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Abstract. It is a crucial step how to describe the relationship between the
strain, the stress and the temperature field, when we consider the mathematical
modelling for shape memory alloy materials. From the experimental results we know
that the relationship can be described by the hysteresis operators. In this paper we
propose a new system consisting of differential equations as a mathematical model for
shape memory alloy materials occupying the three dimensional domain. The key of
the modelling is the characterization for the generalized stop operators by using the
ordinary differential equations including the subdifferential of the indicator function
for the closed interval. Also, we give a proof of the well-posedness of the system.

1. Introduction.

In our previous works [3], [4], [2] we consider the one-dimensional shape memory
alloy problems. The main idea of our modelling is the characterization for the generalized
stop operators, which was already introduced by Visintin [32]. First, we approximate
the relationship between the stress σ, the strain ε and the temperature field θ by the
generalized stop operator defined by Figure 1, where fl and fu are given smooth curves
with fl ≤ fu on R. From engineering point of view fl and fu can be defined from data
obtained by some experimental results.

In this case σ is determined by the operator with the input function ε if and only if
σ is a solution of the following ordinary differential equation:

σt + ∂I(θ, ε;σ) 3 cεt, (1.1)

where I(θ, ε; ·) is the indicator function of the closed interval [fl(θ, ε), fu(θ, ε)], ∂I is the
subdifferential of I and c is a positive constant corresponding to the slope of the line
in the hysteresis loop. In case fl and fu are independent of the input function, the op-
erator, which is called a stop operator, was dealt by Krejci in [20]. We note that the
equation (1.1) with c = 0 represents the generalized play operator, which appears in
real-time control problems. Kenmochi, Koyama and Meyer studied the system including
an approximation of the generalized play operator in [19]. Also, by the generalized play
operator the solid-liquid phase transition phenomena can be described. The mathemati-
cal model for such a phenomena was investigated by Colli, Kenmochi and Kubo [12] and
Minchev, Okazaki and Kenmochi [23].
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From now on, by using the above characterization we propose a mathematical model
of the dynamics for three dimensional shape memory alloy materials occupying a bounded
domain Ω ⊂ R3 with the smooth boundary ∂Ω. We refer for the physical background
Brokate-Sprekels [5] and Pawlow-Zochowski [26], [27]. Before the derivation of the model
we introduce the following notations. Let A = (aij) and B = (bij) be tensors in R3. We
write Ai = (a1i, a2i, a3i) for each i and A : B =

∑
i,j aijbij .

First, we use the following ordinary equation as the description for the relationship
between the stress tensor σ = (σij), the strain tensor ε = (εij) and the temperature field
θ:

σijt + ∂I(θ, ε;σij) 3 cεijt on [0, T ] and for each i, j = 1, 2, 3, (1.2)

where c ≥ 0 and I(θ, ε; ·) is the indicator function of the closed interval [f∗(θ, ε), f∗(θ, ε)],
and f∗ and f∗ are given continuous functions on R×R9 with f∗ ≤ f∗ on R×R9. Even
if upper and lower curves are different with respect to each i and j, we can obtain the
same results. In this paper, in order to avoid surplus notations we assume the common
lower and upper curves. By some mathematical reasons we assume the viscosity for the
stress, that is,

σ̂ = σ + µ

∆

ut, (1.3)

where σ̂ is the total stress, µ is a positive constant and u = (u1, u2, u3) is the deformation
vector. Moreover, we assume the linearized strain,

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
for each i and j.

The momentum balance law leads to a basic equation of the dynamics of elastic materials:
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uitt = divσ̂i in Q(T ) := (0, T )×Ω for i = 1, 2, 3.

By substituting (1.3) into the momentum balance law and adding the fourth-order term
of u in order to get the regularity of solutions we obtain the following equation:

uitt + γ∆(∆ui)− µ∆uit = divσi in Q(T ) and for each i. (1.4)

Here, we note that the above fourth-order term is ascribed to the presence of a couple
stress in the material so that systems including this term have been studied in previous
works for shape memory alloys. The heat equation for elastic materials is

θt − κ∆θ = σ̂ : εt in Q(T ),

where κ is a positive constant. Hence, the viscosity for the stress implies

θt − κ∆θ = σ : εt + µ

∆

ut : εt in Q(T ). (1.5)

Moreover, in order to obtain the regularity of σ we approximate (1.2) as follows:

σijt − ν∆σij + ∂I(θ, ε;σij) 3 cεijt in Q(T ) and for each i, j, (1.6)

where ν > 0. Also, we consider the homogeneous boundary conditions and the initial
conditions:

ui = 0, ∆ui = 0,
∂θ

∂n
= 0 and

∂σij

∂n
= 0 on Σ(T ) := (0, T )× ∂Ω, (1.7)

u(0, ·) = u0,ut(0, ·) = v0, θ(0, ·) = θ0 and σ(0, ·) = σ0 on Ω, (1.8)

where n is the outward normal vector on ∂Ω, and u0, v0, θ0 and σ0 are given initial
functions.

Here, we note the previous works related to shape memory alloys. Beginning from the
one-dimensional theory due to Falk [14], [15], the model based on the Ginzburg-Landau
free energy theory has been the subject of extensive studies, Niezgódka and Sprekels [24],
[25], Sprekels and Zheng [30], Hoffmann and Zochowski [17], Hoffmann, Niezgódka and
Songmu [18], Brokate and Sprekels [5], Bubner and Sprekels [6], [7], Sprekels, Zheng
and Zhu [31], and Aiki [1]. Frémond also has proposed the other one-dimensional model,
which was studied by Colli and Sprekels [9] and Shemetov [29].

In three dimensions there exist different approaches to thermomechanical of shape
memory alloys. The well-known due to Frémond has been studied by Colli, Frémond and
Visintin [11], Hoffmann, Niezgódka and Zheng [18], Colli and Sprekels [10] and Colli [8].
Three dimensional Falk’s model was dealt by Falk and Konopka [13], Pawlow [26] and
Pawlow and Zochowski [27], [28].

Our main purpose of this paper is to give a theorem, which guarantees the exis-
tence and uniqueness of the system (1.4)–(1.8) under the condition µ2 > 4γ. By the
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experimental results it is known that shape memory alloys do not exhibit viscosity which
means that µ = 0 so that this condition µ2 > 4γ is likely to be not satisfied by a true
shape memory alloy. However, by some mathematical difficulty we need to assume this
condition.

At the end of this section we show notations, which are used throughout the present
paper.
i) Let V be a Banach space with a norm | · |V and w ∈ V 3 or w ∈ V 9. For simplicity we
write

|w|V =
( 3∑

i=1

|wi|2V
)1/2(

resp. |w|V =
( 3∑

i,j=1

|wij |2V
)1/2)

,

as the norm of V 3 (resp. V 9), in case w = (w1, w2, w3) (resp. w = (wij)).
ii) We put X = H1

0 (Ω), X∗ is the dual space of X and 〈·, ·〉 is a duality pairing between
X and X∗.
iii) For T > 0 we put

V (T ) = L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

and

|w|V (T ) := |w|L∞(0,T ;L2(Ω)) +
( ∫

Q(T )

| ∆

w|2dxdt

)1/2

for w ∈ V (T ).

Immediately, V (T ) becomes a Banach space with norm | · |V (T ). The following inequality
will play a very important role in our proof:

|w|L10/3(Q(t)) ≤ C0|w|V (t) for w ∈ V (t) and 0 ≤ t ≤ T, (1.9)

where C0 is a positive constant depending only on Ω and T (cf. [21, Chapter 2, Section
3]).
iv) Let T > 0, κ > 0, f ∈ L2(Q(T )) and θ0 ∈ L2(Ω). Now, we denote by P1(κ; f, θ0)
(resp. P2(κ; f, θ0)) the following initial boundary value problem:

θt − κ∆θ = f in Q(T ), (1.10)

∂θ

∂n
= 0 (resp. θ = 0) on Σ(T ),

θ(0) = θ0 on Ω.

On account of the classical theory [21, Chapter 3] we know: If f ∈ L2(Q(T )) and
θ0 ∈ H1(Ω) (resp. θ0 ∈ X), then there exists a unique solution θ ∈ W 1,2(0, T ;L2(Ω)) ∩
L∞(0, T ;H1(Ω)).
v) Let T > 0, α > 0, f = (f1, f2, f3) ∈ L2(Q(T ))3 and u0 ∈ L2(Ω), and denote by
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P3(α;f , u0) the following initial boundary value problem:

ut − α∆u = divf in Q(T ), (1.11)

u = 0 on Σ(T ),

u(0) = u0 on Ω.

Clearly, P3(α;f , u0) has a unique weak solution u ∈ V (T ) in the variational sense.
vi) Let E be a measurable subset in Ω. We denote by |E| the Lebesgue measure of E.

2. A main result.

We denote by (SMAP) the initial boundary value problem, (1.4)–(1.8). Now, we
begin with the precise assumptions for data.

(A1) κ, µ, γ, ν and c are positive constants.
(A2) f∗, f∗ ∈ C1(R×R9)∩W 1,∞(R×R9) with f∗ ≤ f∗ on R×R. We denote by

L the common Lipschitz constant of f∗ and f∗ and put

L0 = max
{|f∗|L∞(R×R9), |f∗|L∞(R×R9)

}
.

(A3) For given θ ∈ L2(Ω) and ε ∈ L2(Ω)9 we denote by I(θ, ε; ·) the function on
L2(Ω) defined by

I(θ, ε;w) =

{
0 if w ∈ K(θ, ε),

+∞ otherwise,

where K(θ, ε) = {w ∈ L2(Ω) : f∗(θ, ε) ≤ w ≤ f∗(θ, ε) a.e. on Ω}.
Clearly, I(θ, ε; ·) is proper, l.s.c. and convex on L2(Ω), the effective domain

D(I(θ, ε; ·)) = K(θ, ε), and its subdifferential ∂I(θ, ε; ·) is a multivalued operator in
L2(Ω) which has the following property: ξ ∈ ∂I(θ, ε;w) if and only if w ∈ L2(Ω) with
f∗(θ, ε) ≤ w ≤ f∗(θ, ε) a.e. on Ω and ξ ∈ L2(Ω) satisfying

∫

Ω

ξ(z − w)dx ≤ 0 for any z ∈ K(θ, ε). (2.1)

(A4) u0 = (u01, u02, u03) ∈ H4(Ω)3 ∩ X3, ∆u0 ∈ X3, v0 ∈ X3 ∩ H2(Ω)3, θ0 ∈
H1(Ω), σ0 = (σ0ij) ∈ H1(Ω)9, and

f∗(θ0, ε0) ≤ σ0ij ≤ f∗(θ0, ε0) on Ω and σ0ij = σ0ji for each i, j.

Now, we give a definition of a solution to (SMAP).

Definition 2.1. We say that a triplet {u, θ, σ} of functions u : Q(T ) → R3,
θ : Q(T ) → R and σ : Q(T ) → R9 is a solution of (SMAP) on [0, T ], T > 0, if the
following conditions hold:
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(S1) u ∈ L∞(0, T ;H4(Ω)3) ∩W 1,∞(0, T ;H2(Ω)3) ∩W 1,2(0, T ;H3(Ω)3).
(S2) θ ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)).
(S3) σ ∈ W 1,2(0, T ;L2(Ω)9) ∩ L∞(0, T ;H1(Ω)9).
(S4) u ∈ L2(0, T ;X3) and ∆u ∈ L2(0, T ;X3).
(S5) uitt + γ∆(∆ui)− µ∆uit = divσi a.e. on Q(T ) for each i.

(S6)
∫

Q(T )

θtηdxdt + κ

∫

Q(T )

∆

θ · ∆

ηdxdt =
∫

Q(T )

(σ : εt + µ

∆

ut : εt)ηdxdt

for η ∈ L2(0, T ;H1(Ω)).
(S7) For each i and j there exists ξij ∈ L2(0, T ;L2(Ω)) such that

ξij(t) ∈ ∂I(θ(t), ε(t);σij(t)) for a.e. t ∈ [0, T ] and
∫

Q(T )

σijtηdxdt + ν

∫

Q(T )

∆

σij · ∆

ηdxdt +
∫

Q(T )

ξijηdxdt = c

∫

Q(T )

εijtηdxdt

for η ∈ L2(0, T ;H1(Ω)).

(S8) u(0) = u0,ut(0) = v0, θ(0) = θ0 and σ(0) = σ0 a.e. on Ω.

The following theorem is concerned with the existence and the uniqueness of a
solution to (SMAP).

Theorem 2.1. Assume T > 0, (A1)–(A4) and µ2 > 4γ. Then we have:
(i) (Uniqueness) If ∆u0 ∈ W 2−2/p,p(Ω)3 and v0 ∈ W 2−2/p,p(Ω)3 where p = 30, then
(SMAP) has at most one solution on [0, T ].
(ii) (Existence) (SMAP) has at least one solution on [0, T ].

We shall prove Theorem 2.1 in the following way. In Section 3 we investigate the
properties concerned with estimates for initial boundary value problems P1, P2 and
P3. By decomposing 4th order equation to two parabolic equations we can apply the
properties to (1.4) and obtain some a priori estimates. The estimates will play a very
important role in the proof. The aim of Section 4 is to give a proof of the uniqueness
in a similar way to those of [3], [4], [2]. In order to prove the existence we consider the
following approximate problem (SMAP)(M , λ) for M > 0 and λ > 0:

utt + γ∆(∆u)− µ∆ut = divσ in Q(T ), (2.2)

θt − κ∆θ = σ : εt + µ

∆

ut : εt in Q(T ), (2.3)

σijt − ν∆σij + M∂Iλ(θ, ε;σij) = cεijt in Q(T ) and for each i, j, (2.4)

ui = 0,∆ui = 0,
∂θ

∂n
= 0 and

∂σij

∂n
= 0 on Σ(T ), (2.5)

u(0, ·) = u0,ut(0, ·) = v0, θ(0, ·) = θ0 and σ(0, ·) = σ0 on Ω, (2.6)

where Iλ is the Yosida-approximation of I, which will be discussed in Section 4, precisely.
Let {uλ, θλ,σλ} be a solution of (SMAP)(M , λ) for M > 0 and λ > 0. In Section 4 we
give uniform estimates for approximate solutions with respect to λ ∈ (0, 1] for sufficiently
large M . The uniform estimates imply the existence of a solution (SMAP)(M), which is
the system (2.2)–(2.6) with (2.7) instead of (2.4):
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σijt − ν∆σij + M∂I(θ, ε;σij) 3 cεijt in Q(T ) and for each i, j. (2.7)

Since M∂I = ∂I, we can obtain a solution of (SMAP).

3. Auxiliary lemmas.

The aim of this section is to give useful inequalities on the estimate for solutions of
P1, P2 and (1.4). The following three lemmas are the classical results concerned with
parabolic equation.

Lemma 3.1 ([21, Chapter 4, Corollary of Theorem 9.1]). Let κ > 0, f ∈
Lq(Q(T )), q ≥ 2 and θ be a solution of P1(κ; f, 0) on [0, T ]. If q > 5

2 , then there
exists a positive constant C1q such that

|θ|L∞(Q(t)) ≤ C1q|f |Lq(Q(t)) for 0 ≤ t ≤ T.

Lemma 3.2 ([16, Lemma 2.1]). Let T > 0, α > 0, q ≥ 2, f ∈ Lq(Q(T ))3 and
u0 ∈ W 2−2/q,q(Ω), and denote by u a weak solution of P3(α;f , u0) on [0, T ]. Then there
exists a positive constant C2q such that

| ∆

u|Lq(Q(t)) ≤ C2q(|f |Lq(Q(t)) + |u0|W 2−2/q,q(Ω)) for 0 ≤ t ≤ T.

Moreover, let r > 1 and p > 1 with

1
r

=
1
p

+
1
q
− 1. (3.1)

If p < 5
4 and u0 = 0, then there exists a positive constant Cr,q such that

|u|Lr(Q(T )) ≤ Cr,q|f |Lq(Q(T )) for 0 ≤ t ≤ T.

Proof. First, let u1 and u2 be solutions of P3(α;f , 0) and P3(α;0, u0) on [0, T ].
The uniqueness of P3(α;f , u0) leads to u = u1 + u2. Here, by applying the classical
theory [16, Lemma 2.1] and [21, Chapter 4, Theorem 9.1] it holds that

| ∆

u1|Lq(Q(T )) ≤ C2|f |Lq(Q(T )) and | ∆

u0|Lq(Q(T )) ≤ C2|u0|W 2−2/q,q(Ω),

where C2 is a positive constant.
In order to prove the second assertion we consider first the case Ω = R3 and f ∈

C∞0 ((0, T )×R3). Let u be a solution of

ut − α∆u = divf in (0, T )×R3,

u = 0 at |x| = ∞ and u(0, x) = 0 for x ∈ R3.
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Since divf ∈ C∞0 (Q(T )), u can be represented by the Green function of the heat equation
as follows:

u(t, x) =
∫ t

0

∫

R3
Γ (x− y, t− τ)divf(τ, y)dydτ for (t, x) ∈ (0, T )×R3,

where Γ (x, t) is the Green function. See [21, Chapter 4] for the precise definition and
basic properties of Γ (x, t). Let 1/q + 1/q′ = 1 and sq′ = p. By using Hölder’s inequality
we obtain

|u(t, x)| ≤
∫ t

0

∫

R3

3∑

i=1

∣∣∣∣
∂Γ (x− y, t− τ)

∂yi
fi(τ, y)

∣∣∣∣dydτ

≤
3∑

i=1

( ∫ t

0

∫

R3

∣∣∣∣
∂Γ (x− y, t− τ)

∂xi

∣∣∣∣
(1−s)q

|fi(τ, y)|qdydτ

)1/q∣∣∣∣
∂Γ

∂yi

∣∣∣∣
s

Lp((0,T )×R3)

for (t, x) ∈ (0, T )×R3. Here, we put ρ = r/q so that ρ > 1. Accordingly,

( ∫ T

0

∫

R3
|u(t, x)|ρqdxdt

)1/ρ

≤ 3q
3∑

i=1

∣∣∣∣
∂Γ

∂yi

∣∣∣∣
sq

Lp((0,T )×R3)

∣∣∣∣
∫ T

0

∫

R3

∣∣∣∣
∂Γ (x− y, t− τ)

∂xi

∣∣∣∣
(1−s)q

|fi(τ, y)|qdydτ

∣∣∣∣
Lρ((0,T )×R3)

≤ 3q
3∑

i=1

∣∣∣∣
∂Γ

∂yi

∣∣∣∣
sq

Lp((0,T )×R3)

∫ T

0

∫

R3

∣∣∣∣∣
∣∣∣∣
∂Γ (x− y, t− τ)

∂xi

∣∣∣∣
(1−s)q

|fi(τ, y)|q
∣∣∣∣∣
Lρ((0,T )×R3)

dydτ

≤ 3q
3∑

i=1

∣∣∣∣
∂Γ

∂yi

∣∣∣∣
sq

Lp((0,T )×R3)

( ∫ T

0

∫

R3

∣∣∣∣
∂Γ (x, t)

∂xi

∣∣∣∣
(1−s)r

dxdt

)q/r

|fi|qLq((0,T )×R3).

Clearly, r(1− s) = p. Therefore,

|u|Lr((0,T )×R3) ≤ 3
3∑

i=1

|fi|Lq((0,T )×R3)

∣∣∣∣
∂Γ

∂yi

∣∣∣∣
Lp((0,T )×R3).

The assumption 1 < p < 5
4 implies

∣∣ ∂Γ
∂yi

∣∣
Lp((0,t)×R3)

≤ C for 0 ≤ t ≤ T where C is a
positive constant.

In order to apply the above results to general domains, we use partition of unity and
proceed as in the derivation of Lq estimates for parabolic equations (see [21, Chapter
4]). ¤

Lemma 3.3 ([21, Chapter 4, Corollary of Theorem 9.1]). Let T > 0, α > 0, f ∈
Lq(Q(T )), q ≥ 2 and u be a solution of P2(α; f, 0) on [0, T ]. If q > 5, then there exists
a positive constant C3q such that
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| ∆

u|L∞(Q(t)) ≤ C3q|f |Lq(Q(t)) for 0 ≤ t ≤ T.

The next lemma will be applied when we prove Lemma 3.5.

Lemma 3.4. Let T > 0 and α > 0, f ∈ L4((Q(T ))3, divf ∈ L2(Q(T )), ∆u0 ∈ X,
and u be a solution of P3(α;f , u0) on [0, T ]. Then there exists a positive constant C4

such that

| ∆

u|L4(Q(t)) ≤ C4

(|f |L4(Q(t)) + |u0|H2(Ω)

)
for 0 ≤ t ≤ T.

Proof. Let u1 and u2 be solutions of P3(α;f , 0) and P2(α; 0, u0), respectively.
According to the uniqueness of P3(α;f , u0), we have u = u1 +u2. By Lemma 3.2 it holds
that

| ∆

u1|L4(Q(T )) ≤ C2p|f |L4(Q(T )).

Hence, it is sufficient to show

| ∆

u2|L4(Q(T )) ≤ C ′|u0|H2(Ω), (3.2)

where C ′ is a positive constant.
First, we note that u2 ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;X) ∩ L2(0, T ;H2(Ω)) and

|u2t|L2(Q(T )) + |u2|L∞(0,T ;X) + |u2|L2(0,T ;H2(Ω)) ≤ C ′′|u0|X ,

where C ′′ is a positive constant. Also, on account of the maximum principle it is clear
that

|u2|L∞(Q(T )) ≤ |u0|L∞(Ω) ≤ CΩ |u0|H2(Ω),

where CΩ is a positive constant determined by Sobolev’s embedding Theorem.
Secondly, putting v = u2t, we know that v is a weak solution of P3(α;0, α∆u0) on

[0, T ]. Then we obtain

∆

u2t ∈ L2(0, T ;X). (3.3)

Next, we multiply u2t − α∆u2 = 0 by | ∆

u2|2u2 and integrate it over Ω. Thus we
see that

∫

Ω

u2t(t)|

∆

u2(t)|2u2(t)dx− α

∫

Ω

∆u2(t)|

∆

u2(t)|2u2(t)dx = 0 for a.e. t ∈ [0, T ]. (3.4)

Here, the left hand side in (3.4) is well-defined because u2 ∈ L∞(Q(T )) and

∆

u2(t) ∈
L6(Ω)3 for a.e. t ∈ [0, T ]. Also, it is easy to see that
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d

dt

∫

Ω

| ∆

u2(t)|2u2(t)2dx

= 2
∫

Ω

(

∆

u2t(t) · ∆

u2(t))u2(t)2dx + 2
∫

Ω

| ∆

u2(t)|2u2(t)u2t(t)dx

for a.e. t ∈ [0, T ].

By (3.3) the first term of the right hand side in the above equation has a meaning. We
continue to calculate only the first term in the following way:

2
∫

Ω

(

∆

u2t(t) · ∆

u2(t))u2(t)2dx

= −4
∫

Ω

| ∆

u2(t)|2u2(t)u2t(t)dx− 2
∫

Ω

∆u2(t)u2t(t)|u2(t)|2dx for a.e. t ∈ [0, T ].

From the above equations we have

d

dt

∫

Ω

| ∆

u2(t)|2u2(t)2dx

= −2
∫

Ω

| ∆

u2(t)|2u2(t)u2t(t)dx− 2
∫

Ω

∆u2(t)u2(t)|u2(t)|2dx for a.e. t ∈ [0, T ].

On the other hand, using integrating by parts, we observe that

∫

Ω

∆u2(t)| ∆

u2(t)|2u2(t)dx

= −
∫

Ω

| ∆

u2(t)|4dx−
∫

Ω

∆

u2(t) · ∆

(| ∆

u2(t)|2)u2(t)dx for a.e. t ∈ [0, T ].

From the above argument we have

α

∫

Ω

| ∆

u2(t)|4dx

=
d

dt

∫

Ω

| ∆

u2(t)|2|u2(t)|2dx + 2
∫

Ω

∆u2(t)u2t(t)|u2(t)|2dx

− α

∫

Ω

∆

u2(t) · ∆

(| ∆

u2(t)|2)u2(t)dx

≤ d

dt

∫

Ω

| ∆

u2(t)|2|u2(t)|2dx + 2
∫

Ω

|∆u2(t)||u2t(t)||u2(t)|2dx

+
α

2
| ∆

u2(t)|4L4(Ω) +
36
2α
|u2|2L∞(Q(T ))|u2(t)|2H2(Ω) for a.e. t ∈ [0, T ].

Integrating it over [0, T ], we obtain
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α

2

∫ T

0

∫

Ω

| ∆

u2(t)|4dxdt

≤
∫

Ω

| ∆

u2(T )|2|u2(T )|2dx + 2|u2|2L∞(Q(T ))

∫ T

0

|u2(t)|L2(Ω)|∆u2(t)|L2(Ω)dt

+
36
2α
|u2|2L∞(Q(T ))

∫ T

0

|u2(t)|2H2(Ω)dt.

Hence, we can show that this lemma is true. ¤

At the end of this section we consider the fourth order equation (1.4).

Lemma 3.5. Let T > 0, γ > 0, µ > 0, q ≥ 2, f = (f1, f2, f3) ∈ Lq(Q(T ))3, u0 ∈
H4(Ω) and v0 ∈ H2(Ω), and assume that u : Q(T ) → R satisfies u ∈ L∞(0, T ;H4(Ω))∩
W 1,∞(0, T ;H2(Ω)) ∩W 1,2(0, T ;H3(Ω)) and





utt + γ∆(∆u)− µ∆ut = divf in Q(T ),

u = 0 and ∆u = 0 on Σ(T ),

u(0, x) = u0 and ut(t, 0) = v0 for x ∈ Ω.

(3.5)

(i) If µ2 > 4γ, then there exists a positive constant C5q such that

| ∆

ut|Lq(Q(s)) ≤ C5q

(|f |Lq(Q(s)) + |∆u0|W 2−2/q,q(Ω) + |v0|W 2−2/q,q(Ω)

)
for 0 ≤ s ≤ T.

(ii) If µ2 > 4γ, and positive constants p, q and r satisfy (3.1) with r > 5 and p < 5
4 ,

u0 = 0 and v0 = 0, then there exists a positive constant C6 such that

| ∆

u|L∞(Q(s)) ≤ C6|f |Lq(Q(s)) for 0 ≤ s ≤ T.

(iii) If µ2 > 4γ, then there exists a positive constant C7 such that

| ∆

ut|L4(Q(s)) ≤ C7

(|f |L4(Q(s)) + |v0|H2(Ω) + |∆u0|H2(Ω)

)
for 0 ≤ s ≤ T.

Proof. By the assumption µ2 > 4γ there exist positive numbers α and β satisfying
α + β = µ and αβ = γ with α > β. Here, we put w = ut − α∆u. Then we observe that

wt − β∆w = divf in Q(T ), w = 0 on Σ(T ), w(0, ·) = v0 − α∆u0 on Ω

so that w is a solution of P3(β;f , v0 − α∆u0). Hence, Lemma 3.2 guarantees

| ∆

w|Lq(Q(T )) ≤ C2q

(|f |Lq(Q(T )) + |v0|W 2−2/q,q(Ω) + α|∆u0|W 2−2/q,q(Ω)

)
. (3.6)

Obviously,
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utt − α∆ut = div(β

∆

w + f) in Q(T ), ut = 0 on Σ(T ) and ut(0) = v0 on Ω. (3.7)

It follows from Lemma 3.2 that

| ∆

ut|Lq(Q(T )) ≤ C2q

(
β| ∆

w|Lq(Q(T )) + |f |Lq(Q(T )) + |v0|W 2−2/q,q(Ω)

)
.

By substituting (3.6) into the above inequality we have proved the first assertion of this
lemma.

Now, we shall show (ii). As mentioned before w is a solution of P3(β;f , 0). Then
Lemma 3.2 implies

|w|Lr(Q(T )) ≤ Cr,q|f |Lq(Q(T )).

Also, u is a solution of P2(α;w, 0). It follows from Lemma 3.3 that

| ∆

u|L∞(Q(T )) ≤ C3r|w|Lr(Q(T )).

By combing the above two inequalities, we know that (ii) is valid.
Finally, we prove (iii). In this proof we also use the decomposition of 4th order

differential equation. Lemma 3.4 implies

| ∆

w|L4(Q(T )) ≤ C4

(|f |L4(Q(T )) + |v0 − α∆u0|H2(Ω)

)
.

Since ut satisfies (3.7), by using Lemma 3.4, again, we can infer that (iii) is true. ¤

4. Proof of uniqueness.

The aim of this section is to prove the uniqueness of (SMAP). The main idea of
the proof is due to [19]. The proof is rather long so that we divide it into several
steps. Throughout this section we use the following notations. Let {u1, θ1,σ1} and
{u2, θ2,σ2} be solutions of (SMAP) on [0, T ] and put u = u1 − u2, u = (u1, u2, u3),
u` = (u`1, u`2, u`3), θ = θ1−θ2, σ = σ1−σ2, σ = (σij), σ` = (σ`ij), ε` = 1

2 (

∆

u`+t ∆

u`),
ε` = (ε`ij), ` = 1, 2, ε = ε1 − ε2, and

M(s) = max
{|f∗(θ1, ε1)− f∗(θ2, ε2)|L∞(Q(s)), |f∗(θ1, ε1)− f∗(θ2, ε2)|L∞(Q(s))

}

for 0 ≤ s ≤ T .

Moreover, let ξ`ij ∈ L2(Q(T )) satisfying σ`it − ν∆σij + ξ`ij = cε`ijt, ` = 1, 2 and i, j.

1st step. It holds that

1
2

d

dt

∫

Ω

|[σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆

[σij(t)−M(s)]+|2dx

≤ c

∫

Ω

εijt[σij(t)−M(s)]+dx;
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1
2

d

dt

∫

Ω

|[−σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆

[−σij(t)−M(s)]+|2dx

≤ −c

∫

Ω

εijt(t)[−σij(t)−M(s)]+dx for a.e. t ∈ [0, s], 0 ≤ s ≤ T and i, j.

Proof. We fix s ∈ (0, T ], i and j, and put

z1ij = σ1ij − [σij −M(s)]+, z2ij = σ2ij + [σij −M(s)]+.

Clearly, z1ij(t) ∈ K(θ1(t), ε1(t)) and z2ij(t) ∈ K(θ2(t), ε2(t)) for 0 ≤ t ≤ s. Then we can
multiply σ1it− ν∆σij + ξ1ij = cε1ijt by σ1ij − z1ij and integrate it over Ω. Thus by (2.1)
we obtain

∫

Ω

σ1ijt(t)(σ1ij(t)− z1ij(t))dx + ν

∫

Ω

∆

σ1ij · ∆

(σ1ij(t)− z1ij(t))dx

≤ c

∫

Ω

ε1ijt(t)(σ1ij(t)− z1ij(t))dx for a.e. t ∈ (0, s].

Similarly, we have

∫

Ω

σ2ijt(t)(σ2ij(t)− z2ij(t))dx + ν

∫

Ω
∆

σ2ij · ∆
(σ2ij(t)− z2ij(t))dx

≤ c

∫

Ω

ε2ijt(t)(σ1ij(t)− z2ij(t))dx for a.e. t ∈ (0, s].

By adding two inequalities it follows that

1
2

d

dt

∫

Ω

|[σij(t)−M(s)]+|dx + ν

∫

Ω

| ∆

[σij(t)−M(s)]+|2dx

≤ c

∫

Ω

εijt(t)[σij(t)−M(s)]+dx for a.e. t ∈ (0, s].

We can obtain the second inequality in the assertion of this step in a similar way. ¤

2nd step. It holds that

1
2

d

dt

∫

Ω

|ut(t)|2dx +
γ

2
d

dt

∫

Ω

|∆u(t)|2dx + µ

∫

Ω

| ∆

ut(t)|2dx

= −
3∑

i,j=1

∫

Ω

σij(t)
∂ujt

∂xi
(t)dx for a.e. t ∈ [0, T ]. (4.1)

Proof. It is clear that
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utt + γ∆(∆u)− µ∆ut = divσ in Q(T ). (4.2)

We multiply (4.2) by ut and integrate it over Ω. Thus we can obtain (4.1). ¤

3rd step. σ1 and σ2 are symmetric tensors, that is, σ`ij = σ`ji for ` = 1, 2 and
i, j = 1, 2, 3.

Proof. Immediately, for each `, i and j we have

σ`jit − ν∆σ`ji + ∂I(θ`, ε`;σ`ji) 3 cε`ijt in Q(T ),

∂σji

∂n
= 0 on Σ(T ) and σ`ji(0) = σ0ij ,





(4.3)

because σ0 and ε` are symmetric tensors. According to the uniqueness of the initial
boundary value problem (4.3), we show that the assertion of this step holds. ¤

4th step. There exists a positive constant K1 depending only on µ, c and |Ω|
such that

3∑

i,j=1

(
1
2

d

dt

∫

Ω

|[σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆

[σij(t)−M(s)]+|2dx

+
1
2

d

dt

∫

Ω

|[−σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆
[−σij(t)−M(s)]+|2dx

)

+
c

2
d

dt

∫

Ω

|ut(t)|2dx +
cγ

2
d

dt

∫

Ω

|∆u(t)|2dx +
cµ

2

∫

Ω

| ∆

ut(t)|2dx

≤ K1M(s)2 for a.e. t ∈ [0, s] and 0 < s ≤ T.

Proof. Let 0 < s ≤ T . It follows from 1st and 2nd steps that

3∑

i,j=1

(
1
2

d

dt

∫

Ω

|[σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆

[σij(t)−M(s)]+|2dx

+
1
2

d

dt

∫

Ω

|[−σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆

[−σij(t)−M(s)]+|2dx

)

+
c

2
d

dt

∫

Ω

|ut(t)|2dx +
cγ

2
d

dt

∫

Ω

|∆u(t)|2dx + cµ

∫

Ω

| ∆

ut(t)|2dx

≤ c

3∑

i,j=1

( ∫

Ω

εijt(t)[σij(t)−M(s)]+dx−
∫

Ω

εijt(t)[−σij(t)−M(s)]+dx

)

− c
3∑

i,j=1

∫

Ω

σij(t)
∂ujt

∂xi
(t)dx for a.e. t ∈ [0, s]. (4.4)
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Here, 3rd step implies that

3∑

i,j=1

( ∫

Ω

εijt(t)[σij(t)−M(s)]+dx−
∫

Ω

εijt(t)[−σij(t)−M(s)]+dx

)

=
3∑

i,j=1

∫

Ω

(
∂ujt

∂xi
(t)[σij(t)−M(s)]+ − ∂ujt

∂xi
(t)[−σij(t)−M(s)]+

)
dx

for a.e. t ∈ [0, s].

Then we can calculate the right hand side of (4.4) in the following way.

c
3∑

i,j=1

( ∫

Ω

εijt(t)[σij(t)−M(s)]+dx−
∫

Ω

εijt(t)[−σij(t)−M(s)]+dx

)

− c

3∑

i,j=1

∫

Ω

σij(t)
∂ujt

∂xi
(t)dx

≤ c

3∑

i,j=1

∫

Ω

∣∣∣∣
∂uit

∂xj
(t)

∣∣∣∣|[σij(t)−M(s)]+ − [−σij(t)−M(s)]+ − σij(t)|dx

for a.e. t ∈ [0, s].

It is easy to obtain

|[σij −M(s)]+ − [−σij −M(s)]+ − σij | ≤ M(s) a.e. on Q(s) for i, j. (4.5)

By applying Hölder’s inequality to (4.5) we can get the assertion of this step. ¤

5th step. If q > 5
2 , then the following inequality holds:

|θ|L∞(Q(s)) ≤ C1q

(
µ| ∆

ut : ε1t|Lq(Q(s)) + µ| ∆

u2t : εt|Lq(Q(s))

+ |σ : ε1t|Lq(Q(s)) + |σ2 : εt|Lq(Q(s))

)
for 0 < s ≤ T. (4.6)

Proof. Since the left hand side of (1.10) is linear, it holds that

θt − κ∆θ = σ1t : ε1t − σ2t : ε2t + µ(

∆

u1t : ε1t − ∆

u2t : ε2t) in Q(T ).

Therefore, this step is a direct consequence of Lemma 3.1. ¤

The next step is obtained from Lemma 3.5(i) and (4.2).

6th step. For p ≥ 2 and each i it holds that

| ∆

uit|Lp(Q(s)) ≤ C5p|σi|Lp(Q(s)) for 0 ≤ s ≤ T.
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From now on, we fix positive numbers p0, q0 and r0 as follows:

q0 =
10
3

, r0 =
11
2

, p0 =
110
97

.

Clearly, p0, q0 and r0 satisfy (3.1), p0 < 5
4 , q0 > 5

2 and r0 > 5. Obviously, by Lemma
3.5(ii) we have:

7th step. There exists a positive constant K2 such that

| ∆

u|L∞(Q(s)) ≤ K2|σ|Lq0 (Q(s)) for 0 ≤ s ≤ T. (4.7)

For simplicity, we put

E0(t) =
3∑

i,j=1

(
1
2

∫

Ω

|[σij(t)−M(s)]+|2dx +
1
2

∫

Ω

|[−σij(t)−M(s)]+|2dx

)

+
c

2

∫

Ω

|ut(t)|2dx +
cγ

2

∫

Ω

|∆u(t)|2dx,

E1(t) =
3∑

i,j=1

(
ν

∫

Ω

| ∆

[σij(t)−M(s)]+|2dx + ν

∫

Ω

| ∆

[−σij(t)−M(s)]+|2dx

)

+
cµ

2

∫

Ω

| ∆

ut(t)|2dx for 0 ≤ t ≤ s ≤ T.

8th step. For q > 5
2 there exists a positive constant K3 such that

d

dt
E0(t) + E1(t) ≤K3

{
| ∆

ut : ε1t|2Lq(Q(s)) + | ∆

u2t : εt|2Lq(Q(s)) + |σ : ε1t|2Lq(Q(s))

+ |σ2 : εt|2Lq(Q(s)) +
3∑

i,j=1

|σij |2Lq0 (Q(s))

}

for a.e. t ∈ [0, s] and 0 < s ≤ T . (4.8)

Proof. From 4th step it follows

d

dt
E0(t) + E1(t) ≤ K1M(s)2 for a.e. t ∈ [0, s] and 0 < s ≤ T. (4.9)

Due to (A2) we observe that

M(s) ≤ L
(|θ|L∞(Q(s)) + |ε|L∞(Q(s))

) ≤ L
(|θ|L∞(Q(s)) + | ∆

u|L∞(Q(s))

)
for 0 < s ≤ T.

By substituting (4.6) and (4.7) into (4.9) we get (4.8). ¤
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9th step. For ` = 1, 2 and 1 < p ≤ 30 ε`t ∈ Lp(Q(T ))9.

Proof. For ` = 1, 2 the definition of a solution shows that

f∗(θ`, ε`) ≤ σ`ij ≤ f∗(θ`, ε`) on Q(T ) for i, j.

Thus σ` ∈ L∞(Q(T ))9 because of the assumption (A2). Hence, in case p = 30 Lemma
3.5(i) and the assumption imply

| ∆

u`t|Lp(Q(T )) ≤ C5p

(|σ`|Lp(Q(T )) + |∆u0|W 2−2/p,p(Ω) + |v0|W 2−2/p,p(Ω)

)

so that this step holds. ¤

Here, in order to apply the Hölder inequality we set

q = 3, ρ =
10
9

and
1
ρ′

+
1
ρ

= 1.

Clearly, ρq = 10/3 = q0 and ρ′q = 30.

10th step. There exists a positive constant K4 depending on |ε1t|Lρ′q(Q(s)),
|σ2|L∞(Q(T )) and | ∆

u2t|Lρ′q(Q(T )) such that

|σ : ε1t|2Lq(Q(s))

≤ K4

3∑

i,j=1

(|[σij −M(s)]+|2Lq0 (Q(s)) + |[−σij −M(s)]+|2Lq0 (Q(s))

)
+ K4M(s)2s2/(ρ′q);

|σ2 : εt|2Lq(Q(s))

≤ K4

3∑

i,j=1

(|[σij −M(s)]+|2Lq0 (Q(s)) + |[−σij −M(s)]+|2Lq0 (Q(s))

)
+ K4M(s)2s2/q;

| ∆

ut : ε1t|2Lq(Q(s)) ≤ K4| ∆

ut|2Lq0 (Q(s));

| ∆

u2t : εt|2Lq(Q(s)) ≤ K4

3∑

i,j=1

|σij |2Lq0 (Q(s)) for 0 ≤ s ≤ T.

Proof. First let s ∈ (0, T ]. (4.5) implies

|σ : ε1t|2Lq(Q(s)) ≤ 92
∑

i,j

(
|[σij −M(s)]+ε1ijt|2Lq(Q(s))

+ |[−σij −M(s)]+ε1ijt|2Lq(Q(s)) + M(s)2|ε1ijt|2Lq(Q(s))

)
.

By applying Hölder’s inequality for i and j we have
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|[σij −M(s)]+ε1ijt|2Lq(Q(s)) ≤ |[σij −M(s)]+|2Lρq(Q(s))|ε1ijt|2Lρ′q(Q(s))
,

and

|ε1ijt|2Lq(Q(s)) ≤ |Ω|2/(ρ′q)s2/(ρ′q)|ε1ijt|2Lρ′q(Q(s))
.

Thus on account of 9th step and ρq = 10
3 , ρ′q = 30 we obtain the first inequality of this

step.
Easily from 6th step, we show

|σ2 : εt|2Lq(Q(s)) ≤ |σ2|2L∞(Q(T ))

( 3∑

i,j=1

|εijt|Lq(Q(s))

)2

≤ |σ2|2L∞(Q(T ))

( 3∑

i,j=1

∣∣∣∣
∂uit

∂xj

∣∣∣∣
Lq(Q(s))

)2

≤ |σ2|2L∞(Q(T ))

( 3∑

i=1

|σi|Lq(Q(s))

)2

≤ 92|σ2|2L∞(Q(T ))

( 3∑

i,j=1

(|[σij −M(s)]+|2Lq(Q(s))

+ |[−σij −M(s)]+|2Lq(Q(s))

)
+ M(s)2|Ω|2/qs2/q

)
.

This is the second inequality of this step since q0 > q. The rest assertions of this step
can be proved, similarly. ¤

11th step. Put λ = min
{

1
ρ′q , 2

q0

}
. Then there exists a positive constant K5 such

that

d

dt
E0(t) + E1(t) ≤ K5

3∑

i,j=1

(|[σij −M(s)]+|2Lq0 (Q(s)) + |[−σij −M(s)]+|2Lq0 (Q(s))

)

(4.10)

+ sλK5M(s)2 for a.e. t ∈ [0, s] and 0 < s ≤ T .

Proof. By elementary calculations we can prove this step together with help of
6th, 8th and 10th steps. ¤

Moreover, we put

A(s) =
3∑

i,j=1

(|[σij −M(s)]+|2V (s) + |[−σij −M(s)]+|2V (s)

)
for 0 ≤ s ≤ T.

12th step. For some positive number K6 it holds that
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A(s) ≤ K6

(
sA(s) + s1+λM(s)2

)
for 0 ≤ s ≤ T. (4.11)

Proof. Let 0 ≤ s ≤ T . By integrating (4.10) over [0, τ ], 0 ≤ τ ≤ s, we see that

sup
0≤t≤s

E0(t) +
∫ s

0

E1(t)dt

≤ sK5

3∑

i,j=1

(|[σij −M(s)]+|2Lq0 (Q(s)) + |[−σij −M(s)]+|2Lq0 (Q(s))

)
+ s1+λK5M(s)2

≤ sC0K5

3∑

i,j=1

(|[σij −M(s)]+|2V (s) + |[−σij −M(s)]+|2V (s)

)
+ s1+λK5M(s)2

≤ sC0K5A(s) + K5s
1+λM(s)2.

Here, we have applied (1.9) because q0 = 10
3 .

On the other hand, we have

sup
0≤t≤s

E0(t) +
∫ s

0

E1(t)dt ≥ 1
18

min
{

1
2
, ν

}
A(s).

Therefore, putting K5(C0 + 1)/ min
{

1
2 , ν

}
= K6, we get (4.11). ¤

13th step. There exists a positive constant K7 such that

M(s)2 ≤ K7(A(s) + sλM(s)2) for 0 ≤ s ≤ T. (4.12)

Proof. From the proof of 8th step we observe that

M(s)2 ≤ K3

{
| ∆

ut : ε1t|2Lq(Q(s)) + | ∆

u2t : εt|2Lq(Q(s)) + |σ : ε1t|2Lq(Q(s))

+ |σ2 : εt|2Lq(Q(s)) +
3∑

i,j=1

|σij |2Lq0 (Q(s))

}
for 0 ≤ s ≤ T.

From 10th–12th steps it follows the conclusion of this step. ¤

Now, we arrive at just before the point to accomplish the proof of the uniqueness.

Proof of the uniqueness. Taking a small positive number s1 satisfying s1K6 ≤
1
2 , (4.12) implies

A(s) ≤ 2s1+λK6M(s)2 for 0 ≤ s ≤ s1.

By substituting the above inequality into (4.12) we observe
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M(s)2 ≤ K7

(
2s1+λK6M(s)2 + sλM(s)2

)

≤ K7(2K6T + 1)sλM(s)2 for 0 ≤ s ≤ s1.

Here, we choose a positive number s2 ≤ s1 with K7(2K6T + 1)sλ
2 ≤ 1

2 . Then we have
M(s)2 ≤ 1

2M(s)2 for 0 ≤ s ≤ s2. Therefore, M(s2) = 0 and A(s2) = 0. It yields that
σ = 0, u = 0 and θ = 0 on Q(s2). In the above argument the choice of s2 is independent
of initial values. Thus we have proved the uniqueness on the whole interval [0, T ]. ¤

5. Approximate solutions.

First, we approximate the indicator function I by using the Yosida approximation.
For λ > 0 let Iλ be the Yosida-approximation of I. Easily, we have:

Lemma 5.1 (cf. [19, Section 4]) and [4, Theorem 2.1]). Let λ > 0. If θ ∈ L2(Ω)
and ε ∈ L2(Ω)9, then for σ ∈ L2(Ω) it holds

Iλ(θ, ε;σ) =
1
2λ

{|[σ − f∗(θ, ε)]+|2L2(Ω) + |[f∗(θ, ε)− σ]+|2L2(Ω)

}
,

∂Iλ(θ, ε;σ) =
1
λ
{[σ − f∗(θ, ε)]+ − [f∗(θ, ε)− σ]+} a.e. on Ω.

Next, let M be a positive number satisfying M ≥ 4(ν2+4)
ν . Here, we consider the

approximate problem (SMAP)(λ,M). The following lemma is concerned with the well-
posedness of the approximate problem.

Lemma 5.2. Let λ > 0. If u0, v0, θ0 and σ0 satisfy (A4), then there exist Tλ ∈
(0, T ] and a solution {u, θ, σ} of (SMAP)(λ,M) on [0, Tλ], that is, (2.2)–(2.6) and (S1)–
(S4) hold.

By using the Banach fixed point theorem we can prove Lemma 5.2, because ∂I

is Lipschitz continuous. From now on, we write T as Tλ in order to avoid surplus
notations. The purpose of this section is to give uniform estimates for approximate
solutions {uλ, θλ,σλ} with respect to λ. Here, we put uλ = (uλ1, uλ2, uλ3) and σλ =
(σλij).

Lemma 5.3. There exists a positive constant R1 independent of λ such that

|[σλij(t)− L0]+|L2(Ω) + |[−σλij(t)− L0]+|L2(Ω) ≤ R1 for 0 ≤ t ≤ T and i, j;

∫ T

0

|[σλij(t)− L0]+|2H1(Ω)dt +
∫ T

0

|[−σλij(t)− L0]+|2H1(Ω)dt ≤ R1 for i, j;

|uλt(t)|2L2(Ω) + |∆uλ(t)|2L2(Ω) ≤ R1 for 0 ≤ t ≤ T ;

∫ T

0

| ∆

uλt(t)|2L2(Ω)dt ≤ R1 for λ ∈ (0, 1].



A model of 3D shape memory alloy materials 923

Proof. We multiply (2.4) by [σλij(t) − L0]+ and integrate it over Ω. Then we
have

1
2

d

dt

∫

Ω

|[σλij(t)− L0]+|2dx + ν

∫

Ω

| ∆

[σλij(t)− L0]+|2dx

≤ c

∫

Ω

ελijt(t)[σλij(t)− L0]+dx for a.e. t ∈ [0, T ] and i, j, (5.1)

since ∂Iλ(θλ, ελ;σλij)[σλij − L0]+ ≥ 0 a.e. on Q(T ). Similarly, we obtain

1
2

d

dt

∫

Ω

|[−σλij(t)− L0]+|2dx + ν

∫

Ω

| ∆

[−σλij(t)− L0]+|2dx

≤ −c

∫

Ω

ελijt(t)[−σλij(t)− L0]+dx for a.e. t ∈ [0, T ] and i, j. (5.2)

It is obvious that

1
2

d

dt

∫

Ω

|uλt(t)|2dx +
γ

2
d

dt

∫

Ω

|∆uλ(t)|2dx + µ

∫

Ω

| ∆

uλt(t)|2dx

= −
3∑

i=1

∫

Ω

σλi(t) · ∆

uλit(t)dx for a.e. t ∈ [0, T ]. (5.3)

By adding (5.1)–(5.3) we see that

3∑

i,j=1

(
1
2

d

dt

∫

Ω

|[σλij(t)− L0]+|2dx + ν

∫

Ω

| ∆

[σλij(t)− L0]+|2dx

)

+
3∑

i,j=1

(
1
2

d

dt

∫

Ω

|[−σλij(t)− L0]+|2dx + ν

∫

Ω

| ∆

[−σλij(t)− L0]+|2dx

)

+
c

2
d

dt

∫

Ω

|uλt(t)|2dx +
cγ

2
d

dt

∫

Ω

|∆uλ(t)|2dx + cµ

∫

Ω

| ∆

uλt(t)|2dx

≤ c
3∑

i,j=1

∫

Ω

ελijt(t)[σλij(t)− L0]+dx− c
3∑

i,j=1

∫

Ω

ελijt(t)[−σλij(t)− L0]+dx

− c
3∑

i,j=1

∫

Ω

σλij(t)
∂uλit(t)

∂xj
dx for a.e. t ∈ [0, T ]. (5.4)

Here, similarly to 3rd step of the proof of the uniqueness we can show that σλij = σλji

for i and j. Accordingly, we infer that
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c
3∑

i,j=1

∫

Ω

ελijt(t)[σλij(t)− L0]+dx− c
3∑

i,j=1

∫

Ω

ελijt(t)[−σλij(t)− L0]+dx

− c
3∑

i,j=1

∫

Ω

σλij(t)
∂uλit

∂xj
dx

= c
3∑

i,j=1

∫

Ω

∂uλit(t)
∂xj

([σλij(t)− L0]+ − [−σλij(t)− L0]+ − σλij(t))dx

≤ cL0

3∑

i,j=1

∫

Ω

∣∣∣∣
∂uλit(t)

∂xj

∣∣∣∣dx for a.e. t ∈ [0, T ].

Here, we use |[σλij(t)− L0]+ − [−σλij(t)− L0]+ − σλij(t)| ≤ L0. Hence, it follows

1
2

d

dt

∫

Ω

|[σλij(t)− L0]+|2dx + ν

∫

Ω

| ∆

[σλij(t)− L0]+|2dx

+
1
2

d

dt

∫

Ω

|[−σλij(t)− L0]+|2dx + ν

∫

Ω

| ∆

[−σλij(t)− L0]+|2dx

+
c

2
d

dt

∫

Ω

|uλt(t)|2dx +
cγ

2
d

dt

∫

Ω

|∆uλ(t)|2dx +
cµ

2

∫

Ω

| ∆

uλt(t)|2dx

≤ 9c

2µ
L2

0|Ω| for a.e. t ∈ [0, T ]. (5.5)

We integrate (5.5) over [0, τ ], 0 ≤ τ ≤ T , and get the assertion of this lemma. ¤

Lemma 5.4. Put p = 10/3. Then there exists a positive constant R2 independent
of λ such that

| ∆

uλt|Lp(Q(T )) ≤ R2(|σλ|Lp(Q(T )) + |v0|H2(Ω) + |∆u0|H2(Ω)) for λ ∈ (0, 1], (5.6)

|ελt|Lp(Q(T )) ≤ R2 for λ ∈ (0, 1].

Proof. (5.6) is due to Lemma 3.5(i) since the embedding relation H2(Ω) ⊂
W 2−2/p,p(Ω) holds with p = 10/3 (cf. [33, Theorem 9.2.1]). Clearly, it holds that

|σλij | ≤ |[σλij − L0]+|+ |[−σλij − L0]+|+ L0 a.e. on Q(T ).

Hence, Lemma 5.3 and (1.9) imply that {σλ} is the bounded set in L10/3(Q(T ))9. ¤

Lemma 5.5. There exists a positive constant R3 such that

|σλij(t, x)| ≤ R3 for a.e. (t, x) ∈ Q(T ), and λ ∈ (0, 1] and i, j.

Proof. We shall prove this lemma in a similar way to those of [21, Theorem
7.1, Chapter 3] and [3, Lemma 4.3]. In this proof we fix i and j. First for ` ≥ `0 :=
max{L0, |σ0ij |L∞(Ω) + 1} we put
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A`(t) = {x ∈ Ω : σλij(t, x) ≥ `}.

The inequality (5.1) still holds with ` instead of L0. On account of ` ≥ 1 we observe that

1
2

d

dτ

∫

Ω

|[σλij(τ)− `]+|2dx + ν

∫

Ω

| ∆

[σλij(τ)− `]+|2dx

= c

∫

Ω

ελijτ (τ)[σλij(τ)− `]+dx

= c

∫

A`(τ)

ελijτ (τ)(σλij(τ)− `)dx

≤ c

∫

A`(τ)

|ελijτ (τ)|(|σλij(τ)− `|2 + `2)dx

≤ c

( ∫

A`(τ)

|ελijτ (τ)|10/3dx

)3/10( ∫

A`(τ)

(|σλij(τ)− `|2 + `2)10/7dx

)7/10

for a.e. τ ∈ [0, T ].

Integrating the above inequality over [0, t], 0 < t < T , we have

|[σλij − `]+|2V (t)

≤ N1

( ∫ t

0

∫

A`(τ)

|ελijτ (τ)|10/3dxdτ

)3/10( ∫ t

0

∫

A`(τ)

(|σλij(τ)− `|2 + `2)10/7dxdτ

)7/10

≤ N1R2

( ∫ t

0

∫

A`(τ)

(|σλij(τ)− `|2 + `2)10/7dxdτ

)7/10

for t ∈ [0, T ],

where N1 is a positive constant depending only on ν and c. By applying Hölder’s in-
equality we obtain

( ∫ t

0

∫

A`(τ)

(|σλij(τ)− `|2)10/7dxdτ

)7/10

≤ t1/10|Ω|1/10|[σλij − `]+|2L10/3(Q(t))

and

( ∫ t

0

∫

A`(τ)

(`2)10/7dxdτ

)7/10

≤ `2
( ∫ t

0

|A`(τ)|dτ

)7/10

for t ∈ [0, T ].

Therefore, (1.9) implies

|[σλij − `]+|V (t) ≤
√

N1R2

{
C0(t|Ω|)1/20|[σλij − `]+|V (t) + `

( ∫ t

0

|A`(τ)|dτ

)7/20}

for t ∈ [0, T ].
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Now, we choose T1 ∈ (0, T ] such that
√

N1R2C0T
1/20
1 |Ω|1/20 ≤ 1

2 . Thus we infer that

|[σλij − `]+|V (t) ≤ 2`
√

N1R2

( ∫ t

0

|A`(τ)|dτ

)7/20

for 0 ≤ t ≤ T1 and ` ≥ `0. (5.7)

Putting kq = (2− 2−q)`1 for `1 ≥ `0 and q = 0, 1, 2, · · · , (5.7) and (1.9) guarantee that

(kq+1 − kq)
( ∫ T1

0

|Akq+1(τ)|dτ

)3/10

≤
( ∫ T1

0

∫

Ω

|[σλij(τ)− kq]+|10/3dxdτ

)3/10

≤ C0|[σλij(τ)− kq]+|V (T1)

≤ N2kq

( ∫ T1

0

|Akq (τ)|dτ

)7/20

for each q = 0, 1, 2, · · · , (5.8)

where N2 = 2C0

√
N1R2. Here, we put aq =

( ∫ T1

0
|Akq

(τ)|dτ
)3/10 for each q = 0, 1, 2, · · · .

Immediately, we have

aq+1 ≤ N32qa7/6
q for q = 0, 1, 2, · · · ,

where N3 = 4N2. Also, we set `1 = N`0 for N ≥ 1 and obtain the following inequality
in a similar way to that of (5.8):

(`1 − `0)
( ∫ T1

0

|A`1(t)|dt

)3/10

≤ N2`0

( ∫ T1

0

|A`0(t)|dt

)7/20

so that

a0 =
( ∫ T1

0

|A`1(τ)|dτ

)3/10

≤ N2

N − 1
T

7/20
1 |Ω|7/20.

Thus we can take N satisfying

N2T
7/20
1 |Ω|7/20N6

3 236 + 1 ≤ N.

Clearly, a0 ≤ 1
N6

3 236 . Then by applying [21, Lemma 5.6 in Chapter 2] it holds that aq → 0
as q →∞ so that σλij ≤ 2N`0 on Q(T1).

Analogous arguments are valid on the cylinder (T1, 2T1) × Ω. Thus after a finite
number of steps we get the required estimate. Of course the lower bound can be shown,
similarly. ¤

The following lemma is useful in order to get uniform estimate and can be proved
easily.



A model of 3D shape memory alloy materials 927

Lemma 5.6. {ελt} and { ∆

uλt} are bounded sets in L4(Q(T ))9.

Proof. For each i and λ ∈ (0, 1] uλi satisfies (3.5) with σλi instead of f . Therefore,
this lemma is a direct consequence of Lemmas 3.5(iii) and 5.5. ¤

Lemma 5.7. The set {θλ} is bounded in W 1,2(0, T ;L2(Ω)) and L∞(0, T ;H1(Ω)).

Proof. By Lemmas 5.5 and 5.6 the right hand side in (2.3) belongs to L2(Q(T ))
for each λ ∈ (0, 1], that is, {σλ : ελt + µ

∆

uλt : ελt} is the bounded set in L2(Q(T )).
Hence, this lemma is trivial. ¤

Lemma 5.8. There exists a positive constant R4 such that

|Iλ(θλ, ελ;σλij)|L∞(0,T ) ≤ R4 for i, j,

|∂Iλ(θλ, ελ;σλij)|L2(0,T ;L2(Ω)) ≤ R4 for i, j,

| ∆

σλ(t)|L2(Ω) ≤ R4 for 0 ≤ t ≤ T,

|σλ|L2(0,T ;H2(Ω)) ≤ R4,

|σλt|L2(Q(T )) ≤ R4,





for λ ∈ (0, 1].

Proof. In this proof we fix i and j and out ∂Iλ(θλ, ελ;σλij) = ξλij for λ ∈ (0, 1].
Multiplying (2.4) by σλijt, we obtain

|σλijt(t)|2L2(Ω) +
ν

2
d

dt
| ∆

σλij(t)|2L2(Ω) + M

∫

Ω

ξλij(t)σλijt(t)dx

≤ 1
2

∫

Ω

|σλijt(t)|2dx +
c2

2

∫

Ω

|ελijt(t)|2dx for a.e. t ∈ [0, T ].

Here, we calculate the time derivative of Iλ as follows (see Lemma 5.1):

d

dt
Iλ(θλ(t), ελ(t);σλij(t))

=
1
λ

∫

Ω

(
σλijt(t)− ∂

∂t
f∗(θλ(t), ελ(t))

)
[σλij(t)− f∗(θλ(t), ελ(t))]+dx

+
1
λ

∫

Ω

(
∂

∂t
f∗(θλ(t), ελ(t))− σλijt(t)

)
[f∗(θλ(t), ελ(t))− σλij(t)]+dx

=
∫

Ω

ξλij(t)σλijt(t)dx− 1
λ

∫

Ω

∂

∂t
f∗(θλ(t), ελ(t))[σλij(t)− f∗(θλ(t), ελ(t))]+dx

+
1
λ

∫

Ω

∂

∂t
f∗(θλ(t), ελ(t))[f∗(θλ(t), ελ(t))− σλij(t)]+dx

≤
∫

Ω

ξλij(t)σλijt(t)dx +
∫

Ω

Fλ(t)|ξλij(t)|dx for a.e. t ∈ [0, T ], (5.9)
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where Fλ =
∣∣ ∂
∂tf

∗(θλ, ελ)
∣∣ +

∣∣ ∂
∂tf∗(θλ, ελ)

∣∣. We note that

|[f∗(θλ, ελ)− σλij ]+| ≤ λ|ξλij |, |[σλij − f∗(θλ, ελ)]+| ≤ λ|ξλij | a.e. on Q(T ).

From the above two inequalities it follows

1
2
|σλijt(t)|2L2(Ω) +

ν

2
d

dt
| ∆

σλij(t)|2L2(Ω) + M
d

dt
Iλ(θλ(t), ελ(t);σλij(t))

≤ c2

2

∫

Ω

|ελijt(t)|2dx + M

∫

Ω

Fλ(t)ξλij(t)dx for a.e. t ∈ [0, T ]. (5.10)

Next, multiplying (2.4) by ξλij , we see that

∫

Ω

σλijt(t)ξλij(t)dx− ν

∫

Ω

∆σλij(t)ξλij(t)dx + M

∫

Ω

|ξλij(t)|2dx

= c

∫

Ω

ελijt(t)ξλij(t)dx for a.e. t ∈ [0, T ].

By substituting (5.9) into the above inequality we get

d

dt
Iλ(θλ(t), ελ(t);σλij(t)) + M

∫

Ω

|ξλij(t)|2dx

≤ ν

∫

Ω

|∆σλij(t)||ξλij(t)|dx + c

∫

Ω

|ελijt(t)||ξλij(t)|dx +
∫

Ω

|Fλ(t)||ξλij(t)|dx

≤ c2

2M

∫

Ω

|ελijt(t)|2dx +
7M

8

∫

Ω

|ξλij(t)|2dx +
ν2

M

∫

Ω

|∆σλij(t)|2dx +
2
M

∫

Ω

|Fλ(t)|2dx

so that

d

dt
Iλ(θλ(t), ελ(t);σλij(t)) +

M

8
|ξλij(t)|2L2(Ω)

≤ c2

2M
|ελijt(t)|2L2(Ω) +

ν2

M
|∆σλij(t)|2L2(Ω) +

2
M
|Fλ(t)|2L2(Ω) for a.e. t ∈ [0, T ].

(5.11)

Similarly to (5.10) and (5.11), by multiplying (2.4) by −∆σλij we can show

d

dt
| ∆

σλij(t)|2L2(Ω) +
ν

2
|∆σλij(t)|2L2(Ω)

≤ M

16
|ξλij(t)|2L2(Ω) +

4
M
|∆σλij(t)|2L2(Ω) +

c2

2ν
|ελijt(t)|2L2(Ω) for a.e. t ∈ [0, T ].

(5.12)
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(5.11) and (5.12) imply that

d

dt
Iλ(θλ(t), ελ(t);σλij(t)) +

M

8
|ξλij(t)|2L2(Ω) +

d

dt
| ∆

σλij(t)|2L2(Ω) +
ν

2
|∆σλij(t)|2L2(Ω)

≤
(

c2

2M
+

c2

2ν

)
|ελijt(t)|2L2(Ω) +

ν2 + 4
M

|∆σλij(t)|2L2(Ω) +
2
M
|Fλ(t)|2L2(Ω)

for a.e. t ∈ [0, T ].

Now, it satisfies ν2+4
M ≤ µ

4 . Thus we have

d

dt
Iλ(θλ(t), ελ(t);σλij(t)) +

M

8
|ξλij(t)|2L2(Ω) +

d

dt
| ∆

σλij(t)|2L2(Ω) +
ν

4
|∆σλij(t)|2L2(Ω)

≤
(

c2

2M
+

c2

2ν

)
|ελijt(t)|2L2(Ω) +

2
M
|Fλ(t)|2L2(Ω) for a.e. t ∈ [0, T ]. (5.13)

Integrating (5.13), we get the required estimates except for |σλt|L2(Q(T )) ≤ R4. In fact,
it holds that

|Fλ(t)|L2(Ω) ≤ 2L

(
|θλt(t)|L2(Ω) +

3∑

i=1

|ελijt(t)|L2(Ω)

)
for t ∈ [0, T ].

The rest estimate of this lemma is easily obtained from (5.10). ¤

Lemma 5.9. The set {uλ} is bounded in W 1,∞(0, T ;H2(Ω)3), L∞(0, T ;H4(Ω)3)
and W 1,2(0, T ;H3(Ω)3). Therefore, {uλtt} is bounded in L∞(0, T ;L2(Ω)3).

Proof. We multiply (2.2) by ∆(∆uλt). Then by elementary calculation we see
that

1
2
|∆uλt(t)|2L2(Ω) +

γ

2
|∆(∆uλ)(t)|2L2(Ω) +

µ

2

∫ t

0

| ∆

(∆uτ )(τ)|2L2(Ω)dτ

≤ 1
2µ

∫ t

0

| ∆

(divσλ)(τ)|2L2(Ω)dτ +
1
2
|∆v0|2L2(Ω) +

γ

2
|∆(∆u0)|2L2(Ω) for t ∈ [0, T ].

Also, (1.2) implies that {uλtt} is bounded in L∞(0, T ;L2(Ω)3). Thus we have proved
this lemma. ¤

6. Proof of the existence.

The purpose of this section is give the proof of the existence of solutions. Before the
proof we show the global existence of approximate solutions in time.

Proposition 6.1. Let T > 0 and assume (A1)–(A4) and µ2 > 4γ. Then for
λ ∈ (0, 1] and M > 0 with M ≥ 4(ν2+4)

ν (SMAP)(M, λ) has a solution on [0, T ].
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Proof. Let [0, Tλ) be the maximal interval of existence of a solution to
(SMAP)(M , λ). Suppose that Tλ < T . Then uniform estimates obtained in the previous
section show that we can extend the solution beyond Tλ. Thus this proposition has been
proved. ¤

Proof of the existence. The uniform estimates shown in the previous section
guarantee that we can take a subsequence {λk} of {λ} and functions u, θ and σ satisfying
(S1)–(S4),

θk := θλk
→ θ weakly in W 1,2(0, T ;L2(Ω)),

weakly* in L∞(0, T ;H1(Ω)),

in C([0, T ];L2(Ω)),

σk := σλk
→ σ weakly in W 1,2(0, T ;L2(Ω)9),

weakly* in L∞(0, T ;H1(Ω)9),

in C([0, T ];L2(Ω)9),

uk := uλk
→ u weakly* in W 1,∞(0, T ;H2(Ω)3) and L∞(0, T ;H4(Ω)3),

weakly in W 1,2(0, T ;H3(Ω)3) and W 2,2(0, T ;L2(Ω)3),

Iλk
(θk, εk;σkij) → Îij weakly* in L∞(0, T ) for i, j,

∂Iλk
(θk, εk;σkij) → ξij weakly in L2(Q(T )) for i, j,

as k →∞, where σk = (σkji) and εk = ελk
.

Hence, for each i we have

∫

Q(T )

(uitt + γ∆(∆ui)− µ∆uit)ηdxdt =
∫

Q(T )

ηdivσidxdt for η ∈ L2(Q(T )).

where u = (u1, u2, u3). Thus we know that (S5) is valid. Clearly, the initial conditions
for u hold.

Next, by putting ε = 1
2 (

∆

u +t ∆

u) it is obvious that εkt → εt weakly in
L2(0, T ;L2(Ω)9). Then we obtain

∫

Q(T )

σijtηdxdt + ν

∫

Q(T )

∆

σij · ∆

ηdxdt + M

∫

Q(T )

ξijηdxdt

= c

∫

Q(T )

εijtηdxdt for η ∈ L2(0, T ;H1(Ω)) and i, j,

where ε = (εij). Accordingly, in order to prove (S7) it is sufficient to show that

Mξij ∈ ∂I(θ, ε;σij) a.e. on Q(T ) for each i and j. (6.1)

To do so, for i and j it holds that
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|[σλij − f∗(θλ, ελ)]+ − [f∗(θλ, ελ)− σλij ]+|L2(Q(T )) = λ|ξλij |L2(Q(T )) → 0 as λ ↓ 0,

and σkij → σij in C([0, T ];L2(Ω)) as k → ∞. Also, the above convergences imply
f∗(θk, εk) → f∗(θ, ε) and f∗(θk, εk) → f∗(θ, ε) in L2(Q(T )) as k →∞, since uk → u in
L2(0, T ;X3). Hence, we have

|[σij − f∗(θ, ε)]+ − [f∗(θ, ε)− σij ]+|L2(Q(T )) = 0

so that f∗(θ, ε) ≤ σij ≤ f∗(θ, ε) a.e. on Q(T ). As the next step let z ∈ L2(Q(T )) with
f∗(θ, ε) ≤ z ≤ f∗(θ, ε) a.e. on Q(T ) and put

zk = max{min{f∗(θk, εk), z}, f∗(θk, εk)}.

It is easy to see that

f∗(θk, εk) ≤ zk ≤ f∗(θk, εk) a.e. on Q(T ) and zk → z in L2(Q(T )) as k →∞.

Consequently, we observe that

∫

Q(T )

ξkij(zk − σkij)dxdt →
∫

Q(T )

ξij(z − σij)dxdt as k →∞,

∫

Q(T )

ξkij(zk − σkij)dxdt ≤ 0 for k.

Hence,
∫

Q(T )
Mξij(z − σij)dxdt ≤ 0. This means (6.1), that is, (S7) holds.

In order to prove (S6) it is sufficient to show that

σk : εkt + µ

∆

ukt : εkt → σ : εt + µ

∆

ut : εtweakly in L2(Q(T )). (6.2)

Now, we know that the set {ukt} is bounded in L∞(0, T ;H2(Ω)3), L2(0, T ;H3(Ω)3) and
W 1,∞(0, T ;L2(Ω)3). By applying Aubin’s compact theorem (see [22, Theorem 5.1]) we
know that ukt → ut in L2(0, T ;H2(Ω)3) as k → ∞. It yields that

∆

ukt → ∆

ut and
εkt → εt in L2(0, T ;L2(Ω)9) as k →∞. Hence, we have

∫

Q(T )

(σk : εkt + µ

∆

ukt : εkt)ηdxdt →
∫

Q(T )

(σ : εt + µ

∆

ut : εt)ηdxdt

for η ∈ C∞0 (Q(T )).

Obviously, (6.2) holds, because { ∆

ukt} and {εkt} are bounded in L∞(0, T ;L6(Ω)). From
the above argument we conclude that {u, θ, σ} is the solution of (SMAP) on [0, T ]. ¤
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