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Abstract. We consider the Cauchy problem for the damped wave equation
with absorption

utt −∆u + ut + |u|ρ−1u = 0, (t, x) ∈ R+ ×RN , (∗)
with N = 3, 4. The behavior of u as t →∞ is expected to be the Gauss kernel in the
supercritical case ρ > ρc(N) := 1 + 2/N . In fact, this has been shown by Karch [12]

(Studia Math., 143 (2000), 175–197) for ρ > 1+ 4
N

(N = 1, 2, 3), Hayashi, Kaikina and

Naumkin [8] (preprint (2004)) for ρ > ρc(N)(N = 1) and by Ikehata, Nishihara and

Zhao [11] (J. Math. Anal. Appl., 313 (2006), 598–610) for ρc(N) < ρ ≤ 1 + 4
N

(N =

1, 2) and ρc(N) < ρ < 1 + 3
N

(N = 3). Developing their result, we will show the

behavior of solutions for ρc(N) < ρ ≤ 1+ 4
N

(N = 3), ρc(N) < ρ < 1+ 4
N

(N = 4). For

the proof, both the weighted L2-energy method with an improved weight developed
in Todorova and Yordanov [22] (J. Differential Equations, 174 (2001), 464–489) and
the explicit formula of solutions are still usefully used. This method seems to be
not applicable for N = 5, because the semilinear term is not in C2 and the second
derivatives are necessary when the explicit formula of solutions is estimated.

1. Introduction.

We consider the asymptotic behavior of the solution to the Cauchy problem for the
semilinear damped wave equation with absorption:

{
utt −∆u + ut + |u|ρ−1u = 0, (t, x) ∈ R+ ×RN ,

(u, ut)(0, x) = (u0, u1)(x), x ∈ RN .
(1.1)

Here no restriction of the size of the data is imposed. When ρ > 1, the critical exponent
ρc(N) on the behavior of solutions is expected to be

ρc(N) = 1 +
2
N

. (1.2)

The behaviors have been shown in some cases, which are as same as those for the semi-
linear heat equation with absorption, since the damped wave equation has the diffusive
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structure as t →∞ (Marcati and Nishihara [14], Hosono and Ogawa [9], Nishihara [18],
[19], Narazaki [16], Ikehata-Nishihara [10]).

In the subcritical case 1 < ρ < ρc(N), the solution u to (1.1) is expected to behave as
the similarity solution wb(t, x) := t−1/(ρ−1)f(x/

√
t) to the corresponding heat equation

with absorption

φt −∆φ + |φ|ρ−1φ = 0, (t, x) ∈ (0,∞)×RN . (1.3)

In fact, when N = 1, Hayashi, Kaikina and Naumkin [7], [8] have shown that

u(t, x) ∼ wb(t, x) as t →∞, (1.4)

provided that ρ is near to ρc(N), and, when N ≥ 1, Nishihara and Zhao [20] and Ikehata,
Nishihara and Zhao [11] showed that

‖(u,∇u)(t, ·)‖L2 = O
(
t−

1
ρ−1+ N

4 , t−
1

ρ−1+ N
4 − 1

2
)
. (1.5)

Here, the similarity solution wb is given by the ordinary differential equation of g(r) :=
f(x/

√
t), r = |x|/√t:




−g′′ −

(
r

2
+

N − 1
r

)
g′ + |g|ρ−1g =

1
ρ− 1

g, r ∈ (0,∞),

g′(0) = 0, limr→∞ r
2

ρ−1 g(r) = b(≥ 0),

(1.6)

Note that the decay rates of the similarity solution are

‖(wb,∇wb)(t, ·)‖L2 = O
(
t−

1
ρ−1+ N

4 , t−
1

ρ−1+ N
4 − 1

2
)
, (1.7)

and hence the decay rates of (1.5) are sharp in the sense that (1.5) has the same rates
as those in (1.7).

In the critical case ρ = ρc(N), the solution φ to the Cauchy problem for (1.3) satisfies

φ(t, x) ∼ θ0G(t, x)(log t)−1/2 as t →∞ (1.8)

(Galaktionov, Kurdyumov and Samarskii [4]), and for (1.1) Hayashi, Kaikina and
Naumkin [6], [8] have shown

u(t, x) ∼ θ0G(t, x)(log t)−1/2 as t →∞, (1.9)

where θ0 is a suitable constant, G is the one-dimesional Gauss kernel and the N -
dimensional Gauss kernel is defined by
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G(t, x) =
1√
4πt

e−
|x|2
4t , |x| =

√
x2

1 + x2
2 + · · ·+ x2

N . (1.10)

When N ≥ 2, neither the sharp decay orders nor (1.9) even for small data are obtained
yet.

In the supercritical case ρ > ρc(N), similar to the results by Escobedo and Kavian
[2] and Escobedo, Kavian and Matano [3], it is expected that

u(t, x) ∼ θ0G(t, x), t →∞, with

θ0 =
∫

RN

(u0 + u1)(x) dx−
∫ ∞

0

∫

RN

|u|ρ−1u(τ, x) dx dτ.
(1.11)

Kawashima, Nakao and Ono [13] showed the global existence of solutions for 1 < ρ <

1 + 4/(N − 2) (1 < ρ < ∞ if N = 1, 2) and the L2-decays of the solution including its
higher derivatives for 1 + 4/N ≤ ρ < 1 + 4/(N − 2) (3 ≤ N ≤ 5), 1 + 4/N ≤ ρ < ∞
(N = 1, 2). Based on their results, Karch [12] showed (1.11) when ρ > 1 + 4/N with
1 ≤ N ≤ 3, and Hayashi, Kaikina and Naumkin [5], [8] have recently shown (1.11) when
ρ > ρc(N) = 3, N = 1. Making use of their results, Ikehata, Nishihara and Zhao [11]
have extended to the cases

ρc(N) < ρ





≤ 1 +
4
N

(N = 1, 2)

< 1 +
3
N

(N = 3).

(1.12)

Our aim in this paper is, by developing the method in [11], to show (1.11) when

ρc(N) < ρ





≤ 1 +
4
N

(N = 3)

< 1 +
4
N

(N = 4).

(1.13)

The same method does not seem to be applicable to show (1.11) in case of N = 5.
Because the second derivatives of the semilinear term are necessary when we estimate
the explicit formula of solutions, and the semilinear term |u|ρ−1u /∈ C2 for ρ < 1 + 4/5
(See Remark 4.1 below).

For the related works see the references in [11], [8], etc.
The content of this paper is as follows. Since the proof is following to that in [11], we

remember the results in [11] and its story in Section 2. Our main theorem is also stated.
In Section 3 the basic estimates on the solution to the linear damped wave equation are
derived. In Section 4 the series of Lemmas will be proved. In the final section 5 the proof
of Main Theorem will be completed.

Notations. By f(x) ∼ g(x) as |x| → a we denote lim|x|→a
f(x)
g(x) = (positive

constant). Especially, f(t, ·) ∼ g(t, ·) as t → ∞, f, g : R+ → X (Banach space) denotes
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‖f(t, ·) − g(t, ·)‖X = o(‖g(t, ·)‖X) as t → ∞, so that g(t, ·) is an asymptotic profile of
f(t, ·) as t → ∞. By C(a, b, . . . ), Ca,b,... or c(a, b, . . . ), ca,b,... we denote several positive
constants depending on a, b, . . . . Without confusions, we denote them simply by C, c,
whose quantities are changed line to line.

By Lp = Lp(RN ) (1 ≤ p ≤ ∞) we denote a usual Lebesgue space with its norm
‖ · ‖Lp . When p = 2, its suffix Lp is often abbreviated. The Sobolev space Hm =
Hm(RN ) = {f : RN → R; ∂i

xf ∈ L2(i = 0, 1, . . . , m)}, and Wm,q = Wm,q(RN ) = {f :
RN → R; ∂i

xf ∈ Lq(i = 0, 1, . . . , m)}. For u(t, x) : R+ → Lp, u ∈ Lp,m = Lp,m(RN )
means

(
1 + |·|√

t+1

)m
u(t, ·) ∈ Lp(RN ) together with

‖u(t, ·)‖Lp,m =
( ∫

RN

(
1 +

|x|√
1 + t

)pm

|u(t, x)|pdx

)1/p

.

When t = 0, Lp,m becomes a usual weighted Lp space of order m. Often ‖u(t, ·)‖Lp ,
‖u(t, ·)‖Lp,m etc. are written simply as ‖u(t)‖Lp , ‖u(t)‖Lp,m etc.

2. Known results and the main theorem.

First, we remember the results in [11]. By the weighted energy method with the
improved weight introduced in [22] the following theorem is obtained.

Theorem 2.1 (Theorem 2.1 in [11]). Suppose that 1 < ρ < 1 + 2
N−2 (N ≥ 3),

ρ < ∞ (N = 1, 2) with ρ ≤ 1 + 4
N and that (u0, u1) ∈ H1(RN )× L2(RN ) with

(1 + |x|)m
(
u0,∇u0, u1, |u0|

ρ+1
2

) ∈ L2(RN ). (2.1)

Then the solution u ∈ C([0,∞); H1(RN ))∩C1([0,∞); L2(RN )) to (1.1) uniquely exists,
which satisfies for t ≥ 0

‖u(t, ·)‖L2,m ≤ C(I0)(1 + t)−
1

ρ−1+ N
4 (2.2)

‖u(t, ·)‖Lρ+1,m ≤ C(I0)(1 + t)−
1

ρ−1+ N
2(ρ+1) (2.3)

‖(∇u, ut)(t, ·)‖L2,m ≤ C(I0)(1 + t)−
1

ρ−1+ N
4 − 1

2 (2.4)

together with

∫ t

0

[
(1 + τ)

2
ρ−1−N

2 +ε
∥∥(∇u, |u| ρ+1

2
)
(τ, ·)∥∥2

L2,m + (1 + τ)
2

ρ−1−N
2 +1+ε‖ut(τ, ·)‖2L2,m

]
dτ

≤





Cε(I0) (ε < 0)

C(I0) log (2 + t) (ε = 0)

Cε(I0)(1 + t)ε (ε > 0),

(2.5)

where
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I0 =
∥∥(1 + | · |)m

(
u0,∇u0, u1, |u0|

ρ+1
2

)∥∥
L2 < ∞ (2.6)

and

m =
2

ρ− 1
− N − δ

2
(> 0) (2.7)

for an arbitrarily fixed constand δ > 0.

Very short sketch of the proof will be given in Section 4 before the proof of Lemma
4.2.

Though (2.1) with (2.7) means u0, u1 ∈ L1(RN ) in the subcritical case, it is necessary
in the supercritical case to assume

δ > 4
(

N

2
− 1

ρ− 1

)
(> 0) or 2m > N. (2.8)

Because

‖u0‖L1 =
∫

RN

(1 + |x|)−m · (1 + |x|)m|u0(x)| dx

≤
( ∫

RN

(1 + |x|)−2mdx

)1/2

‖u0‖L2,m < ∞. (2.9)

Theorem 2.1 implies the following.

Theorem 2.2 (Corollary 3.1 in [11]). In addition to the assumptions in Theorem
2.1, both ρ > ρc(N) and (2.8) are supposed. Then, it holds that

‖u(t)‖Lp ≤ C(1 + t)−
1

ρ−1+ N
2p , ‖(ut,∇u)(t)‖Lq ≤ C(1 + t)−

1
ρ−1+ N

2q− 1
2 , (2.10)

where





1 ≤ p ≤ ∞ (N = 1)

1 ≤ p < ∞ (N = 2)

1 ≤ p ≤ 2N

N − 2
(N ≥ 3)

, 1 ≤ q ≤ 2. (2.11)

The proof of Theorem 2.2 is based on the estimates like (2.9) and the Gagliardo-
Nirenberg inequality.

Lemma 2.1 (Gagliardo-Nireberg). Let the exponents s, q, r(1 ≤ s, q, r ≤ ∞) and
σ ∈ [0, 1] satisfy

1
s

= σ

(
1
r
− 1

N

)
+ (1− σ)

1
q

(2.12)
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with r ≤ N except for s = ∞ or r = N when N ≥ 2. Then it hold that

‖u‖Ls(RN ) ≤ C‖u‖1−σ
Lq(RN )

‖∇u‖σ
Lr(RN ). (2.13)

In proving the asymptotic behavior (1.11), it is important to show the boundedness of
‖u(t, ·)‖L1 . Following Hayashi, Kaikina and Naumkin [8], multiplying (1.1) by sgn(u) =
1 (u > 0), 0 (u = 0), −1 (u < 0) and integrating it over RN , we have

d

dt
‖u(t)‖L1 +

∫

RN

(−∆u · sgn(u) + |u|ρ) dx = −
∫

RN

uttsgn(u) dx

and hence

d

dt
‖u(t)‖L1 ≤ ‖utt(t)‖L1

and

‖u(t)‖L1 ≤ ‖u0‖L1 +
∫ t

0

‖utt(τ)‖L1dτ. (2.14)

Moreover, since

‖utt(t)‖L1 ≤ C(1 + t)
N
4 ‖utt(t)‖L2,m (2.15)

in a similar way to (2.9), it is now important to obtain the faster decay estimate of
‖utt(t)‖L2,m . To do so, we again use the weighted energy method to

(ut)tt −∆(ut) + (ut)t + ρ|u|ρ−1ut = 0, (2.16)

which comes from t-differetiation of (1.1). Though the semilinear term in (1.1) is an
absorbing one, the nonlinear term in (2.16) is not absorbed. Hence, to obtain the energy
estimates on utt by (2.16), we need L∞-estimate of u to treat the last term ρ|u|ρ−1ut.
In higher dimensional space we do not have it yet in Theorem 2.2. As in the previous
paper [11], we have applied the explicit formula SN (t)g of solutions to

{
vtt −∆v + vt = 0, (t, x) ∈ R+ ×RN ,

(v, vt)(0, x) = (0, g)(x), x ∈ RN .
(2.17)

Concretely, SN (t)g for N = 3, 4 is given by

[S3(t)g](x) = e−t/2 t

4π

∫

S2
g(x+ tω) dω +

e−t/2

4π

∫

|z|≤t

I1

(
1
2

√
t2 − |z|2)

2
√

t2 − |z|2 g(x+ z) dz (2.18)

and
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[S4(t)g](x) =
e−t/2

4π2t
∂t

∫ t

0

cosh
(

1
2

√
t2 − ρ2

)
√

t2 − ρ2
ρ3

∫

S3
g(x + ρω) dω dρ, (2.19)

where Iν(y) is a modified Bessel function of order ν given by

Iν(y) =
∞∑

m=0

1
m!Γ (m + ν + 1)

(
y

2

)2m+ν

with the Gamma function Γ (see e.g. Courant and Hilbert [1], Nikiforov and Ouvarov
[17]. See also Ono [21]), SN−1 is a unit sphere in RN and dω is its surface element. By
the Duhamel principle, the solution u to (1.1) is that of the integral equation

u(t, ·) = SN (t)(u0 + u1) + ∂t(SN (t)u0)−
∫ t

0

SN (t− τ)|u|ρ−1u(τ) dτ. (2.20)

In case of N = 3, using the explicit formula (2.20) with (2.18) we can show the
L∞-estimate of u when ρc(N) < ρ ≤ 1 + 4/N . On the other hand, in case of N = 4,
combining (2.19)–(2.20) with the weighted L2-energy estimates on

(∇u)tt −∆(∇u) + (∇u)t + ρ|u|ρ−1∇u = 0 (2.21)

derived by ∇(1.1), we can also show the L∞-estimate when ρc(N) < ρ < 1 + 4/N . More
precisely, the following key lemma holds, which will be shown in Section 4. We note that
the L∞-estimate is not optimal. The optimal decay estimates and the asymptotic profile
in higher dimensions N = 3, 4 will be obtained by a series of Lemmas.

Lemma 2.2 (Key Lemma). In addition to the assumptions in Theorem 2.2, sup-
pose that (u0, u1) ∈ H2 ×H1. Then, if

ρc(N) < ρ ≤ 1 + 4/N with N = 3, (2.22)

then it holds that

‖u(t)‖L∞ ≤ C(1 + t)−
1

ρ−1+µ (2.23)

for an arbitrarily small µ > 0. Moreover, if (u0, u1) ∈ H3 ×H2 is assumed and

I1 := ‖(1 + | · |)m(∇u0,∆u0,∇u1)(·)‖L2 < ∞, (2.24)

then (2.23) holds for

ρc(N) < ρ < 1 + 4/N with N = 4. (2.25)

Once we have Lemma 2.2, we return to (2.16) to obtain
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Lemma 2.3. Under the assumptions in Lemma 2.2 it holds that

∫ t

0

(1 + τ)
2

ρ−1−N
2 +3−ε‖utt(τ)‖2L2,m dτ ≤ C(I0, I1). (2.26)

From (2.26) and (2.14)–(2.15) we have

∫ t

0

‖utt(τ)‖L1dτ ≤ C

∫ t

0

(1 + τ)
N
4 ‖utt(τ)‖L2,mdτ

≤ C

( ∫ t

0

(1 + τ)
N
2 − 2

ρ−1+ N
2 −3+εdτ

)1/2( ∫ t

0

(1 + τ)
2

ρ−1−N
2 +3−ε‖utt(τ)‖2L2,m dτ

)1/2

≤ C(I0, I1) (2.27)

and hence the L1-boundedness of u. Because

N

2
− 2

ρ− 1
+

N

2
− 3 + ε = −

(
2

ρ− 1
− N

2

)
−

(
3− N

2

)
< −1

if 0 < ε ¿ 1, since N = 3 or N = 4.

Lemma 2.4. Under the assumptions in Lemma 2.2, it holds that

‖u(t)‖L1 ≤ C(I0, I1). (2.28)

We again apply the L1-boundedness (2.28) to the integral formula (2.20), then we
can obtain the optimal decay rate.

Lemma 2.5. Under the assumptions in Lemma 2.2 it holds that

‖u(t)‖Lp ≤ C(I0, I1)(1 + t)−
N
2 (1− 1

p ) (2.29)

for N = 3, 4.

Moreover, by the integral formula (2.20) of solutions, we can obtain the asymptotic
formula θ0G(t, x) of the solution u(t, x), and thus reach to our main theorem.

Theorem 2.3 (Main Theorem). Let N = 3, 4 and the exponent ρ satisfy (1.13).
Suppose that (u0, u1) ∈ H2 ×H1 (N = 3) or (u0, u1) ∈ H3 ×H2 (N = 4) with

(1 + | · |)m
(
u0,∇u0,∆u0, |u0|

ρ+1
2 , u1,∇u1

) ∈ L2(RN ). (2.30)

and (2.8). Then there exists a unique solution u ∈ C([0,∞); H2(RN )) ∩
C1([0,∞); H1(RN ))∩C2([0,∞); L2(RN )) to (1.1) satisfying (u,∇u, ut,∆u,∇ut, utt) ∈
L2,m(RN ). Moreover, for θ0 given by (1.11) and 1 ≤ p ≤ ∞, it holds that
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‖u(t, ·)− θ0G(t, ·)‖Lp = o
(
t−

N
2 (1− 1

p )
)

as t →∞. (2.31)

Remark 2.1. When N = 4, the assumption (u0, u1) ∈ H3×H2 with (2.29), (2.8)
implies that u0 + u1 ∈ H [ N

2 ] ∩ L1 and u0 ∈ H [ N
2 ]+1 ∩ L1, and that ‖S4(t)(u0 + u1)‖Lp ≤

C(1+ t)−2(1−1/p) and ‖∂t(S4(t)u0)‖Lp ≤ C(1+ t)−2(1−1/p)−1 (cf. Matsumura [15]). The
situation in the case N = 3 is just similar to these. Those properties will be used in the
final section.

3. Basic estimates for the linear damped wave equation.

For the proof of the key Lemma 2.2, we analyse the explicit formula (2.18)–(2.19) of
the solution to the problem (2.17) for the linear damped wave equation. When N = 3,
we epress the solution S3(t)g as

[S3(t)g](x) = e−t/2 t

4π

∫

S2
g(x + tω) dω +

e−t/2

4π

∫

|z|≤t

I1

(
1
2

√
t2 − |z|2)

2
√

t2 − |z|2 g(x + z) dz

=: e−t/2[W03(t)g](x) + [J03(t)g](x) (3.1)

and

[∂t(S3(t)g)](x) = e−t/2

[(
− 1

2
+

t

8

)
[W03(t)g](x) + [∂t(W03(t)g)](x)

]

+
1
4π

∫ t

0

∫

S2
∂t

[
e−t/2I1

(
1
2

√
t2 − |z|2

)
ρ2

2
√

t2 − |z|2
]
g(x + ρω) dω dρ

=: [W13(t)g](x) + [J13(t)g](x). (3.2)

Then we have the following properties.

Lemma 3.1 (N = 3). For 1 ≤ q ≤ p ≤ ∞,

‖J03(t)g‖Lp ≤ C(1 + t)−
3
2 ( 1

q− 1
p )‖g‖Lq , t ≥ 0, (3.3)

‖J03(t)g − P3(t)g‖Lp ≤ t−
3
2 ( 1

q− 1
p )−1‖g‖Lq , t > 0, (3.4)

‖J13(t)g‖Lp ≤ C(1 + t)−
3
2 ( 1

q− 1
p )−1‖g‖Lq , t ≥ 0, (3.5)

and, for any constant ε > 0,

‖W03(t)g‖L∞ ≤ C
(
t

ε
3+ε ‖g‖L3+ε + ‖g∇g‖1/2

L1

)
, t ≥ 0, (3.6)

‖W03(t)g‖Lq ≤ t‖g‖Lq , t ≥ 0, (3.7)

‖W13(t)g‖Lq ≤ C
[
(1 + t)2‖g‖Lq + t‖∇g‖Lq

]
, t ≥ 0, (3.8)

where
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[PN (t)g](x) =
∫

RN

e−
|z|2
4t

(4πt)N/2
g(x + z) dz =

∫ ∞

0

∫

SN−1

e−
ρ2

4t

(4πt)N/2
g(x + ρω)ρN−1 dω dρ.

(3.9)

Remark 3.1. By the Gagliardo-Nirenberg inequality, (3.6) with ε = 1 and σ = 3/4
imply

‖W03(t)g‖L∞ ≤ C
(
t1/4‖g‖1−σ

L2 ‖∇g‖σ
L2 + ‖g‖1/2

L2 ‖∇g‖1/2
L2

) ≤ C(1 + t)1/4‖g‖H1 .

Hence, combining this with (3.7), we have

e−t/2‖W03(t)g‖Lp ≤ Ce−βt‖g‖1−
q
p

H1 ‖g‖
q
p

Lq , 0 < β ¿ 1
2
. (3.10)

Moreover, the general estimate

‖∂t(SN (t)g)‖L∞ ≤ C(1 + t)−
N
2

1
q−1‖g‖

H[ N
2 ]+1∩Lq

, t ≥ 0, (3.11)

by Matsumura [15] together with (3.5), (3.8) implies

‖∂t(S3(t)g)‖Lp ≤ C(1 + t)−
3
2 ( 1

q− 1
p )−1‖g‖H2∩W 1,q , t ≥ 0. (3.12)

Proof of Lemma 3.1. The estimates (3.3)–(3.5) are showed in [18], and (3.6) is
in [11]. By (3.1) and (3.2),

‖W03(t)g‖Lq ≤ t

4π

∫

S2
‖g‖Lqdω = t‖g‖Lq .

and

‖W13(t)g‖Lq ≤
(

1
2

+
t

8

)
t

4π

∫

S2
‖g‖Lqdω +

1
4π

∫

S2
(‖g‖Lq + t‖∇g‖Lq )dω

≤ C
(
(1 + t)2‖g‖Lq + t‖∇g‖Lq

)
,

which show (3.7) and (3.8), respectively. ¤

We want to have the similar estimates in Lemma 3.1 even when N = 4. Rewrite
(2.19) as

S4(t)g =
e−t/2

4π2t
∂t

∫ t

0

ρ3

√
t2 − ρ2

∫

S3
g(x + ρω) dω dρ

+
e−t/2

4π2t
∂t

∫ t

0

cosh
(

1
2

√
t2 − ρ2

)− 1√
t2 − ρ2

ρ3

∫

S3
g(x + ρω) dω

=: e−t/2W04(t)g + J04(t)g. (3.13)
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By integral by parts

W04(t)g =
1

4π2t
∂t

∫ t

0

−∂ρ

(√
t2 − ρ2

) · ρ2

∫

S3
g(x + ρω) dω dρ

=
1

4π2t
∂t

∫ t

0

√
t2 − ρ2

(
2ρ

∫

S3
g(x + ρω) dω + ρ2

∫

S3
∇g(x + ρω) · ω dω

)
dρ.

Hence

W04(t)g =
1

4π2

∫ t

0

ρ√
t2 − ρ2

(
2

∫

S3
g(x + ρω) dω + ρ

∫

S3
∇g(x + ρω) · ω dω

)
dρ. (3.14)

Also, differentiating the integral in J04(t)g with respect to t, we have

J04(t)g =
e−t/2

4π2

∫ t

0

[
sinh

(
1
2

√
t2 − ρ2

)

2(t2 − ρ2)
− cosh

(
1
2

√
t2 − ρ2

)− 1

(t2 − ρ2)
√

t2 − ρ2

]
ρ3

∫

S3
g(x + ρω) dω dρ

=





∫ √
t2−A

0

+
∫ t

√
t2−A

(t ≥ √
A)

0 +
∫ t

0

(t <
√

A)

=: J̄04(t)g + e−t/2 · j04(t)g (3.15)

for a constant A > 0. That is, by denoting (x)+ = x (x > 0), 0 (x ≤ 0),





J̄04(t)g =
e−t/2

4π2

∫ √
(t2−A)+

0

[
sinh

(
1
2

√
t2 − ρ2

)

2(t2 − ρ2)
− cosh

(
1
2

√
t2 − ρ2

)− 1

(t2 − ρ2)
√

t2 − ρ2

]
ρ3

·
∫

S3
g(x + ρω) dω dρ

j04(t)g =
1

4π2

∫ t

√
(t2−A)+

[
sinh

(
1
2

√
t2 − ρ2

)

2(t2 − ρ2)
− cosh

(
1
2

√
t2 − ρ2

)− 1

(t2 − ρ2)
√

t2 − ρ2

]
ρ3

·
∫

S3
g(x + ρω) dω dρ.

(3.15)′

Also, we put

S4(t)g = e−t/2(W04(t)g + j04(t)g) + J̄04(t)g

=: e−t/2W̄04(t)g + J̄04(t)g (3.16)

By differentiating S4(t)g in t, we have
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∂t(S4(t)g) = e−t/2

[(
− 1

2
+ ∂t

)
(W04(t)g + j04(t)g)

+
1

4π2

(
sinh

√
A
2

2A
− cosh

√
A
2 − 1

A
√

A

)
t(t2 −A)+

∫

S3
g
(
x +

√
t2 −Aω

)
dω

]

+
e−t/2

4π2

∫ √
(t2−A)+

0

(
− 1

2
+ ∂t

)[
sinh

(
1
2

√
t2 − ρ2

)

2(t2 − ρ2)
− cosh

(
1
2

√
t2 − ρ2

)− 1

(t2 − ρ2)
√

t2 − ρ2

]

× ρ3

∫

S3
g(x + ρω) dω dρ

=: e−t/2W̄14(t)g + J̄14(t)g. (3.17)

Estimates on W̄i4(t)g, J̄i4(t)g (i = 0, 1) are given by the following lemma.

Lemma 3.2 (N = 4). For 1 ≤ q ≤ p ≤ ∞,

‖J̄04(t)g‖Lp ≤ C(1 + t)−2( 1
q− 1

p )‖g‖Lq , t ≥ 0, (3.18)

‖J̄04(t)g − P4(t)g‖Lp ≤ Ct−2( 1
q− 1

p )−1‖g‖Lq , t ≥
√

A ≥
√

3, (3.19)

‖J̄14(t)g‖Lp ≤ C(1 + t)−2( 1
q− 1

p )−1‖g‖Lq , t ≥ 0, (3.20)

and, for any constants s, s̄ > 2 and t ≥ 0,

‖W̄04(t)g‖L∞ ≤ C
[(

t1−
4
s + t2−

2
s

)‖g‖Ls + t2−
4
s̄ ‖∇g‖Ls̄

]
, (3.21)

‖W̄04(t)g‖Lq ≤ C
[
(t + t2)‖g‖Lq + t2‖∇g‖Lq

]
, q < ∞, (3.22)

‖W̄14(t)g‖Lq ≤ C
[
(1 + t)2‖g‖Lq + t2(1 + t)‖∇g‖Lq + t2‖∆g‖Lq

]
, q < ∞. (3.23)

Remark 3.2. Similar to Remark 3.1, even in N = 4 we have

‖W̄04(t)g‖L∞ ≤ C
[
(1 + t3/2)‖g‖1−σ

L2 ‖∇g‖σ
L2 + t‖∇g‖1−σ

L2 ‖∆g‖σ
L2

]

≤ C(1 + t)3/2‖g‖H2

by the Gagliardo-Nirenberg inequality with s, s̄ = 4, σ = 1/3. Combining this with
(3.22) implies

e−t/2‖W̄04(t)g‖Lp ≤ e−βt‖g‖H2∩Lq , 0 < β ¿ 1. (3.24)

We also have

‖∂t(S4(t)g)‖Lp ≤ C(1 + t)−2( 1
q− 1

p )−1‖g‖H3∩W 2,q (3.25)
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by combining (3.11) with (3.20), (3.23).

Proof of Lemma 3.2. Rewriting (3.14) and taking s, s̄ > 2 with 1
s + 1

s′ = 1,
1
s̄ + 1

s̄′ = 1, we have

|W04(t)g| =
∣∣∣∣

1
4π2

∫

|y|≤t

[
2g(x + y)√
t2 − |y|2|y|2 +

∇g(x + y) · y√
t2 − |y|2|y|2

]
dy

∣∣∣∣

≤ C

( ∫

|y|≤t

(
1√

t2 − |y|2|y|2
)s′

dy

)1/s′

‖g‖Ls

+ C

( ∫

|y|≤t

(
1√

t2 − |y|2|y|

)s̄′

dy

)1/s̄′

‖∇g‖Ls̄

≤ C
(
t1−

4
s ‖g‖Ls + t2−

4
s̄ ‖∇g‖Ls̄

)
(3.26)

and

‖W04(t)g‖Lq ≤ C

∫

|y|≤t

dy√
t2 − |y|2|y|2 · ‖g‖Lq

+ C

∫

|y|≤t

dy√
t2 − |y|2|y| · ‖∇g‖Lq

≤ C
(
t‖g‖Lq + t2‖∇g‖Lq

)
. (3.27)

Moreover, since

sinh(x) = x + O(|x|3),

cosh(x)− 1 =
x2

2!
+ O(|x|4), (3.28)

we have

|[j04(t)g](x)| ≤ C

∫ t

√
(t2−A)+

ρ3

√
t2 − ρ2

∫

S3
|g(x + ρω)| dω dρ

and, hence

‖j04(t)g‖L∞ ≤ Ct2−
2
s ‖g‖Ls (3.29)

and

‖j04(t)g‖Lq ≤ Ct2‖g‖Lq . (3.30)

In fact,
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|[j04(t)g](x)| ≤ C

∫
√

(t2−A)+<|y|<t

|g(x + y)|√
t2 − |y|2 dy

≤ C

( ∫
√

(t2−A)+<|y|<t

(t2 − |y|2)−s′/2dy

)1/s′

‖g‖Ls

≤ C

( ∫ t

√
(t2−A)+

∫

S3
(t2 − ρ2)−s′/2ρ3dωdρ

)1/s′

‖g‖Ls

≤ Ct2/s′A−s′/2+1‖g‖Ls ≤ Ct2−
2
s ‖g‖Ls

and

‖j04(t)g‖Lq ≤ C

∫ t

√
(t2−A)+

ρ3

√
t2 − ρ2

dρ · ‖g‖Lq ≤ Ct2A1/2‖g‖Lq ≤ Ct2‖g‖Lq .

Thus we have (3.21) and (3.22). Though we need tedious but not difficult culculations,
similar to (3.30), we have (3.23).

Noting that
√

t2 −A ≥ t2/3 if t ≥ √
A ≥ √

3, we set

[J̄04(t)g − P4(t)g](x) =
( ∫ t2/3

0

+
∫ √

t2−A

t2/3

)
e−

ρ2

4t

(
√

4πt)4

[
2t2e−

t
2+ ρ2

4t sinh
(

1
2

√
t2 − ρ2

)

t2 − ρ2
− 1

− 4t2e−
t
2+ ρ2

4t

(
cosh

(
1
2

√
t2 − ρ2

)− 1
)

(t2 − ρ2)
√

t2 − ρ2

]
· ρ3

∫

S3
g(x + ρω) dω dρ

−
∫ ∞
√

t2−A

e−
ρ2

4t

(
√

4πt)4
· ρ3

∫

S3
g(x + ρω) dω dρ

=: (K11 + K12) + K2. (3.31)

It is easy to show

‖K2‖Lp = O(e−βt)‖g‖Lq , 0 < β ¿ 1. (3.32)

For K12, since
√

A ≤
√

t2 − ρ2 ≤
√

t2 − t4/3, ρ2/t ≥ t1/3 and

− t

2
+

√
t2 − t4/3

2
= − t4/3

2
(
t +

√
t2 − t4/3

) ≤ −1
4
t1/3,

we have

‖K12‖L∞∩Lq ≤ Ce−βt1/3‖g‖Lq
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or

‖K12‖Lp ≤ Ce−βt1/3‖g‖Lq , q ≤ p ≤ ∞. (3.33)

For the main term K11, since ρ2/t2 ≤ t−2/3 ≤ A−2/3 and ρ2/t2 ≤ C(A)ρ/t,

k1 :=
2t2e−

t
2+ ρ2

4t sinh
(

1
2

√
t2 − ρ2

)

t2 − ρ2
− 1 =

1
t
O

(
ρ2

t
+

(
ρ2

t

)2)

k2 :=
4t2e−

t
2+ ρ2

4t

(
cosh

(
1
2

√
t2 − ρ2

)− 1
)

(t2 − ρ2)
√

t2 − ρ2
− 1 =

1
t
O

(
1 +

ρ2

t
+

(
ρ2

t

)2)
.

In fact, since

− t

2
+

ρ2

4t
+

√
t2 − ρ2

2
=

ρ2

4t
− ρ2

2(t +
√

t2 − ρ2)
= − ρ4

4t3

(
1 +

√
1− ρ2

t2

)−2

,

we have

k1 =
(

e−
ρ4

4t3

(
1+
q

1− ρ2

t2

)−2

+ e−βt

)(
1− ρ2

t2

)−1

− 1 =
1
t
O

(
ρ2

t
+

(
ρ2

t

)2)

and

k2 =
4
t

(
e−

ρ4

4t3

(
1+
q

1− ρ2

t2

)−2

− e−βt

)(
1− ρ2

t2

)−3/2

=
1
t
O

(
1 +

ρ2

t
+

(
ρ2

t

)2)
.

Thus

‖K11‖Lp ≤
∥∥∥∥

∫ t2/3

0

e−
ρ2

4t

(
√

4πt)4
1
t
O

(
1 +

ρ2

t
+

(
ρ2

t

)2)
· ρ3

∫

S3
|g(x + ρω)| dω dρ

∥∥∥∥
Lp

≤ Ct−2( 1
q− 1

p )−1‖g‖Lq . (3.34)

Here we have used the Hausdorff-Young inequality:

Lemma 3.3 (Hausdorff-Young). For p, q, r (1 ≤ p, q, r ≤ ∞) satisfying 1
q − 1

p =
1− 1

r , the inequality

‖f ∗ g‖Lp ≤ C‖f‖Lr‖g‖Lq

holds, where ∗ denotes the convolution.

Combining (3.31)–(3.34) we have obtained (3.19). Since J̄04(t)g ≡ 0 when 0 ≤ t ≤
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√
A, both (3.19) and the well-known result

‖PN (t)g‖Lp ≤ Ct−
N
2 ( 1

q− 1
p )‖g‖Lq , t > 0

imply (3.18).
For J̄14(t)g, after some calculations we have

J̄14(t)g =
e−t/2

4π2

∫ √
(t2−A)+

0

[(
− 1

2

){
sinh

(
1
2

√
t2 − ρ2

)

2(t2 − ρ2)
− cosh

(
1
2

√
t2 − ρ2

)− 1

(t2 − ρ2)
√

t2 − ρ2

}

+ t

{
cosh

(
1
2

√
t2 − ρ2

)

4(t2 − ρ2)
√

t2 − ρ2
− 3 sinh

(
1
2

√
t2 − ρ2

)

2(t2 − ρ2)2

+
3
(
cosh

(
1
2

√
t2 − ρ2

)− 1
)

(t2 − ρ2)
√

t2 − ρ2

}]

× ρ3

∫

S3
g(x + ρω) dω dρ. (3.35)

Similar to the estimate on K12, when t ≥ √
A,

∥∥∥∥
∫ t

√
t2−A

∥∥∥∥
Lp

≤ Ce−βt1/3‖g‖Lq . (3.36)

Also, similar to K11,

∫ t2/3

0

=
∫ t2/3

0

e−
ρ2

4t

(√
4πt

)4 · e−
t
2+ ρ2

4t

{
− t2 sinh

(
1
2

√
t2 − ρ2

)

t2 − ρ2
+

2t2
(
cosh

(
1
2

√
t2 − ρ2

)− 1
)

(t2 − ρ2)
√

t2 − ρ2

+
t3 cosh

(
1
2

√
t2 − ρ2

)

(t2 − ρ2)
√

t2 − ρ2
− 6t3 sinh

(
1
2

√
t2 − ρ2

)

(t2 − ρ2)2

+
12t3

(
cosh

(
1
2

√
t2 − ρ2

)− 1
)

(t2 − ρ2)2
√

t2 − ρ2

}

× ρ3

∫

S3
g(x + ρω) dω dρ.

When we expand the terms in ρ2/t2, there is the cancellation of the terms of order 0,
and hence

∫ t2/3

0

=
∫ t2/3

0

e−
ρ2

4t

(
√

4πt)4
1
t

(
O

(
ρ2

t
+

(
ρ2

t

)2)
+

1
t
O(1)

)
ρ3

∫

S3
g(x + ρω) dω dρ

and
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∥∥∥∥
∫ t2/3

0

∥∥∥∥
Lp

≤ Ct−2( 1
q− 1

p )−1‖g‖Lq , t ≥
√

A. (3.37)

Thus, noting J̄14(t)g ≡ 0 (0 ≤ t ≤ √
A), we have (3.20) by (3.36)–(3.37). ¤

4. Proof of Lemmas 2.2–2.5.

By the explicit formula SN (t)g, the solution u(t, x) to (1.1) is expressed by the
integral equation

u(t, x) = [SN (t)(u0 + u1)](x) + [∂t(SN (t)u0)](x)

−
∫ t

0

[SN (t− τ)|u|ρ−1u(τ, ·)](x) dτ. (4.1)

In the preceding section we have expressed SN (t)g by

S3(t)g = e−t/2W03(t)g + J03(t)g (3.1)

and

S4(t)g = e−t/2W̄04(t)g + J̄04(t)g, (3.16)

and obtained the basic estimates in Lemmas 3.1–3.2.
We are now ready to prove the key Lemma 2.2. In N = 3 we will use the expression

(4.1) only, while both (4.1) and the weighted energy method to (2.21) will be applied in
the case of N = 4.

Proof of Lemma 2.2 (N = 3). If (u0, u1) ∈ (H2 ∩W 1,1)× (H1 ∩ L1), then

‖S3(t)(u0 + u1)‖Lp ≤ C(1 + t)−
3
2 (1− 1

p ),

‖∂t(S3(t)u0)‖Lp ≤ C(1 + t)−
3
2 (1− 1

p )−1. (4.2)

by (3.3), (3.10), (3.12). In fact, I0 < ∞ with (2.7) shows (u0, u1) ∈ W 1,1 × L1. By (3.1)
the inhomogeneous term in (4.1) is written as

∫ t

0

S3(t− τ)|u|ρ−1u(τ) dτ

=
∫ t

0

e−
t−τ
2 W03(t− τ)|u|ρ−1u(τ) dτ +

∫ t

0

J03(t− τ)|u|ρ−1u(τ) dτ

=: w3(t, ·) + h3(t, ·). (4.3)

Using L∞-L1 and L∞-L3/2 estimates in (3.3) together with (2.10)–(2.11), we have
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‖h3(t)‖L∞ ≤ C

∫ t/2

0

(1 + t− τ)−
3
2 ‖u(τ)‖ρ

Lρdτ + C

∫ t

t/2

(1 + t− τ)−1‖u(τ)‖ρ
L3ρ/2dτ

≤
∫ t/2

0

(1 + t− τ)−
3
2 (1 + τ)−

ρ
ρ−1+ 3

2 dτ + C

∫ t

t/2

(1 + t− τ)−1(1 + τ)−( ρ
ρ−1− 3

3 )dτ

≤ C(1 + t)−
1

ρ−1 log (2 + t)

and hence

‖h3(t)‖L∞ ≤ C(1 + t)−
1

ρ−1+µ, 0 < µ ¿ 1. (4.4)

To estimate w3(t), by setting

Mu(t) = sup
0≤τ≤t

[
(1 + τ)

1
ρ−1−µ‖u(τ)‖L∞

]
(4.5)

we derive

‖w3(t)‖L∞ ≤ CMu(t)
3

3+ε · (1 + t)−( 1
ρ−1−µ) (4.6)

for a small ε > 0. Once (4.6) is available, by (4.1)–(4.6),

Mu(t) ≤ C + CMu(t)
3

3+ε , (4.7)

and hence

Mu(t) ≤ Cε, (4.8)

because of 3
3+ε < 1. Hence the desired estimate (2.23) is proved. To prove (4.6), by (3.6)

we estimate w3(t) as

‖w3(t)‖L∞ ≤
∫ t

0

e−
t−τ
2

[
(t− τ)

ε
3+ε ‖u(τ)‖ρ

L(3+ε)ρ + ‖|u|2ρ−1|∇u|(τ)‖1/2
L1

]
dτ. (4.9)

Here we have

‖u(τ)‖ρ
L(3+ε)ρ ≤ ‖u(τ)‖

3
3+ε

L∞

( ∫

R3
|u(τ, x)|(3+ε)ρ−3dx

) 1
3+ε

≤ C
[
(1 + τ)

1
ρ−1−µ‖u(τ)‖L∞

] 3
3+ε

· (1 + τ)−( 1
ρ−1−µ)· 3

3+ε (1 + τ)−( 1
ρ−1− 3

2[(3+ε)ρ−3] )·
(3+ε)ρ−3

3+ε

≤ Mu(t)
3

3+ε · (1 + τ)−( 1
ρ−1−µ). (4.10)
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In fact, to use Theorem 2.2, we need

(3 + ε)ρ− 3 ≤ 6 =
2N

N − 2
or ρ ≤ 9

3 + ε
,

which is satisfied by ρ ≤ 1 + 4/N = 7/3 if 0 < ε ¿ 1. Also,

the exponent of (1 + τ) = −
(

1
ρ− 1

− µ

)
+

(
1

ρ− 1
− µ

)
· ε

3 + ε

−
(

1 +
ε

(ρ− 1)(3 + ε)
− 3

2(3 + ε)

)

< −
(

1
ρ− 1

− µ

)
if 0 < ε ¿ 1.

Further,

∥∥|u|2ρ−1|∇u|(τ)
∥∥1/2

L1 ≤ C

( ∫

R3
|u(τ, x)|2(2ρ−1)dx

)1/4

‖∇u(τ)‖1/2
L2

≤ C‖u(τ)‖
3

3+ε

L∞

( ∫

R3
|u(τ, x)|2(2ρ−1)− 3·4

3+ε dx

)1/4

‖∇u(τ)‖1/2
L2

≤ CMu(t)
3

3+ε (1 + τ)−( 1
ρ−1−µ)· 3

3+ε

· (1 + τ)
−( 1

ρ−1− 3
2[(2(2ρ−1)− 12

3+ε
]
)· 2(2ρ−1)− 12

3+ε
4 −( 1

ρ−1+ 1
2− 3

2·2 ) 1
2

≤ CMu(t)
3

3+ε · (1 + τ)−( 1
ρ−1−µ). (4.11)

We here need

2(2ρ− 1)− 3 · 4
3 + ε

≤ 6 if ρ ≤ 2 +
3

3 + ε
,

which is satisfied since ρ ≤ 7/3 if 0 < ε ¿ 1. Also,

the exponent of (1 + τ) = −
(

1
ρ− 1

− µ

)
+

(
1

ρ− 1
− µ

)
ε

3 + ε
−

(
1
2

+
ε

(ρ− 1)(3 + ε)

)

< −
(

1
ρ− 1

− µ

)
if 0 < ε ¿ 1.

Applying (4.10)–(4.11) to (4.9), we have (4.6). ¤

Proof of Lemma 2.2 (N = 4). When I0, I1 < ∞, (u0, u1) ∈ (H3 ∩ W 2,1)
×(H2 ∩W 1,1). Hence, by (3.18), (3.24), (3.25),



824 K. Nishihara

‖S4(t)(u0 + u1)‖Lp ≤ C(1 + t)−2(1− 1
p ),

‖∂t(S4(t)u0)‖Lp ≤ C(1 + t)−2(1− 1
p )−1. (4.12)

By use of (3.16), the inhomogeneous term is written as

∫ t

0

S4(t− τ)|u|ρ−1u(τ) dτ

=
∫ t

0

e−
t−τ
2 W̄04(t− τ)|u|ρ−1u(τ) dτ +

∫ t

0

J̄04(t− τ)|u|ρ−1u(τ) dτ

=: w̄4(t, ·) + h̄4(t, ·). (4.13)

Since ρ ∈ (1 + 2
N , 1 + 4

N ) = (5
3 , 2), choosing s, s̄ > 2 as ρs ≤ 4 = 2N

N−2 and 2 < s̄ < 4, we
have

|w̄4(t)| ≤ C

∫ t

0

e−
t−τ
2

[{
(t− τ)1−

4
s + (t− τ)2−

2
s

}‖u(τ)‖ρ
Lρs

+ (t− τ)2−
4
s̄

∥∥|u|ρ−1∇u(τ)
∥∥

Ls̄

]
dτ (4.14)

by (3.21). Here, by setting

Mu(t) = sup
0≤τ≤t

[
(1 + τ)

1
ρ−1−µ‖u(τ)‖L∞

]
(4.15)

and

N∆u(t) = sup
0≤τ≤t

[
(1 + τ)

1
ρ−1−µ‖∆u(τ)‖L2

]
, (4.16)

we have

‖u(τ)‖ρ
Lρs ≤ C(1 + τ)−( ρ

ρ−1− 4
2s ) ≤ C(1 + τ)−

1
ρ−1 (4.17)

and

∥∥|u|ρ−1∇u(τ)
∥∥

Ls̄ ≤ C‖u(τ)‖ρ−1
L∞ ‖∇u(τ)‖1−σ̄

L2 ‖∆u(τ)‖σ̄
L2

≤ CMu(t)ρ−1N∆u(t)σ̄ · (1 + τ)−( 1
ρ−1−µ)(ρ−1+σ̄)−( 1

ρ−1+ 1
2− 4

2·2 )(1−σ̄)

≤ CMu(t)ρ−1N∆u(t)σ̄ · (1 + τ)−
1

ρ−1+µ (4.18)

by the Gagliardo-Nirenberg inequality with σ̄ = 4( 1
2− 1

s̄ ), 0 < σ̄ < 1. Hence (4.14)–(4.18)
imply
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‖w̄4(t)‖L∞ ≤ C(1 + t)−
1

ρ−1 + CMu(t)ρ−1N∆u(t)σ̄ · (1 + t)−
1

ρ−1+µ. (4.19)

The L∞-L1 and L∞-L2 estimates in (3.18) yield

‖h̄4(t)‖L∞ ≤ C

∫ t/2

0

(1 + t− τ)−2‖u(τ)‖ρ
Lρdτ + C

∫ t

t/2

(1 + t− τ)−2· 12 ‖u(τ)‖ρ
L2ρdτ

≤ C

∫ t/2

0

(1 + t− τ)−2(1 + τ)−( ρ
ρ−1− 4

2 )dτ

+ C

∫ t

t/2

(1 + t− τ)−1(1 + τ)−( ρ
ρ−1− 4

2·2 )dτ

≤ C(1 + t)−
1

ρ−1+µ. (4.20)

Combining (4.12) with p = ∞ with (4.19)–(4.20), we have

‖u(t)‖L∞ ≤ C(1 + t)−
1

ρ−1+µ + CMu(t)ρ−1N∆u(t)σ̄ · (1 + t)−
1

ρ−1+µ

and hence

Mu(t) ≤ C + CN∆u(t)σ̄ ·Mu(t)ρ−1 (4.21)

We here prepare the following lemma.

Lemma 4.1. Let the constants α, B, D satisfy 0 < α < 1, B ≤ 1, D > 0, respec-
tively. If the inequality

x ≤ D + Bxα, x ≥ 0

holds, then

x ≤ [(D + 1)B]
1

1−α . (4.22)

Proof. Put

f(x) = D + Bxα − x,

then

f ′(x) = αBxα−1 − 1 =
αB

x1−α
− 1.

Hence f(x) has the maximal value at x = (αB)1/(1−α), and f(x0) = 0 for a unique value
x0 > (αB)1/(1−α). Since
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f
(
[(D + 1)B]

1
1−α

)
= D + [(D + 1)B]

α
1−α (B − (D + 1)B)

= D
(
1−B[(D + 1)B]

α
1−α

)
< 0,

x0 < [(D + 1)B]
1

1−α . Hence f(x) ≥ 0 means x ≤ x0 and (4.22). ¤

Without loss of generality, CN∆u(t)σ̄ ≥ 1, and hence (4.21) together with Lemma
4.1 implies

Mu(t) ≤ [
(C + 1)CN∆u(t)σ̄

] 1
1−(ρ−1) ≤ CN∆u(t)

σ̄
2−ρ . (4.23)

Note that

σ̄ = 4
(

1
2
− 1

s̄

)
, 2 < s̄ < 4

and

σ̄ → 0 + as s̄ → 2 + 0. (4.24)

Under the conditions (4.23)–(4.24), we return to

(∇u)tt −∆(∇u) + (∇u)t + ρ|u|ρ−1∇u = 0 (2.21)

and apply the weighted energy method to it. Then we have the following estimate on
N∆u(t).

Lemma 4.2. Let N = 4 with (2.25). If (u0, u1) ∈ H3×H2 satisfy (2.6) and (2.24),
then it holds that

N∆u(t) ≤ C(I0, I1)
(
1 + N∆u(t)

ρ−1
2−ρ σ̄

)
. (4.25)

By (4.24) we choose σ̄ to be small as

ρ− 1
2− ρ

σ̄ < 1,

so that

N∆u(t) ≤ C(I0, I1) and Mu(t) ≤ C(I0, I1). (4.26)

which shows Lemma 2.2 for N = 4. ¤

It is now necessary to prove Lemma 4.2, which is subsequent to the proof of Theorem
2.1. So, we give a short sketch of that in [11] before proving Lemma 4.2.

Choose the weight as
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eψ(t,x), ψ(t, x) =
m

2
log

(
1 +

a|x|2
t + t0

)
(4.27)

with m in (2.7) and the parameters 0 < a ¿ 1, t0 À 1. Multiplying (1.1) by e2ψut and
e2ψu, we have

∂

∂t

[
e2ψ

(
1
2
(|ut|2 + |∇u|2) +

1
ρ + 1

|u|ρ+1

)]

+ e2ψ

{(
1− |∇ψ|2

−ψt
− ψt

)
|ut|2 +

−2ψt

ρ + 1
|u|ρ+1

}

−∇ · (e2ψut∇u) +
e2ψ

−ψt
|ψt∇u− ut∇ψ|2

= 0 (4.28)

and

∂

∂t

[
e2ψ

(
uut +

u2

2

)]
+ e2ψ

(|∇u|2 − ψtu
2 + |u|ρ+1

)

+ e2ψ(−2ψtuut − |ut|2 + 2u∇ψ · ∇u)−∇ · (e2ψu∇u)

= 0. (4.29)

Note that ψ satisfies

0 < −ψt <
m

2
1

t + t0
,

|∇ψ|2
−ψt

=
2am

1 + a|x|2
t+t0

≤ 2am, and,

for
√

a|x|√
t + t0

≥ K, −ψt ≥ m

2(t + t0)
K

1 + K
→ m

2(t + t0)
(K →∞). (4.30)

Hence, integrating (4.28)+ν·(4.29), 0 < ν ¿ 1, over RN , we get

d

dt
Êψ(t;u) + Ĥψ(t;u)

:=
d

dt

∫

RN

e2ψ

( |ut|2
2

+ νuut +
ν

2
u2 +

|∇u|2
2

+
|u|ρ+1

ρ + 1

)
dx

+
∫

RN

e2ψ

{(
1− |∇ψ|2

−ψt
− ψt − ν

)
|ut|2 − 2νψtuut + 2νu∇ψ · ∇u

− νψtu
2 + ν|∇u|2 +

( −ψt

ρ + 1
+ ν

)
|u|ρ+1

}
dx

≤ 0. (4.31)

Multiplying (4.31) by (t + t0)2α(ρ)+ε, |ε| ¿ 1, we further have
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d

dt

[
(t + t0)2α(ρ)+εÊψ(t;u)

]
+ (t + t0)2α(ρ)+ε

[
Ĥψ(t;u)− 2α(ρ) + ε

t + t0
Êψ(t;u)

]
≤ 0, (4.32)

where

α(ρ) =
1

ρ− 1
− N

4
. (4.33)

Again, noting (4.30), we have the crucial estimate

(t + t0)2α(ρ)+ε

(
Ĥψ(t;u)− 2α(ρ) + ε

t + t0
Êψ(t;u)

)

≥ c(t + t0)2α(ρ)+εHψ(t;u)− C(t + t0)−1+ε (4.34)

with

Ĥψ(t;u) ≥ cHψ(t;u), Hψ(t;u) =
∫

RN

e2ψ(|ut|2 + |∇u|2 + |u|ρ+1)(t, x) dx,

CEψ(t;u) ≥ Êψ(t;u) ≥ cEψ(t;u),

Eψ(t;u) =
∫

RN

e2ψ
(|ut|2 + |∇u|2 + u2 + |u|ρ+1

)
(t, x) dx. (4.35)

Thus, we obtain

(t + t0)2α(ρ)+ε
(‖ut(t)‖2L2,m + ‖∇u(t)‖2L2,m + ‖u(t)‖2L2,m + ‖u(t)‖ρ+1

Lρ+1,m

)

+
∫ t

0

(τ + t0)2α(ρ)+ε
(‖ut(τ)‖2L2,m + ‖∇u(τ)‖2L2,m + ‖u(τ)‖ρ+1

Lρ+1,m

)
dτ

≤ C(I0) + C

∫ t

0

(τ + t0)−1+εdτ. (4.36)

We can now multiply
∫

R4(4.28) dx by (t + t0)2α(ρ)+1+ε using (4.36), so that (2.2)–(2.4)
hold for 0 < ε ¿ 1 and (2.5) does for |ε| ¿ 1, by re-taking t0 = 1 and changing the
constants.

Proof of Lemma 4.2. Same as the above, operate e2ψ(∇u)t, e2ψ∇u to (2.21) to
have

∂

∂t

[
e2ψ

2
(|∇ut|2 + |∆u|2)

]
+ e2ψ

[(
1− |∇ψ|2

−ψt
− ψt

)
|∇ut|2 + ρe2ψ|u|ρ−1∇u · ∇ut

]

−∇ · (e2ψ(∆u)∇ut

)
+

e2ψ

−ψt
|ψt∆u−∇ut · ∇ψ|2 = 0 (4.37)

and
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∂

∂t

[
e2ψ

(
∇u · ∇ut +

|∇u|2
2

)]
+ e2ψ

(|∆u|2 − ψt|∇u|2 + ρ|u|ρ−1|∇u|2)

+ e2ψ
(− 2ψt∇u · ∇ut − |∇ut|2 + 2(∇u · ∇ψ)∆u

)−∇ · (e2ψ(∆u)∇u
)

= 0, (4.38)

corresponding to (4.28) and (4.29). Noting the estimate on the term in (4.37)

∣∣∣∣−
∫

R4
ρe2ψ|u|ρ−1∇u · ∇utdx

∣∣∣∣ ≤ ν

∫

R4
e2ψ|∇ut|2dx + Cν‖u(t)‖2(ρ−1)

L∞

∫

R4
e2ψ|∇u|2dx

(4.39)

for 0 < ν ¿ 1, we calculate
∫

R4 [(4.37) + ν · (4.38)] dx:

d

dt
F̂ψ(t;∇u) + K̂ψ(t;∇u)

:=
d

dt

∫

R4
e2ψ

( |∇ut|2
2

+ ν∇u · ∇ut +
ν

2
|∇u|2 +

|∆u|2
2

)
dx

∫

R4
e2ψ

[(
1− |∇ψ|2

−ψt
− ψt − 2ν

)
|∇ut|2 − 2νψt∇u · ∇ut

+ 2ν(∇u · ∇ψ)∆u− νψt|∇u|2 + ν|∆u|2 + νρ|u|ρ−1|∇u|2
]

dx

≤ Cν‖u(t)‖2(ρ−1)
L∞

∫

R4
e2ψ|∇u|2dx. (4.40)

Like (4.35), for a fixed ν(0 < ν ¿ 1) we have

cFψ(t;∇u) ≤ F̂ψ(t;∇u) ≤ CFψ(t;∇u) (4.41)

with

Fψ(t;∇u) :=
∫

R4
e2ψ

(|∇ut|2 + |∆u|2 + |∇u|2)(t, x) dx, (4.42)

and

K̂ψ(t;∇u) ≥ c

∫

R4
e2ψ

(|∇ut|2 + |∆u|2 + (−ψt)|∇u|2 + |u|ρ−1|∇u|2)(t, x) dx. (4.43)

Therefore, multiplying (4.40) by (t + t0)2α(ρ)+k−ε(ε > 0, t0 À 1) and noting that

K̂ψ(t;∇u)− 2α(ρ) + k − ε

t + t0
F̂ψ(t;∇u)

≥ c

∫

R4
e2ψ

(|∇ut|2 + |∆u|2) dx− C

t + t0

∫

R4
e2ψ|∇u|2dx, (4.44)
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we get

(t + t0)2α(ρ)+k−εFψ(t;∇u) +
∫ t

0

(τ + t0)2α(ρ)+k−ε
(‖∇ut(τ)‖2L2,m + ‖∆u(τ)‖2L2,m

)
dτ

≤ CI2
1 + C

∫ t

0

(τ + t0)2α(ρ)+k−1−ε‖∇u(τ)‖2L2,mdτ

+ C

∫ t

0

(τ + t0)2α(ρ)+k−ε‖u(τ)‖2(ρ−1)
L∞ ‖∇u(τ)‖2L2,mdτ. (4.45)

Taking t0 = 1 again and changing the constants C in (4.45) and using

‖u(τ)‖2(ρ−1)
L∞ ≤ CMu(t)2(ρ−1) · (1 + τ)−( 1

ρ−1−µ)·2(ρ−1)

≤ CN∆u(t)
2(ρ−1)
2−ρ σ̄ · (1 + τ)−2+2(ρ−1)µ (4.46)

by (4.15) and (4.23), we obtain

(1 + t)2α(ρ)+k−εFψ(t;∇u) +
∫ t

0

(1 + τ)2α(ρ)+k−ε
(‖∇ut(τ)‖2L2,m + ‖∆u(τ)‖2L2,m

)
dτ

≤ CI2
1 + C

∫ t

0

(1 + τ)2α(ρ)+k−1−ε‖∇u(τ)‖2L2,mdτ

+ CN∆u(t)
2(ρ−1)
2−ρ σ̄

∫ t

0

(1 + τ)2α(ρ)+k−2−ε+2(ρ−1)µ‖∇u(τ)‖2L2,mdτ. (4.47)

Since the integrals in the right hand side of (4.47) with −ε < 0 are finite by (2.5) or
(4.36) if k = 0, 1, (4.47) is estimated as

(1 + t)2α(ρ)+k−εFψ(t;∇u) +
∫ t

0

(1 + τ)2α(ρ)+k−ε
(‖∇ut(τ)‖2L2,m + ‖∆u(τ)‖2L2,m

)
dτ

≤ C(I0, I1)
(
1 + N∆u(t)

2(ρ−1)
2−ρ σ̄

)
. (4.48)

Return to (4.37) again and multiply
∫

R4(4.37) dx by (1 + t)2α(ρ)+2−ε to obtain

(1 + t)2α(ρ)+2−ε
(‖∇ut(t)‖2L2,m + ‖∆u(t)‖2L2,m

)
+

∫ t

0

(1 + τ)2α(ρ)+2−ε‖∇ut(τ)‖2L2,mdτ

≤ CI2
1 + C

∫ t

0

(1 + τ)2α(ρ)+1−ε
(‖∇ut(τ)‖2L2,m + ‖∆u(τ)‖2L2,m

)
dτ

+ CN∆u(t)
2(ρ−1)
2−ρ σ̄

∫ t

0

(1 + τ)2α(ρ)+2−ε−2+2(ρ−1)µ‖∇u(τ)‖2L2,mdτ
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and hence, by taking 0 < ε = 2µ ¿ 1,

(1 + t)2α(ρ)+2−2µ
(‖∇ut(t)‖2L2,m + ‖∆u(t)‖2L2,m

)

+
∫ t

0

(1 + τ)2α(ρ)+2−2µ‖∇ut(τ)‖2L2,mdτ

≤ C(I0, I1)
(
1 + N∆u(t)

2(ρ−1)
2−ρ σ̄

)
. (4.49)

Since α(ρ) + 1 = 1/(ρ− 1), the definition (4.16) of N∆u(t) and (4.49) yield (4.25). ¤

Remark 4.1. Our method used here does not seem to be applicable for the case
of N = 5. Because, since Lemmas 3.1–3.2 are basic to the key Lemma 2.2, the similar
estimates are necesarry. However, some are estimated by ‖∆g‖Lq , not ‖∇g‖Lq . When
we apply them to the nonlinear problem, g corresponds to −|u|ρ−1u, which is not in C2

for ρc(N) < ρ < 1 + 4/N (N = 5). In fact, the solution to (2.17) on R5 is given by

S5(t)g =
e−t/2

8π2

(
1
t2

∂2
t −

1
t3

∂t

) ∫ t

0

I0

(
1
2

√
t2 − ρ2

)
ρ4

∫

S4
g(x + ρω) dω dρ (4.50)

(see Courant and Hilbert [1], Ono [21]). Calculating S5(t)g, we set it as

S5(t)g = e−t/2 · 1
8π2

{(
3t +

1
8
t3

) ∫

S4
g(x + ρω) dω + t2

∫

S4
∇g(x + ρω) · ω dω

}

+
e−t/2

8π2

∫ t

0

(
1
t2

∂2
t −

1
t3

∂t

)[
I0

(
1
2

√
t2 − ρ2

)]
ρ4

∫

S4
g(x + ρω) dω dρ

=: e−t/2W05(t)g + J05(t)g (4.51)

(Note that the solution to the wave equation without damping is given by

1
8π2

(
3t

∫

S4
g(x + ρω) dω + t2

∫

S4
∇g(x + ρω) · ω dω

)

for N = 5). The second term of W05(t)g is estimated as

∣∣∣∣
t2

8π2

∫

S4
∇g(x + tω) · ω dω

∣∣∣∣

≤ C

( ∫

S4
t4|∇g(x + tω)|2dω

)1/2

≤ C

( ∫ t

0

ρ3

∫

S4
|∇g(x + ρω)|2dω dρ +

∫ t

0

ρ4

∫

S4
|∇g|∆g(x + ρω) dω dρ

)1/2

≤ C
(
t

1−5ε
8 ‖∇g‖

L
8

3+ε
+ ‖|∇g||∆g|‖L1

)1/2 (4.52)
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for 0 < ε ¿ 1. Hence we need the second derivative of g.

Sketch of the proof of Lemma 2.3. The proof is completely same as in [11]
and we give the sketch. For the equation of ut

(ut)tt −∆(ut) + (ut)t + ρ|u|ρ−1ut = 0, (2.16)

instead of (2.21) for ∇u, the estimate corresponding to (4.45) can be obtained:

(1 + t)2α(ρ)+k−εFψ(t;ut) +
∫ t

0

(1 + τ)2α(ρ)+k−ε
(‖utt(τ)‖2L2,m + ‖∇ut(τ)‖2L2,m

)
dτ

≤ C(I2
0 + I2

1 ) + C

∫ t

0

(1 + τ)2α(ρ)+k−1−ε‖ut(τ)‖2L2,mdτ

+ C

∫ t

0

(1 + τ)2α(ρ)+k−ε‖u(τ)‖2(ρ−1)
L∞ ‖ut(τ)‖2L2,mdτ (4.53)

(t0 is taken to be 1), where Fψ is defined in (4.42). We already have (2.23) and hence
the last term of (4.53) is estimated by

C

∫ t

0

(1 + τ)2α(ρ)+k−2−ε+2(ρ−1)µ‖ut(τ)‖2L2,mdτ. (4.54)

Hence we can take k = 2 by (2.5) and

(1 + t)2α(ρ)+2−εFψ(t;ut) +
∫ t

0

(1 + τ)2α(ρ)+2−ε
(‖utt(τ)‖2L2,m + ‖∇ut(τ)‖2L2,m

)
dτ

≤ C(I0, I1). (4.55)

Therefore, we can multiply the equation corresponding to
∫

R4(4.37) dx by (1+t)2α(ρ)+3−ε

and use (4.55) with µ = ε/4(ρ− 1) to get

(1 + t)2α(ρ)+3−ε
(‖utt(τ)‖2L2,m + ‖∇ut(t)‖2L2,m

)
+

∫ t

0

(1 + τ)2α(ρ)+3−ε‖utt(τ)‖2L2,mdτ

≤ C(I0, I1) + C

∫ t

0

(1 + τ)2α(ρ)+2−ε
(‖utt(τ)‖2L2,m + ‖∇ut(τ)‖2L2,m

)
dτ

+ C

∫ t

0

(1 + τ)2α(ρ)+1−ε/2‖ut(τ)‖2L2,mdτ

≤ C(I0, I1), (4.56)

which shows (2.26). ¤

Proof of Lemma 2.5. When N = 4, using (3.18), (3.25), we apply L∞-L1 and
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L∞-L2 estimates to (2.20) and obtain

‖u(t)‖L∞ ≤ C(1 + t)−2 + C

∫ t/2

0

(1 + t− τ)−2‖u(τ)‖ρ−1
L∞ ‖u(τ)‖L1dτ

+ C

∫ t

t/2

(1 + t− τ)−2(1− 1
2 )‖u(τ)‖

2ρ−1
2

L∞ ‖u(τ)‖
1
2
L1dτ

≤ C

{
(1 + t)−2 +

∫ t/2

0

(1 + t− τ)−2(1 + τ)−1+µ(ρ−1)dτ

+
∫ t

t/2

(1 + t− τ)−1(1 + τ)−
2ρ−1

2(ρ−1)+
2ρ−1

2 µdτ

}

≤ C(1 + t)−
1

ρ−1
2ρ−1

2 +( 2ρ−1
2 +1)µ, (4.57)

because

1 <
2ρ− 1

2(ρ− 1)
< 2 if ρ >

3
2

= 1 +
2
N

.

The L∞-estimate (4.57) is not yet optimal. So, applying the estimate (4.57) to (2.20)
again, we have

‖u(t)‖L∞ ≤ C(1 + t)−2 + C

∫ t/2

0

(1 + t− τ)−2(1 + τ)−
2ρ−1

2 +(ρ−1)( 2ρ−1
2 +1)µdτ

+ C

∫ t

t/2

(1 + t− τ)−1(1 + τ)−
1

ρ−1 ( 2ρ−1
2 )2+( 2ρ−1

2 +1) 2ρ−1
2 µdτ.

Since 2ρ−1
2 > 1 (ρ > 3

2 ),

‖u(t)‖L∞ ≤ C(1 + t)−2 + C(1 + t)−
1

ρ−1 ( 2ρ−1
2 )2+(( 2ρ−1

2 )2+ 2ρ−1
2 +1)µ.

Repeating this procedure yields

‖u(t)‖L∞ ≤ C(1 + t)−2 + C(1 + t)−
1

ρ−1 ( 2ρ−1
2 )k+(( 2ρ−1

2 )k+···+1)µ (4.58)

and the choice of suitably large k such as 1
ρ−1 ( 2ρ−1

2 )k > 2 and 0 < µ ¿ 1 does

‖u(t)‖L∞ ≤ C(1 + t)−2. (4.59)

The desired estimate (2.29) easily follows from (2.28) and (4.59) when N = 4.
The case N = 3 was proved in [11] by taking the L∞-L1 and L∞-L3/2 estimates.

The detail is omitted here. ¤
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5. Completion of the proof of main theorem.

It is shown following the story in Karch [12] that θ0G(t, x) is the asymptotic profile
of u(t, x) as t →∞, where θ0 is defined by (1.11).

First, we write the difference by

u(t, ·)− θ0G(t, ·) = (J0N (t)− PN (t))(u0 + u1) + (PN (t)(u0 + u1)− θ1G(t, ·))
+ e−t/2W0N (t)(u0 + u1) + ∂t(SN (t)u0)− wN (t)

+
∫ t/2

0

(J0N − PN )(t− τ)f(τ, ·) dτ

+
∫ t/2

0

(
PN (t− τ)−G(t, ·)

∫

RN

f(τ, y) dy

)
dτ

+
∫ t

t/2

J0N (t− τ)f(τ, ·) dτ + G(t, ·)
∫ ∞

t/2

∫

RN

f(τ, y) dy dτ

=: F1 + F2 + · · ·+ F9, (5.1)

where f(t, x) = −|u|ρ−1u(t, x) and

θ0 =
∫

RN

(u0 + u1)(x) dx +
∫ ∞

0

∫

RN

f(τ, y) dy dτ

=: θ1 +
( ∫ t/2

0

+
∫ ∞

t/2

) ∫

RN

f(τ, y) dy dτ. (5.2)

Also, J04,W04 are changed to J̄04, W̄04 in (5.1). The Lp norms of first, third, fourth and
sixth terms in (5.2) are o(t−2(1− 1

p )) by Lemmas 3.1–3.2. The second term is well-known
to be o(t−2(1− 1

p )). Since

∫

RN

|f(τ, y)| dy = ‖u(τ)‖ρ
Lρ ≤ C(1 + τ)−

N
2 (ρ−1)

is integrable, the final term is also o(t−2(1− 1
p )). For the fifth term −wN (t), when N = 3,

by (3.1)

‖W03(t)g‖L∞ ≤ Ct‖g‖L∞ , ‖W03(t)g‖L1 ≤ Ct‖g‖L1 ,

and, by (4.3)

‖w3(t)‖L∞ ≤ C

∫ t

0

e−
t−τ
2 (t− τ)‖|u|ρ(τ)‖L∞dτ = o(t−

3
2 )

and
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‖w3(t)‖L1 ≤ C

∫ t

0

e−
t−τ
2 (t− τ)‖u(τ)‖ρ

Lρdτ = o(1),

which show ‖w3(t)‖Lp = o(t−2(1− 1
p )). When N = 4, (4.41) and (3.21)–(3.22) with

s = ∞, s̄ = 4 and q = 1 yield

‖w̄4(t)‖L∞ ≤ C

∫ t

0

e−
t−τ
2 (t− τ)

(‖u(τ)‖ρ
L∞ + ‖u(τ)‖ρ−1

L∞ ‖∆u(τ)‖L2

)
dτ

≤ C

∫ t

0

e−
t−τ
2 (t− τ)

[
(1 + τ)−2ρ + (1 + τ)−2(ρ−1)− 1

ρ−1+µ
]
dτ

= o(t−2),

because 2(ρ− 1) + 1
ρ−1 ≥ 2

√
2. From (3.22)

‖w̄4(t)‖L1 ≤ C

∫ t

0

e−
t−τ
2

[
(t− τ + (t− τ)2)‖u(τ)‖ρ

Lρ + (t− τ)2‖u(τ)‖ρ−1
L∞ ‖∇u(τ)‖L1

]
dτ

≤ C

∫ t

0

e−
t−τ
2

[
(t− τ + (t− τ)2)(1 + τ)2(ρ−1)

+ (t− τ)2(1 + τ)−2(ρ−1)−( 1
ρ−1− 4

2 )− 1
2
]
dτ

= o(1).

Thus the case of N = 4 also holds. The second to the last is estimated as

‖F8‖Lp ≤ C

∫ t

t/2

‖|u|ρ(τ)‖Lpdτ ≤ C

∫ t

t/2

(1 + τ)−2(ρ− 1
p )dτ

= o
(
t−2(1− 1

p )
)
.

Though F7 is most delicate, the same method in [12] is applicable and

‖F7‖Lp = o
(
t−2(1− 1

p )
)
.

Thus we have completed the proof of our main Theorem 2.3.
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