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Abstract. We pose a variational problem for surfaces whose solutions are a geometric
model for thin films with gravity which is partially supported by a given contour. The energy
functional contains surface tension, a gravitational energy and a wetting energy, and the Euler-
Lagrange equation can be expressed in terms of the mean curvature of the surface, the curvatures
of the free boundary and a few other geometric quantities. Especially, we study in detail a simple
case where the solutions are vertical planar surfaces bounded by two vertical lines. We determine
the stability or instability of each solution.

1. Introduction.

We study a variational problem whose solutions are a geometric model for thin films subject
to a vertical gravitational force.

We will consider immersed surfaces in the three-dimensional Euclidean space which are
partially supported by a given curve. We represent” as an immersioX = (x!,x%,x%) : & —
R? of a two-dimensional orientable compact conne@&dmanifold = into R®. Our problem is
to investigate critical points of an energy functional which is the sum of three terms:

e The length of the free boundary gf. This can be considered as a type of adhesion energy
for the film to air interface. We assume that this energy is proportional to the arc length
of the free boundary and normalize the constant of proportionality to be one.

o A “gravitational potential energy” foZ which arises from a vertical gravitational force.
We consider the acceleration due to gravity to be constant.

e A “wetting energy” for.# which is proportional to the length of the part of the fixed
boundary which comes into contact with the film.

We also impose the realistic assumption that the are& a$ preserved under deformations.
Thus, our energy functional can be expressed as,

E(X) = L(X)+Gy(x)+WB(X):/|dX|+y/Zx3dZ+B/ 1dX|,
P o]
wheredZ is the volume element of induced byX, d% = cuUp, X(g) C I', p is the free

boundary ofX, y and 3 are given constants which depend on the material of the film and the
surrounding media. Our objective is to study the geometry and stability of equilibria for the
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functional &. For additional explanation about the components of the energy functional, we
refer the reader tca].

Let us denote by = (v!,v2,v3) the Gauss map of. The Euler-Lagrange equation for the
energy yields that the mean curvatiieof X satisfies the equatio2H (yx® 4 c) — yv3 = 0 for
some constart, the normal curvature of the free boundaryanishes, the geodesic curvature of
p is the linear functioryx® + ¢ of the vertical coordinatg® and that the free boundary intersects
" in complementary angles at its endpoints.

In this paper, we concentrate on the simplest case wheensists of two vertical rays and
the horizontal segment connecting them. We assume from the outset that the surface is planar
when it is in equilibrium and the free boundary component consists of a smooth embedded curve
C whose two endpoints are constrained to lie on each of the vertical lines (see Figure 1 on page
339). Clearly the configuration of the surface is completely determined by the Cunvethis
case, the Euler-Lagrange equation for the energy yields that the curva@irg @finear function
of the vertical coordinate in the interior 6f and thatC intersects the each of the vertical lines
in complementary angles. The problem that we consider is to determine all stable configurations
which can occur. The critical curves are found explicitly in terms of elliptic functions and
the stability of each type is analyzed. Conceptually, this simple problem is a one-dimensional
version of the type of free boundary problem considered®jn[B], [ 7] with the addition to the
energy of the gravitational term.

The paper is organized as follows. In the second section, we will formulate the variational
problem and derive first variation formulas for the general setting. In the remainder of the paper,
we will restrict our attention to the simple case of a planar film mentioned above. In the third
section, we derive the Euler-Lagrange equation which characterizes critica of the variational
problem. In the fourth section, we derive the second variation of the energy functional and
define the notion of stability. In the fifth section, by studying the ordinary differential equation
comes from the Euler-Lagrange equation, we derive some geometric properties of the critical
curves. We also show that the Euler-Lagrange equation for the critical curve is equivalent to the
pendulum equation. The main results of the paper are in the sixth section where we determine the
stability or instability of each critical point. At the end of the paper, we will give some pictures
of examples of critical curves (Figure 2).

We wish to thank Professor Oscar Garay for pointing out to us that the critical curves which
we study as the simplest case are exactly the elastic curves in the plane. We note however that
the variational problem we study is very different from the one for elastica and that, in particular,
the stability analysis differs greatly for the two problems.

2. Formulation of problem and first variation formulas.

Let I be a piecewise-smooth closed curve without self-intersectiof®inAlso let =
be a two-dimensional orientable compact conne@®&dmanifold with boundary> which is
homeomorphic t&'. We divided s into two connected parts as follows.

0> =oUp,
whereo N p consists of two points:

onp ={{1, 4}
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Consider a smooth immersion
X=X : 2 R

whose restrictiorX |, to o is an injection intd”. Denote by = (v, v? v3): ¥ — & the Gauss
map ofX. We assign tX the following four quantities:

A(X)::/ZdZ, L(X)::/p\dX|,
Gy(x)::y/zx3dz, WB(X)::B/C;|dX|,

wheredZ is the volume element af induced byX, andy and 8 are constants. Thef(X)
represents the area ¥f L(X) represents the length of the free boundary= X(p), Gy(X) and
Ws(X) represents the (gravitational) potential energy and the wetting enedgyegpectively.
(One can find physical examples corresponding,tf with any sign. For example, when we
think of soap film.# partially supported by such a spediahs in§3., it is natural to assume that
y>0andfB < 0hold.)

Consider a smooth variatio : & — RS of X satisfying the boundary condition

Xe(o)Cr.

We wiill call such a variatiorX; anadmissible variatiorof X.
For simplicity, we will write X instead ofX.. We will often denote by ? ' the partial
derivative with respect te. Denote byn the exterior normal oK alongdZ. Letp : [o1,02] — p

be a parametrization @f such thap(a;) = &, i = 1,2, andX x v = |X|n hold, where
. d(X|poP)
X=X|pi=———+=
|P ot ’

andt is the parameter iforg, a2] C R _Similarly,.leté : [61,82] — 0 be a parametrization af
such thas (&) = {2, 6(&%) = {1, andX x v = |X|n hold, where

<% 0(X|g00)
X=X|g:=———=
lo ot
andt is the parameter ifd1, ] C R. In general, we will denote by * the partial derivative with
respect td. We set

170,
E:E7 f:<E,V>,

y=(S,n ondz,

where( , ) is the usual Euclidean inner productRi.

We will denote byH the mean curvature of. Also, we will denote bykn, k, the normal
curvature and the geodesic curvature¢js, respectively.

Notice that for any admissible variation,
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=0andf =0 ono (1)
holds.

ProrPosITION2.1 (First variation formula). For each admissible variation, the following
first variation formulas hold.

A’:—z/ZHdeJr/pwds 2)

G, = y/>:(—2Hx3+ v3)de+y/ yds 3)
o

L' = \E(Zz)lcosw—IE(Zl)\cosan—/p(<>'<,v>f+<>'<,n>w)|>'<|*2ds 4)

= 1€()|costp (&) costar — [ (kn + k)0 (5)

W = B(|&(¢1)|cosnz — [&({2)| cosna),
wherew denotes the angle betwei, (a;) and¢(di), i =1, 2, n1 denotes the angle between
X|o(d1) and & ({2), andnz denotes the angle betweliy (&) and&({1). Consequently,
cosni € {1,-1} i=1,2
holds sinceX| (1) (resp.X|4(3,)) is proportional to€ (Z2) (resp.& (41)).

The proof of Proposition 2.1 will be given after Proposition 2.2.
By virtue of Proposition 2.1, we immediately observe the following:

~ PROPOSITION2.2 (Euler-Lagrange equation).Denote by6y, 6, the angles fronX |5 (&)
to X|p(a1), from X|p(a2) to X|5(d1), respectively. Ther(L + G, +W;p)'(0) = 0 for all area-
preserving admissible variations if and only if

2H(yC+c)—yv3=0 onz,
kn=0 and k,=yC+c onp,
and
cosb; = cosb, = 3
for some constant€ R.

PROOF OFPROPOSITION2.1. (2) is derived directly from the well-known first variation
formula for the area functional.
Let us prove (3). Léu!,u?) be local coordinates ifi. Set

oX
xl_ﬁ7

'3 :ET+fV:V1X1+V2X2+fV.

etc,

Denote by( , ), the Riemannian inner product in the metric inducedoy
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G/ =y [0ydz-+y [ ¥(dz). (6)
/ 3(dz) = / x3(—2H f +diveT)d=. )
b3 b2
By using the divergence theorem, we see that
34 ET s _ o 3rTs T
/Zx divé de/Zdlv(x £)ds /Z<DX3,E ) 0=
_ T _ T
f/dz<x3£ n)ds /Z<Dx3,€ ),d5
_ 3 _ T
_/02<x £ nyds /Z<DX3,E ),d=
:/x3<5,n)ds—/<Dx3,£T)gdZ, ®)
p by

where we have used,n)|; = 0. On the other hand, since
ET=VIX +VXo =& — (&, v)v,
we obtain
(0,7 =V + V()2 = &5~ (§,v)v°.

Therefore,
/Z' (0%, ET),d5 = /Z (83— (&, v)v3)ds. ©)

From (6), (7), (8), and (9), we get (3).
Next, we will derive the formula fok’. We see that

az
L(X)= [ ds= [ "|X|dt,
()= [ ds= [ "
! a2 d v o az . —1 BX 02X
L 7/0{1 $|X\dtf/al IX| <at,m>dt
=[x e
iy a az ﬁ RN
— 0,815 - (5007508
~ [£(22)]coswa ~ £ 2y coser — (XI55,
a1
= f(zz)|cosw2_|5(zl)coswl_/p<_|>'<|2<>’<,>‘<>>’<+>‘<, E>|X|2ds
— & (Z2)| cosw, — |€(Z1)| cosw; — /p (Xes £)ds

which implies (4) and (5).
The derivation of the formula chL; can be handled similarly and will be omitted. [
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3. Euler-Lagrange equation for the simplest case.

In the following, we will consider the special case depicted in Figure 1. We will write
(x,y,2) instead of(x',x?,x3). Leta,xp, X1 (Xo < 1) be constants. Set

l1={(%,0,2)|z< a},
o, ={(x,0,a)|x0 <x<Xg},
I3 ={(x1,0,2)|z< a},

r=11UlaUls.

We assume thaX(ZX) is contained in thez plane. Moreover, we will assume that the endpoints
of the curveC(s) = (x(s),z(s)) are constrained to lie on distinct vertical ralys I3. For the
boundary curveS(s) = (x(s), z(s)), s= arc length, we letL = L[C] = length ofC, x(0) = xo,
andx(L) = x;. Note thatC has no self-intersections amngl < X(s) < x; holds for allse (O,L).
SetEz = (0,1). Sincediv(zEs) = 1 anddiv((z?/2)Ez) = z, we can write the area, gravitational
and wetting energies as

AlC] : = A(X) :—/Czdx+cl, o1 i= (X — %0)a,
GylC): = Gy(X) = (~y/2) [ Zdxrca c2i= (y/2) (a0
Wg[C] 1 = W5 (X) = B[(a—2(0)) + (a—2z(L)) + (X1 — o).

For a functionf on [0, L], set[[f]] = f(L) — f(0).

We consider a variatiorC, : [0,L] — R? of C with variation vector field5C(s) =
((3x)(s),(02)(s)) := (0Ce(S)/0¢€)|e=0, Wheree is the variation parameter ad = C. Because
the endpoints stay on the vertical lines, we have:

(6x)(0) = 0= (ox)(L). (10)
In this case, these variation comprise the admissible ones.

Denote byn the unit normal toC which points out of the surfack¥(X), and byk the
curvature ofC with respect ton. We remark that this is not the usual sign convention for the
curvature.

For any admissible variatidd; of C, we get the following first variation formulas.

:7/C:K<5C,n>d3+[[(6z)zlﬂv
SAC] = / (3C,n) ds

5G,(C) y/ 2(5C,n)

SWs[C) = ~B((32)(L) + (52)(0).
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We are using “prime” here to denote differentiation with respeawdnich is a departure from
its usage in section 2. These formulas are obtained from Proposition 2.1 by lettirly Con-
sequently, we get

PrRoOPOSITION3.1 (Euler-Lagrange equation)Assume tha3| < 1. Then,
O(L+Gy+Wz)=0
holds for all area-preserving admissible variations if and only if
K =YyzZ+ Ko (11)
holds for some constarp € R and
—Z(0) = cosf; = B =cosb, = Z(L) (12)
holds, wheref; is the angle from-Ez to C'(0), 8, is the angle from GL) to Es.
The Euler-Lagrange equation implies that
Bl <1

necessarily holds for all critical points, so from now on we will only consider valugsiofthis
range.
From (12), it follows that

61| =16,]  (mod 2n).

SinceC has no self-intersections amgl< x(s) < x; holds for allse (0,L), X(0) >0, X (L) >0
holds. Therefore, we may set

6:=6=6,¢ [O,TI},
and we have

(13)

Figure 1.
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4. Second variation and definition of stability.

From now on, we assume that the cufvsatisfies the Euler-Lagrange equations (11) and
(12). We will derive the second variation
2

(L + Gyt W) 1= % (LG Gyl + W C)

for any area-preserving admissible variation
Ce(s) :=C(g,5) = C(s) +&(p(s)n(s) +aA()C(9)) + O(£?).

For simplicity, we suppress the subscripalthough all quantities below are assumed to depend
onit.
At € =0, by using (11) and (12), we see that

5?(L+ Gy +Wp) = 8%(L + Gy +Ws + KoA)

= % o UC(K+ yz-+ Ko)(0C, n)ds+ [[(3C,C")]] — B((2)(L) + (52)(0))]
- /c<;e AL VZ+K0>) -(oC, n>ds+% gzo[nwc,c’m —m[<6c,6’>n]
=1+l

where
C'(L):=E3=(0,1), C'(0):=—E3=(0,—1).
First we observe

LEMMA 4.1. Ate =0,

I =/C{— P’ — (k*+yX)p}pds
holds.
PrROOF. Elementary calculations give at=0
Ok = kK?p+p'+yaZ, dz=—-pX+qZ, (3C,n)=p. O
On the other hand, we see
LEMMA 4.2. Ate=0,

1= [[p(p’+ k)]
holds. If|B] < 1, then

n=[o(v J%Zp)ﬂ — [Ip(p — kcotd - Zp)]],
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where

PROOF. At € =0, by using (12), we see that
Il = [[(8C.C' ~ BC')]] = [[(8C,8C" ~C'(C',6C)) )]
=[[(8C,(8C",mm)]] = [[{C, (P + k)]
= [[p(p' +Kka)]].
Assume thaif| < 1. Since
0= 0x= pZ+0g¥X,
we observe that
q=—pZ/X = —pcot6-Z. O
From Lemmas 4.1, 4.2, we get the following

PrROPOSITION4.1 (Second variation formula). Assume that the curve C satisfies the
Euler-Lagrange equationél 1), (12) Setf := 6; = 6,. The second variatioﬂZ(L+Gy+WB)
for any area-preserving admissible variation of C depends only on the normal component pn of
the variation vector field, and it is given by the following formulas.

@) If|B| <1, then

&L+ Gy+Wp) = [ { '~ (k7+X)p}pds+[[(p ~ kcotd-Zp)pl

holds, where

(i) If |B] = 1, then

(L + Gy + W) =/C{— p’ — (k2 +yX)p}pds
holds.

The following lemma is proved by a modification of the proof of the existence of volume-
preserving variations fixing the boundary given by Barbosa-do Catino |

LEMMA 4.3. Suppose that a curve G0, L] — R satisfies the Euler-Lagrange equations
(11), (12)

(i) Assume thatf| < 1. Let p: [0,L] — R be a C function Withf(l)' pds=0. Then, there
exists an area-preserving admissible variationd® C such tha{oC, n) = p.

(i) Assumethai3|=1. Let p: [0,L] — Rbe aC function withfé‘ pds=0and gyo =0.
Then, there exists an area-preserving admissible variatipof© such thatdC,n) = p.
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In view of the above lemma, we define function spaggsF for a curveC satisfying (11),
(12) as follows.

. {cmqo,u» Bl <1,
{pec(0.L)|p(O) = pL) =0}, [B=1

L
F::{pe Fo‘/o pds:o}.

Set

Je{—0"—(K*+yX)p}pds Bl=1.

We define the stability as follows:

j(p)::{fc{—p”—(K2+v%)p}pd5+H(p’—KcotB-i’p)p]L Bl<1,

DEFINITION (Stability). Suppose that the bounda®y [0,L] — R? of a film .# satisfies
the Euler-Lagrange equations (11), (12). Théhwill be calledstableif .#(p) > 0 holds for
all pe F, and.# will be called unstable otherwiseZ is said to be strongly stable i# (p) > 0
holds for allp € F.

5. Some geometry of critical curves.

In this section, we study geometry of critical curves and their global extensions.
Integratingx” = kZ overC and using (11) and (13), gives

0= (X)) = 21121} + ol 2]

Therefore, we have the following:

LEMMA 5.1. Inthe case of a critical curve, at least one of the following holds

z(L) = z(0) (14)
and/or
y(z(L) +2(0)) = —2Ko. (15)
Moreover,(14)is equivalent to
K(L) = k(0),

and(15)is equivalent to
K(L)+k(0)=0.

Next, we will study the shapes of the global extensions of critical curves. The equation
(11) can be integrated explicitly. The explicit representation of the critical curves appears to be
well-known and classical. We will include the computation for the reader’s convenience. It will
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turn out that in almost all cases, the solutions are periodic curves which, except for circles and a
particular other one-parameter family of curves, are invariant under certain parallel translations
in thex direction.

LetC=(x,2):1 — R%, | C R, be a solution of (11) which is parametrized by the arc-length.
Here we will takel to be the largest possible interval.

Wheny = 0, the curve is a horizontal straight line or a circle. So, we will assumeytiad.
The equatiorC” = kn gives

X' =kKZ, 7' = —kX. (16)
By settingcoso := X, sing = Z, we have a solution to the system:
Z =sino, 0 =-k=—(yz+Ko).
These equations can be combined to show dhsatisfies thgpendulum equation
"

g’ = —ysing. a7

Conversely, it is easy to show that a solution of this equation generates a solution of (16) with
K = yz+ constant
Define

g, y>0,
p=ly, w=
o+m y<O.
Then in either case, we obtain a solution of the pendulum equation
o' = —psinw (18)

with p > 0.
Each solution of (18) admits a first integral

(w')?2 — 2pcosw = constant=: a. (19)

The geometric meaning @afis given by

a=(1/L) (/OLKZdS— 2y(x(L)—x(0))> (20)

forallL > 0.
We may rewrite (19) as

o (52)-w4(2))

In the case wherey = 0, the solution curve is a horizontal straight line. Excluding this case, we
have

at+zp 5
40 =:x5 x>0.

By replacing the parametsiby s+ constanif necessary, the solutions of (19) are expressed as
follows (cf. Lawden b, Chapter 5]).

0<
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LEMMA 5.2. Casdi) x2 < 1. The solution can be expressed in terms of elliptic functions
sin(w/2) = xsn(y/ps,X),  cogw/2) =dn(\/ps,X).
Caséii) x°> 1. The solution can be expressed in terms of elliptic functions
sin(w/2) =sn(y/ps/X,X),  cogw/2) =cn(\/Ps/X,X).

Note that, a> 2p holds, so by{19) w’ never vanishes and so the curve C has nowhere vanishing
curvature and is therefore convex.
Casdiii) x2 = 1. The solutions are expressed as

sin(w/2) = tanh(\/ps), cogw/2) = secl{\/ps).
REMARK 5.1. Sincep = |y|, using (20), we have

(a—20)L Jo k2 ds—2y(x(L) —x(0)+L), y>0,
a— e
P JEk2ds—2y(x(L) —x(0)—L), y<O.
Therefore, ify < 0, then(a—2p)L > 0 holds. Hence, in this case? > 1 holds, which corre-
sponds to case(ii) above. On the other handyfor0, all cases(i) — (iii) can occur.

LEMMA 5.3. IfCis a solution curve, then
() 1=R.
(i) The function z is bounded.
(i) Except in cas@ii) of the previous lemma, the curve C is periodic. More precisely, there
exists somegl> 0O, such that

X(s+do) =x(s)+ap, z(s+dy)=12zs), VseR
holds, where
ao := X(do) — X(0).

(iv) Z(s1) =O0for some s.
(v) If Z(s1) = 0 holds for somess then C is symmetric with respect{®= x(s1)}.
(vi) If k(s2) = 0holds for some s then C is symmetric with respect t¢sz).

PROOF.  The statement (i) follows since the explicit values aafsw = co(w/2) —
sir?(w/2) andsinw = 2cogw/2) sin(w/2) given above are defined for all valuessof

The boundedness affollows since (19) can be written dgz+ ko)? = 2|y| cosw + a.

In cases(i) and (ii) of Lemma 5.2, the periodicityf= coso andZ = sino follow from
the periodicity of the elliptic functionsn, cn anddn. In fact, the period for these functions is
given by4K, wheresnK) = 1. Sinceyz= x"/Z holds, the periodicity of follows from that of
X andZ. The periodicity ofx as described above follows from the periodicityxbf

In cases(i) and (ii) of the previous lemma, the statement (iv) follows immediately from the
periodicity. In case(iii), it follows since

|Z(0)| = |sin(a(0))| = 2|sin(cg(0)/2) cogc(0)/2)| = 2|tanh(0)sech0)| = 0.



Variational problem for soap films with gravity 345

Next we prove (v). By a translation of the parametand coordinates, we may assume that
=0, x(0)=0, kK=yz

hold. Set

Moreover, we see

C(0) = (0,2(0)) =C(0),
€'(0) = (1,0)=C'(0), €"(0) = (-X"(0),Z'(0)) = (0,2'(0)) =C"(0)

Therefore,C andC satisfy the same ordinary differential equations and have the same initial
values, which implies tha = C and we have proved (v).
We prove (vi). By a translation of the paramesemnd coordinates, we may assume that

=0, C(0)=(0,0), k=yz
hold. Set

C:=(%X2), X :=-x(-9), Zs) :=-2z-9).

By a similar argument to the above, we see tat € holds and we get (vi). d

6. Stability of critical points.

Assume that the curv@ satisfies the Euler-Lagrange equations (11), (12), ané set9; =
6,. We define the Jacobi and boundary operators by

P = p" + (K2 +yX)p,
BM:{W—KwWﬁn BI<1
P, Bl =1.

Then, by Proposition 4.1, the second variatffL + Gy +Wjp) for any area-preserving admis-
sible variation ofC can be expressed as

7 (p) =~ [_pAlplds(p-Bpl]l. p:=(6C.n).

Here we remark that if3| = 1, then, from the boundary condition (1@0) = p(L) = 0 holds.
Recall thatC” = kn gives

X'=kKZ, 7' = —kX.

From this and the boundary values (12), (13)XoandZ, we obtain
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IX]=y,  B[X]loc=0, (21)

— Y
B[znac:{ K/VI=B% |BI<1,

41, B =1.

Sincel is a Sturm-Liouville operator, the eigenvalue problem

has a discrete spectrum, all eigenvalues are real, and the multiplicity of each eigenvalue is one.
We denote these eigenvalues by< A> < Az < ---. We remark that each eigenfunction be-
longing toA; has a definite sign. Denote Iy the eigenspace belonging Ag, and byE;- the
orthogonal complement d; in L2([0,L]). We can choose eigenfunctiogis€ E; so that{¢; };

is an orthonormal basis i?([0,L]). By a standard method, we see that

M= #(0n) =min{ () pe C(0.1]). | pPds=1}.
N = () =min{ (Pl peC(0L). [ pPds=1, [ phyds=0(i=1..i-1)}

(cf. [2]). From these properties, the following lemma is proved by a modification of the proof of
Theorem 1.3 in4].

LEmmA 6.1. (1) If A1 >0, then% is strongly stable.
(I If A1 <0< A, then there exists a uniquely determined function©@™([0,L]) satisfying
J[u] = 1 and Bul|sc = 0, and the followingdll-1) and(l1-2) hold.
(II-1) If f[cuds> 0, then.Z is stable.
(1-2) If Jcuds< 0, then% is unstable.
(1) 1If A2 = 0, then the followindlll-A) and(llI-B) hold:
(1I-A) If f- ¢ods# 0, then.Z is unstable.
(I1-B) If [ ¢2ds= 0, then there exists a uniquely determined functieniy NC*([0,L])
satisfying Ju] = 1 and Bu]|sc = 0, and the following11-B1) and(l1I-B2) hold.
(-B1) If [cuds> 0, then.Z is stable.
(-B2) If [cuds< 0, then.Z is unstable.
(IV) If A2 <0, then.% is unstable.

THEOREM®G6.1. If y=0, then C is a part of a round circle or a horizontal straight line
segment)d; = 0, and so the film# is strongly stable.

PrROOF. If y=0, thenitis clear tha€ is a part of a round circle or a horizontal straight
line. Hence, from assumption (13},is a graph and’ > 0 in the interior ofC. Therefore, from
(21), X is an eigenfunction belonging to the first eigenvalue zero. O

PrROPOSITIONG.1. If A1 <0< Az holds and¥ is stable, thery > 0 holds. Conversely, if
A1 <0< Az andy > 0 hold, then% is stable.

PROOF. If y=0, then, from Theorem 6.1, it follows thay = 0. Therefore, ifA; <O,
theny # 0. Setu:=X'/y. Then, by (21), we hav&u] = 1, B[u]|sc = 0. Moreover, we see that
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Juds=y [ Xds=yx(L) x(0) =y (1~ ).
C c
By these observations and Lemma 6.1, we get the desired result. O

THEOREM6.2. Let.# be a film bounded by a horizontal line segment C.
() If y<0,thens is strongly stable.
(iiy If y>0,then

Fisstable<= 1> 0. <=L < m//y.

PROOF. We have already considered the case wlyered in Theorem 6.1. So we assume
thaty # 0. We have

0=k = yz+ Ko,

so that

= —Ko/Y.

The second variation of the energy for this film is given by

L
7(p) = [ (P02~ v(pb0)?dx

so that% is strongly stable foy < 0.
Next, assume that > 0 holds. Then'th eigenvalueA, of the problem

J[p|=—-Ap in[O,L], B[p]:p,:O ond|[0,L]

is given by{(n—1)m/L}? —y, and the corresponding eigenfunctions aces((n— 1)7s/L).
Note thatJ[1] =y, B[1][5j0) = 0. Now we see that, by Lemma 6.1, the filtA is stable if and
only if A2 > 0 holds, and we have

A2>0. <= L<m/y. 0

THEOREM6.3. Assume that the free boundary C of a fiffnis not a straight line segment,
andy < 0. Then
(i) k has a definite sign on C.
(ii) Cisagraph over an interval of the x-axis.
(i) .Z is strongly stable.

PrROOF. First we prove (i) and (ii). As in Section 5, we s&iso := X, sing = Z. From
(12), (13), and the embeddednes€£ofve may assume that
—n/2<0(0)<m/2, —-m/2<o(L)<m/2, o(L)=-0(0). (23)

Moreover, from (12), there exists sorsge (0,L) such thatz takes either its maximum or its
minimum value as = s,. First, assume tha(s,) is the maximum o Then,n(s;) = (0,—1)
andk(s) > 0 hold. Therefore, ify < 0, then
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K=YyZ+Ko>0

on [0,L]. Sinced’ = —k holds, o is strictly decreasing of0,L]. Hence, from (23), it follows
that

—m/2<o(L)<o(s)<a(0)<m/2, Vse(O,L).
Consequently, we have
X(s)=cosa(s) >0, Vse (0,L),

which implies thaCC is a graph over an interval of theaxis. Also in the case whegs,) is the
minimum ofz, by a similar argument, we can show (i) and (ii).

Next, we prove (iii). Supposg| < 1. If Cis given byz= z(x), thends= /1 + (dz/dx)2dx
and so

1
X(s) = ————>0
+ (dz/dx)?

holds.

Note that for sufficiently smooth functiords g onC, we have

/ZqJZq ds+[[{qB[{q]]] /ZZqJ a+9°¢¢" +22q7'd ds
+[[¢a(¢B[a] +ad")]]
~ - [Pl ds+ [ ¢?(¢")?ds+ (¢8|

Note that sinced > 0 holds, we can write an arbitrary smooth function@mas{x'. Applying
the previous formula witlg = X/, gives

f/cz?( ds+/ )2ds> 0,

which implies that# is strongly stable. For the cafg| = 1, a similar proof with a little modi-
fication derives the desired result. O

We have determined all cases fox 0. So, from now on, we will assume thgat> 0 holds.

Let C be the boundary curve of a filt#. For the case whet@ is a straight line segment,
we have already observed its stability (Theorem 6.2). So, we will assumeg thaiot a straight
line segment.

LEMMA 6.2. Assume that C is not a straight line segment. Then, the situation is divided
into the following five cases.

Casél) C has no inflection point.

Cas€ll) C has only one inflection point.

Casdlll) Both endpoints of C are inflection points, and C has no inflection point in its
interior.

Cas€lV) C has exactly two inflection points and only one zerd af its interior.

CasdV) C has at least three zeros dfia its interior.
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Before proving the above lemma, we prepare another lemma.

LEMMA 6.3. Assume that C is not a straight line segment. THéB)z= Z(s) = 0 does
not hold for any s.

ProoF. If Z'(s) = Z(s) = 0 holds, then, fron’ = —kX, k(s) = 0 must hold. Now, by
the symmetry (Lemma 5.3 (v), (vi); must be a straight line, which is a contradiction. [

PROOF OFLEMMA 6.2. Sincek’ = yZ holds, there exists at least one zer@dfetween
any two inflection points. Moreover, singé&(s) = Z(s) = 0 does not hold for ang, from (12), it
follows that the number of zeros dfis odd. From these observations and Lemma 5.1, it is easy
to see that the statement follows. O

We will prove the following result.

THEOREM®6.4. Assume that C is not a straight line segment, gnel 0. Then, for each
case mentioned in Lemma 6.2, the stability of the fins determined as follows.

Casél) A, > 0and.7 is stable.

Cas€ll) .# is unstable.

Cas€lll) A2 =0and.7 is stable.

Cas€lV) .7 is unstable.

CasdV) .Z is unstable.

PrROOF.  We will prove the result under the assumption tj3it< 1. Also for the case
|B| =1, a similar argument works. As in the proof of Theorem 6.3, weest := X/, sind =Z.

Case(l): Sincas’ = —k # 0 holds onC, o (s) is monotone. From the embeddednes€ of
as in the proof of Theorem 6.3, we may assume that

—m/2<o(s)<m/2, ¥se(O,L).

ThereforeZ has a unique zers; € (0,L). Hence,z assumes either its maximum or minimum
ats=s;. Remark thah(s;) = (0,—1) ando(s1) = 0 hold. If z(s;) is the maximum of, then
K(s1) > 0, and therefore (0) > 0 holds. So we gef'(0)k(0) > 0. By a similar argument, we
can show, in both cases whea(®; ) is the maximum or the minimum, the following inequalities
hold:

Z(0)k(0) >0, Z(L)k(L)<O. (24)

For§e (O,L), denote byA2([0,§)) the first eigenvalue of the problem

And denote by -([§,L]) the first eigenvalue of the problem

Jpl=-Apin[SL],  p(=0,  B[plls-L =0.

From the min-max principle, we have
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A2([0,8) = min{ (— /ij[p]ds) (/:pzds)

1
peC?([0,8) {0},

Blpllsco = 0, (&) 0}

1
peC%([0,8) — {0},

oo - )

pis piecewiseC! and piecewis€?on [0, 4,
B{pl0 = 0. 9 =0 (25)

(cf. [2]). From (25) and the corresponding result/bjn we can observe the monotonicity,lof
andAf in the following sense.

CLamm 1. If0< ogp< o0y <L,then
22([0,00]) > A{([0,01)), (26)
M ([00,L]) < Af([o1, L)
hold.
On the other hand, o, we can show the following:
CLAIM 2.
A2(0,s1]) > 0, 27)
At ([st,L]) > 0. (28)
PROOF OFCLAIM 2. Letpe C”([0,s1]) be a non-constant function satisfying
Blplls=0=0,  p(s1)=0.

SinceZ’(s1) # 0 (cf. Lemma 6.3), we can define a functign= p/Z on [0,s]. Hence we can
write p= ¢Z. We compute

S1 i , ,
— [ patplas= [ " (@26 Pas— ()93
"S1
= [@20'ds+ 2?9415
Note that
0= pBpl|s=0 = (Z)?¢$’|s—0 + $?ZB[Z]|s-o0.
Therefore, we get, by using (24),
- [ papids= [ @)2(¢' 2ds- 472812 e0
= /osl<i>2<¢’>2ds+ 927k /\/1— B?ls=o

> 0.
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Therefore, (27) holds. (28) is proved by a similar way. O

Suppose thaf; < 0 holds. We will derive a contradiction. Letbe an eigenfunction
belonging taA,, that is,

Jie] = —Aze, Blelloc =0

hold. Then,e(sp) = 0 holds only for a uniquep € (0,L). Sincee does not vanish iff0, s),
€lj0,g IS an eigenfunction belonging 2P ([0,50]). Therefore,

A2([0,50]) = A2 < 0. (29)
Similarly,
At ([so,L]) = A2 <0. (30)

Assume thaty < s1 holds. Then, from (27), (29) and (26), we get a contradiction. Similarly,
S > 51 does not hold. Thereforgg = 51 holds. (27) —(30) leads to a contradiction, and we have
proved thatA, > 0. Consequently, by Proposition 6.%, is stable.

Case(ll): From Lemma 6.%/(s) = Z(s) = 0 does not hold. Therefore, singe= yz+ ko
andZ’ = —kx hold, k is monotone near the inflection point. Hence, from Lemma 5.1, it follows
that

K(L)+k(0) =0, k(0) #0. (31)
So,k has the unique zero at sorgec (O,L).

CLAIM 3.

/Cz’ds;é 0, /CzK3ds: 0. (32)

ProOF OFCLAIM 3. From Lemma 5.3 (vi) and'(L) = —Z(0), One of the following
Case(ll-1) - (1I-3) holds.

Case(ll-1) C([0,s,]) andC([s,,L]) are symmetric to each other with respect to the point
C(s2).

Case(lI-2) There exists sonsg € (0,s;) such thaC([ss,Sz]) andC([sp,L]) are symmetric
to each other with respect &(s,).

Case(lI-3) There exists sonsg € (s, L) such thaC([0,s;]) andC([s, s3]) are symmetric
to each other with respect &(s,).

First we assume that
Z(s)#0, Vse(0,L) (33)

holds. Then Case(ll-1) must occur. In fact, if Case(ll-2) occurs, K@) = Kk (s3) holds. There-

fore, sincex = yz+ ko, we havez(0) = z(s3). SoZ(s) = 0 holds for somes € (0,s3), which
contradicts the assumption (33). Similarly, Case(ll-3) does not occur. Therefore, Case(ll-1)
occurs, and therefore we obtain (32).
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Next, we assume that(s) = 0 holds for somes € (0,L). We observed that the number
of zeros ofZ is odd in the proof of Lemma 6.2. Lef be the middle zero of . From (31),
K(0) # k(L), and saz(0) # z(L). Therefore, by Lemma 5.3 (v), either the following (A) or (B)
holds.

(A) There exists some; € (s1,L) such thaC([0,s;]) andC([s1, 4]) are symmetric to each
other with respect to the linfx = x(s1) }.

(B) There exists som& € (0,s;) such thaC([s1,%1]) andC([s1,L]) are symmetric to each
other with respect to the linfx = x(s1) }.

Assume that (A) holds. Ther(s4) = —k(L) holds. Moreoverx’ = yZ does not vanish in
(s4,L). Therefore, Case(ll-2) holds asg= s3. Hence, we have

/Cz’ds—/s:z’ds;éo,
/CzK3ds: /0842’K3ds+/s:z’K3ds:0+0:0.

Similarly, in the case (B), we obtain (32). O
Note that
K" = —ykX.
Then, we get
JZ]=0, J[k]=«k3 (34)
B[Z] = —k/X, B[k]=Z(y—k?/X) ond[o,L]. (35)

Noting (32), we define a numbaras

a:—(/chs> (/Cz’ds>l,

and set
u=aZz+k.

Then

/ uds=0. (36)
Jc
We will compute.# (u). In view of (34), we get

—uJju] = —aZk® — k%,

Therefore, from (32), we have

—/uJ[u]ds: —/K4dS< 0. (37)
C C
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On the other hand,
uB[u| = (aZ + Kk)(aB[Z] + B[k)).
Since, from (12), (31) and (35), it follows that
(aZ + K)|s—o = —(aZ + K)|s_L,
B[Z]ls-0=—B[Z][s-L,  B[K]ls=0=—B[K]|s-L-
we get
[[uB[u]]] = O. (38)

From (37) and (38), we see
I = 7/ k*ds<O0.
C

Recalling (36), we obtain the instability of the film.

Case(lll): Sincek’ = yZ holds, there exists at least one zerozofn (0,L). From the
symmetry ofC (Lemma 5.3 (v)) and the assumption of Case(lll), we observezihas a unique
zero at some; € (0,L), and thatC is symmetric with respect tox = x(s1) }. Since

JZ]=0,  BZ]loc=0

hold andZ vanishes at only one interior point &f zero is the second eigenvalue of the problem
(22). Note that

W)=y Billac=0. [(¢/y)ds>o0,

Recall that the multiplicity of each eigenvalue is one. Moreover, we have, by symmefry of
J& Zds=0and fy XZds= 0. Therefore, by Lemma 6.1, we see that the fiffris stable.

Case(IV): Lets; be the unique zero af. Fromz’ = —kX/, X' (0) > 0, X (L) > 0, and Lemma
6.3, we observe th& is symmetric with respect tfx = x(s1) }, and

Z(0)k(0) <0, Z(L)k(L)>0

hold. Therefore,

J(Z)=[[ZB[Z]]] = - \/i—ﬁz(i(l-)K(L) ~Z(0)k(0)) <0

and

/Cz’ds:o

hold, which implies that the filn# is unstable.
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Case(V): LelCy CC C be a curve such that = 0 at both of the end points and exactly one
interior point ofCy. Then,Z is an eigenfunction belonging to the second eigenvalue 0 for the
Dirichlet boundary condition:

Jlp]=-ApinCo,  ploc, =0.

Therefore, from the monotonicity of the eigenvalue with respect to the domain, for the fixed
boundary value problem, the second eigenvalugé sf negative, and therefofeis unstable. In
particular,C is unstable for our free boundary variational problem. O

REMARK 6.1. The stability results of this section can be applied to curves arising from
solutions of the pendulum equation as described in the previous section, as follows.

Because of Remark 5.1, Theorem 6.3 can be applied to curves defined by solutions of the
pendulum equation as in (ii) of Lemma 5.2. Lemma 6.2 (I) and Theorem 6.4 (I) may apply to
solutions arising from any of the cases of Lemma 5.2. Lemma 6.2 (Il)—(V) and Theorem 6.4
(I — (V) may apply to solutions arising from case(i) of Lemma 5.2.

Examples with v < 0

Figure 2. Examples of critical curves.
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