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Maximal regularity for the Stokes system

on noncylindrical space-time domains

By Jürgen Saal

(Received Jan. 4, 2005)

Abstract. We prove Lp−Lq maximal regularity estimates for the Stokes equa-
tions in spatial regions with moving boundary. Our result includes bounded and un-
bounded regions. The method relies on a reduction of the problem to an equivalent
nonautonomous system on a cylindrical space-time domain. By applying suitable
abstract results for nonautonomous Cauchy problems we show maximal regularity of
the associated propagator which yields the result. The abstract results, also proved
in this note, are a modified version of a nonautonomous maximal regularity result
of Y. Giga, M. Giga, and H. Sohr and a suitable perturbation result. Finally we
describe briefly the application to the special case of rotating regions.

1. Introduction and main results.

For T > 0 let QT :=
⋃

t∈(0,T ) Ω(t) × {t} ⊆ Rn+1 be a noncylindrical space-time
domain. In this note we consider the following Stokes equations:

(SE)Ω(t)
f,v0





vt −∆v +∇p = f in QT ,

div v = 0 in QT ,

v = 0 on
⋃

t∈(0,T ) ∂Ω(t)× {t},
v|t=0 = v0 in Ω(0) =: Ω0,

with velocity field v and pressure p. Here we assume the moving boundary, i.e. the
evolution of the domain Ω(t) to be determined by a level-preserving diffeomorphism

ψ : Ω0 × (0, T ) → QT , (ξ, t) 7→ (x, t) = ψ(ξ, t) := (φ(ξ; t), t)

such that for each t ∈ [0, T ), φ(·; t) maps Ω0 onto Ω(t). More precisely we assume the
following conditions on φ respectively ψ.

Assumption 1.1. Let T ∈ (0,∞], Ω0 ⊆ Rn be a domain of class C3 either
bounded, exterior, or a perturbed half-space. The domains Ω(t), t ∈ [0, T ], shall all be
of the same type as Ω0, i.e. {Ω(t)}t∈[0,T ] is either a family of bounded domains, exterior
domains, or perturbed half-spaces. Furthermore:

1. For each t ∈ [0, T ], φ(·; t) : Ω0 → Ω(t) is a C3-diffeomorphism. Its inverse we
denote by φ−1(·; t) (to emphasize that φ−1 is merely the inverse w.r.t. the space
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variables we use the semicolon notation (ξ; t) for the argument of φ and φ−1).
2. If we regard φ as a function from Q0 := Ω0 × (0, T ) into Rn it shall satisfy

φ ∈ C3,1
b (Q0) := {f ∈ C(Q0) : ∂k

t Dα
x f ∈ Cb(Q0), 1 ≤ 2k + |α| ≤ 3, k ∈ N0,

α ∈ Nn
0 }, where Cb(Q0) denotes the space of all bounded and continuous functions

on Q0.
3. We have det∇ξφ(ξ, t) ≡ 1, (ξ, t) ∈ Q0, (volume preserving).
4. If T = ∞ we demand ∂k

t φ(·; t) → ∂k
t φ(·;∞) in C3−2k

b (Ω0), k = 0, 1, for t → ∞.
(Note that φ(·;∞) does no more depend on t, i.e. the time derivative of φ tends
to 0.)

Observe that for the case T = ∞ Assumption 1.1.4 says that the moving domain
Ω(t) tends to some fixed domain Ω(∞) for large values of t.

We remark that in view of realistic physical situations problem (SE)Ω(t)
f,v0

should be
considered with a certain boundary condition v = b 6= 0 at

⋃
t∈(0,T ) ∂Ω(t)× {t}. On the

other hand, by assuming the existence of a solenoidal field β : QT → Rn such that β = b

on the boundary, the problem with b 6= 0 can be reduced to the case b = 0 as described
in [19] and [18]. Therefore we restrict our considerations to the system (SE)Ω(t)

f,v0
with

zero boundary conditions.
Also, note that in certain concrete situations the existence of the diffeormorpism

ψ is established. For instance in [18] the authors give as a nice example of a moving
domain Ω(t) a bowl with swimming goldfishes (note that kisses are not allowed!). As a
reference for the existence of ψ in such a situation they gave [26] and [7].

Now define I p(A) := (X, D(A))1− 1
p ,p, where the latter space denotes the real in-

terpolation space of a Banach space X and the domain D(A) of a closed operator A in
X. For t ∈ [0, T ) we denote by

AΩ(t) = −PΩ(t)∆ defined on

D(AΩ(t)) = W 2,q(Ω(t)) ∩W 1,q
0 (Ω(t)) ∩ Lq

σ(Ω(t))

the Stokes operator in the space of solenoidal fields Lq
σ(Ω(t)) = C∞c,σ(Ω(t))

Lq(Ω(t))
, where

C∞c,σ(Ω(t)) := {u ∈ C∞c (Ω(t)) : div u = 0}. Here PΩ(t) : Lq(Ω(t)) → Lq
σ(Ω(t)) denotes the

Helmholtz projection associated to the Helmholtz decomposition Lq(Ω(t)) = Lq
σ(Ω(t))⊕

Gq(Ω(t)), where Gq(Ω(t)) = {∇p ; p ∈ Ŵ 1,q(Ω(t))}. Note that it is well known that there
exists a compatible family {PΩ,q}q∈(1,∞) of bounded projections PΩ = PΩ,q : Lq(Ω) →
Lq

σ(Ω) for all types of domains Ω considered in this note, see e.g. [10], [34], [32]. For
the above types of moving domains our main result is

Theorem 1.2. Let n ≥ 2, 1 < p, q < ∞, and T ∈ (0,∞]. Let the evolution of
Ω(t), t ∈ [0, T ], be determined by a function ψ satisfying Assumptions 1.1. Then problem
(SE)Ω(t)

f,0 has a unique solution t 7→ (v(t), p(t)) ∈ D(AΩ(t)) × Ŵ 1,q(Ω(t)), t ∈ [0, T ].
Furthermore, for T < ∞, this solution satisfies the estimate

∫ T

0

[‖vt(t)‖p
Lq(Ω(t)) + ‖v(t)‖p

W 2,q(Ω(t)) + ‖∇p(t)‖p
Lq(Ω(t))

]
dt

≤ C(T )
(
‖v0‖p

I p(AΩ0 ) +
∫ T

0

‖f(t)‖p
Lq(Ω(t))dt

)
(1)
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for all v0 ∈ I p(AΩ0) and f ∈ Lp((0, T );Lq(Ω(t))). If Ω0 is bounded then the above
inequality is also valid for T = ∞ with a finite constant C(∞) > 0.

Remark 1.3.

(1) The proof of Theorem 1.2 shows that the norms ‖ · ‖D(A(t)) (graph norm) and
‖ · ‖W 2,q(Ω(t)) are equivalent with equivalence constants independent of t. In particular
we may replace ‖v(t)‖W 2,q(Ω(t)) by the term ‖v(t)‖D(A(t)) in inequality (1).
(2) By checking the details of the proof in Section 3 below one will realize that the
assumption on the family {Ω(t)}t∈[0,T ] which we intrinsically use is not the particular
geometric type of the domains, but the property of having maximal regularity of the
corresponding Stokes operator AΩ(t) for each fixed t ∈ [0, T ]. Therefore, Theorem 1.2
stays true for each family {Ω(t)}t∈[0,T ] with Ω(t) of the “same type” for all t ∈ [0, T ]
such that AΩ(t) has maximal regularity. This property, for instance, is also known to be
valid for families of asymptotically flat layers as examined in [2], [1].
(3) Moreover, to prove the assertion for T = ∞, in our proof we only need the additional
assumption that AΩ(t) is boundedly invertible for t close to infinity. This is also well
known in the case of asymptotically flat layers, see again [2], [1]. Hence the full assertion
of Theorem 1.2 is valid for families of domains of that type.

Some special cases of the situation in Theorem 1.2 are considered in several former
works. First investigations of the solvability of (SE)Ω(t)

f,v0
and the corresponding Navier-

Stokes equations can be found in [31]. However, until now there are only existence results
in L2(Ω(t)) available under the restrictive assumptions that T < ∞ and {Ω(t)}t∈[0,T ] is
a family of bounded domains. In that situation for instance in [18] the existence of a
unique solution of (SE)Ω(t)

f,v0
is proved. By regarding ψ as a variable transform the authors

reduced (SE)Ω(t)
f,v0

to a transformed nonautonomous problem and then applied an abstract
result in [36] to the associated Cauchy problem. As an application of their result for
the linear part, they also proved a local existence result for the corresponding nonlinear
Navier-Stokes equations in QT . The existence of global weak solutions in L2(Ω(t)) for
the Navier-Stokes equations was already shown in [9] (see also [5]). The periodic case
was obtained in [25], i.e. if t 7→ Ω(t) is periodic then there exists a periodic weak solution
of the Navier-Stokes equations. Another result for more regular periodic solutions can
be found in [23]. For periodic solutions of the Stokes equations we refer to [37]. Another
existence result of local strong solutions of the Navier-Stokes equations on QT is obtained
in [28]. There the authors could relax a restrictive decay condition on the right hand side
f assumed in [18], but nevertheless they obtained a more regular solution. We want to
remark that the assumptions on the evolution and regularity of Ω(t) differ in the above
cited papers. This depends mainly on the method that the authors use in their works.
The approach presented here is closely related to the method used in [18]. Therefore we
have similar assumptions on ψ (hence also on Ω(t)) as in that paper.

Theorem 1.2 generalizes the known results for (SE)Ω(t)
f,v0

in several directions. Firstly,
we handle Lq-spaces for the full scale 1 < q < ∞ and not only the Hilbert space case.
Secondly, we also treat various families {Ω(t)}t∈[0,T ) of unbounded domains. In the
case of bounded domains (and perturbed layers) we also obtain a result for the case
T = ∞ under the assumption that Ω(t) tends to some fixed domain Ω(∞) in the sense
of Assumption 1.1.4. Moreover, we do not only prove existence of solutions, but even
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maximal regularity for all types of treated families of domains and Lq-spaces.
Although the results presented here are of independent interest, with our work we

want to establish the basis for further regularity investigations of the Navier-Stokes equa-
tions on noncylindrical space-time domains. For example in the cylindrical case it is
known, that the maximal regularity of the linear equations can be used to obtain reg-
ularity of weak solutions of the corresponding Navier-Stokes equations, see [14], or to
prove uniqueness of mild solutions, see [24], [20]. The results in [33] show that we even
can get a global strong solution of the two-dimensional Navier-Stokes equations by using
maximal regularity. Besides these improvements we further hope that our methods can
be used to obtain also higher regularity for the solutions of free boundary value prob-
lems related to the Navier-Stokes equations. The idea is that, once existence is proved,
the movement of the free boundary is known. Then we are in the situation to apply a
regularity result for a moving boundary problem.

As we already mentioned, our approach is similar to the one in [18], i.e. we transform
the problem (SE)Ω(t)

f,0 via ψ back to a problem on the cylindrical domain Ω0× (0, T ). To
the propagator AΩ0(·) of the associated Cauchy problem we then will apply an abstract
result. In order to formulate this result let p ∈ (1,∞) and denote by MRp(X, K) the
class of all operators (and propagators) A(·) having maximal (Lp-) regularity on X

with a maximal regularity constant not exceeding K, i.e. there exists a unique solution
t 7→ u(t) ∈ D(A(t)) of the (eventually non-autonomous) Cauchy problem

{
u′ + A(·)u = f in (0, T ),

u(0) = u0,
(2)

satisfying the estimate

‖u′‖Lp((0,T );X) + ‖A(·)u‖Lp((0,T );X) ≤ K
(‖f‖Lp((0,T );X) + ‖u0‖I p(A(0))

)

for f ∈ Lp((0, T );X) and u0 ∈ I p(A(0)). We write A(·) ∈ MRp(X) :=
⋃

K∈(0,∞)

MRp(X, K) if the dependence of the maximal regularity constant K can be neglected.
The abstract result which we will use reads as

Theorem 1.4. Let X be a Banach space, 1 < p < ∞, T ∈ (0,∞], and {A(t)}t∈[0,T ]

a family of boundedly invertible sectorial operators in X satisfying

1. D(A(t)) = D(A(0)), t ∈ [0, T ].
2. The mapping A(·) : [0, T ) → L (D(A(0), X)) is continuous, where D(A(0)) is

endowed with the graph norm.
3. A(t) → A(T ) in L (D(A(0), X)), as t → T .
4. For each t ∈ [0, T ] we have A(t) ∈ MRp(X, C(t)), for some constant C(t) > 0.

Then A(·) ∈ MRp(X). More precisely, for each f ∈ Lp((0, T );X) and u0 ∈ I p(A(0))
there is a unique solution u ∈ W 1,p((0, T );X) ∩ Lp((0, T );D(A(0))) of problem (2) such
that

‖u‖W 1,p((0,T );X) + ‖A(·)u‖Lp((0,T );X) ≤ C
(‖f‖Lp((0,T );X) + ‖u0‖I p(A(0))

)
(3)
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with a constant C > 0 independent of f and u0.

Observe that assumption 4 is a pointwise condition, i.e. we assume that for each
(fixed) t ∈ [0, T ] the (autonomous) operator A(t) has maximal regularity. In Section 2 we
will prove that the assumptions of Theorem 1.4 imply the assumptions of the Theorem
in [12]. This will yield the assertion of Theorem 1.4. We want to remark that for
the case of finite T > 0 Theorem 1.4 can be found in [29]. There the authors give a
comprehensive discussion of the corresponding evolution operator. Another result of that
type for UMD spaces X is given in [3]. There, besides the continuity of t 7→ A(t), the
essential assumption, instead of the pointwise maximal regularity in assumption 4, is the
stronger property of bounded imaginary powers of A(t). For our concrete application to
the Stokes equations this might be no problem. However, the additional assumption for
the case T = ∞ in [3] is different from the assumption in [12] and to the author of the
present note the condition in [12] seems to be more suitable for our purposes.

For further results concerning the maximal regularity of nonautonomous abstract
Cauchy problems we refer to [35], and the references given there. However, there the
authors also deal with the case T < ∞ only, and their results are based on commutator
conditions on the operators A(t), t ∈ [0, T ], which in general are not easy to verify. For
this reason we decided to base Theorem 1.4 on the result in [12].

After stating the abstract result, in Section 3 we will turn to the proof of Theo-
rem 1.2. By regarding ψ as a variable transform we will reduce (SE)Ω(t)

f,v0
to an equivalent

system of transformed equations on the cylindrical domain Q0. The price we have to pay
is that we are now left with a nonautonomous system of partial differential equations,
i.e. the coefficients of these transformed equations depend on space and time in general.
Here Assumption 1.1.2 assures that they are at least continuous. Another important
point is that the transformed functions belong to the solenoidal space Lq

σ(Ω0), which
relies essentially on Assumption 1.1.3. More precisely this condition assures that the
divergence operator is invariant under the chosen transform.

Similar to the autonomous Stokes equations this will give us the possibility to formu-
late an associated abstract Cauchy problem with operators acting in Lq

σ(Ω0). The idea
here is to use the family of projections PΩ0(t) : Lq(Ω0) → Lq

σ(Ω0), which are exactly the
transformed Helmholtz projections PΩ(t). In order to verify condition 2 of Theorem 1.4
for the operator of the associated Cauchy problem, one difficulty is to show the continuity
of t 7→ PΩ0(t). This will be handled by considering the associated transformed Neumann
problems to PΩ0(t).

Another problem is that in our case A(t) is not only given by the transformed Stokes
operator AΩ0(t), but we also have a perturbation B(t) which arises from the fact that
the transform ψ depends on t, and therefore does not commute with ∂t. Here we will
apply an abstract perturbation result for propagators established also in Section 2. This
will lead to the maximal regularity of the shifted propagator µ + AΩ0(·) + B(·) which
implies the assertion of Theorem 1.2 for the case T < ∞.

In order to prove the statement for bounded Ω0 and T = ∞, Assumption 1.1.4 will
be the essential ingredient. It allows us to apply again the abstract perturbation result
to the full operator AΩ0(t)+B(t) for t close to infinity, since then the coefficients of B(t)
are small. In combination with the result for the case T < ∞ this completes the proof.

In the last section we will give a brief application of Theorem 1.2 to the special case
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of rotations, as they are of greatest interest in the present research.
We introduce some notation used in the sequel. By Ck(Ω) we denote the space of all

k-times continuously differentiable functions in an open subset Ω of Rn, and by Ck
b (Ω)

its subspace of k-times bounded continuously differentiable functions. As usual W k,q(Ω)
is the Sobolev space with norm ‖ · ‖k,q = (

∑k
j=0 ‖∇j · ‖q

q)
1/q and Lq(Ω) = W 0,q(Ω) the

Lebesgue space of q-integrable functions. We also make use of the homogeneous Sobolev
space Ŵ 1,q(Ω), consisting of all locally integrable functions f in Ω with ‖∇f‖q < ∞,
modulo constants. Furthermore, L (X, Y ) denotes the class of all bounded operators
from X to Y and I som(X, Y ) its subclass of isomorphisms. If X = Y we set L (X) :=
L (X, X) and I som(X) := I som(X, X). The domain of an operator A in a Banach
space X we denote by D(A), its range by R(A), and its resolvent set by ρ(A). Finally,
by a sectorial operator in X we understand a closed injective operator A, such that
D(A) = R(A) = X, (0,∞) ⊆ ρ(−A), and ‖λ(λ + A)−1‖L (X) ≤ C, λ > 0, for some
C > 0. Note that Σπ−ϕ0 := {z ∈ C \{0} : | arg z| < π−ϕ0} ⊆ ρ(A) for some ϕ0 ∈ (0, π),
if A is sectorial, and the resolvent estimates are still valid for all λ ∈ Σπ−ϕ0 with a certain
constant Cϕ0 > 0. See [6] for more information about sectorial operators.

Acknowledgements. The author is very grateful to Professor Yoshikazu Giga
for attracting his attention to this problem. Moreover, he would like to thank Professor
Yoshikazu Giga and the members of his research group for their hospitality and many
fruitful discussions during my stay as a COE postdoctoral fellow at Hokkaido Univer-
sity in Sapporo. Kind thanks also to Professor Herbert Amann for helpful discussions
concerning the content of Section 2 and to Professor Alex Mahalov for pointing out the
relation to rotations as described in Section 4.

2. The abstract nonautonomous maximal regularity result.

We start with a simple but in the sequel useful lemma about uniform boundedness
of families of operators.

Lemma 2.1. Let X, Y be Banach spaces and T ∈ (0,∞]. Let {Ψ(t)}t∈[0,T ] be
a family of operators Ψ(t) ∈ L (Y, X), t ∈ [0, T ], such that Ψ : [0, T ) → L (Y, X) is
continuous and Ψ(t) → Ψ(T ) in L (Y, X). Then there is a constant C0 > 0 such that

‖Ψ(t)‖L (Y,X) ≤ C0, t ∈ [0, T ]. (4)

If {Ψ(t)}t∈[0,T ] is additionally assumed to be a family of isomorphisms, i.e. Ψ(t) ∈
I som(Y, X), t ∈ [0, T ], then we even have

‖Ψ(t)‖L (Y,X) ∈ [c0, C0], t ∈ [0, T ], (5)

for certain constants C0 ≥ c0 > 0. In particular, Ψ(·)−1 : [0, T ] → L (Y, X) is continuous
and we can choose C0 ≥ c0 > 0 in a way such that also ‖Ψ(t)−1‖L (X,Y ) ∈ [c0, C0],
t ∈ [0, T ].

Proof. By Ψ(t) → Ψ(T ) if t → T , for large t, say t ≥ T0 > 0, the norm of Ψ(t) is
close to ‖Ψ(T )‖L (Y,X). Together with the continuity of t 7→ Ψ(t) on [0, T0] this implies
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(4). If {Ψ(t)}t∈[0,T ] is a family of isomorphisms we have additionally ‖Ψ(t)‖L (Y,X) > 0,
t ∈ [0, T ]. Hence, the argumentation above even yields (5). ¤

Before turning to the proof of the abstract maximal regularity result we list some
properties of the operator

L(t, s) := A(t)A(s)−1, t, s ∈ [0, T ],

where {A(t)}t∈[0,T ] is a family satisfying the assumptions of Theorem 1.4. Note that L

is well-defined by assumption 1. Moreover we have

Lemma 2.2. Let X be a Banach space, T ∈ (0,∞], and let {A(t)}t∈[0,T ] satisfy
the assumptions of Theorem 1.4 (It is not necessary to assume condition 4). Then

1. For each (t, s) ∈ [0, T ] the operator L(t, s) is an isomorphism on X and there is a
uniform K > 0 such that

‖L(t, s)‖L (X) ≤ K, t, s ∈ [0, T ].

2. The mapping (t, s) 7→ L(t, s) is continous from [0, T )2 into L (X).
3. We have L(t, s) → I for t, s → T in L (X).

Proof.

1. Since A(t) is assumed to be boundedly invertible, for each t, s ∈ [0, T ] the operator
L(t, s) is an isomorphism on X with L(t, s)−1 = L(s, t) and L(t, t) = I, t ∈ [0, T ]. Now
assumption 2 of Theorem 1.4 implies t 7→ L(t, 0) to be continuous from [0, T ) into L (X).
Furthermore, assumption 3 of Theorem 1.4 yields L(t, 0) → L(T, 0) in L (X). Thus we
can apply Lemma 2.1 obtaining

‖L(t, 0)‖L (X), ‖L(0, t)‖L (X) ∈ [c0, C0], t ∈ [0, T ].

Consequently,

‖L(t, s)‖L (X) = ‖L(t, 0)L(0, s)‖L (X) ≤ C2
0 =: K, t, s ∈ [0, T ].

2. First observe that L(0, ·) : [0, T ) → L (X) is continuous in view of the continuity of
t 7→ L(t, 0) and the identity L(0, t) = L(t, 0)−1. By the calculation

‖L(t2, s2)− L(t1, s1)‖L (X)

≤ ‖L(t2, s2)− L(t1, s2)‖L (X) + ‖L(t1, s2)− L(t1, s1)‖L (X)

= ‖(L(t2, 0)− L(t1, 0))L(0, s2)‖L (X) + ‖L(t1, 0)(L(0, s2)− L(0, s1))‖L (X)

≤ K
(‖L(t2, 0)− L(t1, 0)‖L (X) + ‖L(0, s2)− L(0, s1)‖L (X)

)

for t1, t2, s1, s2 ∈ [0, T ], we can see that the continuity of (t, s) 7→ L (X) from [0, T )2 into
L (X) can be reduced to the continuity of t 7→ L(t, 0) and t 7→ L(0, t).
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3. Here we compute

‖L(t, s)− I‖L (X) = ‖(L(t, 0)− L(s, 0))L(0, s)‖L (X)

≤ K‖L(t, 0)− L(s, 0)‖L (X) → 0

for t, s → T , valid again in view of L(t, 0) → L(T, 0). ¤

As we mentioned in the introduction we intend to show that the assumptions of
Theorem 1.4 imply the assumptions of the following result:

Theorem 2.3 [12, Theorem]. Let X be a Banach space, 1 < p < ∞, T ∈ (0,∞],
and let {A(t)}t∈[0,T ] be a family of sectorial operators in X satisfying

(a) D(A(t)) = D(A(0)), t ∈ [0, T ], where D(A(0)) is endowed with the graph norm.
(b) The operator L(t, s) = A(t)A(s)−1 extends to a bounded operator on X and we

have ‖L(t, s)‖L (X) ≤ K for all 0 ≤ s ≤ t < T .
(c) The map (t, s) 7→ L(t, s) is continuous from {(t, s) : 0 ≤ s ≤ t < T} into L (X).
(d) L(t, s) → I for t ≥ s → T in L (X).
(e) A(t) ∈ MRp(X, C0) for all t ∈ [0, T ).

Then A(·) ∈ MRp(X).

Remark 2.4.

(1) In [12] instead of (e) it is assumed that

‖A(t)is‖L (X) ≤ Ceθ|s|, 0 ≤ t < T, s ∈ R, (6)

for some θ ∈ (0, π) and C > 0, i.e. A(t) has bounded imaginary powers. But by checking
the proof one realizes that only the condition (e) above is used. Therefore we also can
skip the assumption of the ζ-convexity of the underlying Banach space X which is needed
to conclude (e) from (6).
(2) Comparing the above result with Theorem 1.4 we see that we only assume the con-
tinuity of (t, s) 7→ L(t, s) in the first component. Moreover, note that in (e) there is the
condition of a uniform constant C0, which is rather unwieldy for concrete applications.
Instead, assumption 4 in Theorem 1.4 is only a pointwise condition. In that sense The-
orem 1.4 is an improvement of Theorem 2.3. On the other hand here we assume A(t),
t ∈ [0, T ], to be boundedly invertible which is not assumed in [12].
(3) In [12] the space for the initial data is I p = {x ∈ X : (

∫ T

0
‖A(0)e−tA(0)x‖pdt)1/p <

∞}. It is well known that our space I p(A(0)) := (X, D(A(0)))1− 1
p ,p coincides with the

space {x ∈ X : ‖x‖X + (
∫ T

0
‖A(0)e−tA(0)x‖pdt)1/p < ∞} if A(0) is the generator of a

holomorphic semigroup on X (see e.g. [4], [21]). Hence our choice of the space for initial
data is compatible.

Proof (of Theorem 1.4). In virtue of Lemma 2.2 it remains to prove the existence
of the uniform constant C0 in condition (e) of Theorem 2.3. To this end we define the
spaces
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Y := Lp((0, T );D(A(0))) ∩W 1,p((0, T );X) and

Z := Lp((0, T );X)×I p(A(0))

equipped with their canonical norms. Note again that it is well known, that I p(A(0))
is exactly the trace space of Y in t = 0 under the assumptions A(0) ∈ MRp(X) and
A(0)−1 ∈ L (X) (see e.g. [21, Section 1.2.2]), in particular ‖u|t=0‖I p(A(0)) ≤ C‖u‖Y ,
u ∈ Y . Furthermore, observe that in view of Lemma 2.2.1 the graph norms ‖·‖D(A(0)) and
‖ · ‖D(A(τ)) are equivalent with equivalence constants that do not depend on τ ∈ [0, T ].
These two facts together with assumption 4 of Theorem 1.4 imply that for each τ ∈ [0, T ]
the operator

Ψ(τ) : Y → Z, Ψ(τ)u :=
(

(∂ + A(τ))u
u|t=0

)

is an isomorphism. Furthermore we have

‖(Ψ(τ)−Ψ(s))u‖Z =
∥∥∥∥
(

(A(τ)−A(s))u
0

)∥∥∥∥
Z

=
( ∫ T

0

‖(A(τ)−A(s))u(t)‖pdt

)1/p

≤ ‖(A(τ)−A(s))‖L (D(A(0)),X))‖u‖Y , τ, s ∈ [0, T ].

This shows the continuity of Ψ : [0, T ) → I som(Y, Z) according to assumption 2 of
Theorem 1.4. On the other hand, if we set s = T , we obtain Ψ(τ) → Ψ(T ) in I som(Y, Z)
by virtue of assumption 3. Applying Lemma 2.1 we conclude

‖Ψ(τ)−1‖L (Z,Y ) ≤ K, τ ∈ [0, T ],

which yields (e). Theorem 2.3 then yields A(·) ∈ MRp(X). But since

‖A(t)−1‖L (X) ≤ C‖A(0)A(t)−1‖L (X) ≤ CK, t ∈ [0, T ],

it is easy to see that we even have u ∈ W 1,p((0, T );X) ∩ Lp((0, T );D(A(0))), hence also
the stronger estimate (3). This proves Theorem 1.4. ¤

In our applications we will also employ the following perturbation result.

Theorem 2.5. Let X be a Banach space, 1 < p < ∞, and T ∈ (0,∞]. Let
{A(t)}t∈[0,T ) be a family of boundedly invertible operators such that D(A(t)) = D(A(0)),
‖A(t)A(s)−1‖L (X) ≤ C0, t, s ∈ [0, T ), and A(0) ∈ MRp(X) as well as A(·) ∈ MRp(X).
Furthermore, let {B(t)}t∈[0,T ) be a family of linear closed operators satisfying D(A(0)) ⊆
D(B(t)), t ∈ [0, T ), and for some κ < 1 assume

‖B(t)x‖ ≤ κ‖A(t)x‖, x ∈ D(A(0)), t ∈ [0, T ).
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Then D(A(t) + B(t)) = D(A(0)), t ∈ [0, T ), and we have

∥∥(A(t) + B(t))(A(s) + B(s))−1
∥∥

L (X)
≤ C1, t, s ∈ [0, T ). (7)

Furthermore, if κ is small enough, for each f ∈ Lp((0, T );X) and u0 ∈ I p(A(0)) there
is a unique solution u ∈ W 1,p((0, T );X) ∩ Lp((0, T );D(A(0))) of problem (2) satisfying

‖u‖W 1,p((0,T );X) + ‖(A + B)(·)u‖Lp((0,T );X)

≤ C2

(‖f‖Lp((0,T );X) + ‖u0‖I p(A(0))

)
, (8)

i.e. (A + B)(·) ∈ MRp(X).

Proof. First fix t ∈ [0, T ). By the invertibility of A(t) this operator is an isomor-
phism from D(A(t)) to X. The relative boundedness of B(t) with κ < 1 implies that also
A(t) + B(t) : D(A(t)) → X is an isomorphism. Hence A(t) + B(t) is a closed operator in
X with domain D(A(t) + B(t)) = D(A(t)) = D(A(0)). To see estimate (7) we compute

‖(A(t) + B(t))(A(s) + B(s))−1‖L (X)

≤ (1 + κ)‖A(t)A(s)−1[I + B(s)A(s)−1]−1‖L (X).

Since ‖B(s)A(s)−1‖L (X) ≤ κ < 1 uniformly in s ∈ [0, T ), the Neumann series yield

∥∥[I + B(s)A(s)−1]−1
∥∥

L (X)
≤ C, s ∈ [0, T ).

Together with the assumptions on A(·) this implies (7).
Now let Y, Z be defined as in the proof of Theorem 1.4. We already mentioned that

the trace operator γ : Y → I p(A(0)), γu := u|t=0 is bounded by taking into account that
A(0) ∈ MRp(X). Together with the assumptions A(0)−1 ∈ L (X), ‖A(t)A(0)−1‖L (X) ≤
C0 and A(·) ∈ MRp(X) this implies

Ψ : Y → Z, Ψu :=
(

(∂ + A(·))u
γu

)

to be an isomorphism. Now set B̃ : Y → Z, B̃u := (B(·)u, 0)T , u ∈ Y . Then

(Ψ + B̃)u =
(

∂ + A(·) + B(·))u
γu

)
.

To show invertibility of this operator we write formally

(Ψ + B̃)−1 = Ψ−1(I + B̃Ψ−1)−1

and calculate
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∥∥B̃Ψ−1(f, u0)T
∥∥

Z
=

∥∥B(·)Ψ−1(f, u0)T
∥∥

Lp((0,T ),X)
+ 0

=
( ∫ T

0

∥∥B(t)[Ψ−1(f, u0)T ](t)
∥∥pdt

)1/p

≤ κ

( ∫ T

0

∥∥A(t)[Ψ−1(f, u0)T ](t)
∥∥pdt

)1/p

≤ κa‖(f, u0)‖Z , (f, u0) ∈ Z,

where a := ‖A(·)Ψ−1‖L (Lp((0,T );X)). Thus, for κ < 1/a we can employ the Neumann
series obtaining

∥∥(Ψ + B̃)−1
∥∥

L (Z,Y )
≤ 1

1− κa
‖Ψ−1‖L (Z,Y ).

This implies Ψ + B̃ : Y → Z to be an isomorphism. In combination with

‖(A(t) + B(t))u‖X = ‖(A(t) + B(t))(A(0) + B(0))−1(A(0) + B(0))u‖X

≤ C1(1 + κ)‖A(0)u‖X , u ∈ D(A(0)), t ∈ [0, T ),

this yields the assertion. ¤

3. The Stokes equations on noncylindrical domains.

Now we turn to the proof of Theorem 1.2. First let us list some obvious consequences
of Assumption 1.1. In view of det∇φ(ξ, t) ≡ 1 and ψ(ξ, t) = (φ(ξ; t), t) we also have
det∇ψ = 1. Moreover, Assumption 1.1.2 implies ψ ∈ C3,1

b (Q0;Rn+1). By virtue of the
implicit function theorem we therefore have ψ−1 ∈ C3,1

b (QT ;Rn+1) and since ψ−1(x, t) =
(φ−1(x; t), t), (x, t) ∈ QT , also φ−1 ∈ C3,1

b (QT ;Rn). Furthermore we calculate

0 = ∂tξ = ∂tφ
−1(φ(ξ; t); t) = (∇xφ−1)(φ(ξ; t); t)(∂tφ)(ξ, t) + (∂tφ

−1)(φ(ξ; t); t).

Hence

(∂tφ
−1)(φ(ξ; t); t) = −(∇ξφ)(ξ; t)−1(∂tφ)(ξ, t), (ξ, t) ∈ Q0,

and we see that Assumption 1.1.4 yields

(∂tφ
−1)(φ(·; t); t) → 0, t →∞, (9)

in C1
b (Ω0) for the case T = ∞.
In order to apply the abstract results of the previous section we transform (SE)Ω(t)

f,0

to a system on a fixed domain as follows. For a function v : QT → Cn we set

ṽ(ξ, t) := v(φ(ξ; t), t), (ξ, t) ∈ Ω0 × [0, T ].
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Then

(∇xv)(φ(ξ; t), t) =
[
(∇ξφ)−T∇ξ ṽ

]
(ξ, t), (10)

where M−T denotes (MT )−1 and MT stands for the transposed Matrix. Now define

u(ξ, t) := (Φ(t)v)(ξ, t) :=
[
(∇ξφ)−1ṽ

]
(ξ, t), (ξ, t) ∈ Ω0 × [0, T ]. (11)

If T = ∞, note that Φ(∞) is the corresponding operator to the limit function φ(·,∞)
which exists according to Assumption 1.1.4. Assumption 1.1.1, 2, and 3 on φ imply that
Φ(t) : W k,q(Ω(t)) → W k,q(Ω0) and Φ(t) : W k,q

0 (Ω(t)) → W k,q
0 (Ω0) are isomorphisms for

k = 0, 1, 2 and t ∈ [0, T ], and we even have the uniform estimates

‖Φ(t)v‖W k,p(Ω0) ≤ C1‖v‖W k,p(Ω(t)) ≤ C2‖Φ(t)v‖W k,p(Ω0) (12)

for all v ∈ W k,p(Ω(t)), t ∈ [0, T ], k = 0, 1, 2. It is also easy to see that ν(x, t) is the outer
normal at ∂Ω(t) in x if and only if µ(ξ, t) = (∇φ)T (ξ, t)ν(φ(ξ, t)) is the outer normal at
∂Ω0 in ξ. This implies ν ·v = 0 if and only if µ ·Φv = 0. Moreover, under Assumption 1.1
(in particular 2) in [18, Proposition 2.4]1 it is proved that

div ξu(ξ, t) = div xv(φ(ξ; t), t), (ξ, t) ∈ Ω0 × [0, T ].

This implies that Φ(t) : Lq
σ(Ω(t)) → Lq

σ(Ω0) is an isomorphism as well. This property
of Φ, which is essential in what follows, is the reason why we have to choose the special
transform given in (11). On the other hand note that this transform is responsible for
the fact, that we have to assume C3 boundary instead of C2 only.

In view of (10) it is clear that Φ(t)∆xΦ(t)−1 has a representation as

Φ(t)∆xΦ(t)−1 =
∑

|α|≤2

aα(·, t)Dα (13)

with certain matrices aα ∈ Cb(Ω0 × (0, T )) such that ∂k
t Dγaα ∈ Cb(Ω0 × (0, T ))n×n for

2k + |γ| ≤ |α| ≤ 2 with k ∈ N0, γ ∈ Nn
0 . Explicitly we have

[
Φ(t)∆xΦ(t)−1u

]
(ξ, t) =

[
(∇ξφ)−1(∇ξφ)−T∇ξ · (∇ξφ)−T∇ξ(∇ξφ)u

]
(ξ, t)

=
n∑

i,j,k,`,m=1

[
(∂xk

φ−1)(∂xj φ
−1)i(∂xj φ

−1)`
]
(φ(ξ; t), t)

· [(∂ξ`
∂ξi∂ξmφk)um + (∂ξi∂ξmφk)∂ξ`

um

+ (∂ξ`
∂ξm

φk)∂ξi
um + (∂ξm

φk)∂ξ`
∂ξi

um
]
(ξ, t). (14)

We also have

1Actually in [18] only bounded Ω0 are treated. But since it is a pointwise condition the proof given

there applies to each Ω ⊂ Rn.
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∂tv(x, t) = ∂t[(∇ξφ)u](φ−1(x; t), t)

=
n∑

i,j=1

(∂tφ
−1)j(x; t)

[
(∂ξi

∂ξj
φ)ui + (∂ξi

φ)∂ξj
ui

]
(φ−1(x; t), t)

+
n∑

i=1

[
(∂ξi∂tφ)ui + (∂ξiφ)∂tu

i
]
(φ−1(x; t), t). (15)

Thus

Φ(t)∂tΦ(t)−1 = ∂t +
∑

|β|≤1

bβ(·, t)Dβ (16)

with certain bβ ∈ Cb(Ω0 × (0, T ))n×n such that ∂k
t Dγbβ ∈ Cb(Ω0 × (0, T )) for 2k + |γ| ≤

2|β| ≤ 2 with k ∈ N0, γ ∈ Nn
0 . If we set F := Φf and u0 := Φ(0)v0, as well as

∇φ(t) := (∇ξφ(t))−1(∇ξφ(t))−T∇ξ and p̃ := p ◦ ψ, the transformed equations become

(TSE)Ω0
F,u0





ut +
∑
|β|≤1 bβDβu−∑

|α|≤2 aαDαu +∇φ(·)p̃ = F in Ω0 × (0, T ),

div u = 0 in Ω0 × (0, T ),

u = 0 on ∂Ω0 × (0, T ),

u|t=0 = u0 in Ω0.

Since Φ(t) is an isomorphism, clearly (u, p̃) satisfies (TSE)Ω0
F,u0

if and only if (v, p) fulfills

(SE)Ω(t)
f,v0

. Obviously

PΩ0(t) := Φ(t)PΩ(t)Φ(t)−1 : Lq(Ω0) → Lq
σ(Ω0), t ∈ [0, T ],

is again a projection, where PΩ(t) denotes the Helmholtz projection on Lq(Ω(t)). Note
that

Gq(t) := (I − PΩ0(t))L
q(Ω0) =

{∇φ(t)(π ◦ ψ);π ∈ Ŵ 1,q(Ω(t))
}
.

Thus, PΩ0(t) is not the Helmholtz projection on Lq(Ω0) in general. As Gq(t) depends
on t we see that also the projection PΩ0(t) does, although its range, Lq

σ(Ω0), does not
depend on t. Defining

AΩ0(t) := − PΩ0(t)
∑

|α|≤2

aα(·, t)Dα on (17)

D(AΩ0(t)) = Φ(t)D(AΩ(t)) = W 2,q(Ω0) ∩W 1,q
0 (Ω0) ∩ Lq

σ(Ω0)

= D(AΩ0), t ∈ [0, T ],

and

B(t) := PΩ0(t)
∑

|β|≤1

bβ(·, t)Dβ , t ∈ [0, T ], (18)
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the system (TSE)Ω0
F,u0

can be rephrased as the nonautonomous Cauchy problem

(CP )F,u0

{
u′(t) + (AΩ0(t) + B(t))u(t) = F (t), t ∈ (0, T ),

u(0) = u0,

on the space Lq
σ(Ω0). Observe that AΩ0(t) = Φ(t)AΩ(t)Φ(t)−1, i.e. it is exactly the

transformed Stokes operator on Ω(t) for t ∈ [0, T ]. In particular we have AΩ0(∞) =
Φ(∞)AΩ(∞)Φ(∞)−1 if t = T = ∞. Moreover, we see that the domain of AΩ0(t) does not
depend on t and equals the domain of the Stokes operator AΩ0 in Lq

σ(Ω0).
We proceed by stating the maximal regularity result for the shifted propagator

µ + AΩ0(·). Then the abstract perturbation result Theorem 2.5 will give the result for
the shifted full operator µ + AΩ0(·) + B(·) for some µ ≥ 0 and general Ω0 as assumed in
Assumption 1.1. On the other hand, if Ω0 is assumed to be bounded, we will show the
maximal regularity even for µ = 0. This will yield Theorem 1.2.

One ingredient in the proof of the above mentioned results will be the continuity of
t 7→ PΩ0(t). This is a consequence of

Lemma 3.1. Let T ∈ (0,∞] and Ω0, φ as in Assumption 1.1. We have

‖PΩ0(t)− PΩ0(s)‖L (Lq(Ω0)) ≤ C
∥∥(∇φ(·; t))−1 − (∇φ(·; s))−1

∥∥
∞, t, s ∈ [0, T ].

In particular this yields ‖PΩ0(t)‖L (Lq(Ω0)) ≤ C uniformly in t ∈ [0, T ] and, if T = ∞,

PΩ0(t) −→ PΩ0(∞) = Φ(∞)PΩ(∞)Φ(∞)−1 in L (Lq(Ω0)) for t →∞.

Proof. Fix t ∈ [0, T ] and let v ∈ Lq(Ω(t)). It is well known that PΩ(t)v = v−∇π,
where π ∈ Ŵ 1,q(Ω(t)) is the unique solution of the weak Neumann problem

(∇π,∇ϕ) = (v,∇ϕ), ϕ ∈ Ŵ 1,q′(Ω(t)).

Since PΩ0(t) = Φ(t)PΩ(t)Φ(t)−1, we therefore deduce PΩ0(t)u = u − ∇φ(t)p, where
p ∈ (Ŵ 1,q(Ω0), ‖∇φ(t) · ‖q) is the unique solution of the transformed weak Neumann
problem

(∇φ(t)p,∇ϕ) = (u,∇ϕ), ϕ ∈ Ŵ 1,q′(Ω0), (19)

for u ∈ Lq(Ω0) and as former ∇φ(t) = (∇φ)−1(t)(∇φ)−T (t)∇. For t, s ∈ [0, T ] and
u ∈ Lq(Ω0) this allows us to write

PΩ0(t)u− PΩ0(s)u = ∇φ(t)p(t)−∇φ(s)p(s)

and to prove the estimate under discussion for the solutions of the corresponding trans-
formed Neumann problems.
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To this end first note that in view of det∇φ ≡ 1, the family {‖∇φ(t) · ‖q}t∈[0,T ] is
a collection of equivalent norms on the space Ŵ 1,q(Ω0), and the equivalence constants
even do not depend on t. Next we write the difference above as

∇φ(t)p(t)−∇φ(s)p(s) = ∇φ(t)(p(t)− p(s)) + (∇φ(t)−∇φ(s))p(s). (20)

For the first addend of (20) observe that in view of (19),

(∇φ(t)p(t)−∇φ(t)p(s),∇ϕ
)

= (u,∇ϕ)− (
(∇φ(t)−∇φ(s))p(s),∇ϕ

)− (∇φ(s)p(s),∇ϕ
)

=
(
(∇φ(s)−∇φ(t))p(s),∇ϕ

)
(21)

for ϕ ∈ Ŵ 1,q′(Ω0). By the Helmholtz decomposition we know (Gq(Ω(t)))′ = Gq′(Ω(t)).
This fact implies for arbitrary w ∈ Ŵ 1,q(Ω0)

‖∇φ(t)w‖Lq(Ω0) =
∥∥Φ(t)∇(w ◦ φ−1)

∥∥
Lq(Ω0)

≤ C
∥∥∇(w ◦ φ−1)

∥∥
Lq(Ω(t))

= C sup
η∈cW1,q′ (Ω(t)),

η 6=0

∣∣(∇(w ◦ φ−1),∇η
)
Ω(t)

∣∣
‖∇η‖Lq(Ω(t))

.

By the change of variables x → ξ = φ−1(x; t) and by putting ϕ := η ◦ φ we can continue
this calculation obtaining

‖∇φ(t)w‖Lq(Ω0) ≤ C sup
ϕ∈cW1,q′ (Ω0),

ϕ 6=0

∣∣(∇φ(t)w,∇ϕ
)
Ω0

∣∣
‖∇ϕ‖Lq(Ω0)

,

where we used ‖∇η‖Lq(Ω(t)) ≥ C‖Φ(t)∇η‖Lq(Ω0) = C‖∇φ(t)ϕ‖Lq(Ω0) ≥ C‖∇ϕ‖Lq(Ω0). If
we set w = p(t)− p(s) this yields by virtue of (21),

‖∇φ(t)(p(t)− p(s))‖Lq(Ω0) ≤ C sup
ϕ∈cW1,q′ (Ω0),

ϕ 6=0

∣∣(∇φ(t)(p(t)− p(s)),∇ϕ
)
Ω0

∣∣
‖∇ϕ‖Lq(Ω0)

= C sup
ϕ∈cW1,q′ (Ω0),

ϕ 6=0

∣∣((∇φ(t)−∇φ(s))p(s),∇ϕ
)
Ω0

∣∣
‖∇ϕ‖Lq(Ω0)

≤ C
∥∥(∇φ(t)−∇φ(s)

)
p(s)

∥∥
Lq(Ω0)

. (22)

This shows that the estimate for the first addend of (20) can be reduced to the one for
the second addend. Considering that addend we may estimate



632 J. Saal

∥∥(∇φ(t)−∇φ(s)
)
p(s)

∥∥
q

≤
∥∥(∇φ)−1(t)(∇φ)−T (t)− (∇φ)−1(s)(∇φ)−T (s)

∥∥
∞‖∇p(s)‖q

≤ C
∥∥(∇φ)−1(t)− (∇φ)−1(s)

∥∥
∞‖∇p(s)‖q (23)

due to
∥∥(∇φ)−1(t)(∇φ)−T (t)− (∇φ)−1(s)(∇φ)−T (s)

∥∥
∞

≤ (∥∥(∇φ)−1(t)
∥∥
∞ +

∥∥(∇φ)−1(s)
∥∥
∞

)∥∥(∇φ)−1(t)− (∇φ)−1(s)
∥∥
∞

≤ C
∥∥(∇φ)−1(t)− (∇φ)−1(s)

∥∥
∞, (24)

which is valid by our Assumption 1.1.3 on φ.
Now let L(t) : Lq(Ω0) → Ŵ 1,q(Ω0), u 7→ L(t)u := p(t) be the solution operator to

the transformed weak Neumann problem (19). Since that problem is uniquely solvable,
L(t) is well defined and we have L(t) ∈ L (Lq(Ω0), Ŵ 1,q(Ω0)), t ∈ [0, T ]. Inequality (22)
in combination with (23) now yields

‖(L(t)− L(s))u‖cW 1,q(Ω0))
≤ C‖∇L(s)u‖q

∥∥(∇φ)−1(t)− (∇φ)−1(s)
∥∥
∞

for t, s ∈ [0, T ]. By Assumption 1.1.3 this implies the continuity of L : [0, T ) →
L (Lq(Ω0), Ŵ 1,q(Ω0)) and, if we set s = T , by virtue of Assumption 1.1.4 we also obtain
L(t) → L(T ) in L (Lq(Ω0), Ŵ 1,q(Ω0)), even if T = ∞. Employing Lemma 2.1 we deduce
for the family {L(t)}t∈[0,T ],

‖L(t)‖L (Lq(Ω0),cW 1,q(Ω0))
≤ C, t ∈ [0, T ].

This fact applied on estimate (23) and (22) implies in view of p(s) = L(s)u,

∥∥(∇φ(t)−∇φ(s)
)
p(s)

∥∥
q
≤ C

∥∥(∇φ)−1(t)− (∇φ)−1(s)
∥∥
∞‖u‖q

and

‖∇φ(t)(p(t)− p(s))‖q ≤ C‖(∇φ)−1(t)− (∇φ)−1(s)‖∞‖u‖q

for s, t ∈ [0, T ] and u ∈ Lq(Ω0). Combining these two estimates yields the assertion. ¤

In order to prove the maximal regularity for µ + AΩ0(·) we will apply Theorem 1.4.

Theorem 3.2. Let T ∈ (0,∞] and µ > 0. Let Ω0, φ as in Assumption 1.1 and
the family {AΩ0(t)}t∈[0,T ] defined as in (17). Then µ + AΩ0(·) ∈ MR(Lq

σ(Ω0), C). In
particular, estimate (3) holds for µ + AΩ0(·). If Ω0 is bounded the assertions are also
valid for µ = 0.

Proof. If T = ∞ first observe that in view of Assumption 1.1.4 on φ and repre-
sentation (14) we obtain for the coefficients of AΩ0(t),
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aα(·, t) → aα(·,∞) in C |α|(Ω0), |α| ≤ 2,

where aα(·,∞) are the corresponding coefficients to the limit variable transform φ(·,∞).
Furthermore, by Lemma 3.1

PΩ0(t) → PΩ0(∞) = Φ(∞)PΩ(∞)Φ(∞)−1 in L (Lq(Ω0)).

This implies µ + AΩ0(t) → µ + AΩ0(∞) in L (D(AΩ0), L
q(Ω0)), hence condition 3 of

Theorem 1.4 is satisfied for the family {µ + AΩ0(t)}t∈[0,T ] and µ ≥ 0.
In order to see condition 2 we write

PΩ0(t)aα(t)− PΩ0(s)aα(s) = (PΩ0(t)− PΩ0(s))aα(t)− PΩ0(s)(aα(t)− aα(s)).

Note that ‖PΩ0(s)‖L (Lq(Ω0)) ≤ C, s ∈ [0, T ], and ‖aα(t)‖∞ ≤ C, t ∈ [0, T ], |α| ≤ 2,
according to Lemma 3.1 and Assumption 1.1.3, respectively. Thus, by Lemma 3.1 and
again representation (14) we obtain

‖PΩ0(t)aα(t)− PΩ0(s)aα(s)‖L (Lq(Ω0))

≤ C
(‖(∇φ(t))−1 − (∇φ(s))−1‖∞ + ‖φ(t)− φ(s)‖C3

b (Ω0)

)

≤ C‖φ(t)− φ(s)‖C3
b (Ω0), t, s ∈ [0, T ], |α| ≤ 2.

We conclude

∥∥(
(µ + AΩ0(t))− (µ + AΩ0(s))

)
u
∥∥

q

≤
∑

|α|≤2

‖PΩ0(t)aα(t)− PΩ0(s)aα(s)‖L (Lq(Ω0))‖Dαu‖q

≤ C‖φ(t)− φ(s)‖C3
b (Ω0)‖u‖D(AΩ0 )

for all t, s ∈ [0, T ] and µ ≥ 0. The continuity of µ+AΩ0(·) : [0, T ) → L (D(AΩ0), L
q
σ(Ω0))

now is an immediate consequence of Assumption 1.1.3.
Note that the property of having maximal regularity is invariant under conjuga-

tion with isomorphisms. Therefore the pointwise maximal regularity, i.e. µ + AΩ0(t) ∈
MR(Lq

σ(Ω0), C(t)), t ∈ [0, T ], µ ≥ 0, is a consequence of the pointwise maximal reg-
ularity for the Stokes operator µ + AΩ(t) on Ω(t) (see e.g. [34], [27], or [30] for ref-
erences that include all types of domains handled in this note) and the representation
µ + AΩ0(t) = Φ(t)(µ + AΩ(t))Φ(t)−1, t ∈ [0, T ], µ ≥ 0.

Since µ + AΩ0(t) : D(AΩ0) → Lq
σ(Ω0) is boundedly invertible, we see that the

assumptions of Theorem 1.4 are fulfilled for {µ + AΩ0(t)}t∈[0,T ] and µ > 0. On the
other hand, if Ω0 is bounded, obviously the invertibility of AΩ(t) : D(AΩ(t)) → Lq

σ(Ω(t))
implies the invertibility of AΩ0(t) again by the representation AΩ0(t) = Φ(t)AΩ(t)Φ(t)−1,
t ∈ [0, T ]. Therefore, in this case the assertion remains true also for µ = 0. ¤

As a corollary we can show the maximal regularity of AΩ0(·) for general Ω0, at least
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for the case of finite T .

Corollary 3.3. Assume the situation of Theorem 3.2. For T < ∞ we have
AΩ0(·) ∈ MR(Lq

σ(Ω0), C(T )). In particular AΩ0(·) satisfies estimate (3).

Proof. Let u be the solution to the Cauchy problem (CP )F,u0 with right hand
side (F, u0) associated to AΩ0(·). Then the shifted function ũ(t) := e−µtu(t) for some
µ > 0 solves the Cauchy problem (CP )e−µtF,u0 associated to µ + AΩ0(·). Theorem 3.2
now implies

∫ T

0

(‖ũ(t)‖p
q + ‖AΩ0(t)ũ(t)‖p

q

)
dt ≤ Cµ

∫ T

0

(‖ũ(t)‖p
q + ‖(µ + AΩ0(t))ũ(t)‖p

q

)
dt

≤ Cµ

( ∫ T

0

‖e−µtF (t)‖p
qdt + ‖u0‖p

I p

)
.

Consequently,

∫ T

0

(‖u(t)‖p
q + ‖AΩ0(t)u(t)‖p

q

)
dt =

∫ T

0

(‖eµtũ(t)‖p
q + ‖eµtAΩ0(t)ũ(t)‖p

q

)
dt

≤ CµeµT

( ∫ T

0

‖F (t)‖p
qdt + ‖u0‖p

I p

)
. ¤

In order to apply Theorem 2.5 to the full operator µ + AΩ0(·) + B(·) we need a uni-
form relative bound κ for the evolution family {B(t)}t∈[0,T ). This requires the following
uniform resolvent estimates.

Lemma 3.4. Let T ∈ (0,∞] and Ω0, φ, and {AΩ0(t)}t∈[0,T ] as in Theorem 3.2.
Then there is a C > 0 such that we have the uniform estimate

2∑

k=0

‖λ(2−k)/2∇k(λ + AΩ0(t))
−1‖L (Lq

σ(Ω0),Lq(Ω0)) ≤ C, t ∈ [0, T ], λ ≥ 1.

Proof. First fix t ∈ [0, T ] and let λ ≥ 1. From well known results for the Stokes
operator AΩ(t) we obtain the equivalence of the norms

∑2
k=0 λ(k−2)/2‖∇k · ‖Lq(Ω(t)) and

‖λ · ‖Lq(Ω(t)) + ‖AΩ0(t) · ‖Lq(Ω(t)) on D(AΩ(t)) with equivalence constants independent of
λ ≥ 1. Therefore the same statement is valid for the corresponding situation in Ω0, i.e.
there are constants C1, C2 > 0 (that may depend on t) such that

2∑

k=0

λ(k−2)/2‖∇ku‖Lq(Ω0) ≤ C1

(‖λu‖Lq(Ω0) + ‖AΩ0(t)u‖Lq(Ω0)

)

≤ C2

2∑

k=0

λ(k−2)/2‖∇ku‖Lq(Ω0)

for u ∈ D(AΩ0) and λ ≥ 1. Denote by Dλ(AΩ0) the Banach space D(AΩ0) equipped
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with the equivalent norm
∑2

k=0 λ(k−2)/2‖∇k · ‖Lq(Ω0). By the observations above we see
that

‖(λ + AΩ0(t))
−1‖L (Lq

σ(Ω0),Dλ(AΩ0 )) ≤ C(t), λ ≥ 1.

We will show that C(t) ≤ C0, t ∈ [0, T ], for a certain C0 > 0. To this end we write for
t, t0 ∈ [0, T ],

(λ + AΩ0(t))
−1 = (λ + AΩ0(t0))

−1
[
I + (AΩ0(t)−AΩ0(t0))(λ + AΩ0(t0))

−1
]−1

.

Note that for t0 ∈ [0, T ] we have

‖(λ + AΩ0(t0))
−1‖L (Lq

σ(Ω0),D(AΩ0 )) ≤ C
2∑

j=0

∥∥∇j(λ + AΩ0(t0))
−1

∥∥
L (Lq

σ(Ω0),Lq(Ω0))

≤ C
∥∥(λ + AΩ0(t0))

−1
∥∥

L (Lq
σ(Ω0),Dλ(AΩ0 ))

≤ C(t0), λ ≥ 1.

Hence we may compute

‖(AΩ0(t)−AΩ0(t0))(λ + AΩ0(t0))
−1‖L (Lq

σ(Ω0))

≤ ‖AΩ0(t)−AΩ0(t0)‖L (D(AΩ0 ),Lq
σ(Ω0))‖(λ + AΩ0(t0))

−1‖L (Lq
σ(Ω0),D(AΩ0 ))

≤ C(t0)‖AΩ0(t)−AΩ0(t0)‖L (D(AΩ0 ),Lq
σ(Ω0)), t, t0 ∈ [0, T ].

Now set t0 := T . Since condition 3 of Theorem 1.4 is satisfied for AΩ0(·), there is a
T0 ∈ (0, T ) such that

‖(AΩ0(t)−AΩ0(T ))(λ + AΩ0(T ))−1‖L (Lq
σ(Ω0)) ≤ C(T )ε

for t ≥ T0 and λ ≥ 1. Putting ε := 1/2C(T ) we obtain by using the Neumann series,

‖(λ + AΩ0(t))
−1‖L (Lq

σ(Ω0),Dλ(AΩ0 )) ≤ 2C(T ), t ≥ T0, λ ≥ 1.

On the other hand, if t0 ∈ [0, T0], there is a δ(t0) > 0 such that

‖(AΩ0(t)−AΩ0(t0))(λ + AΩ0(t0))
−1‖L (Lq

σ(Ω0)) ≤ C(t0)ε

for t ∈ (t − δ(t0), t + δ(t0)) ∩ [0, T ) and λ ≥ 1, since also condition 2 of Theorem 1.4
is satisfied for AΩ0(·). Again by using the Neumann series this implies by choosing
ε := 1/2C(t0),

‖(λ + AΩ0(t))
−1‖L (Lq

σ(Ω0),Dλ(AΩ0 )) ≤ 2C(t0)
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for t ∈ (t − δ(t0), t + δ(t0)) ∩ [0, T ) and λ ≥ 1. Since [0, T0] is compact we can achieve
[0, T0] ⊆

⋃N
j=1(tj − δ(tj), tj + δ(tj)) for certain tj ∈ [0, T0], j = 1, . . . , N . Setting C0 :=

2max{C(t1), . . . , C(tN ), C(T )} then yields the assertion. ¤

Now we can apply the perturbation result Theorem 2.5.

Theorem 3.5. Let T ∈ (0,∞]. Let Ω0, φ be as in Assumption 1.1 and the families
{AΩ0(t)}t∈[0,T ] and {B(t)}t∈[0,T ] be defined as in (17) and (18), respectively. For µ > 0
large enough we have µ+AΩ0(·)+B(·) ∈ MR(Lq

σ(Ω0), C). In particular µ+AΩ0(·)+B(·)
fulfills (8).

Proof. In the proof of Theorem 3.2 we observed that all assumptions of Theo-
rem 1.4 are fulfilled for the family {µ + AΩ0(t)}t∈[0,T ]. Together with Lemma 2.2.1 this
shows that {µ + AΩ0(t)}t∈[0,T ] also satisfies the assumptions of Theorem 2.5 for each
µ > 0. Obviously, D(AΩ0(t)) ⊆ D(B(t)), t ∈ [0, T ). Thus it suffices to verify the exis-
tence of a relative bound for B(·). But, since B(·) contains lower order terms only, we
can achieve by employing Lemma 3.1 and Lemma 3.4

‖B(t)u‖q ≤ C
∑

|β|≤1

‖PΩ0(t)bβ(t)‖∞‖Dβ(µ + AΩ0(t))
−1(µ + AΩ0(t))u‖q

≤ C√
µ
‖(µ + AΩ0(t))u‖q, µ ≥ 1, t ∈ [0, T ).

Hence, by choosing µ arbitrary large, we can have the relative bound arbitrary small
which shows that all the assumptions of Theorem 2.5 are satisfied. Applying that result
yields the assertion. ¤

Completely analogous to Corollary 3.3 we obtain by a shift back

Corollary 3.6. Assume the situation of Theorem 3.5. For T < ∞ we have
AΩ0(·) + B(·) ∈ MR(Lq

σ(Ω0), C(T )). Moreover estimate (8) is valid for AΩ0(·) + B(·).
We turn to the case of bounded Ω0.

Theorem 3.7. Assume the situation of Theorem 3.5 with bounded Ω0. Then the
assertion there is valid for µ = 0, in particular AΩ0(·) + B(·) ∈ MR(Lq

σ(Ω0), C).

Proof. According to the latter corollary it remains to handle the case of T = ∞
and large t. To this end let T0 ∈ (0,∞) and put

AT0(t) := AΩ0(T0 + t), BT0(t) := B(T0 + t), t ≥ 0.

Obviously AT0(·) ∈ MR(Lq
σ(Ω0), C) by Theorem 3.2. From (15) and (18) we read off that

each coefficient bβ of B(·) contains a time derivative of φ or φ−1. By Assumption 1.1.4
on φ and (9) it follows

∥∥(∂tφ
−1)(φ(·; t), t)∥∥

Cb(Ω0)
→ 0 and ‖∂tφ(·, t)‖C1

b (Ω0) → 0, for t →∞.
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Consequently, bβ(t) → 0 if t → ∞. This allows us to choose for ε > 0 a T0 = T0(ε) > 0
such that ‖bβ(t)‖∞ < ε for all t ≥ T0 and all coefficients bβ . Furthermore, an application
of Lemma 2.1 to {AΩ0(t)}t∈[0,T ] with Y := D(AΩ0) yields ‖AΩ0(t)

−1‖L (Lq
σ(Ω0),D(AΩ0 )) ≤

C, t ≥ 0, and therefore

‖AT0(t)
−1‖L (Lq

σ(Ω0),W 2,q(Ω0)) = ‖AΩ0(T0 + t)−1‖L (Lq
σ(Ω0),W 2,q(Ω0)) ≤ C, t ≥ 0.

Hence, by virtue of Lemma 3.1 we can calculate

‖BT0(t)u‖q ≤ C
∑

|β|≤1

‖bβ(T0 + t)‖∞‖DβAT0(t)
−1AT0(t)u‖q

≤ Cε‖AT0(t)u‖q, u ∈ D(AΩ0), t ≥ 0.

Setting ε := κ/C we may apply Theorem 2.5 to the pair AT0(·) and BT0(·) which yields
AT0(·) + BT0(·) ∈ MR(Lq

σ(Ω0), C).
Now let u be the solution of the Cauchy problem (CP )F,u0 associated to AΩ0(·) +

B(·). Then uT0(·) := u(T0 + ·) is the solution of (CP )FT0 ,u(T0) associated to AT0(·) +
BT0(·), where FT0(·) := F (T0 + ·) and T0 as before. Applying Corollary 3.6 for T = T0

and AT0(·) + BT0(·) ∈ MR(Lq
σ(Ω0), C) we conclude

∫ ∞

0

(‖u(t)‖p
q + ‖(AΩ0(t) + B(t))u(t)‖p

q)dt

=
∫ T0

0

(‖u(t)‖p
q + ‖(AΩ0(t) + B(t))u(t)‖p

q)dt

+
∫ ∞

0

(‖uT0(t)‖p
q + ‖(AT0(t) + B(t))uT0(t)‖p

qdt

≤ C(T0)
( ∫ ∞

0

‖F (t)‖p
qdt + ‖u0‖p

I p + ‖u(T0)‖p
I p

)
. (25)

It remains to show that we can omit the last addend. We have (see e.g. [21, Section
1.2.2])

‖u(T0)‖I p = ‖uT0(0)‖I p

≤ C

( ∫ T0

0

(‖(AT0(0) + BT0(0))uT0(t)‖p
q + ‖u′T0

(t)‖p
q

)
dt

)1/p

. (26)

Since the pair AT0(·), BT0(·) satisfies the assumptions of Theorem 2.5, by estimate (7)
we obtain

‖(AT0(0) + BT0(0))(AT0(t) + BT0(t))
−1‖L (Lq

σ(Ω0)) ≤ C(T0), t ∈ [0,∞].

By this fact and by an application of Corollary 3.6 for T = 2T0 we may continue the
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calculation in (26) obtaining

‖u(T0)‖I p ≤ C

( ∫ T0

0

(‖(AT0(t) + BT0(t))uT0(t)‖p
q + ‖u′T0

(t)‖p
q

)
dt

)1/p

= C

∫ 2T0

T0

(‖(AΩ0(t) + B(t))u(t)‖p
q + ‖u′(t)‖p

q

)
dt

≤ C

∫ 2T0

0

(‖(AΩ0(t) + B(t))u(t)‖p
q + ‖u′(t)‖p

q

)
dt

≤ C(T0)
( ∫ ∞

0

‖F (t)‖p
qdt + ‖u0‖p

I p

)
.

Combining this with (25) completes the proof. ¤

We conclude with the proof of the main result.

Proof. (of Theorem 1.2)
First let Ω0 be an arbitrary domain as described in Assumption 1.1. Estimate (7) ap-
plied on µ + AΩ0(·) + B(·) implies the norms ‖ · ‖D(AΩ0 (t)+B(t)) and ‖ · ‖D(AΩ0 (0)+B(0))

to be equivalent with equivalence constants that do not depend on t ∈ [0,∞]. As
‖ · ‖D(AΩ0 (0)+B(0)) is equivalent to ‖ · ‖2,q we obtain

‖u‖2,q ≤ C1‖u‖D(AΩ0 (t)+B(t)) ≤ C2‖u‖2,q, u ∈ D(AΩ0), t ∈ [0,∞].

Thus, Corollary 3.6 gives us for T < ∞
∫ T

0

(‖u′(t)‖p
q + ‖u(t)‖p

2,q

)
dt ≤ C(T )

( ∫ T

0

‖F (t)‖p
qdt + ‖u0‖p

I p

)
. (27)

This yields

∫ T

0

(∥∥∥∥
(

∂t +
∑

|β|≤1

bβ(t)
)

u(t)
∥∥∥∥

p

q

+ ‖u(t)‖p
2,q + ‖∇φ(t)p̃(t)‖p

q

)
dt

≤ C(T )
( ∫ T

0

‖F (t)‖p
qdt + ‖u0‖p

I p

)
.

for the solution (u, p) of (TSE)Ω0
F,u0

. In view of (12), (16), and since {Φ(t)}t∈[0,T ] is a
family of isomorphisms, this implies estimate (1) for the solution of the original equations
(SG)Ω(t)

f,v0
. If Ω0 is bounded Theorem 3.7 implies that (27) is even valid for T = ∞ with

a finite constant C > 0. Hence the same arguments as above yield the assertion of
Theorem 1.2 for bounded Ω0. The assertion concerning the equivalence of the norms is
an easy consequence of Lemma 3.4 and the properties of the isomorphism Φ(t). ¤
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4. An application to rotations.

Since Stokes- and Navier-Stokes equations with rotations are of greatest interest in
the current research we want to close this note with a remark about the relation of that
subject to our problem. Indeed the Stokes equations with rotations can be regarded as
a special case of the much more general situation of Theorem 1.2.

For simplicity assume the rotation O in 3 dimensions around the x3-axis. Then φ is
given as

φ(ξ; t) := O(ωt)ξ, (ξ, t) ∈ Ω0 × [0, T ],

where ω = (0, 0, ω3). By (14) and (15) we see that here

Φ(t)∆xΦ(t)−1u = ∆ξu

and

Φ(t)∂tΦ(t)−1u = ∂tu + ω × u−∇u(ω × ξ).

We immediately observe that in this special case the coefficients do not depend on t.
Furthermore, since [Φ(t)∇xp](ξ, t) = ∇ξp(O(ωt)ξ, t), we see that also the transformed
Helmholtz projection is independent of t. Indeed it is exactly the Helmholtz projection
PΩ0 on Lq(Ω0). For this reason the transformed propagator AΩ0(·) coincides with the
Stokes operator AΩ0 in Lq

σ(Ω0). The full operator then is given by

(AΩ0 + B)u = −PΩ0(∆u− ω × u +∇u(ω × ξ)).

This operator arises naturally in the studies of the Navier-Stokes flow around a rotating
obstacle and is the research object of several recent works, e.g. see [16], [8], [15], [11].
For recent works related to rotating Navier-Stokes equations see also [22], [13]. If we
assume 0 < T < ∞ and Ω0 to be bounded of class C3 it is easy to see that the above
φ satisfies Assumption 1.1. Thus, Theorem 3.7 implies AΩ0 + B ∈ MR(Lq

σ(Ω0), C), or
Theorem 1.2 the maximal regularity for the original Stokes equations on the rotated
domain Ω(t) = O(ωt)Ω0. Note that a similar result can be obtained even if the angular
velocity ω depends on t, a problem which is considered in [17].

However, we can not apply our results to the case of unbounded domains, since
then (x, t) 7→ ∂tφ

−1(x; t) = (∂tO(ωt))x is not bounded in x, i.e. Assumption 1.1.2 is
not fulfilled. Indeed, this time derivative is responsible for the occurence of the linearly
growing coefficient in the drift term ∇u(ω×ξ), which makes the examination of AΩ0 +B

more delicate. On the other hand we also do not expect the maximal regularity in the
case of unbounded domains Ω0, since due to results in [16] or [15] it is well known that
AΩ0 +B is not the generator of a holomorphic semigroup even in L2

σ(Ω0) for Ω0 exterior
or Ω0 = Rn, respectively.
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