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Abstract. We pose a variational problem for surfaces whose solutions are a geometric
model for thin films with gravity which is partially supported by a given contour. The energy
functional contains surface tension, a gravitational energy and a wetting energy, and the Euler-
Lagrange equation can be expressed in terms of the mean curvature of the surface, the curvatures
of the free boundary and a few other geometric quantities. Especially, we study in detail a simple
case where the solutions are vertical planar surfaces bounded by two vertical lines. We determine
the stability or instability of each solution.

1. Introduction.

We study a variational problem whose solutions are a geometric model for thin films subject
to a vertical gravitational force.

We will consider immersed surfacesF in the three-dimensional Euclidean space which are
partially supported by a given curveΓ . We representF as an immersionX = (x1,x2,x3) : Σ →
RRR3 of a two-dimensional orientable compact connectedC∞ manifoldΣ into RRR3. Our problem is
to investigate critical points of an energy functional which is the sum of three terms:

• The length of the free boundary ofF . This can be considered as a type of adhesion energy
for the film to air interface. We assume that this energy is proportional to the arc length
of the free boundary and normalize the constant of proportionality to be one.

• A “gravitational potential energy” forF which arises from a vertical gravitational force.
We consider the acceleration due to gravity to be constant.

• A “wetting energy” forF which is proportional to the length of the part of the fixed
boundary which comes into contact with the film.

We also impose the realistic assumption that the area ofF is preserved under deformations.
Thus, our energy functional can be expressed as,

E (X) := L(X)+Gγ(X)+Wβ (X) =
∫

ρ
|dX|+ γ

∫

Σ
x3dΣ +β

∫

σ
|dX|,

wheredΣ is the volume element ofΣ induced byX, ∂Σ = σ ∪ ρ, X(σ) ⊂ Γ , ρ is the free
boundary ofX, γ andβ are given constants which depend on the material of the film and the
surrounding media. Our objective is to study the geometry and stability of equilibria for the
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functionalE . For additional explanation about the components of the energy functional, we
refer the reader to [3].

Let us denote byν = (ν1,ν2,ν3) the Gauss map ofX. The Euler-Lagrange equation for the
energy yields that the mean curvatureH of X satisfies the equation2H(γx3 + c)− γ ν3 = 0 for
some constantc, the normal curvature of the free boundaryρ vanishes, the geodesic curvature of
ρ is the linear functionγx3 +c of the vertical coordinatex3 and that the free boundary intersects
Γ in complementary angles at its endpoints.

In this paper, we concentrate on the simplest case whereΓ consists of two vertical rays and
the horizontal segment connecting them. We assume from the outset that the surface is planar
when it is in equilibrium and the free boundary component consists of a smooth embedded curve
C whose two endpoints are constrained to lie on each of the vertical lines (see Figure 1 on page
339). Clearly the configuration of the surface is completely determined by the curveC. In this
case, the Euler-Lagrange equation for the energy yields that the curvature ofC is a linear function
of the vertical coordinate in the interior ofC and thatC intersects the each of the vertical lines
in complementary angles. The problem that we consider is to determine all stable configurations
which can occur. The critical curvesC are found explicitly in terms of elliptic functions and
the stability of each type is analyzed. Conceptually, this simple problem is a one-dimensional
version of the type of free boundary problem considered in [6], [8], [7] with the addition to the
energy of the gravitational term.

The paper is organized as follows. In the second section, we will formulate the variational
problem and derive first variation formulas for the general setting. In the remainder of the paper,
we will restrict our attention to the simple case of a planar film mentioned above. In the third
section, we derive the Euler-Lagrange equation which characterizes critica of the variational
problem. In the fourth section, we derive the second variation of the energy functional and
define the notion of stability. In the fifth section, by studying the ordinary differential equation
comes from the Euler-Lagrange equation, we derive some geometric properties of the critical
curves. We also show that the Euler-Lagrange equation for the critical curve is equivalent to the
pendulum equation. The main results of the paper are in the sixth section where we determine the
stability or instability of each critical point. At the end of the paper, we will give some pictures
of examples of critical curves (Figure 2).

We wish to thank Professor Oscar Garay for pointing out to us that the critical curves which
we study as the simplest case are exactly the elastic curves in the plane. We note however that
the variational problem we study is very different from the one for elastica and that, in particular,
the stability analysis differs greatly for the two problems.

2. Formulation of problem and first variation formulas.

Let Γ be a piecewise-smooth closed curve without self-intersections inRRR3. Also let Σ
be a two-dimensional orientable compact connectedC∞ manifold with boundary∂Σ which is
homeomorphic toS1. We divide∂Σ into two connected parts as follows.

∂Σ = σ ∪ρ,

whereσ ∩ρ consists of two points:

σ ∩ρ = {ζ1,ζ2}.
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Consider a smooth immersion

X = (x1,x2,x3) : Σ → RRR3

whose restrictionX|σ to σ is an injection intoΓ . Denote byν = (ν1,ν2,ν3) : Σ → S2 the Gauss
map ofX. We assign toX the following four quantities:

A(X) : =
∫

Σ
dΣ , L(X) : =

∫

ρ
|dX|,

Gγ(X) : = γ
∫

Σ
x3dΣ , Wβ (X) : = β

∫

σ
|dX|,

wheredΣ is the volume element ofΣ induced byX, andγ andβ are constants. ThenA(X)
represents the area ofX, L(X) represents the length of the free boundaryC := X(ρ), Gγ(X) and
Wβ (X) represents the (gravitational) potential energy and the wetting energy ofX respectively.
(One can find physical examples corresponding toγ, β with any sign. For example, when we
think of soap filmF partially supported by such a specialΓ as in§3., it is natural to assume that
γ ≥ 0 andβ ≤ 0 hold.)

Consider a smooth variationXε : Σ → RRR3 of X satisfying the boundary condition

Xε(σ)⊂ Γ .

We will call such a variationXε anadmissible variationof X.
For simplicity, we will write X instead ofXε . We will often denote by ‘′ ’ the partial

derivative with respect toε. Denote byn the exterior normal ofX along∂Σ . Let ρ̃ : [α1,α2]→ ρ
be a parametrization ofρ such thatρ̃(αi) = ζi , i = 1,2, andẊ×ν = |Ẋ|n hold, where

Ẋ = Ẋ|ρ :=
∂ (X|ρ ◦ ρ̃)

∂ t
,

andt is the parameter in[α1,α2] ⊂ RRR. Similarly, let σ̃ : [δ1,δ2]→ σ be a parametrization ofσ
such thatσ̃(δ1) = ζ2, σ̃(δ2) = ζ1, andẊ×ν = |Ẋ|n hold, where

Ẋ = Ẋ|σ :=
∂ (X|σ ◦ σ̃)

∂ t
,

andt is the parameter in[δ1,δ2]⊂RRR. In general, we will denote by ‘˙’ the partial derivative with
respect tot. We set

ξ =
∂X
∂ε

, f = 〈ξ ,ν〉,

ψ = 〈ξ ,n〉 on ∂Σ ,

where〈 , 〉 is the usual Euclidean inner product inRRR3.
We will denote byH the mean curvature ofX. Also, we will denote byκn, κ1 the normal

curvature and the geodesic curvature ofX|∂Σ , respectively.
Notice that for any admissible variation,



336 M. KOISO and B. PALMER

ψ = 0 and f = 0 onσ (1)

holds.

PROPOSITION2.1 (First variation formula). For each admissible variation, the following
first variation formulas hold.

A′ =−2
∫

Σ
H f dΣ +

∫

ρ
ψds, (2)

G′
γ = γ

∫

Σ
(−2Hx3 +ν3) f dΣ + γ

∫

ρ
x3ψds, (3)

L′ = |ξ (ζ2)|cosω2−|ξ (ζ1)|cosω1−
∫

ρ

(〈Ẍ,ν〉 f + 〈Ẍ,n〉ψ)|Ẋ|−2ds (4)

= |ξ (ζ2)|cosω2−|ξ (ζ1)|cosω1−
∫

ρ
(κn f +κ1ψ)ds (5)

W′
β = β

(|ξ (ζ1)|cosη2−|ξ (ζ2)|cosη1
)
,

whereωi denotes the angle betweenẊ|ρ(αi) andξ (ζi), i = 1, 2, η1 denotes the angle between
Ẋ|σ (δ1) andξ (ζ2), andη2 denotes the angle betweenẊ|σ (δ2) andξ (ζ1). Consequently,

cosηi ∈ {1,−1} i = 1,2,

holds sinceẊ|σ (δ1) (resp.Ẋ|σ (δ2)) is proportional toξ (ζ2) (resp.ξ (ζ1)).

The proof of Proposition 2.1 will be given after Proposition 2.2.
By virtue of Proposition 2.1, we immediately observe the following:

PROPOSITION2.2 (Euler-Lagrange equation).Denote byθ1,θ2 the angles fromẊ|σ (δ2)
to Ẋ|ρ(α1), from Ẋ|ρ(α2) to Ẋ|σ (δ1), respectively. Then,(L + Gγ +Wβ )′(0) = 0 for all area-
preserving admissible variations if and only if

2H(γx3 +c)− γ ν3 = 0 on Σ ,

κn = 0 and κ1 = γx3 +c onρ,

and

cosθ1 = cosθ2 = β

for some constant c∈ RRR.

PROOF OFPROPOSITION2.1. (2) is derived directly from the well-known first variation
formula for the area functional.

Let us prove (3). Let(u1,u2) be local coordinates inΣ . Set

Xi =
∂X
∂ui , etc.,

ξ = ξ T + f ν = V1X1 +V2X2 + f ν .

Denote by〈 , 〉1 the Riemannian inner product in the metric induced byX.



Variational problem for soap films with gravity 337

Gγ
′ = γ

∫

Σ
(x3)′dΣ + γ

∫

Σ
x3(dΣ)′, (6)

∫

Σ
x3(dΣ)′ =

∫

Σ
x3(−2H f +divξ T)dΣ . (7)

By using the divergence theorem, we see that

∫

Σ
x3divξ TdΣ =

∫

Σ
div(x3ξ T)dΣ −

∫

Σ
〈∇x3,ξ T〉1dΣ

=
∫

∂Σ
〈x3ξ T ,n〉ds−

∫

Σ
〈∇x3,ξ T〉1dΣ

=
∫

∂Σ
〈x3ξ ,n〉ds−

∫

Σ
〈∇x3,ξ T〉1dΣ

=
∫

ρ
x3〈ξ ,n〉ds−

∫

Σ
〈∇x3,ξ T〉1dΣ , (8)

where we have used〈ξ ,n〉|σ = 0. On the other hand, since

ξ T = V1X1 +V2X2 = ξ −〈ξ ,ν〉ν ,

we obtain

〈∇x3,ξ T〉1 = V1(x3)1 +V2(x3)2 = ξ 3−〈ξ ,ν〉ν3.

Therefore,
∫

Σ
〈∇x3,ξ T〉1dΣ =

∫

Σ

(
ξ 3−〈ξ ,ν〉ν3)dΣ . (9)

From (6), (7), (8), and (9), we get (3).
Next, we will derive the formula forL′. We see that

L(X) =
∫

ρ
ds=

∫ α2

α1

|Ẋ|dt,

L′ =
∫ α2

α1

∂
∂ε
|Ẋ|dt =

∫ α2

α1

|Ẋ|−1
〈

∂X
∂ t

,
∂ 2X
∂ t∂ε

〉
dt

=
∫ α2

α1

〈|Ẋ|−1Ẋ, ξ̇ 〉dt

= [〈|Ẋ|−1Ẋ,ξ 〉]α2
α1−

∫ α2

α1

〈
∂
∂ t

(|Ẋ|−1Ẋ),ξ
〉

dt

= |ξ (ζ2)|cosω2−|ξ (ζ1)|cosω1−
∫ α2

α1

〈
∂
∂ t

(|Ẋ|−1Ẋ),ξ
〉

dt

= |ξ (ζ2)|cosω2−|ξ (ζ1)|cosω1−
∫

ρ

〈
−|Ẋ|−2〈Ẋ, Ẍ〉Ẋ + Ẍ, ξ

〉
|Ẋ|−2ds

= |ξ (ζ2)|cosω2−|ξ (ζ1)|cosω1−
∫

ρ
〈Xss,ξ 〉ds,

which implies (4) and (5).
The derivation of the formula forW′

β can be handled similarly and will be omitted. ¤
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3. Euler-Lagrange equation for the simplest case.

In the following, we will consider the special case depicted in Figure 1. We will write
(x,y,z) instead of(x1,x2,x3). Let a,x0,x1 (x0 < x1) be constants. Set

l1 = {(x0,0,z)|z≤ a},

l2 = {(x,0,a)|x0 ≤ x≤ x1},

l3 = {(x1,0,z)|z≤ a},

Γ = l1∪ l2∪ l3.

We assume thatX(Σ) is contained in thexzplane. Moreover, we will assume that the endpoints
of the curveC(s) = (x(s),z(s)) are constrained to lie on distinct vertical raysl1, l3. For the
boundary curveC(s) = (x(s),z(s)), s= arc length, we let:L = L[C] = length ofC, x(0) = x0,
andx(L) = x1. Note thatC has no self-intersections andx0 < x(s) < x1 holds for alls∈ (0,L).
SetE3 = (0,1). Sincediv(zE3) = 1 anddiv((z2/2)E3) = z, we can write the area, gravitational
and wetting energies as

A[C] : = A(X) =−
∫

C
zdx+c1, c1 := (x1−x0)a,

Gγ [C] : = Gγ(X) = (−γ/2)
∫

C
z2dx+c2, c2 := (γ/2)(x1−x0)a2,

Wβ [C] : = Wβ (X) = β [(a−z(0))+(a−z(L))+(x1−x0)].

For a functionf on [0,L], set[[ f ]] = f (L)− f (0).

We consider a variationCε : [0,L] → RRR2 of C with variation vector fieldδC(s) =
((δx)(s),(δz)(s)) := (∂Cε(s)/∂ε)|ε=0, whereε is the variation parameter andC0 = C. Because
the endpoints stay on the vertical lines, we have:

(δx)(0) = 0 = (δx)(L). (10)

In this case, these variation comprise the admissible ones.

Denote byn the unit normal toC which points out of the surfaceX(Σ), and byκ the
curvature ofC with respect ton. We remark that this is not the usual sign convention for the
curvature.

For any admissible variationCε of C, we get the following first variation formulas.

δL[C] :=
∂L[Cε ]

∂ε

∣∣∣∣
ε=0

=−
∫

C
κ〈δC,n〉ds+[[(δz)z′]],

δA[C] =
∫

C
〈δC,n〉ds,

δGγ [C] = γ
∫

C
z〈δC,n〉ds,

δWβ [C] =−β ((δz)(L)+(δz)(0)).
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We are using “prime” here to denote differentiation with respect tos which is a departure from
its usage in section 2. These formulas are obtained from Proposition 2.1 by lettingf = 0. Con-
sequently, we get

PROPOSITION3.1 (Euler-Lagrange equation).Assume that|β | ≤ 1. Then,

δ (L+Gγ +Wβ ) = 0

holds for all area-preserving admissible variations if and only if

κ = γz+κ0 (11)

holds for some constantκ0 ∈ RRR and

−z′(0) = cosθ1 = β = cosθ2 = z′(L) (12)

holds, whereθ1 is the angle from−E3 to C′(0), θ2 is the angle from C′(L) to E3.

The Euler-Lagrange equation implies that

|β | ≤ 1

necessarily holds for all critical points, so from now on we will only consider values ofβ in this
range.

From (12), it follows that

|θ1|= |θ2| (mod 2π).

SinceC has no self-intersections andx0 < x(s) < x1 holds for alls∈ (0,L), x′(0)≥ 0, x′(L)≥ 0
holds. Therefore, we may set

θ := θ1 = θ2 ∈ [0,π],

and we have

x′(0) = x′(L) = sinθ ≥ 0. (13)

Figure 1.
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4. Second variation and definition of stability.

From now on, we assume that the curveC satisfies the Euler-Lagrange equations (11) and
(12). We will derive the second variation

δ 2(L+Gγ +Wβ ) :=
∂ 2

∂ε2

∣∣∣∣
ε=0

(
L[Cε ]+Gγ [Cε ]+Wβ [Cε ]

)

for any area-preserving admissible variation

Cε(s) := C(ε,s) = C(s)+ ε
(
p(s)n(s)+q(s)C′(s)

)
+O(ε2).

For simplicity, we suppress the subscriptε although all quantities below are assumed to depend
on it.

At ε = 0, by using (11) and (12), we see that

δ 2(L+Gγ +Wβ ) = δ 2(L+Gγ +Wβ +κ0A)

=
d
dε

∣∣∣∣
ε=0

[∫

C
(−κ + γz+κ0)〈δC,n〉ds+[[〈δC,C′〉]]−β

(
(δz)(L)+(δz)(0)

)]

=
∫

C

(
∂

∂ε

∣∣∣∣
ε=0

(−κ + γz+κ0)
)
· 〈δC,n〉ds+

d
dε

∣∣∣∣
ε=0

[
[[〈δC,C′〉]]−β [[〈δC,C̄′〉]]

]

=: I + II ,

where

C̄′(L) := E3 = (0,1), C̄′(0) :=−E3 = (0,−1).

First we observe

LEMMA 4.1. At ε = 0,

I =
∫

C

{− p′′− (κ2 + γx′)p
}

pds

holds.

PROOF. Elementary calculations give atε = 0

δκ = κ2p+ p′′+ γqz′, δz=−px′+qz′, 〈δC,n〉= p. ¤

On the other hand, we see

LEMMA 4.2. At ε = 0,

II = [[p(p′+κq)]]

holds. If|β |< 1, then

II =
[[

p

(
p′− κβ√

1−β 2
z̄′p

)]]
= [[p(p′−κ cotθ · z̄′p)]],
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where

z̄′(0) :=−1, z̄′(L) := 1.

PROOF. At ε = 0, by using (12), we see that

II = δ [[〈δC,C′−βC̄′〉]] = [[
〈
δC,δC′−C′〈C′,δC′〉〉]]

= [[
〈
δC,〈δC′,n〉n〉

]] = [[
〈
δC,(p′+κq)n

〉
]]

= [[p(p′+κq)]].

Assume that|β |< 1. Since

0 = δx = pz′+qx′,

we observe that

q =−pz′/x′ =−pcotθ · z̄′. ¤

From Lemmas 4.1, 4.2, we get the following

PROPOSITION4.1 (Second variation formula). Assume that the curve C satisfies the
Euler-Lagrange equations(11), (12). Setθ := θ1 = θ2. The second variationδ 2(L+Gγ +Wβ )
for any area-preserving admissible variation of C depends only on the normal component pn of
the variation vector field, and it is given by the following formulas.

(i) If |β |< 1, then

δ 2(L+Gγ +Wβ ) =
∫

C

{− p′′− (κ2 + γx′)p
}

pds+[[(p′−κ cotθ · z̄′p)p]]

holds, where

z̄′(0) :=−1, z̄′(L) := 1.

(ii) If |β |= 1, then

δ 2(L+Gγ +Wβ ) =
∫

C

{− p′′− (κ2 + γx′)p
}

pds

holds.

The following lemma is proved by a modification of the proof of the existence of volume-
preserving variations fixing the boundary given by Barbosa-do Carmo [1].

LEMMA 4.3. Suppose that a curve C: [0,L]→ RRR2 satisfies the Euler-Lagrange equations
(11), (12).

(i) Assume that|β | < 1. Let p: [0,L]→ RRR be a C∞ function with
∫ L

0 p ds= 0. Then, there
exists an area-preserving admissible variation Cε of C such that〈δC,n〉= p.

(ii) Assume that|β |= 1. Let p: [0,L]→RRR be a C∞ function with
∫ L

0 pds= 0and p|∂ [0,L] = 0.
Then, there exists an area-preserving admissible variation Cε of C such that〈δC,n〉= p.
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In view of the above lemma, we define function spacesF0, F for a curveC satisfying (11),
(12) as follows.

F0 : =





C∞([0,L]), |β |< 1,
{

p∈C∞([0,L])
∣∣p(0) = p(L) = 0

}
, |β |= 1,

F : =
{

p∈ F0

∣∣∣∣
∫ L

0
pds= 0

}
.

Set

I (p) :=





∫
C

{− p′′− (κ2 + γx′)p
}

pds+[[(p′−κ cotθ · z̄′p)p]], |β |< 1,
∫
C

{− p′′− (κ2 + γx′)p
}

pds, |β |= 1.

We define the stability as follows:

DEFINITION (Stability). Suppose that the boundaryC : [0,L]→ RRR2 of a film F satisfies
the Euler-Lagrange equations (11), (12). Then,F will be calledstableif I (p) ≥ 0 holds for
all p∈ F , andF will be called unstable otherwise.F is said to be strongly stable ifI (p)≥ 0
holds for allp∈ F0.

5. Some geometry of critical curves.

In this section, we study geometry of critical curves and their global extensions.
Integratingx′′ = κz′ overC and using (11) and (13), gives

0 = [[x′]] =
γ
2
[[z2]]+κ0[[z]].

Therefore, we have the following:

LEMMA 5.1. In the case of a critical curve, at least one of the following holds:

z(L) = z(0) (14)

and/or

γ(z(L)+z(0)) =−2κ0. (15)

Moreover,(14) is equivalent to

κ(L) = κ(0),

and(15) is equivalent to

κ(L)+κ(0) = 0.

Next, we will study the shapes of the global extensions of critical curves. The equation
(11) can be integrated explicitly. The explicit representation of the critical curves appears to be
well-known and classical. We will include the computation for the reader’s convenience. It will
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turn out that in almost all cases, the solutions are periodic curves which, except for circles and a
particular other one-parameter family of curves, are invariant under certain parallel translations
in thex direction.

LetC = (x,z) : I →RRR2, I ⊂RRR, be a solution of (11) which is parametrized by the arc-length.
Here we will takeI to be the largest possible interval.

Whenγ = 0, the curve is a horizontal straight line or a circle. So, we will assume thatγ 6= 0.
The equationC′′ = κn gives

x′′ = κz′, z′′ =−κx′. (16)

By settingcosσ := x′, sinσ = z′, we have a solution to the system:

z′ = sinσ , σ ′ =−κ =−(γz+κ0).

These equations can be combined to show thatσ satisfies thependulum equation

σ ′′ =−γ sinσ . (17)

Conversely, it is easy to show that a solution of this equation generates a solution of (16) with
κ = γz+constant.

Define

ρ := |γ|, ω :=

{
σ , γ > 0,

σ +π, γ < 0.

Then in either case, we obtain a solution of the pendulum equation

ω ′′ =−ρ sinω (18)

with ρ > 0.
Each solution of (18) admits a first integral

(ω ′)2−2ρ cosω ≡ constant=: a. (19)

The geometric meaning ofa is given by

a = (1/L)
(∫ L

0
κ2 ds−2γ(x(L)−x(0))

)
(20)

for all L > 0.
We may rewrite (19) as

(ω ′)2 = 4ρ
{(

a+2ρ
4ρ

)
−sin2

(
ω
2

)}
.

In the case whereω ≡ 0, the solution curve is a horizontal straight line. Excluding this case, we
have

0 <
a+2ρ

4ρ
=: χ2, χ > 0.

By replacing the parameters by s+constantif necessary, the solutions of (19) are expressed as
follows (cf. Lawden [5, Chapter 5]).
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LEMMA 5.2. Case(i) χ2 < 1. The solution can be expressed in terms of elliptic functions:

sin(ω/2) = χsn(
√

ρs,χ), cos(ω/2) = dn(
√

ρs,χ).

Case(ii) χ2 > 1. The solution can be expressed in terms of elliptic functions:

sin(ω/2) = sn(
√

ρs/χ,χ), cos(ω/2) = cn(
√

ρs/χ,χ).

Note that, a> 2ρ holds, so by(19)ω ′ never vanishes and so the curve C has nowhere vanishing
curvature and is therefore convex.
Case(iii) χ2 = 1. The solutions are expressed as

sin(ω/2) = tanh(
√

ρs), cos(ω/2) = sech(
√

ρs).

REMARK 5.1. Sinceρ = |γ|, using (20), we have

(a−2ρ)L =

{∫ L
0 κ2 ds−2γ(x(L)−x(0)+L), γ > 0,

∫ L
0 κ2 ds−2γ(x(L)−x(0)−L), γ < 0.

Therefore, ifγ < 0, then(a−2ρ)L > 0 holds. Hence, in this caseχ2 > 1 holds, which corre-
sponds to case(ii) above. On the other hand, forγ > 0, all cases(i) – (iii) can occur.

LEMMA 5.3. If C is a solution curve, then
(i) I = RRR.
(ii) The function z is bounded.
(iii) Except in case(iii) of the previous lemma, the curve C is periodic. More precisely, there
exists some d0 > 0, such that

x(s+d0) = x(s)+a0, z(s+d0) = z(s), ∀s∈ RRR

holds, where

a0 := x(d0)−x(0).

(iv) z′(s1) = 0 for some s1.
(v) If z′(s1) = 0 holds for some s1, then C is symmetric with respect to{x = x(s1)}.
(vi) If κ(s2) = 0 holds for some s2, then C is symmetric with respect to C(s2).

PROOF. The statement (i) follows since the explicit values ofcosω = cos2(ω/2)−
sin2(ω/2) andsinω = 2cos(ω/2)sin(ω/2) given above are defined for all values ofs.

The boundedness ofz follows since (19) can be written as(γz+κ0)2 = 2|γ|cosω +a.
In cases(i) and (ii) of Lemma 5.2, the periodicity ofx′ = cosσ andz′ = sinσ follow from

the periodicity of the elliptic functionssn, cn anddn. In fact, the period for these functions is
given by4K, wheresn(K) = 1. Sinceγz= x′′/z′ holds, the periodicity ofz follows from that of
x′ andz′. The periodicity ofx as described above follows from the periodicity ofx′.

In cases(i) and (ii) of the previous lemma, the statement (iv) follows immediately from the
periodicity. In case(iii), it follows since

|z′(0)|= |sin(σ(0))|= 2|sin(σ(0)/2)cos(σ(0)/2)|= 2|tanh(0)sech(0)|= 0.
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Next we prove (v). By a translation of the parametersand coordinates, we may assume that

s1 = 0, x(0) = 0, κ = γz

hold. Set

C̃ := (x̃, z̃), x̃(s) :=−x(−s), z̃(s) := z(−s).

Then, in view of (16), we get

x̃′′ = (γ z̃)z̃′, z̃′′ =−(γ z̃)x̃′.

Moreover, we see

C̃(0) = (0,z(0)) = C(0),

C̃′(0) = (1,0) = C′(0), C̃′′(0) = (−x′′(0),z′′(0)) = (0,z′′(0)) = C′′(0).

Therefore,C andC̃ satisfy the same ordinary differential equations and have the same initial
values, which implies thatC≡ C̃ and we have proved (v).

We prove (vi). By a translation of the parameters and coordinates, we may assume that

s2 = 0, C(0) = (0,0), κ = γz

hold. Set

C̃ := (x̃, z̃), x̃(s) :=−x(−s), z̃(s) :=−z(−s).

By a similar argument to the above, we see thatC≡ C̃ holds and we get (vi). ¤

6. Stability of critical points.

Assume that the curveC satisfies the Euler-Lagrange equations (11), (12), and setθ := θ1 =
θ2. We define the Jacobi and boundary operators by

J[p] = p′′+(κ2 + γx′)p,

B[p] =

{
p′−κ cot(θ)z̄′p, |β |< 1,

p, |β |= 1.

Then, by Proposition 4.1, the second variationδ 2(L+Gγ +Wβ ) for any area-preserving admis-
sible variation ofC can be expressed as

I (p) =−
∫

C
pJ[p]ds+[[p·B[p] ]], p := 〈δC,n〉.

Here we remark that if|β |= 1, then, from the boundary condition (10),p(0) = p(L) = 0 holds.
Recall thatC′′ = κn gives

x′′ = κz′, z′′ =−κx′.

From this and the boundary values (12), (13) forx′ andz′, we obtain



346 M. KOISO and B. PALMER

J[x′] = γ, B[x′]|∂C = 0, (21)

J[z′] = 0, B[z′]|∂C =

{
−κ/

√
1−β 2, |β |< 1,

±1, |β |= 1.

SinceJ is a Sturm-Liouville operator, the eigenvalue problem

J[p] =−λ p in [0,L], B[p] = 0 on∂ [0,L] (22)

has a discrete spectrum, all eigenvalues are real, and the multiplicity of each eigenvalue is one.
We denote these eigenvalues byλ1 < λ2 < λ3 < · · · . We remark that each eigenfunction be-
longing toλ1 has a definite sign. Denote byEi the eigenspace belonging toλi , and byE⊥i the
orthogonal complement ofEi in L2([0,L]). We can choose eigenfunctionsϕi ∈ Ei so that{ϕi}i

is an orthonormal basis inL2([0,L]). By a standard method, we see that

λ1 = I (ϕ1) = min

{
I (p)| p∈C∞([0,L]),

∫

C
p2 ds= 1

}
,

λi = I (ϕi) = min

{
I (p)| p∈C∞([0,L]),

∫

C
p2 ds= 1,

∫

C
pϕ j ds= 0 ( j = 1, · · · , i−1)

}

(cf. [2]). From these properties, the following lemma is proved by a modification of the proof of
Theorem 1.3 in [4].

LEMMA 6.1. (I) If λ1 ≥ 0, thenF is strongly stable.
(II) If λ1 < 0 < λ2, then there exists a uniquely determined function u∈C∞([0,L]) satisfying
J[u] = 1 and B[u]|∂C = 0, and the following(II-1) and(II-2) hold.

(II-1) If
∫
C uds≥ 0, thenF is stable.

(II-2) If
∫
C uds< 0, thenF is unstable.

(III) If λ2 = 0, then the following(III-A) and(III-B) hold:
(III-A) If

∫
C ϕ2 ds 6= 0, thenF is unstable.

(III-B) If
∫
C ϕ2 ds= 0, then there exists a uniquely determined function u∈ E⊥2 ∩C∞([0,L])

satisfying J[u] = 1 and B[u]|∂C = 0, and the following(III-B1) and(III-B2) hold.
(III-B1) If

∫
C uds≥ 0, thenF is stable.

(III-B2) If
∫
C uds< 0, thenF is unstable.

(IV) If λ2 < 0, thenF is unstable.

THEOREM 6.1. If γ = 0, then C is a part of a round circle or a horizontal straight line
segment,λ1 = 0, and so the filmF is strongly stable.

PROOF. If γ = 0, then it is clear thatC is a part of a round circle or a horizontal straight
line. Hence, from assumption (13),C is a graph andx′ > 0 in the interior ofC. Therefore, from
(21),x′ is an eigenfunction belonging to the first eigenvalue zero. ¤

PROPOSITION6.1. If λ1 < 0≤ λ2 holds andF is stable, thenγ > 0 holds. Conversely, if
λ1 < 0 < λ2 andγ > 0 hold, thenF is stable.

PROOF. If γ = 0, then, from Theorem 6.1, it follows thatλ1 = 0. Therefore, ifλ1 < 0,
thenγ 6= 0. Setu := x′/γ. Then, by (21), we haveJ[u] = 1, B[u]|∂C = 0. Moreover, we see that
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∫

C
uds= γ−1

∫

C
x′ ds= γ−1(x(L)−x(0)) = γ−1(x1−x0).

By these observations and Lemma 6.1, we get the desired result. ¤

THEOREM 6.2. LetF be a film bounded by a horizontal line segment C.
(i) If γ ≤ 0, thenF is strongly stable.
(ii) If γ > 0, then

F is stable.⇐⇒ λ2 ≥ 0.⇐⇒ L≤ π/
√

γ.

PROOF. We have already considered the case whereγ = 0 in Theorem 6.1. So we assume
thatγ 6= 0. We have

0≡ κ = γz+κ0,

so that

z≡−κ0/γ.

The second variation of the energy for this film is given by

I (p) =
∫ L

0
(p′(x))2− γ(p(x))2 dx,

so thatF is strongly stable forγ < 0.
Next, assume thatγ > 0 holds. Then’th eigenvalueλn of the problem

J[p] =−λ p in [0,L], B[p] = p′ = 0 on∂ [0,L]

is given by{(n− 1)π/L}2− γ, and the corresponding eigenfunctions areccos
(
(n− 1)πs/L

)
.

Note thatJ[1] = γ, B[1]|∂ [0,L] = 0. Now we see that, by Lemma 6.1, the filmF is stable if and
only if λ2 ≥ 0 holds, and we have

λ2 ≥ 0.⇐⇒ L≤ π/
√

γ. ¤

THEOREM 6.3. Assume that the free boundary C of a filmF is not a straight line segment,
andγ < 0. Then

(i) κ has a definite sign on C.
(ii) C is a graph over an interval of the x-axis.
(iii) F is strongly stable.

PROOF. First we prove (i) and (ii). As in Section 5, we setcosσ := x′, sinσ = z′. From
(12), (13), and the embeddedness ofC, we may assume that

−π/2≤ σ(0)≤ π/2, −π/2≤ σ(L)≤ π/2, σ(L) =−σ(0). (23)

Moreover, from (12), there exists somes2 ∈ (0,L) such thatz takes either its maximum or its
minimum value ats= s2. First, assume thatz(s2) is the maximum ofz. Then,n(s2) = (0,−1)
andκ(s2) > 0 hold. Therefore, ifγ < 0, then
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κ = γz+κ0 > 0

on [0,L]. Sinceσ ′ = −κ holds,σ is strictly decreasing on[0,L]. Hence, from (23), it follows
that

−π/2≤ σ(L) < σ(s) < σ(0)≤ π/2, ∀s∈ (0,L).

Consequently, we have

x′(s) = cosσ(s) > 0, ∀s∈ (0,L),

which implies thatC is a graph over an interval of thex-axis. Also in the case wherez(s2) is the
minimum ofz, by a similar argument, we can show (i) and (ii).

Next, we prove (iii). Suppose|β |< 1. If C is given byz= z(x), thends=
√

1+(dz/dx)2dx
and so

x′(s) =
1√

1+(dz/dx)2
> 0

holds.
Note that for sufficiently smooth functionsζ ,q onC, we have

−
∫

C
ζqJ[ζq]ds+[[ζqB[ζq] ]] = −

∫

C
ζ 2qJ[q]+q2ζ ζ ′′+2ζqζ ′q′ ds

+[[ζq(ζB[q]+qζ ′)]]

= −
∫

C
ζ 2qJ[q]ds+

∫

C
q2(ζ ′)2 ds+[[ζ 2qB[q] ]].

Note that sincex′ > 0 holds, we can write an arbitrary smooth function onC asζx′. Applying
the previous formula withq = x′, gives

I (ζx′) =−
∫

C
ζ 2(γx′)ds+

∫

C
(x′)2(ζ ′)2 ds≥ 0,

which implies thatF is strongly stable. For the case|β |= 1, a similar proof with a little modi-
fication derives the desired result. ¤

We have determined all cases forγ ≤ 0. So, from now on, we will assume thatγ > 0 holds.
Let C be the boundary curve of a filmF . For the case whereC is a straight line segment,

we have already observed its stability (Theorem 6.2). So, we will assume thatC is not a straight
line segment.

LEMMA 6.2. Assume that C is not a straight line segment. Then, the situation is divided
into the following five cases.

Case(I) C has no inflection point.
Case(II) C has only one inflection point.
Case(III) Both endpoints of C are inflection points, and C has no inflection point in its

interior.
Case(IV) C has exactly two inflection points and only one zero of z′ in its interior.
Case(V) C has at least three zeros of z′ in its interior.
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Before proving the above lemma, we prepare another lemma.

LEMMA 6.3. Assume that C is not a straight line segment. Then z′′(s) = z′(s) = 0 does
not hold for any s.

PROOF. If z′′(s) = z′(s) = 0 holds, then, fromz′′ = −κx′, κ(s) = 0 must hold. Now, by
the symmetry (Lemma 5.3 (v), (vi)),C must be a straight line, which is a contradiction. ¤

PROOF OFLEMMA 6.2. Sinceκ ′ = γz′ holds, there exists at least one zero ofz′ between
any two inflection points. Moreover, sincez′′(s) = z′(s) = 0 does not hold for anys, from (12), it
follows that the number of zeros ofz′ is odd. From these observations and Lemma 5.1, it is easy
to see that the statement follows. ¤

We will prove the following result.

THEOREM 6.4. Assume that C is not a straight line segment, andγ > 0. Then, for each
case mentioned in Lemma 6.2, the stability of the filmF is determined as follows.

Case(I) λ2 > 0 andF is stable.
Case(II) F is unstable.
Case(III) λ2 = 0 andF is stable.
Case(IV) F is unstable.
Case(V) F is unstable.

PROOF. We will prove the result under the assumption that|β | < 1. Also for the case
|β |= 1, a similar argument works. As in the proof of Theorem 6.3, we setcosσ := x′, sinσ = z′.

Case(I): Sinceσ ′ = −κ 6= 0 holds onC, σ(s) is monotone. From the embeddedness ofC,
as in the proof of Theorem 6.3, we may assume that

−π/2 < σ(s) < π/2, ∀s∈ (0,L).

Therefore,z′ has a unique zeros1 ∈ (0,L). Hence,z assumes either its maximum or minimum
at s= s1. Remark thatn(s1) = (0,−1) andσ(s1) = 0 hold. If z(s1) is the maximum ofz, then
κ(s1) > 0, and thereforez′(0) > 0 holds. So we getz′(0)κ(0) > 0. By a similar argument, we
can show, in both cases wherez(s1) is the maximum or the minimum, the following inequalities
hold:

z′(0)κ(0) > 0, z′(L)κ(L) < 0. (24)

For ŝ∈ (0,L), denote byλ 0
1 ([0, ŝ]) the first eigenvalue of the problem

J[p] =−λ p in [0, ŝ], B[p]|s=0 = 0, p(ŝ) = 0.

And denote byλ L
1 ([ŝ,L]) the first eigenvalue of the problem

J[p] =−λ p in [ŝ,L], p(ŝ) = 0, B[p]|s=L = 0.

From the min-max principle, we have
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λ 0
1 ([0, ŝ]) = min

{(
−

∫ ŝ

0
pJ[p]ds

)(∫ ŝ

0
p2 ds

)−1 ∣∣∣∣ p∈C∞([0, ŝ])−{0},

B[p]|s=0 = 0, p(ŝ) = 0

}

= min

{(
−

∫ ŝ

0
pJ[p]ds

)(∫ ŝ

0
p2 ds

)−1 ∣∣∣∣ p∈C0([0, ŝ])−{0},

p is piecewiseC1 and piecewiseC2on [0, ŝ],

B[p]|s=0 = 0, p(ŝ) = 0

}
(25)

(cf. [2]). From (25) and the corresponding result onλ L
1 , we can observe the monotonicity ofλ 0

1
andλ L

1 in the following sense.

CLAIM 1. If 0 < σ0 < σ1 < L, then

λ 0
1 ([0,σ0]) > λ 0

1 ([0,σ1]), (26)

λ L
1 ([σ0,L]) < λ L

1 ([σ1,L])

hold.

On the other hand, ons1, we can show the following:

CLAIM 2.

λ 0
1 ([0,s1]) > 0, (27)

λ L
1 ([s1,L]) > 0. (28)

PROOF OFCLAIM 2. Let p∈C∞([0,s1]) be a non-constant function satisfying

B[p]|s=0 = 0, p(s1) = 0.

Sincez′′(s1) 6= 0 (cf. Lemma 6.3), we can define a functionϕ = p/z′ on [0,s1]. Hence we can
write p = ϕz′. We compute

−
∫ s1

0
pJ[p]ds=

∫ s1

0
(z′)2(ϕ ′)2ds− [(z′)2ϕϕ ′]s1

0

=
∫ s1

0
(z′)2(ϕ ′)2ds+(z′)2ϕϕ ′|s=0.

Note that

0 = pB[p]|s=0 = (z′)2ϕϕ ′|s=0 +ϕ2z′B[z′]|s=0.

Therefore, we get, by using (24),

−
∫ s1

0
pJ[p]ds=

∫ s1

0
(z′)2(ϕ ′)2ds−ϕ2z′B[z′]|s=0

=
∫ s1

0
(z′)2(ϕ ′)2ds+ϕ2z′κ/

√
1−β 2|s=0

> 0.
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Therefore, (27) holds. (28) is proved by a similar way. ¤

Suppose thatλ2 ≤ 0 holds. We will derive a contradiction. Lete be an eigenfunction
belonging toλ2, that is,

J[e] =−λ2e, B[e]|∂C = 0

hold. Then,e(s0) = 0 holds only for a uniques0 ∈ (0,L). Sincee does not vanish in(0,s0),
e|[0,s0] is an eigenfunction belonging toλ 0

1 ([0,s0]). Therefore,

λ 0
1 ([0,s0]) = λ2 ≤ 0. (29)

Similarly,

λ L
1 ([s0,L]) = λ2 ≤ 0. (30)

Assume thats0 < s1 holds. Then, from (27), (29) and (26), we get a contradiction. Similarly,
s0 > s1 does not hold. Therefore,s0 = s1 holds. (27) – (30) leads to a contradiction, and we have
proved thatλ2 > 0. Consequently, by Proposition 6.1,F is stable.

Case(II): From Lemma 6.3,z′′(s) = z′(s) = 0 does not hold. Therefore, sinceκ = γz+ κ0

andz′′ =−κx′ hold,κ is monotone near the inflection point. Hence, from Lemma 5.1, it follows
that

κ(L)+κ(0) = 0, κ(0) 6= 0. (31)

So,κ has the unique zero at somes2 ∈ (0,L).

CLAIM 3.
∫

C
z′ ds 6= 0,

∫

C
z′κ3 ds= 0. (32)

PROOF OFCLAIM 3. From Lemma 5.3 (vi) andz′(L) = −z′(0), One of the following
Case(II-1) – (II-3) holds.

Case(II-1) C([0,s2]) andC([s2,L]) are symmetric to each other with respect to the point
C(s2).

Case(II-2) There exists somes3 ∈ (0,s2) such thatC([s3,s2]) andC([s2,L]) are symmetric
to each other with respect toC(s2).

Case(II-3) There exists somes3 ∈ (s2,L) such thatC([0,s2]) andC([s2,s3]) are symmetric
to each other with respect toC(s2).

First we assume that

z′(s) 6= 0, ∀s∈ (0,L) (33)

holds. Then Case(II-1) must occur. In fact, if Case(II-2) occurs, thenκ(0) = κ(s3) holds. There-
fore, sinceκ = γz+ κ0, we havez(0) = z(s3). Soz′(s) = 0 holds for somes∈ (0,s3), which
contradicts the assumption (33). Similarly, Case(II-3) does not occur. Therefore, Case(II-1)
occurs, and therefore we obtain (32).



352 M. KOISO and B. PALMER

Next, we assume thatz′(s) = 0 holds for somes∈ (0,L). We observed that the number
of zeros ofz′ is odd in the proof of Lemma 6.2. Lets1 be the middle zero ofz′. From (31),
κ(0) 6= κ(L), and soz(0) 6= z(L). Therefore, by Lemma 5.3 (v), either the following (A) or (B)
holds.

(A) There exists somes4 ∈ (s1,L) such thatC([0,s1]) andC([s1,s4]) are symmetric to each
other with respect to the line{x = x(s1)}.

(B) There exists somes4 ∈ (0,s1) such thatC([s4,s1]) andC([s1,L]) are symmetric to each
other with respect to the line{x = x(s1)}.
Assume that (A) holds. Thenκ(s4) = −κ(L) holds. Moreover,κ ′ = γz′ does not vanish in
(s4,L). Therefore, Case(II-2) holds ands4 = s3. Hence, we have

∫

C
z′ ds=

∫ L

s4

z′ ds 6= 0,

∫

C
z′κ3 ds=

∫ s4

0
z′κ3 ds+

∫ L

s4

z′κ3 ds= 0+0 = 0.

Similarly, in the case (B), we obtain (32). ¤

Note that

κ ′′ =−γκx′.

Then, we get

J[z′] = 0, J[κ] = κ3, (34)

B[z′] =−κ/x′, B[κ] = z′(γ−κ2/x′) on ∂ [0, L]. (35)

Noting (32), we define a numbera as

a =−
(∫

C
κ ds

)(∫

C
z′ ds

)−1

,

and set

u = az′+κ.

Then
∫

C
uds= 0. (36)

We will computeI (u). In view of (34), we get

−uJ[u] =−az′κ3−κ4.

Therefore, from (32), we have

−
∫

C
uJ[u]ds=−

∫

C
κ4 ds< 0. (37)
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On the other hand,

uB[u] = (az′+κ)(aB[z′]+B[κ]).

Since, from (12), (31) and (35), it follows that

(az′+κ)|s=0 =−(az′+κ)|s=L,

B[z′]|s=0 =−B[z′]|s=L, B[κ]|s=0 =−B[κ]|s=L.

we get

[[uB[u]]] = 0. (38)

From (37) and (38), we see

I [u] =−
∫

C
κ4 ds< 0.

Recalling (36), we obtain the instability of the film.

Case(III): Sinceκ ′ = γz′ holds, there exists at least one zero ofz′ in (0,L). From the
symmetry ofC (Lemma 5.3 (v)) and the assumption of Case(III), we observe thatz′ has a unique
zero at somes1 ∈ (0,L), and thatC is symmetric with respect to{x = x(s1)}. Since

J[z′] = 0, B[z′]|∂C = 0

hold andz′ vanishes at only one interior point ofC, zero is the second eigenvalue of the problem
(22). Note that

J[x′] = γ, B[x′]|∂C = 0,
∫

C
(x′/γ)ds> 0.

Recall that the multiplicity of each eigenvalue is one. Moreover, we have, by symmetry ofC,∫ L
0 z′ds= 0 and

∫ L
0 x′z′ds= 0. Therefore, by Lemma 6.1, we see that the filmF is stable.

Case(IV): Lets1 be the unique zero ofz′. Fromz′′ =−κx′, x′(0) > 0, x′(L) > 0, and Lemma
6.3, we observe thatC is symmetric with respect to{x = x(s1)}, and

z′(0)κ(0) < 0, z′(L)κ(L) > 0

hold. Therefore,

I (z′) = [[z′B[z′] ]] =− β√
1−β 2

(
z′(L)κ(L)−z′(0)κ(0)

)
< 0

and
∫

C
z′ds= 0

hold, which implies that the filmF is unstable.
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Case(V): LetC0 ⊂⊂C be a curve such thatz′ = 0 at both of the end points and exactly one
interior point ofC0. Then,z′ is an eigenfunction belonging to the second eigenvalue 0 for the
Dirichlet boundary condition:

J[p] =−λ p in C0, p|∂C0
= 0.

Therefore, from the monotonicity of the eigenvalue with respect to the domain, for the fixed
boundary value problem, the second eigenvalue ofC is negative, and thereforeC is unstable. In
particular,C is unstable for our free boundary variational problem. ¤

REMARK 6.1. The stability results of this section can be applied to curves arising from
solutions of the pendulum equation as described in the previous section, as follows.

Because of Remark 5.1, Theorem 6.3 can be applied to curves defined by solutions of the
pendulum equation as in (ii) of Lemma 5.2. Lemma 6.2 (I) and Theorem 6.4 (I) may apply to
solutions arising from any of the cases of Lemma 5.2. Lemma 6.2 (II) – (V) and Theorem 6.4
(II) – (V) may apply to solutions arising from case(i) of Lemma 5.2.

Figure 2. Examples of critical curves.
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