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Abstract. For a metric spacX = (X,d), let Cldy (X) be the space of all nonempty closed
sets inX with the topology induced by the Hausdorff extended metric:

dy(A,B) = max{ SUéﬁ(X,A), supd(x, B)} € [0, 0].
Xe XeA

On each component of GidX), dy is a metric (i.e.dn (A,B) < ). In this paper, we give a con-
dition on X such that each component of GIX) is a uniform AR (in the sense of E. Michael).
For a totally bounded metric spa2g in order that Clg (X) is a uniform ANR, a necessary and
sufficient condition is also given. Moreover, we discuss the subspaggXjf Cldy (X) con-
sisting of all discrete sets i and give a condition oX such that each component of Qi) is

a uniform AR and Dig (X) is homotopy dense in ClgX).

1. Introduction.

Let X = (X,d) be a metric space. The set of all non-empty closed setsindenoted by
Cld(X). On the subseBdd(X) c Cld(X) consisting of bounded closed setXnwe can define
the Hausdorff metriacdy as follows:

du (AB) = max{ supd(x,A), supd(X, B)},

xeB XA

whered(x,A) = infaepad(x,@). We denote the metric spa¢Bdd(X),dy) by Bddy(X). On
the whole seCld(X), we allow dy (A,B) = o, but dy induces the topology ofld(X) like a
metric does. The spac@ld(X) with this topology is denoted b@ldy (X). WhenX is bounded,
Cldy (X) = Bddy (X). Even thouglX is unboundedCldy (X) is metrizable. Indeed, letbe the
metric onX defined byd(x,y) = min{1,d(x,y)}. Then,dy is an admissible metric a€ldy (X).
It should be noted that each componenCidy (X) is contained irBdd(X) or in the complement
Cld(X) \ Bdd(X). Thus,Bddy(X) is a union of components @ldy (X). On each component
of Cldy (X), dy is a metric even if it is contained i8ld(X) \ Bdd(X). Then, we regard every
component ofCldy (X) as a metric space witly.

WhenX is compact, it is well-known thaEldy (X) (= Bddy (X)) is an ANR (an AR} if
and only if X is locally connected (connected and locally connect&d). [However, in case&X
is non-compact, this does not hold. In this paper, we construct a metrk sieh thaCldy (X)
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is not an ANR. Recently, Costantini and K&ljl] showed thaBddy (X) is an AR if X is almost
convexthat is, for eachx,y € X and for eacts,t > 0 such thatd(x,y) < s+t, there existz € X
with d(x, z) < sandd(y, z) < t. Under a more mild condition oX, we show that each component
of Cldy (X) is a uniform AR in the sense of Michad][ For a totally bounded metric spae

in order thatCldy (X) (= Bddy (X)) is a uniform ANR, a necessary and sufficient condition is
given. Moreover, we discuss the subspBig; (X) C Cldy (X) consisting of all discrete sets in
X and give a condition oX such that each componentDisy (X) is a uniform AR andisy (X)

is homotopy dense i€ldy (X), whereY is homotopy densen Z if there exists a homotopy
h:Zx1 — Z such thahg = idz andh(Z) C Y fort > 0.

2. Main results and examples.

First of all, we shall construct a metric AR such thatCldy (X) (nor Disy (X)) is not an
ANR.

ExAMPLE 1. The following subspack of Euclidean plairR? is an AR:

X =[lLeo)x{0}U | J{nn+2"|neN}xlI.

neN

Then,Cldy (X) is not locally path-connected at= N x {1}. Otherwise, we canfind <y < 1
such that ifdy (A,B) < y thenA andB are connected by a path witham < 1. Choosek € N
so that2 ™% < y, and letB = AU {(k+27% 1)} € Cldy(X). Sincedy(A,B) < y, there is a path
f 1 — Cldy (X) such thatf (0) = A, f(1) = Banddiamf(l) < 1. Let

U={tel | ft)n{k+2 1 x(0,1]# @} andV ={tel | f{t)n{k+2 K} xI =2}

Then,0eU,1eV andU NV = . Sincef(t)N[0,o) x {0} = & for everyt € 1, it is easy to see
thatU andV are open il andU UV = 1. This contradicts to the connectedness.cdimilarly,
Disn (X) is not locally path-connected At

In order to state the main results, we need some notations and definitions.=L€X, d)
be a metric space. Férc X andy > 0, we denote

N(Ay) = {xe X |d(x,A) <y} and N(A,y) = {xe X |d(x,A) < y}.

WhenA = {a}, we writeN({a},y) = B(a,y) andN({a}, y) = B(a,y).

A metric spaceX is called auniform ANRIf for an arbitrary metric spacg = (Z,d) con-
taining X isometrically as a closed subset, there exist a uniform neighbotbarfdX in Z (i.e.,
U = N(X,y) for somey > 0) and a retraction : U — X which is uniformly continuous &X, that
is, for eacte > 0O, there is somé > Osuch thatifk € X, ze U andd(x,z) < 6 thend(x,r(2)) < &.
WhenU = Z in the aboveX is called auniform AR A uniform ANR is a uniform AR if it is
homotopically trivial, that is, all the homotopy groups are trivial. 10][ it is shown that a metric
spaceX is a uniform ANR if and only if every metric spa& containingX isometrically as a
dense subset is a uniform ANR aKds homotopy dense i@.

A collection <7 of subsets oK is said to beuniformly discretdf there exists somé > 0
such that thé-neighborhood(x, 8) of eachx € X meets at most one member.of, that is,
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inf{distAA') |A£A € &/} >0,

wheredist(A,A') = inf{d(x,X) | xe A, X € A'}.

Forn > 0, ann-chainin a metric spac& = (X,d) is a finite sequencéx)X_, of points
in X such thatd(x;,x_1) < n for eachi = 1,...,k, wherek is called thelength of (xi)g‘zo and
diam{x | i =0,1,...,k} is thediameterof (x)K ;. Whenxo = x andx, =y, we call(x)X_, ann-
chain fromx to y and we say that andy areconnectedy (X; )}‘:0. Itis said thaiX is C-connected
(or connected in the sense of Carjtdreach pair of points irK are connected by am-chain in
X foranyn > 0.

Now, we say thaX is uniformly locallyC*-connectedf for eache > 0 there exist) > 0
with the following property:

ulC*(¢) For eachn > 0, there is som& € N such that each pair d¥-close points ofX are
connected by an-chain with length< k anddiam< ¢.

This concept is invariant under uniform homeomorphisms, that is, if a metric space is uniformly
homeomorphic to a uniformly locallZ*-connected metric space then it is also uniformly lo-
cally C*-connected. It is easy to see that every almost convex metric space is uniformly locally
C*-connected. One should note that the unit ci8tec R? with the Euclidean metric is uni-
formly locally C*-connected but not almost convex. The following is our first main result which
generalizes Costantini and K&bresult 4] mentioned in Introduction:

THEOREMA. For every uniformly local\C*-connected metric spac€ the collection of
all components ofCldy (X) is uniformly discrete and each componentGifly (X) is a uniform
AR, hence the spac&dy (X) andBddy (X) are uniform ANR's.

Here, it should be remarked that a metric space is a uniform ANR if and only if the collection
of all components is uniformly discrete and each component is a uniform ANR.

The uniformly localC*-connectedness is stronger than the uniformly local versiad-of
connectedness. It is said thétis uniformly locallyC-connectedf for eache > 0 there exists
o > 0 with the following property:

ulC(e) For eachny > 0, each pair oB-close points oK are connected by ap-chain inX with
diam< €.

This concept is also invariant under uniform homeomorphisms. As seen in the following exam-
ple, the uniformly locaC-connectedness does not imply the uniformly Id€&aiconnectedness.

EXAMPLE 2. For eachn ¢ N, lete, be the unit vector iR defined bye, (i) = 0if i #n
anden(n) = 1. We define a metric space= (X,d) as follows:

X=|JRacRY, d(xy) = Z\Imin{Z‘”,|x(n) —y(n)|}.

neN

Then,X is uniformly locallyC-connected but it is not uniformly locallg*-connected.

To see the uniformly locaC-connectedness, for eaeh> 0, letx,y € X with d(x,y) < €.
Whenx,y € Rg, for somen € N, for eachn > 0, choose&k € N so that) (k—1) < |x(n) —y(n)| <
nk, and defineg = x+niep fori =0,1,... . k—1andx, =Y. Then,(x )}‘:0 is ann-chain fromxto
yin X with diam< . Whenx € Rg, andy € Ray, for n# me N, sinced(x,y) = d(x,0) +d(y,0),
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for eachk € N, we can obtain am-chain fromx to y with diam < &€ by joining two n-chains
fromx to 0 and fromOtoy.

To see thak is not uniformly locallyC*-connected, for each > 0, choosen € N so that
27" < 5. Then, for everym€ N, d(0,me,) < 27" < . If (x)K , is a2~ "-chain from0 to me,
thenk > m2". This means thaX is not uniformly locallyC*-connected.

The following is our second main result:

THEOREMB. For a totally bounded metric spack, the spaceCldy (X) (= Bddy (X))
is a uniform ANR if and only X is uniformly locallyC-connected, whence each component of
Cldy (X) is a uniform AR.

For the spac®isy (X), we have the following resuft:

THEOREMC. LetX be a metric space with the following two properties

(C1) Every bounded closed set¥is compact
(Cp) For eache > 0, there exisk, d > 0 such that any pair od-close points irK are connected
by ak-Lipschitz pathf : I — X with diamf(l) < .

Then, the collection of all componentsDisy (X) is uniformly discrete and each component of
Disn (X) is a uniform AR, hencBisy (X) is an ANR. In this cas®isy (X) is homotopy dense in
Cldy (X).

In the above, each component@ifiy (X) is a uniform AR but this follows from Theorem A.
In fact, it will be seen that the condition §above implies the uniformly loc&l*-connectedness.

3. Lawson semilattices which are uniform ANR'’s.

A topological semilatticds a topological spac& equipped with a continuous operation
V : Sx S— Swhich is idempotent, commutative and associative (K&.Xx =X, XVy =YV X,
(xVy)Vz=xV(yVz). Atopological semilattic&is called aLawson semilatticé Sadmits an
open basis consisting of subsemilatticgs [t is known that a metrizable Lawson semilattice is
k-aspherical for eack > 0 ([4, Proposition 2.3]).

In [1], it is shown that a metrizable Lawson semilattice is an ANR (resp. an AR) if and only
if it is locally path-connected (resp. connected and locally path-connected). Here, we consider
the condition that a metric Lawson semilattice is a uniform ANRBBY! andS”, we denote the
unit (n+ 1)-ball and then-sphere, respectively. We will use the following result [

PROPOSITION3.1. Foreachn> 1, there exists a map: B! — §3(S") such that (x) = x
forall x € S", where

53(8") ={AC S"|cardA < 3} C Fin(S").
A metric spaceX is uniformly locally k-connectedf, for eache > 0, there exist > 0

such that for eact < k, every mapf : " — X with diamf(S") < & extends to a mag :
B! — X with diamf(B"™?) < £. Evidently,X is uniformly locally 0-connected if and only if

2This is established ir7].
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X is uniformly locally path-connected. For each simplexwe denote bys¥) the union of all
k-faces ofo. The following is proved in10]:

PrRoOPOSITION3.2. A uniformly locally (k — 1)-connected metric spacé is a uniform
ANR ifX has the following propertyé)y:

(8)x There exist$3 > 1 such that every map : |[K¥| — X of thek-skeleton of an arbitrary
simplicial complex extends to a map : |K| — X such thadiamf (o) < Bdiamf (a®)
for eacho € K.

Moreover, ifX is (k— 1)-connected theX is a uniform AR.

LEMMA 3.3. If X is uniformly locally path-connected, then the collection of all compo-
nents ofX is uniformly discrete irX.

PROOF. First, note that components ¥fare path-connected. By the uniformly local path-
connectedness of, we haved > 0 such that a pair ob-close points oiX are connected by a
path inX. Then,dist(C,C’) > o for each two distinct componen@s# C’ of X. O

Itis said that a metric spaceis uniformly locally contractiblef for eache > 0, there exist
0 > 0such that thé-ball B(x, &) at eactx € X is contractible in the-ball B(x, €). Every uniform
ANR is uniformly locally contractible by9, Proposition 1.5 and Theorem 1.6]. And, as is easily
observed, every uniformly locally contractible metric space is uniformly lo¢attgnnected for
allk>0.

THEOREM3.4. LetL = (L,d,V) be a metric Lawson semilattice such that
d(xVvx,yvy) <max{d(x,y),d(X,y)} foreachx,X,y,y € L.

Then, the following are equivalent

(a) the collection of all components bfis uniformly discrete i and each component &f
is a uniform AR

(b) Lis a uniform ANR

(c) Lis uniformly locally contractible

(d) L is uniformly locally path-connected.

PrROOF. The implication (a)= (b) is easy. The implications (b} (c) = (d) have been
observed in the above. It remains to show-{l)a).

The first half of (a) follows from Lemma 3.3. To see the second half of (a)Clbt a
component ot.. Then,C is a path-connected. Moreové€r,s a subsemilattice df. In fact, for
eachx,y € C, by using a patif : | — Cfromxtoy, a pathy : 1 — L from xtoxVvy can be defined
byg(t) = f(0) Vv f(t) fort €I, hencexvy e C.

By Proposition 3.2, it suffices to show th@satisfies the propert}€);1. LetK be a simplicial
complex andf; : |[K('| — C be a map. Suppose we have defined migpK ()| — C, i < n, such
that fi|[K(—Y| = f,_; anddiamfi(c") = diamf;(c(Y) for all o € K. By Proposition 3.1, for
eachn-simplexo € K, there is a map, : 0 — §3(d0) such thats(x) = {x} for eachx € do.
We extendf, 1 to a mapf, : |[K("W| — C by f,|o = fs or, for eachn-simplexo € K, where
fg : §3(do) — Cis defined as follows:



528 M. KURIHARA, K. SAKAI and M. YAGUCH]I
fo({ar,a,a3}) = fn_1(ar) vV f-1(a2) vV fr_1(as).

Then, diamf, (™) = diamfy(c®) for all o € K. In fact, eachx,y € (™ are contained in
n-facesoy andoy of o, respectively. We can write

Fa(X) = fo_2(a0) V fo_1(82) V fr_1(as) and
fa(y) = fro1(b1) V fa_1(b2) v fr_1(bg),

wherer g, (X) = {a1,a,a3} andrg, (y) = {b1,bz,bs}. By the inductive assumption, we have

d(fa(X), fa(y)) < max{d(f_1(a), fn_1(by)) |i,} = 1,2,3}
< sup{d(f(¥), faly)) | X.Y € 0™V}

= diamf,_1 (0™ ) = diamf;(cV).

Thus, by induction, we obtain mags : [K("W| — C, n € N, such thatf,||K(""Y| = f,_; and
diamfn (o) = diamf, (o) for all o € K. These maps induce the extension|K| — C of f
such thatdiamf, (o) = diamf; (o) for all o € K. HenceC has the propertyg);. O

4. Proof of Theorem A.

It is known thatCldy (X) = (Cldn (X),U) is a Lawson semilattice satisfying the following
condition:

dy(AUA, BUB') < max{dy (A, B), dy(A,B')} for eachA,A',B,B' € Cldy (X).

Refer to @, Proposition 2.4] (cf. the proof ofl] Fact 4]). By Theorem 3.4, we can reduce
Theorem A to the following:

THEOREM4.1. For every uniformly locallyC*-connected metric spac¥, the space
Cldy (X) is uniformly locally path-connected.

Before proving this theorem, we give a characterization of the uniformly |&al
connectedness. For two metric spages- (X,dx) andY = (Y,dy), let C(X,Y) be the set
consisting of all continuous functions frodito Y. It is said that# C C(X,Y) is uniformly
equi-continuousf for eache > 0, there isd > 0 such thaty (f(x), f(X)) < € for eachf € .F#
andx, X’ € X with dx (x,X) < d.

THEOREM4.2. LetD be a countable dense subset of the unit intetvalith the usual
metric and0,1 € D. Then, a metric spack¥ = (X,d) is uniformly locallyC*-connected if and
only if for eache > 0, there exis® > 0 and.# C C(D, X) satisfying the following

(i) . is uniformly equi-continuous,
(i) diamf(D) < ¢ for everyf € #,
(iii) for eachd-closex,y € X, there isf € .# with f(0) =xandf(1) =y.
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PROOF.  First, we show the “if” part. For each> 0, we haved > 0 and.# C C(D, X)
satisfying (i), (i) and (iii). By (i), for eactn > 0, there isk € N such thad(f(t), f(t')) < n for
eachf € .# andt,t’ € D with |t —t'| < 2/k. By (iii), for eachd-closex,y € X, we havef € .#
with f(0) =xandf(1) =y. SinceD is dense i, there ard =1ty < t; < --- <ty = 1 such that
t—ti_1 < 2/k Then,(f(ti)){;o is ann-chain fromx to y of diameter< ¢ by (ii). Thus,X is
uniformly locally C*-connected.

Conversely, assume thAtis uniformly locallyC*-connected. For each> 0 andn € N,
we can choos@, > 0 so that for each > 0, there isk € N such that each pair a¥,-close
points ofX are connected by am-chain of length< k and diametek 2 "¢, whered, < 2 "¢.
Then, we havék, € N such that each pair a@¥,-close points oiX are connected bg,1-chain
of length < k, and diametex: 2 "¢. SinceD is a countable dense subsetlpfive can obtain
{0,1} =DgCc D1 CDzC---CDandg > & > --- > 0such thaD = Jnen D, iMp—c &0 =0,
each componenof | \ Dp_1 containsk, — 1 many points oD, anddiamJ < &,.

For each pair od;-close pointx,y € X, we can easily construdy : D — X with fy(0) =X,
fxy(1) =y and the following property:

(*) if to <ty <--- <ty, € Dy and(to,ty,) is @ component of \ Dy_1 (hencetg,ty, € Dn-1),
then(f (ti))'é” is adny1-chain with the diameter 2 "¢.

For eacht,t’ € D, let J andJ’ be components of \ D,,_1 such thatt € clJ andt’ € clJ. If
t —t'| < &y thenclINcld # &, whence it is easy to see thaf (), f(t')) < 27"2¢. Therefore,
F ={fy|xyeX, d(xy) < &} is uniformly equi-continuous andiamfyy(D) < ¢ for every
fuye Z. O

PROOF OFTHEOREM4.1. For eache > 0, we haved > 0 and.# C C(D,X) which
satisfies (i), (ii) and (iii) in Theorem 4.2. For eaéy)B € Cldy (X) with dy(A,B) < 9, let
Fap={f e .#|f(0)eA f(1)eB}. Eachaec Ais d-close to somé € B, whence we
havef € Zap with f(0) = a. Similarly, for eachb € B, there isf € % such thatf (1) = b.
We can define a path : | — Cldy (X) from A to B as follows:

clx U{f([0,2]ND) | f € Zag} if te[0,1/2],
{clxu{f([ztl,l]mD) | f € Fap} if te[l/2,1].

Foreactt € [0,1/2], AC ¢(t) C N(A€), hencedy (A, ¢ (t)) < €. Similarly, d4 (B, ¢ (1)) < € for
eacht € [1/2,1]. Thereforediamy, ¢ (1) < 2¢.

We verify the continuity of¢. For eache’ > O, since.#a g is uniformly equi-continuous,
there isd’ > 0 such thad(f(2t), f(2t")) < &' for eachf € F#apg andt,t’ € D with [t —t'| < &'.
Let0 <t/ <t < 1/2with |t —t'| < &'. Observe thatp(t’) C ¢(t). For eachx € ¢(t) and
0< €&” < ¢, we havef € #ap ands e [0,t]ND such thatd(x, f(2s)) < €”. Whens<t/, we
haved(x, ¢ (t')) < €” < &’ becausef (2s) € ¢(t'). Whens>t’, we haved(x, ¢ (t')) < €’ + ¢
because (2t') € ¢(t') and

d(x, f(2t")) <d(x, f(2s)) +d(f(2s),f(2t")) < " +¢€.

Consequentlyd(x, ¢ (t')) < €. It follows thatdy (¢ (t), ¢ (t')) < €', hencep|[0,1/2] is continu-
ous. Similarly,¢|[1/2,1] is continuous. Thus, it follows that is continuous. O



530 M. KURIHARA, K. SAKAI and M. YAGUCH]I

For a complete metric spa¢eand a dense subsbtc |, every uniformly continuous map
f : D — X extends ovel. Then, the following follows from Theorem 4.2:

COROLLARY 4.3. Every uniformly locallyC*-connected complete metric space is uni-
formly locally path-connected.

5. Proof of Theorem B.
Due to Theorem A, the “if” part of Theorem B follows from the following:

PrROPOSITIONS.1. Every totally bounded uniformly locally-connected metric space
is uniformly locallyC*-connected.

ProOF. For eache > 0, we haved > 0 with ulC(g/2). For eacl0 < n < £/4, sinceX
is totally bounded, we have, ..., X, € X such that J ; B(x,n/3) = X. For eaclx,y € X with
d(x,y) < 0, we show thak andy are connected by am-chain with length< n+ 1 anddiam< ¢.
We may assume that(x,y) > n. By ulC(e/2), we have am/3-chain (yj)‘f:O in X from x
to y with diam< ¢/2. For eachj = 1,...,k—1, choosex(}, so thatd(yj, X)) < n/3. Then,
(xim)'j‘;} is ann-chain inX with diam< € andi(1) #i(k— 1) because@(x,y) > n. If xj) = Xj)
for somej < |’ then the sequencey), ..., Xi(j), Xi(j)+1, - - - - Xi(k) iS also am-chain inX. Hence,
we can choosg; = 1< jo <+ < jm=k—1so thati(j,) =i(je1—1) andi(js) #i(jg) for
¢ < ¢, whence the sequenee;(j,),- - -, X(j,),Y iS ann-chain inX from x to y with diam< ¢
and lengtm+1< n+1. O

The “only if” part of Theorem B follows from the following:

PROPOSITIONS.2. Let.s# be a subspace dEldy (X) such that{x} € .7 for eachx € X.
If 2 is uniformly locally path-connected théhis uniformly locallyC-connected.

PROOF.  For eache > 0, there is som@ > 0 such that ifd(x,y) < & then there is a map
f 11 — 2 such thatf (0) = {x}, f(1) = {y} anddiamy, f(l) < £/2. By the compactness of
I, for eachn > 0, we havety =0 < t; < --- <t, = 1 such thatdy (f(t;), f(t_1)) < n, hence
we can inductively choose € f(tj) so thatd(x,%-1) < n, whencexy = x andx, =y. Since
diamy, f(I) < &, it follows that f(t) C B(x,&/2) for eacht € I, henced(x;,x) < £/2 for each
i=1,...,n. Then,(x), is ann-chain fromx to y with diam < €. Thus,X is uniformly locally
C-connected. O

Similarly to the above, the following can be proved:

PROPOSITION5.3. Let.”# be a subspace dfldy (X) such that{x} € .7 for eachx € X.
If 22 is locally path-connected then eagle X has an arbitrarily smallC-connected neighbor-
hood, namel¥ is locally C-connected.

6. Proof of Theorem C.

In this section, we prove Theorem C. A subBet X is said to bee-discreteif d(x,y) > €
for x # y € A. The following proposition shows th&tis(X) is dense irCldy (X).
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PrROPOSITIONG.1. For € > 0, eachA € Cldy (X) contains ans-discrete subseB such
thatA C N(B, ), hencedy (A,B) < &.

PROOF. By Zorn’s Lemma,A has a maximak-discrete subseBy. ThenA C N(By, €).
Otherwise, we could take a poigte A\ N(Bo, £), whenceBy & BoU {y} C AandBoU {y} is
e-discrete. This contradicts the maximality B. O

Due to [LO, Theorem 2], every uniform ANR is homotopy dense in a metric space in which
it is isometrically embedded as a dense subset. Thus, by Theorem 3.4, we can reduce Theorem
C to the following:

THEOREM®G6.2. LetX be a metric space with the following properties

(C1) Every bounded closed setXis compact
(C,) Foreache > 0, there exist&, 6 > 0 such that any pair od-close points irX are connected
by ak-Lipschitz pathf : I — X with diamf(l) < €.

Then,Disy (X) is uniformly locally path-connected.

PrROOF. For eache > 0, choosek, d > 0 so that any pair 08-close points inX are con-
nected by &-Lipschitz pathf : | — X with diamf (1) < £/2. LetA,B € Dis(X) anddy (A, B) < d.
Since eaclx € B is d-close to some point i, there is a collectiod f | x € B} of k-Lipschitz
paths inX such thatfy(0) = x, fx(1) € Aanddiamf(l) < €/2. Then,AandAUB are connected
by the pathha : | — Disy (X) defined as follows:

ha(t) = AU{fx(1—t) | x€ B}.
To verify thatha(t) € Disy(X) for eacht € |, assume the contrary, that is,(t) is not
discrete for somée |. Then,0 <t < 1 becauséin(0) = Aandha(1) = AUB are discrete. We

have infinitely many distinct pointg € B, i € N, such that(fy, (1—t))icn converges to some
y € X. Since

d(x,y) < d(fx(0), i (1—1)) +d(fx (1-1),y)
SK(I-t)+d(fx (1-1),y),

it follows thatd(x;,y) < k for sufficiently largei € N. Thus,{x | i € N} is an infinite bounded
set. On the other hand, sin¢g | i € N} C B, itis discrete inX. This is a contradiction because
every bounded closed set¥is compact.
To see the continuity dfia anddiamha (1) < £/2, lett,t’ € I. Since
d(fx(1—1), fix(1—t')) <kt —t'| for everyx € B,
we havedy (ha(t),ha(t’)) < k|t —t'|, hencehy is continuous. On the other hand, since

d(fx(1—t), fx(1—t")) < diamf(l) < /2 for eachx € B,

it follows that
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ha(t) = AU{fy(1—t) | x € B}
C N(AU{f(1—t) | x€ B},£/2) = N(ha(t'), £/2).

Similarly, ha(t’) € N(ha(t),£/2). Hencedy (ha(t),ha(t’)) < £/2. Thus, we haveliamha(l) <
€/2.

Similarly there exists a pathg : I — Disy(X) such thathg(0) = B, hg(1) = AUB and
diamhg(l) < £/2. By usingha andhg, it is easy to obtain a path frodto B in Disy (X) with
diam< &. ThereforeDisy (X) is uniformly locally path-connected. O

PROPOSITIONG.3. If a metric spaceX satisfies the conditiofC,), thenX is uniformly
locally C*-connected.

PrROOF. For eaclke > 0, taked,k > 0 as in the condition (&). We define
F ={f eC(D,X) | f isk-Lipschitz withdiamf (D) < €}.

It is easily follows from the definition tha# satisfies the conditions (i) and (ii) in Theorem 4.2.
For eachd-close pointsc,y € X, there is &-Lipschitz pathf : 1 — X with f(0) =x, f(1) =y
anddiamf(l) < €. Then, observe thdtD € .%. Thus,.# satisfies the condition (iii) in Theorem
4.2. Therefore, by Theorem 4.&,is uniformly locallyC*-connected. O

The following example shows that the uniformly local path-connectedndisigfX) does
not imply the condition (€) nor (G) for X.

ExAMPLE 3. The spac&X =1\ {27" | n € N} with the usual metric does not satisfy()C
nor (G;). We show thaDisy (X) is uniformly locally path-connected.

First, we prove thabisy ((0,1)) is path-connected. Eaghe Disy ((0,1)) can be written as
A= {a,|ne Z}, wherea, < an;1 for everyn € Z. Then, we can define a paffy : | — Disy (X)
from Ato {ap} as follows: fa(0) = A, (1) = {ao}, fa(2™") ={ai | |i| < n} for ne N and, for
2 lot< 2,

fa(t) = fa(2 M U{(2" Mt — Dan+ (2— 2" t)an, 1}
U{(@"Mt—Da_n+(2—2"")a e }-

By connectingfa and a path fronag to 1/2, we can obtain a path frodto {1/2} in Disy ((0,1)).
Thus,Disy ((0,1)) is path-connected. Similarly, it can be seen Bt ([0,1)) andDisy ((0,1])
are also path-connected.

Next, we prove thaDisy ((—1,0) U (0,1)) is path-connected. Let

A;={2"|neN} andA_={-2"|ne N}

Then,A; andA_ can be connected #_ UA, by pathsfy : | — Disy((—1,0)U(0,1)) defined
asfollows: . (0) =Ay, fL(1) =A_UA,, T (t) =tA_UA_ andf_(t) =A_UtA  forO<t < 1,
wheretA = {tx | x € A}. Now, letB € Disy((—1,0)U(0,1)). If BC (—1,0) orB C (—1,0) then
B can be connected t&_ or A, by a path inDisy ((—1,0)) or in Disy((0,1)), hence it can be
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connected tA_ UA, by a path inDisy((—1,0) U (0,1)). WhenB ¢ (—1,0) andB ¢ (0,1),
we have two path$ : | — Disy((—1,0)) andf : I — Disy((0,1)) such thatf (0) = BN (—1,0),
f(1)=A_,¢(0)=BN(0,1) andg(1) = A.. Then, a patin: | — Disy((—1,0)U(0,1)) from B
to A_UA, can be defined blg(t) = f(t) Ug(t). Similarly, we can see th&isy ([—1,0)U (0, 1]),
Disn ([—1,0)U(0,1)) andDisy ((—1,0) U (0, 1]) are also path-connected.

For eachD < a < b, Disy ([a,b] N X) is a closed subspace Bisy (X). By using the above
facts, we can easily show thBisy ([a,b] N X) is path-connected.

For eache > 0, choosen € N so tha "1 < ¢, let

X =[i-12"(i+1)2"nX,i=0,...2"

Note that each pair 02 "-close points ofX are contained in the san¥. For eachA B ¢
Disy (X) with dy (A,B) < 27", let

E={i|ANX # @&, BNX # &}.

Then,AUB C Ujcg Xi. For each € E, sinceDisy (X;) is path-connected, there is a pdth | —
Disy (Xi) with fij(0) = AnX and fi(1) = BN X. A pathf : 1 — Disy(X) from A to B can be
defined byf (t) = Uicg fi(t). Then, f(t) C Ujcg X for eacht € I and f(t) N X D fi(t) # & for
eacht € | andi € E. It follows that

dy (f(1), f(t)) < diamX <2 ™ <¢ fort,t’ e,

that is,diamf (1) < €. Thus,Disy (X) is uniformly locally path-connected.

7. Further problems and related results.

After the eariler version of this paper had been submitted, Banakh and Voyt&itskid-
ceeded in proving the converse of Theorem A, that is,

THEOREM7.1([2]). The spacdddy(X) (or Cldy (X)) is a uniform ANR if and only X
is uniformly locallyC*-connected.

In Example 1 X is not a uniform ANR buCldy (X) need not be an ANR even for a uniform
AR X. In [2], Banakh and Voytsitski showed th@tdy (RV) is not an ANR, wher®N has the
usual product metric. The following is unknown:

PROBLEM 1. Characterize metric spacEssuch thaDisy (X) are ANR’s.

In caseX is uniformly locally compact (i.e., there is sorde> 0 such thaB(x, ) is compact
for eachx € X), itis proved in P] that Disy (X) is a uniform ANR if and only ifX is uniformly
locally C*-connected. Due to Theorem 8]dy (Q) andCldy (R\ Q) are ANR’s with respect the
usual metric. However, the following is open:

PROBLEM 2. Is Disy(Q) or Disy(R\ Q) an ANR?

The following proposition is shown in7[, which shows the complexity of the space
Cldy (X).
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PROPOSITION7.2. The spaceCldy (R) has uncountably many components. Moreover,
the spaceComp, (R") of all compact sets is one of them and all but this component are non-
separable.

PROOF. First, we show thaCldy (R) has uncountably many components. Bet {n? |
ne N}. We can writeA = {k(i, j) | i,j € N} such thak(i, j) # k(i’, ') if (i,j) # (i’,]’). For
each nonempty s& C N, we denoteAs = {K(i,j) | i € N,j € E} € Cld4(R). Observe that
if E # E’'(C N), thenAg \ Az or Az \ Ag contains infinitely many points, which implies that
dn (Ag,Ag/) = 0. ThenAg andAg: are contained in different components. Siltkas uncount-
ably many subset€ldy (R) has uncountably many components.

The casen > 2 is simpler than the above. For eagke S™! = {xc R" | ||x|| = 1}, let
Ac= {tx|t € [0,m)} € Cldy(X). Then, forx #y € S™ 2, evidentlydy (Ax, Ay) = . Now, let
< be the component @ldy (R") containingAy. TheneiN ok = & for x #y € S 1 Hence,
Cldy (R") has uncountably many components.

It should be note thatomp, (R") is connected and clopen@idy (R"). HenceComp, (R")
is component ofldy (R").

Now, let.”# be a component dEldy (R") such that”” # Comp, (R"). Then.# contains
an unbounded closed skin R". Choosea, € A, n € N, so that|a,.1|| > ||an|| + 3. Let

A =AU | B(an,1).

neN

Then, we have the path: | — Cldy (R") defined by

h(t) =AU | B(an,t).

neN

Since h(0) = A and h(1) = Ay, it follows that A; € .%°. For eachE C N, let Az = A\
Unee B(an,1). There exists the pathe : | — Cldy (R") defined byhg (t) = A1\ Unee B(an, t).
Sincehg (0) = A; andhg (1) = Ag, it follows thatAg € 7. It is easy to see thak (Ag,Az) =1
if E # E’. This means thafAe | E C N} is discrete subset of#’. Sincecard{Ag | E C N} > O,
7 is non-separable. O

For an arbitrary Banach spaie every component o€ldy (X) is a complete metric AR by
Theorems A andd, Theorem 3.2.4].

PrOBLEM 3. For a Banach space (or a Hilbert spake)s every component d€ldy (X)
homeomorphic to a Hilbert space?

Even if X is Euclidean spacR", the above is unknown, that is,

PROBLEM 4. Is each non-separable componentidy (R") homeomorphic to a Hilbert
space?

In relation to above problems, some results with different topologies have been obtained in
[1], [6] and [11]. For topologies on hyperspaces, we refer to the b&k [

THEOREM 7.3 ([11]). For a Hausdorff space, the hyperspac€ldg (X) with the Fell



Hyperspaces and Uniform ANR’s 535

topology is homeomorphic tQ\ {0} if and only if X is locally compact, locally connected,
separable metrizable and has no compact components, Wher&N is the Hilbert cube.

THEOREM 7.4 ([1]). For every infinite-dimensional Banach spaXewith weightt, the
hyperspaceClday(X) with the Attouch-Wets topology is homeomorphic to the Hilbert space
¢>(2") with weight2?, wherew(X) is the weight oK.

THEOREM 7.5 ([6]). For every infinite-dimensional separable Banach spAcehe hy-
perspaceCldy (X) with the Wijsman topology is homeomorphic to the separable Hilbert space
173

Finally, the authors would like express their sincere thanks to Taras Banakh for his helpful
comments and suggestions. He noticed that Example 1 can be simplified in the present form.
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