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Abstract. For a metric spaceX = (X,d), let CldH(X) be the space of all nonempty closed
sets inX with the topology induced by the Hausdorff extended metric:

dH(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}
∈ [0,∞].

On each component of CldH(X), dH is a metric (i.e.,dH(A,B) < ∞). In this paper, we give a con-
dition onX such that each component of CldH(X) is a uniform AR (in the sense of E. Michael).
For a totally bounded metric spaceX, in order that CldH(X) is a uniform ANR, a necessary and
sufficient condition is also given. Moreover, we discuss the subspace DisH(X) of CldH(X) con-
sisting of all discrete sets inX and give a condition onX such that each component of DisH(X) is
a uniform AR and DisH(X) is homotopy dense in CldH(X).

1. Introduction.

Let X = (X,d) be a metric space. The set of all non-empty closed sets inX is denoted by
Cld(X). On the subsetBdd(X)⊂ Cld(X) consisting of bounded closed sets inX, we can define
theHausdorff metricdH as follows:

dH(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}

,

whered(x,A) = infa∈Ad(x,a). We denote the metric space(Bdd(X),dH) by BddH(X). On
the whole setCld(X), we allow dH(A,B) = ∞, but dH induces the topology ofCld(X) like a
metric does. The spaceCld(X) with this topology is denoted byCldH(X). WhenX is bounded,
CldH(X) = BddH(X). Even thoughX is unbounded,CldH(X) is metrizable. Indeed, let̄d be the
metric onX defined byd̄(x,y) = min{1,d(x,y)}. Then,d̄H is an admissible metric ofCldH(X).
It should be noted that each component ofCldH(X) is contained inBdd(X) or in the complement
Cld(X) \Bdd(X). Thus,BddH(X) is a union of components ofCldH(X). On each component
of CldH(X), dH is a metric even if it is contained inCld(X) \Bdd(X). Then, we regard every
component ofCldH(X) as a metric space withdH .

WhenX is compact, it is well-known thatCldH(X) (= BddH(X)) is an ANR (an AR)1 if
and only ifX is locally connected (connected and locally connected) [12]. However, in caseX
is non-compact, this does not hold. In this paper, we construct a metric ARX such thatCldH(X)
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is not an ANR. Recently, Costantini and Kubiś [4] showed thatBddH(X) is an AR ifX is almost
convex, that is, for eachx,y∈ X and for eachs, t > 0 such thatd(x,y) < s+ t, there existsz∈ X
with d(x,z) < sandd(y,z) < t. Under a more mild condition onX, we show that each component
of CldH(X) is a uniform AR in the sense of Michael [9]. For a totally bounded metric spaceX,
in order thatCldH(X) (= BddH(X)) is a uniform ANR, a necessary and sufficient condition is
given. Moreover, we discuss the subspaceDisH(X) ⊂ CldH(X) consisting of all discrete sets in
X and give a condition onX such that each component ofDisH(X) is a uniform AR andDisH(X)
is homotopy dense inCldH(X), whereY is homotopy densein Z if there exists a homotopy
h : Z× III → Z such thath0 = idZ andht(Z)⊂Y for t > 0.

2. Main results and examples.

First of all, we shall construct a metric ARX such thatCldH(X) (nor DisH(X)) is not an
ANR.

EXAMPLE 1. The following subspaceX of Euclidean plainRRR2 is an AR:

X = [1,∞)×{0}∪
⋃

n∈NNN

{n,n+2−n | n∈ NNN}× III .

Then,CldH(X) is not locally path-connected atA = NNN×{1}. Otherwise, we can find0 < γ < 1
such that ifdH(A,B) < γ thenA andB are connected by a path withdiam< 1. Choosek ∈ NNN
so that2−k < γ, and letB = A∪{(k+ 2−k,1)} ∈ CldH(X). SincedH(A,B) < γ, there is a path
f : III → CldH(X) such thatf (0) = A, f (1) = B anddiamf (III) < 1. Let

U = {t ∈ III | f (t)∩{k+2−k}× (0,1] 6=∅} and V = {t ∈ III | f (t)∩{k+2−k}× III =∅}.

Then,0∈U , 1∈V andU∩V =∅. Sincef (t)∩ [0,∞)×{0}=∅ for everyt ∈ III , it is easy to see
thatU andV are open inIII andU ∪V = III . This contradicts to the connectedness ofIII . Similarly,
DisH(X) is not locally path-connected atA.

In order to state the main results, we need some notations and definitions. LetX = (X,d)
be a metric space. ForA⊂ X andγ > 0, we denote

N(A,γ) = {x∈ X | d(x,A) < γ} and N(A,γ) = {x∈ X | d(x,A) 6 γ}.

WhenA = {a}, we writeN({a},γ) = B(a,γ) andN({a},γ) = B(a,γ).
A metric spaceX is called auniform ANRif for an arbitrary metric spaceZ = (Z,d) con-

tainingX isometrically as a closed subset, there exist a uniform neighborhoodU of X in Z (i.e.,
U = N(X,γ) for someγ > 0) and a retractionr : U → X which is uniformly continuous atX, that
is, for eachε > 0, there is someδ > 0 such that ifx∈X, z∈U andd(x,z) < δ thend(x, r(z)) < ε.
WhenU = Z in the above,X is called auniform AR. A uniform ANR is a uniform AR if it is
homotopically trivial, that is, all the homotopy groups are trivial. In [10], it is shown that a metric
spaceX is a uniform ANR if and only if every metric spaceZ containingX isometrically as a
dense subset is a uniform ANR andX is homotopy dense inZ.

A collectionA of subsets ofX is said to beuniformly discreteif there exists someδ > 0
such that theδ -neighborhoodB(x,δ ) of eachx∈ X meets at most one member ofA , that is,
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inf{dist(A,A′) | A 6= A′ ∈A }> 0,

wheredist(A,A′) = inf{d(x,x′) | x∈ A, x′ ∈ A′}.
For η > 0, anη-chain in a metric spaceX = (X,d) is a finite sequence(xi)k

i=0 of points
in X such thatd(xi ,xi−1) < η for eachi = 1, . . . ,k, wherek is called thelengthof (xi)k

i=0 and
diam{xi | i = 0,1, . . . ,k} is thediameterof (xi)k

i=0. Whenx0 = x andxk = y, we call(xi)k
i=0 anη-

chain fromx to y and we say thatx andy areconnectedby (xi)k
i=0. It is said thatX isC-connected

(or connected in the sense of Cantor) if each pair of points inX are connected by anη-chain in
X for anyη > 0.

Now, we say thatX is uniformly locallyC∗-connectedif for eachε > 0 there existsδ > 0
with the following property:

ulC∗(ε) For eachη > 0, there is somek ∈ NNN such that each pair ofδ -close points ofX are
connected by anη-chain with length6 k anddiam< ε.

This concept is invariant under uniform homeomorphisms, that is, if a metric space is uniformly
homeomorphic to a uniformly locallyC∗-connected metric space then it is also uniformly lo-
cally C∗-connected. It is easy to see that every almost convex metric space is uniformly locally
C∗-connected. One should note that the unit circleSSS1 ⊂ RRR2 with the Euclidean metric is uni-
formly locally C∗-connected but not almost convex. The following is our first main result which
generalizes Costantini and Kubiś’ result [4] mentioned in Introduction:

THEOREM A. For every uniformly locallyC∗-connected metric spaceX, the collection of
all components ofCldH(X) is uniformly discrete and each component ofCldH(X) is a uniform
AR, hence the spacesCldH(X) andBddH(X) are uniform ANR’s.

Here, it should be remarked that a metric space is a uniform ANR if and only if the collection
of all components is uniformly discrete and each component is a uniform ANR.

The uniformly localC∗-connectedness is stronger than the uniformly local version ofC-
connectedness. It is said thatX is uniformly locallyC-connectedif for eachε > 0 there exists
δ > 0 with the following property:

ulC(ε) For eachη > 0, each pair ofδ -close points ofX are connected by anη-chain inX with
diam< ε.

This concept is also invariant under uniform homeomorphisms. As seen in the following exam-
ple, the uniformly localC-connectedness does not imply the uniformly localC∗-connectedness.

EXAMPLE 2. For eachn∈ NNN, let en be the unit vector inRRRNNN defined byen(i) = 0 if i 6= n
anden(n) = 1. We define a metric spaceX = (X,d) as follows:

X =
⋃

n∈NNN

RRRen ⊂ RRRNNN, d(x,y) = ∑
n∈NNN

min{2−n, |x(n)−y(n)|}.

Then,X is uniformly locallyC-connected but it is not uniformly locallyC∗-connected.
To see the uniformly localC-connectedness, for eachε > 0, let x,y ∈ X with d(x,y) < ε.

Whenx,y∈RRRen for somen∈NNN, for eachη > 0, choosek∈NNN so thatη(k−1) 6 |x(n)−y(n)|<
ηk, and definexi = x+η ien for i = 0,1, . . . ,k−1 andxk = y. Then,(xi)k

i=0 is anη-chain fromx to
y in X with diam< ε. Whenx∈RRRen andy∈RRRem for n 6= m∈NNN, sinced(x,y) = d(x,0)+d(y,0),
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for eachk ∈ NNN, we can obtain anη-chain fromx to y with diam< ε by joining two η-chains
from x to 0 and from0 to y.

To see thatX is not uniformly locallyC∗-connected, for eachδ > 0, choosen∈ NNN so that
2−n < δ . Then, for everym∈ NNN, d(0,men) 6 2−n < δ . If (xi)k

i=0 is a2−n-chain from0 to men

thenk > m2n. This means thatX is not uniformly locallyC∗-connected.

The following is our second main result:

THEOREM B. For a totally bounded metric spaceX, the spaceCldH(X) (= BddH(X))
is a uniform ANR if and only ifX is uniformly locallyC-connected, whence each component of
CldH(X) is a uniform AR.

For the spaceDisH(X), we have the following result:2

THEOREM C. LetX be a metric space with the following two properties:

(C1) Every bounded closed set inX is compact;
(C2) For eachε > 0, there existk,δ > 0 such that any pair ofδ -close points inX are connected

by ak-Lipschitz pathf : III → X with diamf (III) < ε.

Then, the collection of all components ofDisH(X) is uniformly discrete and each component of
DisH(X) is a uniform AR, henceDisH(X) is an ANR. In this case,DisH(X) is homotopy dense in
CldH(X).

In the above, each component ofCldH(X) is a uniform AR but this follows from Theorem A.
In fact, it will be seen that the condition (C2) above implies the uniformly localC∗-connectedness.

3. Lawson semilattices which are uniform ANR’s.

A topological semilatticeis a topological spaceS equipped with a continuous operation
∨ : S×S→ S which is idempotent, commutative and associative (i.e.,x∨ x = x, x∨ y = y∨ x,
(x∨y)∨z= x∨ (y∨z)). A topological semilatticeS is called aLawson semilatticeif Sadmits an
open basis consisting of subsemilattices [8]. It is known that a metrizable Lawson semilattice is
k-aspherical for eachk > 0 ([4, Proposition 2.3]).

In [1], it is shown that a metrizable Lawson semilattice is an ANR (resp. an AR) if and only
if it is locally path-connected (resp. connected and locally path-connected). Here, we consider
the condition that a metric Lawson semilattice is a uniform ANR. ByBBBn+1 andSSSn, we denote the
unit (n+1)-ball and then-sphere, respectively. We will use the following result in [5]:

PROPOSITION3.1. For eachn> 1, there exists a mapr : BBBn+1→F3(SSSn) such thatr(x) = x
for all x∈ SSSn, where

F3(SSSn) = {A⊂ SSSn | cardA 6 3} ⊂ Fin(SSSn).

A metric spaceX is uniformly locallyk-connectedif, for eachε > 0, there existsδ > 0
such that for eachn 6 k, every mapf : SSSn → X with diamf (SSSn) < δ extends to a map̃f :
BBBn+1 → X with diamf̃ (BBBn+1) < ε. Evidently,X is uniformly locally0-connected if and only if

2This is established in [7].
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X is uniformly locally path-connected. For each simplexσ , we denote byσ (k) the union of all
k-faces ofσ . The following is proved in [10]:

PROPOSITION3.2. A uniformly locally(k− 1)-connected metric spaceX is a uniform
ANR ifX has the following property(ẽ)k:

(ẽ)k There existsβ > 1 such that every mapf : |K(k)| → X of thek-skeleton of an arbitrary
simplicial complexK extends to a mapf : |K| → X such thatdiamf (σ) 6 βdiamf (σ (k))
for eachσ ∈ K.

Moreover, ifX is (k−1)-connected thenX is a uniform AR.

LEMMA 3.3. If X is uniformly locally path-connected, then the collection of all compo-
nents ofX is uniformly discrete inX.

PROOF. First, note that components ofX are path-connected. By the uniformly local path-
connectedness ofX, we haveδ > 0 such that a pair ofδ -close points ofX are connected by a
path inX. Then,dist(C,C′) > δ for each two distinct componentsC 6= C′ of X. ¤

It is said that a metric spaceX is uniformly locally contractibleif for eachε > 0, there exist
δ > 0such that theδ -ballB(x,δ ) at eachx∈X is contractible in theε-ballB(x,ε). Every uniform
ANR is uniformly locally contractible by [9, Proposition 1.5 and Theorem 1.6]. And, as is easily
observed, every uniformly locally contractible metric space is uniformly locallyk-connected for
all k > 0.

THEOREM 3.4. LetL = (L,d,∨) be a metric Lawson semilattice such that

d(x∨x′,y∨y′) 6 max{d(x,y),d(x′,y′)} for eachx,x′,y,y′ ∈ L.

Then, the following are equivalent:

(a) the collection of all components ofL is uniformly discrete inL and each component ofL
is a uniform AR;

(b) L is a uniform ANR;
(c) L is uniformly locally contractible;
(d) L is uniformly locally path-connected.

PROOF. The implication (a)⇒ (b) is easy. The implications (b)⇒ (c)⇒ (d) have been
observed in the above. It remains to show (d)⇒ (a).

The first half of (a) follows from Lemma 3.3. To see the second half of (a), letC be a
component ofL. Then,C is a path-connected. Moreover,C is a subsemilattice ofL. In fact, for
eachx,y∈C, by using a pathf : III →C from x to y, a path1 : III → L from x to x∨y can be defined
by 1(t) = f (0)∨ f (t) for t ∈ III , hencex∨y∈C.

By Proposition 3.2, it suffices to show thatC satisfies the property(ẽ)1. LetK be a simplicial
complex andf1 : |K(1)| →C be a map. Suppose we have defined mapsfi : |K(i)| →C, i < n, such
that fi ||K(i−1)| = fi−1 anddiamfi(σ (i)) = diamf1(σ (1)) for all σ ∈ K. By Proposition 3.1, for
eachn-simplexσ ∈ K, there is a maprσ : σ → F3(∂σ) such thatrσ (x) = {x} for eachx∈ ∂σ .
We extendfn−1 to a map fn : |K(n)| →C by fn|σ = fσ ◦ rσ for eachn-simplexσ ∈ K, where
fσ : F3(∂σ)→C is defined as follows:
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fσ ({a1,a2,a3}) = fn−1(a1)∨ fn−1(a2)∨ fn−1(a3).

Then, diamfn(σ (n)) = diamf1(σ (1)) for all σ ∈ K. In fact, eachx,y ∈ σ (n) are contained in
n-facesσx andσy of σ , respectively. We can write

fn(x) = fn−1(a1)∨ fn−1(a2)∨ fn−1(a3) and

fn(y) = fn−1(b1)∨ fn−1(b2)∨ fn−1(b3),

whererσx(x) = {a1,a2,a3} andrσy(y) = {b1,b2,b3}. By the inductive assumption, we have

d( fn(x), fn(y)) 6 max{d( fn−1(ai), fn−1(b j)) | i, j = 1,2,3}
6 sup{d( fn(x′), fn(y′)) | x′,y′ ∈ σ (n−1)}
= diamfn−1(σ (n−1)) = diamf1(σ (1)).

Thus, by induction, we obtain mapsfn : |K(n)| → C, n ∈ NNN, such thatfn||K(n−1)| = fn−1 and
diamfn(σ (n)) = diamf1(σ (1)) for all σ ∈ K. These maps induce the extensionf̄ : |K| →C of f
such thatdiamf̄n(σ (n)) = diamf1(σ (1)) for all σ ∈ K. Hence,C has the property(ẽ)1. ¤

4. Proof of Theorem A.

It is known thatCldH(X) = (CldH(X),∪) is a Lawson semilattice satisfying the following
condition:

dH(A∪A′,B∪B′) 6 max{dH(A,B), dH(A′,B′)} for eachA,A′,B,B′ ∈ CldH(X).

Refer to [4, Proposition 2.4] (cf. the proof of [1, Fact 4]). By Theorem 3.4, we can reduce
Theorem A to the following:

THEOREM 4.1. For every uniformly locallyC∗-connected metric spaceX, the space
CldH(X) is uniformly locally path-connected.

Before proving this theorem, we give a characterization of the uniformly localC∗-
connectedness. For two metric spacesX = (X,dX) and Y = (Y,dY), let C(X,Y) be the set
consisting of all continuous functions fromX to Y. It is said thatF ⊂ C(X,Y) is uniformly
equi-continuousif for eachε > 0, there isδ > 0 such thatdY( f (x), f (x′)) < ε for each f ∈F
andx,x′ ∈ X with dX(x,x′) < δ .

THEOREM 4.2. Let D be a countable dense subset of the unit intervalIII with the usual
metric and0,1∈ D. Then, a metric spaceX = (X,d) is uniformly locallyC∗-connected if and
only if for eachε > 0, there existδ > 0 andF ⊂C(D,X) satisfying the following:

(i) F is uniformly equi-continuous,
(ii) diamf (D) < ε for every f ∈F ,

(iii) for eachδ -closex,y∈ X, there isf ∈F with f (0) = x and f (1) = y.
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PROOF. First, we show the “if” part. For eachε > 0, we haveδ > 0 andF ⊂C(D,X)
satisfying (i), (ii) and (iii). By (i), for eachη > 0, there isk∈ NNN such thatd( f (t), f (t ′)) < η for
each f ∈F andt, t ′ ∈ D with |t− t ′| < 2/k. By (iii), for eachδ -closex,y∈ X, we havef ∈F
with f (0) = x and f (1) = y. SinceD is dense inIII , there are0 = t0 < t1 < · · ·< tk = 1 such that
ti − ti−1 < 2/k. Then,( f (ti))k

i=0 is anη-chain fromx to y of diameter< ε by (ii). Thus,X is
uniformly locallyC∗-connected.

Conversely, assume thatX is uniformly locallyC∗-connected. For eachε > 0 andn∈ NNN,
we can chooseδn > 0 so that for eachη > 0, there isk ∈ NNN such that each pair ofδn-close
points ofX are connected by anη-chain of length6 k and diameter< 2−nε, whereδn < 2−nε.
Then, we havekn ∈ NNN such that each pair ofδn-close points ofX are connected byδn+1-chain
of length6 kn and diameter< 2−nε. SinceD is a countable dense subset ofIII , we can obtain
{0,1}= D0⊂D1⊂D2⊂ ·· · ⊂D andε1 > ε2 > · · ·> 0 such thatD =

⋃
n∈NNN Dn, limn→∞ εn = 0,

each componentJ of III \Dn−1 containskn−1 many points ofDn anddiamJ < εn.
For each pair ofδ1-close pointsx,y∈X, we can easily constructfxy : D→X with fxy(0) = x,

fxy(1) = y and the following property:

(*) if t0 < t1 < · · · < tkn ∈ Dn and(t0, tkn) is a component ofIII \Dn−1 (hencet0, tkn ∈ Dn−1),
then( f (ti))

kn
0 is aδn+1-chain with the diameter< 2−nε.

For eacht, t ′ ∈ D, let J and J′ be components ofIII \Dn−1 such thatt ∈ clJ and t ′ ∈ clJ. If
|t− t ′|< εn thenclJ∩clJ′ 6=∅, whence it is easy to see thatd( f (t), f (t ′)) < 2−n+2ε. Therefore,
F = { fxy | x,y∈ X, d(x,y) < δ1} is uniformly equi-continuous anddiamfxy(D) < ε for every
fxy∈F . ¤

PROOF OFTHEOREM 4.1. For eachε > 0, we haveδ > 0 and F ⊂ C(D,X) which
satisfies (i), (ii) and (iii) in Theorem 4.2. For eachA,B ∈ CldH(X) with dH(A,B) < δ , let
FA,B = { f ∈ F | f (0) ∈ A, f (1) ∈ B}. Eacha ∈ A is δ -close to someb ∈ B, whence we
have f ∈FA,B with f (0) = a. Similarly, for eachb∈ B, there isf ∈FA,B such thatf (1) = b.
We can define a pathϕ : III → CldH(X) from A to B as follows:

ϕ(t) =

{
clX

⋃{ f ([0,2t]∩D) | f ∈FA,B} if t ∈ [0,1/2],

clX
⋃{ f ([2t−1,1]∩D) | f ∈FA,B} if t ∈ [1/2,1].

For eacht ∈ [0,1/2], A⊂ ϕ(t)⊂N(A,ε), hencedH(A,ϕ(t)) < ε. Similarly,dH(B,ϕ(t)) < ε for
eacht ∈ [1/2,1]. Therefore,diamdH ϕ(III) < 2ε.

We verify the continuity ofϕ. For eachε ′ > 0, sinceFA,B is uniformly equi-continuous,
there isδ ′ > 0 such thatd( f (2t), f (2t ′)) < ε ′ for each f ∈FA,B andt, t ′ ∈ D with |t− t ′| < δ ′.
Let 0 6 t ′ < t 6 1/2 with |t − t ′| < δ ′. Observe thatϕ(t ′) ⊂ ϕ(t). For eachx ∈ ϕ(t) and
0 < ε ′′ < ε ′, we havef ∈FA,B ands∈ [0, t]∩D such thatd(x, f (2s)) < ε ′′. Whens6 t ′, we
haved(x,ϕ(t ′)) < ε ′′ < ε ′ becausef (2s) ∈ ϕ(t ′). Whens> t ′, we haved(x,ϕ(t ′)) < ε ′′ + ε ′
becausef (2t ′) ∈ ϕ(t ′) and

d(x, f (2t ′)) 6 d(x, f (2s))+d( f (2s), f (2t ′)) < ε ′′+ ε ′.

Consequently,d(x,ϕ(t ′)) 6 ε ′. It follows thatdH(ϕ(t),ϕ(t ′)) 6 ε ′, henceϕ|[0,1/2] is continu-
ous. Similarly,ϕ|[1/2,1] is continuous. Thus, it follows thatϕ is continuous. ¤
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For a complete metric spaceX and a dense subsetD ⊂ III , every uniformly continuous map
f : D→ X extends overIII . Then, the following follows from Theorem 4.2:

COROLLARY 4.3. Every uniformly locallyC∗-connected complete metric space is uni-
formly locally path-connected.

5. Proof of Theorem B.

Due to Theorem A, the “if” part of Theorem B follows from the following:

PROPOSITION5.1. Every totally bounded uniformly locallyC-connected metric spaceX
is uniformly locallyC∗-connected.

PROOF. For eachε > 0, we haveδ > 0 with ulC(ε/2). For each0 < η < ε/4, sinceX
is totally bounded, we havex1, . . . ,xn ∈ X such that

⋃n
i=1B(xi ,η/3) = X. For eachx,y∈ X with

d(x,y) < δ , we show thatx andy are connected by anη-chain with length6 n+1 anddiam< ε.
We may assume thatd(x,y) > η . By ulC(ε/2), we have anη/3-chain (y j)k

j=0 in X from x
to y with diam< ε/2. For eachj = 1, . . . ,k−1, choosexi( j) so thatd(y j ,xi( j)) < η/3. Then,

(xi( j))
k−1
j=1 is anη-chain inX with diam< ε andi(1) 6= i(k−1) becaused(x,y) > η . If xi( j) = xi( j ′)

for somej < j ′ then the sequencexi(1), . . . ,xi( j),xi( j ′)+1, . . . ,xi(k) is also anη-chain inX. Hence,
we can choosej1 = 1 < j2 < · · · < jm = k−1 so thati( j`) = i( j`+1−1) and i( j`) 6= i( j`′) for
` < `′, whence the sequencex,xi( j1), . . . ,xi( jm),y is anη-chain inX from x to y with diam< ε
and lengthm+1 6 n+1. ¤

The “only if” part of Theorem B follows from the following:

PROPOSITION5.2. LetH be a subspace ofCldH(X) such that{x} ∈H for eachx∈ X.
If H is uniformly locally path-connected thenX is uniformly locallyC-connected.

PROOF. For eachε > 0, there is someδ > 0 such that ifd(x,y) < δ then there is a map
f : III → H such thatf (0) = {x}, f (1) = {y} anddiamdH f (III) < ε/2. By the compactness of
III , for eachη > 0, we havet0 = 0 < t1 < · · · < tn = 1 such thatdH( f (ti), f (ti−1)) < η , hence
we can inductively choosexi ∈ f (ti) so thatd(xi ,xi−1) < η , whencex0 = x andxn = y. Since
diamdH f (III) < ε, it follows that f (t) ⊂ B(x,ε/2) for eacht ∈ III , henced(xi ,x) < ε/2 for each
i = 1, . . . ,n. Then,(xi)n

i=0 is anη-chain fromx to y with diam< ε. Thus,X is uniformly locally
C-connected. ¤

Similarly to the above, the following can be proved:

PROPOSITION5.3. LetH be a subspace ofCldH(X) such that{x} ∈H for eachx∈ X.
If H is locally path-connected then eachx∈ X has an arbitrarily smallC-connected neighbor-
hood, namelyX is locallyC-connected.

6. Proof of Theorem C.

In this section, we prove Theorem C. A subsetA⊂ X is said to beε-discreteif d(x,y) > ε
for x 6= y∈ A. The following proposition shows thatDis(X) is dense inCldH(X).
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PROPOSITION6.1. For ε > 0, eachA ∈ CldH(X) contains anε-discrete subsetB such
thatA⊂ N(B,ε), hencedH(A,B) < ε.

PROOF. By Zorn’s Lemma,A has a maximalε-discrete subsetB0. ThenA⊂ N(B0,ε).
Otherwise, we could take a pointy∈ A\N(B0,ε), whenceB0 $ B0∪{y} ⊂ A andB0∪{y} is
ε-discrete. This contradicts the maximality ofB0. ¤

Due to [10, Theorem 2], every uniform ANR is homotopy dense in a metric space in which
it is isometrically embedded as a dense subset. Thus, by Theorem 3.4, we can reduce Theorem
C to the following:

THEOREM 6.2. LetX be a metric space with the following properties:

(C1) Every bounded closed set inX is compact;
(C2) For eachε > 0, there existsk,δ > 0such that any pair ofδ -close points inX are connected

by ak-Lipschitz pathf : III → X with diamf (III) < ε.

Then,DisH(X) is uniformly locally path-connected.

PROOF. For eachε > 0, choosek,δ > 0 so that any pair ofδ -close points inX are con-
nected by ak-Lipschitz pathf : III →X with diamf (III) < ε/2. LetA,B∈Dis(X) anddH(A,B) < δ .
Since eachx∈ B is δ -close to some point inA, there is a collection{ fx | x∈ B} of k-Lipschitz
paths inX such thatfx(0) = x, fx(1) ∈ A anddiamfx(III) < ε/2. Then,A andA∪B are connected
by the pathhA : III → DisH(X) defined as follows:

hA(t) = A∪{ fx(1− t) | x∈ B}.

To verify that hA(t) ∈ DisH(X) for eacht ∈ III , assume the contrary, that is,hA(t) is not
discrete for somet ∈ III . Then,0 < t < 1 becausehA(0) = A andhA(1) = A∪B are discrete. We
have infinitely many distinct pointsxi ∈ B, i ∈ NNN, such that( fxi (1− t))i∈NNN converges to some
y∈ X. Since

d(xi ,y) 6 d( fxi (0), fxi (1− t))+d( fxi (1− t),y)

6 k(1− t)+d( fxi (1− t),y),

it follows thatd(xi ,y) < k for sufficiently largei ∈ NNN. Thus,{xi | i ∈ NNN} is an infinite bounded
set. On the other hand, since{xi | i ∈ NNN} ⊂ B, it is discrete inX. This is a contradiction because
every bounded closed set inX is compact.

To see the continuity ofhA anddiamhA(III) < ε/2, let t, t ′ ∈ III . Since

d( fx(1− t), fx(1− t ′)) < k|t− t ′| for everyx∈ B,

we havedH(hA(t),hA(t ′)) < k|t− t ′|, hencehA is continuous. On the other hand, since

d( fx(1− t), fx(1− t ′)) 6 diamf (III) < ε/2 for eachx∈ B,

it follows that
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hA(t) = A∪{ fx(1− t) | x∈ B}
⊂ N(A∪{ fx(1− t ′) | x∈ B},ε/2) = N(hA(t ′),ε/2).

Similarly, hA(t ′)⊂ N(hA(t),ε/2). Hence,dH(hA(t),hA(t ′)) < ε/2. Thus, we havediamhA(III) <

ε/2.
Similarly there exists a pathhB : III → DisH(X) such thathB(0) = B, hB(1) = A∪B and

diamhB(III) < ε/2. By usinghA andhB, it is easy to obtain a path fromA to B in DisH(X) with
diam< ε. Therefore,DisH(X) is uniformly locally path-connected. ¤

PROPOSITION6.3. If a metric spaceX satisfies the condition(C2), thenX is uniformly
locally C∗-connected.

PROOF. For eachε > 0, takeδ ,k > 0 as in the condition (C2). We define

F = { f ∈C(D,X) | f is k-Lipschitz withdiamf (D) < ε}.

It is easily follows from the definition thatF satisfies the conditions (i) and (ii) in Theorem 4.2.
For eachδ -close pointsx,y∈ X, there is ak-Lipschitz pathf : III → X with f (0) = x, f (1) = y
anddiamf (III) < ε. Then, observe thatf |D∈F . Thus,F satisfies the condition (iii) in Theorem
4.2. Therefore, by Theorem 4.2,X is uniformly locallyC∗-connected. ¤

The following example shows that the uniformly local path-connectedness ofDisH(X) does
not imply the condition (C1) nor (C2) for X.

EXAMPLE 3. The spaceX = III \{2−n | n∈ NNN} with the usual metric does not satisfy (C1)
nor (C2). We show thatDisH(X) is uniformly locally path-connected.

First, we prove thatDisH((0,1)) is path-connected. EachA∈DisH((0,1)) can be written as
A= {an | n∈ ZZZ}, wherean 6 an+1 for everyn∈ ZZZ. Then, we can define a pathfA : III →DisH(X)
from A to {a0} as follows: fA(0) = A, f (1) = {a0}, fA(2−n) = {ai | |i| 6 n} for n∈ NNN and, for
2−n−1 < t < 2−n,

fA(t) = fA(2−n)∪{(2n+1t−1)an +(2−2n+1t)an+1}
∪{(2n+1t−1)a−n +(2−2n+1t)a−(n+1)}.

By connectingfA and a path froma0 to1/2, we can obtain a path fromA to{1/2} in DisH((0,1)).
Thus,DisH((0,1)) is path-connected. Similarly, it can be seen thatDisH([0,1)) andDisH((0,1])
are also path-connected.

Next, we prove thatDisH((−1,0)∪ (0,1)) is path-connected. Let

A+ = {2−n | n∈ NNN} and A− = {−2−n | n∈ NNN}.

Then,A+ andA− can be connected toA−∪A+ by pathsf± : III → DisH((−1,0)∪ (0,1)) defined
as follows: f±(0) = A±, f±(1) = A−∪A+, f+(t) = tA−∪A+ and f−(t) = A−∪tA+ for 0< t < 1,
wheretA = {tx | x∈ A}. Now, letB∈DisH((−1,0)∪ (0,1)). If B⊂ (−1,0) or B⊂ (−1,0) then
B can be connected toA− or A+ by a path inDisH((−1,0)) or in DisH((0,1)), hence it can be
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connected toA− ∪A+ by a path inDisH((−1,0)∪ (0,1)). WhenB 6⊂ (−1,0) andB 6⊂ (0,1),
we have two pathsf : III → DisH((−1,0)) and f : III → DisH((0,1)) such thatf (0) = B∩ (−1,0),
f (1) = A−, 1(0) = B∩ (0,1) and1(1) = A+. Then, a pathh : III → DisH((−1,0)∪ (0,1)) from B
to A−∪A+ can be defined byh(t) = f (t)∪1(t). Similarly, we can see thatDisH([−1,0)∪(0,1]),
DisH([−1,0)∪ (0,1)) andDisH((−1,0)∪ (0,1]) are also path-connected.

For each0 6 a < b, DisH([a,b]∩X) is a closed subspace ofDisH(X). By using the above
facts, we can easily show thatDisH([a,b]∩X) is path-connected.

For eachε > 0, choosen∈ NNN so that2−n+1 < ε, let

Xi = [(i−1)2−n,(i +1)2−n]∩X, i = 0, . . . ,2n.

Note that each pair of2−n-close points ofX are contained in the sameXi . For eachA,B ∈
DisH(X) with dH(A,B) < 2−n, let

E = {i | A∩Xi 6=∅, B∩Xi 6=∅}.

Then,A∪B⊂⋃
i∈E Xi . For eachi ∈ E, sinceDisH(Xi) is path-connected, there is a pathfi : III →

DisH(Xi) with fi(0) = A∩Xi and fi(1) = B∩Xi . A path f : III → DisH(X) from A to B can be
defined byf (t) =

⋃
i∈E fi(t). Then, f (t) ⊂ ⋃

i∈E Xi for eacht ∈ III and f (t)∩Xi ⊃ fi(t) 6=∅ for
eacht ∈ III andi ∈ E. It follows that

dH( f (t), f (t ′)) 6 diamXi 6 2−n+1 < ε for t, t ′ ∈ III ,

that is,diamf (III) < ε. Thus,DisH(X) is uniformly locally path-connected.

7. Further problems and related results.

After the eariler version of this paper had been submitted, Banakh and Voytsitski [2] suc-
ceeded in proving the converse of Theorem A, that is,

THEOREM 7.1 ([2]). The spaceBddH(X) (or CldH(X)) is a uniform ANR if and only ifX
is uniformly locallyC∗-connected.

In Example 1,X is not a uniform ANR butCldH(X) need not be an ANR even for a uniform
AR X. In [2], Banakh and Voytsitski showed thatCldH(RRRNNN) is not an ANR, whereRRRNNN has the
usual product metric. The following is unknown:

PROBLEM 1. Characterize metric spacesX such thatDisH(X) are ANR’s.

In caseX is uniformly locally compact (i.e., there is someδ > 0 such thatB(x,δ ) is compact
for eachx∈ X), it is proved in [2] that DisH(X) is a uniform ANR if and only ifX is uniformly
locallyC∗-connected. Due to Theorem A,CldH(QQQ) andCldH(RRR\QQQ) are ANR’s with respect the
usual metric. However, the following is open:

PROBLEM 2. Is DisH(QQQ) or DisH(RRR\QQQ) an ANR?

The following proposition is shown in [7], which shows the complexity of the space
CldH(X).
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PROPOSITION7.2. The spaceCldH(RRRn) has uncountably many components. Moreover,
the spaceCompH(RRRn) of all compact sets is one of them and all but this component are non-
separable.

PROOF. First, we show thatCldH(RRR) has uncountably many components. LetA = {n2 |
n ∈ NNN}. We can writeA = {k(i, j) | i, j ∈ NNN} such thatk(i, j) 6= k(i′, j ′) if (i, j) 6= (i′, j ′). For
each nonempty setE ⊂ NNN, we denoteAE = {k(i, j) | i ∈ NNN, j ∈ E} ∈ CldH(RRR). Observe that
if E 6= E′(⊂ NNN), thenAE \AE′ or AE′ \AE contains infinitely many points, which implies that
dH(AE,AE′) = ∞. ThenAE andAE′ are contained in different components. SinceNNN has uncount-
ably many subsets,CldH(RRR) has uncountably many components.

The casen > 2 is simpler than the above. For eachx ∈ SSSn−1 = {x ∈ RRRn | ‖x‖ = 1}, let
Ax = {tx | t ∈ [0,∞)} ∈ CldH(X). Then, forx 6= y∈ SSSn−1, evidentlydH(Ax,Ay) = ∞. Now, let
Ax be the component ofCldH(RRRn) containingAx. ThenAx∩Ay =∅ for x 6= y∈ SSSn−1. Hence,
CldH(RRRn) has uncountably many components.

It should be note thatCompH(RRRn) is connected and clopen inCldH(RRRn). HenceCompH(RRRn)
is component ofCldH(RRRn).

Now, letH be a component ofCldH(RRRn) such thatH 6= CompH(RRRn). ThenH contains
an unbounded closed setA in RRRn. Choosean ∈ A, n∈ NNN, so that‖an+1‖> ‖an‖+3. Let

A1 = A∪
⋃

n∈NNN

B(an,1).

Then, we have the pathh : III → CldH(RRRn) defined by

h(t) = A∪
⋃

n∈NNN

B(an, t).

Since h(0) = A and h(1) = A1, it follows that A1 ∈ H . For eachE ⊂ NNN, let AE = A1 \⋃
n∈E B(an,1). There exists the pathhE : III → CldH(RRRn) defined byhE(t) = A1 \

⋃
n∈E B(an, t).

SincehE(0) = A1 andhE(1) = AE, it follows thatAE ∈H . It is easy to see thatdH(AE,AE′) = 1
if E 6= E′. This means that{AE |E⊂NNN} is discrete subset ofH . Sincecard{AE |E⊂NNN}> ℵ0,
H is non-separable. ¤

For an arbitrary Banach spaceX, every component ofCldH(X) is a complete metric AR by
Theorems A and [3, Theorem 3.2.4].

PROBLEM 3. For a Banach space (or a Hilbert space)X, is every component ofCldH(X)
homeomorphic to a Hilbert space?

Even ifX is Euclidean spaceRRRn, the above is unknown, that is,

PROBLEM 4. Is each non-separable component ofCldH(RRRn) homeomorphic to a Hilbert
space?

In relation to above problems, some results with different topologies have been obtained in
[1], [6] and [11]. For topologies on hyperspaces, we refer to the book [3].

THEOREM 7.3 ([11]). For a Hausdorff spaceX, the hyperspaceCldF(X) with the Fell
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topology is homeomorphic toQ\ {0} if and only if X is locally compact, locally connected,
separable metrizable and has no compact components, whereQ = IIINNN is the Hilbert cube.

THEOREM 7.4 ([1]). For every infinite-dimensional Banach spaceX with weightτ, the
hyperspaceCldAW(X) with the Attouch-Wets topology is homeomorphic to the Hilbert space
`2(2τ) with weight2τ , wherew(X) is the weight ofX.

THEOREM 7.5 ([6]). For every infinite-dimensional separable Banach spaceX, the hy-
perspaceCldW(X) with the Wijsman topology is homeomorphic to the separable Hilbert space
`2.

Finally, the authors would like express their sincere thanks to Taras Banakh for his helpful
comments and suggestions. He noticed that Example 1 can be simplified in the present form.
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