑
k=0

(−1)k
(

2n−k−2
n−1

)
γ̃(k)

Γ −
(

2n−1
n−1

)

+
vol(Γ \H)

2π

[n−1

∑
l=2

{(
2n− l −1

n−1

)
−2

(
2n− l −2

n−1

)}
ζ (l)+ζ (n)

]
, (4.1)

whereH is the upper half plane. In Section 4.1, we treat with the case whenΓ is co-compact but
have elliptic elements. Furthermore, in Section 4.2, we also consider the case whenΓ \H is not
compact, and give the formulas forΓ = SL2(ZZZ) similar to (4.1).

4.1. The contributions of elliptic elements.
WhenΓ is co-compact and has elliptic elements, the trace formula is as follows.

∞

∑
j=0

f̂ (r j) = ∑
γ∈Hyp(Γ )

logN(δγ)
N(γ)1/2−N(γ)−1/2

f (logN(γ))+
vol(Γ \H)

4π

∫ ∞

−∞
f̂ (r)r tanhπrdr

+ ∑
σ∈Ell(Γ )

ν(σ)−1

∑
k=1

(
ν(σ)sin

πk
ν(σ)

)−1∫ ∞

−∞
f̂ (r)

cosh(1−2k/ν(σ))πr
coshπr

dr, (4.2)
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whereEll(Γ ) is the set of the primitive elliptic conjugacy classes ofΓ andν(σ) is the order of

σ ∈ Ell(Γ ). Hence, similar to Theorem 2.1, we can obtain the relation betweenζ∆(n) andγ̃(k)
Γ ’s.

In fact, whenΓ has elliptic elements of order 2 and 3, the following formula holds.

THEOREM 4.1. For n≥ 2, we have

ζ∆(n) =
n−1

∑
k=0

(−1)k
(

2n−k−2
n−1

)
γ̃(k)

Γ −
(

2n−1
n−1

)

+
vol(Γ \H)

2π

[n−1

∑
l=2

{(
2n− l −1

n−1

)
−2

(
2n− l −2

n−1

)}
ζ (l)+ζ (n)

]

+
ν2

2

n

∑
l=1

(
2n− l −1

n−1

)
ξ (l)+

ν3

3
√

3

[
n

∑
m=1

(−1)[m/2]

m!

(
2n−m−1

n−1

)(π
3

)m
αm

+2
[n/2]

∑
l=1

n−2l

∑
m=0

(−1)[m/2]

m!
αm

(
2n−2l −m−1

n−1

)
ξ (2l)+2

n

∑
l=1

(
2n− l −1

n−1

)
αl+1η(l)

]
, (4.3)

where

αm =

{√
3 if m is even,

1 if m is odd,

ξ (l) = ∑
k≥1

(−1)k−1k−l =

{
log2 if l = 1,

(1−21−l )ζ (l) if l ≥ 2,

η(l) =





∑
k≥1

(−1)k−1cos
πk
3

k−l if l is odd,

∑
k≥1

(−1)k−1sin
πk
3

k−l if l is even,

andν2, ν3 are the number of the primitive elliptic conjugacy classes of order2, 3 respectively.

4.2. Non-compact case.
WhenΓ \H is not compact butvol(Γ \H) < ∞, the trace formula reads as follows.

∞

∑
j=0

f̂ (r j) = ∑
γ∈Hyp(Γ )

logN(δγ)
N(γ)1/2−N(γ)−1/2

f (logN(γ))+
vol(Γ \H)

4π

∫ ∞

−∞
f̂ (r)r tanhπrdr

+ ∑
σ∈Ell(Γ )

ν(σ)−1

∑
k=1

(
ν(σ)sin

πk
ν(σ)

)−1∫ ∞

−∞
f̂ (r)

cosh(1−2k/ν(σ))πr
coshπr

dr

−ν∞ f (0) log2− ν∞

2π

∫ ∞

−∞
f̂ (r)

Γ ′(1+ ir )
Γ (1+ ir )

dr

+
f̂ (0)
4

Tr
(
I −Φ(1/2)

)
+

1
4π

∫ ∞

−∞
f̂ (r)

ϕ ′(1/2+ ir )
ϕ(1/2+ ir )

dr, (4.4)
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whereΦ(s) is the scattering matrix,ϕ(s) = detΦ(s) andν∞ is the number of cusps. Since the
explicit expressions ofΦ(s) are not obtained in many cases, it is difficult to get the formulas sim-
ilar to (4.1). However, whenΓ is SL2(ZZZ) and the congruence subgroup ofSL2(ZZZ), the scattering
matrix is obtained explicitly (see [He1] and [Hu]), hence we can obtain the formulas. Now, we
denote by

Γ0(N) : = {(ai j )i, j=1,2 ∈ SL2(ZZZ)|a21≡ 0 modN},

Γ1(N) : = {(ai j )i, j=1,2 ∈ SL2(ZZZ)|a11≡ a22≡±1,a21≡ 0 modN},

Γ (N) : = {(ai j )i, j=1,2 ∈ SL2(ZZZ)|a11≡ a22≡±1,a12,a21≡ 0 modN},

and, for simplicity, we assume thatN is odd and square free.

THEOREM 4.2. Let Γ be SL2(ZZZ) or a congruence subgroup ofSL2(ZZZ). For n≥ 2, we
have

ζ∆(n) =
n−1

∑
k=0

(−1)k
(

2n−k−2
n−1

)
γ̃(k)

Γ −
(

2n−1
n−1

)

+
vol(Γ \H)

2π

[
n−1

∑
l=2

{(
2n− l −1

n−1

)
−2

(
2n− l −2

n−1

)}
ζ (l)+ζ (n)

]

+
ν2

2

n

∑
l=1

(
2n− l −1

n−1

)
ξ (l)+

ν3

3
√

3

[
n

∑
m=1

(−1)[m/2]

m!

(
2n−m−1

n−1

)(
π
3

)m

αm

+2
[n/2]

∑
l=1

n−2l

∑
m=0

(−1)[m/2]

m!
αm

(
2n−2l −m−1

n−1

)
ξ (2l)+2

n

∑
l=1

(
2n− l −1

n−1

)
αl+1η(l)

]

+ν∞

[
n

∑
l=2

(
2n− l −1

n−1

)
2l ζ (l)+

(
2n−2
n−1

)
(log2π + γ)−22n−1

]
+J(n)

Γ , (4.5)

whereν∞ is the number of cusps andJ(n)
Γ is as follows.

J(n)
SL2(ZZZ) =

n−1

∑
l=0

2(−2)l

l !

(
2n− l −2

n−1

)(
ζ ′

ζ

)(l)

(2),

J(n)
Γ0(N) = ν∞

[
n−1

∑
l=0

2l

l !

(
2n− l −2

n−1

){
2(−1)l

(
ζ ′

ζ

)(l)

(2)−∑
p|N

∑
k=pm

Λ(k)
k2 (logk)l

}
−

(
2n−2
n−1

)
logN

]
,

J(n)
Γ1(N) = −2ω(N)+2n−2

+ν∞

[
22n−2− 3

2

(
2n−2
n−1

)
logN+

n−1

∑
l=0

2l+1

l !

(
2n− l −2

n−1

)
∑

k≡±1 modN

Λ(k)
k2 (logk)l

+ ∑
p|N

c(N/p)
p−1

{(
2n−3
n−1

)
logp+

n−1

∑
l=0

2l

l !

(
2n− l −2

n−1

)
∑

k≡±1 modN/p
k=pm

Λ(k)
k2 (logk)l

}]
,
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J(n)
Γ (N) = −22n−2∏

p|N
(p+1)

+2ν∞

[
22n−3−

(
2n−2
n−1

)
logN+

n−1

∑
l=0

2l

l !

(
2n− l −2

n−1

)
∑

k≡±1 modN

Λ(k)
k2 (logk)l

+ ∑
p|N

c(N/p)
p2−1

{(
2n−3
n−1

)
logp+

n−1

∑
l=0

2l

l !

(
2n− l −2

n−1

)
∑

k≡±1 modN/p
k=pm

Λ(k)
k2 (logk)l

}]
.

Here,c(1) = 2 andc(k) = 1 whenk≥ 2.

5. Numerical estimates ofλλλ 111 for quaternion groups.

In this section, we give a numerical computation ofζ∆(n) for the quaternion groups by using
Theorem 4.1, and estimate the first eigenvalueλ1. Now, we define the quaternion group.

Let a, b be positive integers which are relatively prime and square free, andB the quaternion
algebra overQQQ defined byB = QQQ+ QQQα + QQQβ + QQQαβ , whereα2 = a, β 2 = b, αβ = −βα .
For an elementq = q0 + q1α + q2β + q3αβ (qi ∈ QQQ), we defineq̄ = q0−q1α −q2β −q3αβ ,
n(q) = qq̄ = q2

0−q2
1a−q2

2b+q2
3ab andtrq = q+ q̄ = 2q0. We choose and fix a maximal order

O of B. Let B1 (resp.O1) be the group consisting of all elementsq of B (resp.O) with n(q) = 1.
The groupO1 can be identified with a discrete subgroupΓO of SL2(RRR) by the map.

q 7→

 q0 +q1

√
a q2

√
b+q3

√
ab

q2
√

b−q3
√

ab q0−q1
√

a


 (5.1)

The discriminantdB of B is defined bydB := |det(tr(ui ,u j))|1/2, where{ui} is the basis ofO
over ZZZ. The numberdB is independent of the choice ofO and{ui}, and equals the product of
prime numbers which ramify atB/QQQ. It is known that the number of prime factors ofdB is even.
The groupΓO is a co-compact subgroup ofSL2(RRR) and may have elliptic elements of order2
or 3. The valuesν2, ν3 andvol(ΓO\H) are respectively determined as follows (see, e.g. [He2],
[Sh]).

vol(ΓO\H) =
π
3 ∏

p|dB

(p−1), ν2 = ∏
p|dB

(
1−

(−1
p

))
, ν3 = ∏

p|dB

(
1−

(−3
p

))
, (5.2)

where

(−1/p) =





0 (p = 2),

1 (p≡ 1 mod 4),

−1 (p≡ 3 mod 4),

(−3/p) =





0 (p = 3),

1 (p≡ 1 mod 3),

−1 (p≡ 2 mod 3).

Hence, Theorem 4.1 applies in this case. In the formula of Theorem 4.1, the terms other thanγ̃(k)
Γ

are exactly computable, the computation ofζ∆(n) consequently is reduced to that ofγ̃(k)
Γ . The

(higher) Euler-Selberg constants are also computed as follows.

WhenG = SL2(RRR), γ̃(k)
Γ ’s are expressed as
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γ̃(k)
Γ =

(−1)k

k!
lim
x→∞

{
∑

γ∈Hyp(Γ )
N(γ)<x

logN(δγ)
N(γ)−1

(logN(γ))k− (logx)k+1

k+1

}
, (5.3)

whereHyp(Γ ) is the set of the hyperbolic conjugacy classes ofΓ (see [HIKW ]). WhenΓ is

the quaternion groups of discriminantdB, according to [AKN ], the expressions of̃γ(k)
Γ (5.3) are

rewritten by

γ̃(k)
Γ =

(−1)k

k!
lim

T→∞

{
T

∑
t=3

∑
u;u2|t2−4

d(t,u)≡0,1 mod 4

h
(
d(t,u)

)
λ

(
d(t,u)

)

×2logε0(t,u)
ε(t)2−1

(2logε(t))k− (2logT)k+1

k+1

}
, (5.4)

where

d(t,u) =
t2−4

u2 ,

ε(t) =
1
2

(
t +

√
t2−4

)
=

1
2

(
t +u

√
d(t,u)

)
,

ε0(t,u) = min

{
1
2

(
t0 +u0

√
d(t,u)

)∣∣∣∣
(

1
2

(
t0 +u0

√
d(t,u)

))k

= ε(t), ∃k≥ 1

}
,

λ (d) : =





0 if p2|d andd/p2 ≡ 0,1 mod 4for somep|dB,

∏
p|dB

(
1−

(
QQQ(
√

d)
p

))
otherwise

(
(∗/p) is the Artin symbol

)
,

andh(d) is the class number of the binary quadratic forms of discriminantd > 0 in the narrow
sense. Since the algorithm of computation of the class number is well-known (see, for example,

[Sc] or [Wa]), we can compute the approximate value ofγ̃(k)
Γ . Hence, applicating Theorem 4.1,

we can also computeζ∆(n). Now, we considerζ∆(n)−1/n andζ∆(m)/ζ∆(m+ 1) for n,m≥ 2.
Since

ζ∆(n)−1/n = λ1

(
1+

(
λ1

λ2

)n

+
(

λ1

λ3

)n

+ . . .

)−1/n

,

ζ∆(m)
ζ∆(m+1)

= λ1
1+(λ1/λ2)m+(λ1/λ3)m+ . . .

1+(λ1/λ2)m+1 +(λ1/λ3)m+1 + . . .
,

we have

ζ∆(n)−1/n < λ1 <
ζ∆(m)

ζ∆(m+1)
(∀n,m≥ 2), (5.5)

ζ∆(n)−1/n,
ζ∆(m)

ζ∆(m+1)
→ λ1 as n,m→ ∞. (5.6)

Computingζ∆(n) and using the fact above, we can estimateλ1 numerically.
We denote by
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γ̃(k)
Γ (T) : =

(−1)k

k!

{
T

∑
t=3

∑
u;u2|t2−4

d(t,u)≡0,1 mod 4

h
(
d(t,u)

)
λ

(
d(t,u)

)

×2logε0(t,u)
ε(t)2−1

(2logε(t))k− (2logT)k+1

k+1

}
,

ζ∆(n,T) : =
n−1

∑
k=0

(−1)k
(

2n−k−2
n−1

)
γ̃(k)

Γ (T)−
(

2n−1
n−1

)
+ · · · (see Theorem 4.1),

and compute these values forT ≤ 3.0×106 (in this computation, we use ‘C++’). When we write

d : = dB = p1p2 · · · p2l ,

v : = vol(Γ \H)/(π/3) = (p1−1)(p2−1) · · ·(p2l −1),

N : = max

{
n≥ 2

∣∣∣∣2.0×106 ≤ ∀T ≤ 3.0×106,

∣∣∣∣
ζ∆(n,3.0×106)−ζ∆(n,T)

ζ∆(n,3.0×106)

∣∣∣∣ < 0.01

}
,

L : = ζ∆(N,3.0×106)−1/N,

R : = ζ∆(N−1,3.0×106)/ζ∆(N,3.0×106),

the values above are computed as follows.

d v ν2 ν3 N L R d v ν2 ν3 N L R
6 2 2 2 2 4.922 — 93 60 4 0 5 0.452 0.502
10 4 0 4 3 2.278 3.031 94 46 2 4 7 0.323 0.324
14 6 2 0 2 2.251 — 95 72 0 0 6 0.393 0.419
15 8 0 2 2 1.605 — 106 52 0 4 5 0.453 0.595
21 12 4 0 3 1.022 1.494 111 72 0 0 6 0.331 0.336
22 10 2 4 3 1.204 1.898 115 88 0 4 4 0.460 0.761
26 12 0 0 3 1.797 3.506 118 58 2 4 4 0.540 0.822
33 20 4 2 4 0.696 0.770 119 96 0 0 7 0.317 0.336
34 16 0 4 4 0.691 0.796 122 60 0 0 4 0.689 1.154
35 24 0 0 3 0.925 1.810 123 80 0 2 5 0.518 0.685
38 18 2 0 3 1.218 2.428 129 84 4 0 5 0.382 0.490
39 24 0 0 4 0.738 0.827 133 108 4 0 5 0.357 0.431
46 22 2 4 5 0.422 0.439 134 66 2 0 4 0.401 0.532
51 32 0 2 3 0.652 1.295 141 92 4 2 6 0.353 0.379
55 40 0 4 4 0.633 0.872 142 70 2 4 6 0.359 0.369
57 36 4 0 4 0.480 0.548 143 120 0 0 6 0.362 0.426
58 28 0 4 4 0.550 0.646 145 112 0 4 5 0.341 0.449
62 30 2 0 3 0.692 1.255 146 72 0 0 6 0.355 0.367
65 48 0 0 3 0.596 1.332 155 120 0 0 5 0.408 0.555
69 44 4 2 4 0.514 0.716 158 78 2 0 5 0.412 0.457
74 36 0 0 4 0.728 0.975 159 104 0 2 7 0.311 0.333
77 60 4 0 4 0.572 0.869 161 132 4 0 5 0.370 0.485
82 40 0 4 3 0.573 1.171 166 82 2 4 5 0.381 0.503
85 64 0 4 5 0.459 0.600 177 116 4 2 5 0.361 0.467
86 42 2 0 4 0.627 0.935 178 88 0 4 5 0.342 0.384
87 56 0 2 5 0.417 0.467 183 120 0 0 5 0.403 0.539
91 72 0 0 5 0.455 0.547 185 144 0 0 6 0.328 0.365
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d v ν2 ν3 N L R d v ν2 ν3 N L R
187 160 0 4 5 0.391 0.567 249 164 4 2 10 0.258 0.261
194 96 0 0 6 0.339 0.384 253 220 4 4 5 0.328 0.502
201 132 4 0 5 0.348 0.484 254 126 2 0 5 0.433 0.648
202 100 0 4 5 0.433 0.575 259 216 0 0 6 0.330 0.426
203 168 0 0 5 0.389 0.578 262 130 2 4 4 0.413 0.762
205 160 0 4 6 0.337 0.424 265 208 0 4 6 0.291 0.372
206 102 2 0 8 0.295 0.304 267 176 0 2 9 0.255 0.256
209 180 4 0 5 0.338 0.483 274 136 0 4 7 0.293 0.327
210 48 0 0 6 0.377 0.399 278 138 2 0 4 0.372 0.658
213 140 4 2 4 0.382 0.676 287 240 0 0 7 0.294 0.333
214 106 2 4 7 0.289 0.319 291 192 0 0 6 0.344 0.434
215 168 0 0 10 0.259 0.263 295 232 0 4 6 0.316 0.406
217 180 4 0 7 0.271 0.286 298 148 0 4 6 0.308 0.379
218 108 0 0 4 0.501 0.907 299 264 0 0 8 0.267 0.284
219 144 0 0 6 0.397 0.469 301 252 4 0 6 0.280 0.353
221 192 0 0 6 0.319 0.388 302 150 2 0 6 0.335 0.396
226 112 0 4 6 0.350 0.425 303 200 0 2 6 0.359 0.485
235 184 0 4 5 0.329 0.461 305 240 0 0 5 0.319 0.444
237 156 4 0 7 0.323 0.373 309 204 4 0 7 0.312 0.374

The dotted line· · · of the figure above expresses the bound of Selberg’s conjectureλ1 ≥ 1/4 for
the congruence subgroups ofSL2(ZZZ) (see [Se]). In the data above, allL’s are bigger than1/4,
hence it could be suggested that the Selberg conjecture holds for the quaternion groups of “small”
discriminant (or “small” volume). On the other hand, in many case of the “large” discriminant
(or “large” volume), we obtain the data thatL < 1/4 andR > 1/4. For example, in the case
d = 30030= 2×3×5×7×11×13(v = 5760, ν2 = ν3 = 0), we haveL ; 0.214andR; 0.301
for N = 10, and in the cased = 255255= 3×5×7×11×13×17(v = 92160, ν2 = ν3 = 0), we
haveL ; 0.189andR; 0.283for N = 14. In such cases, we cannot confirm whether the Selberg
conjecture holds.

REMARK 5.1. In [Se], λ1≥ 3/16was proved for the congruence subgroups. Then, several
studies have been made on the estimate ofλ1 and the best estimate at the present time isλ1 ≥
975/4096= 0.238. . . by [Ki ] (see, also [LRS] and [KS]).

REMARK 5.2. In [H], we computeγ̃(0)
SL2(ZZZ) numerically by using the correspondence be-

tween the primitive hyperbolic conjugacy classes ofSL2(ZZZ) and the equivalence classes of the
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primitive indefinite binary quadratic forms. Hence we can also computeζ∆(n,T) by using The-
orem 4.2. However, the valuesζ∆(n) are very small, becauseλ1, λ2, . . . are large:

λ1 = 91.5229· · · , λ2 = 148.4319· · · , λ3 = 190.1315· · · , . . . (see [He1]).

Thus it is hard to obtain the approximate values ofζ∆(n)’s by computingζ∆(n,T)’s.
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