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An explicit scheme for time-dependent convection-diffusion problems is presented. It
is shown that convenient bounds for the time step value ensure L∞ stability, in both
space and time, for piecewise linear finite element discretizations in any space dimension.
Convergence results in the same sense are also demonstrated under certain conditions.
Numerical results certify the good performance of the scheme.
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1. Introduction

This work deals with numerical methods based on variational formulations
such as the finite element method, to solve convection-diffusion equations. In this
framework, one of the first techniques employed to model convection was the so-
called Lesaint–Raviart method (cf. [15]). However a little later the Japanese school
gave relevant contributions to the subject, as it is well reported in [9]. In this
respect we would like to quote the pioneer work of Tabata (cf. [20]) together with
[13], among many others.

Since the mid-eighties, the most widespread manner to deal with dominant
convection has been the use of stabilizing procedures based on the space mesh
parameter, among which the streamline upwind Petrov–Galerkin (SUPG) technique
introduced by Hughes and Brooks (cf. [3]) is one of the most popular. As far as time-
dependent problems are concerned, it turns out that the time step plays a better
stabilizing role, provided a formulation well suited to the equations to be solved is
employed. A good illustration of this assertion in the case of the time-dependent
Navier–Stokes equations can be found in [5] or yet in [17].

A good and more recent reference on finite element methods to deal with
advection-diffusion phenomena is the book of Knabner and Angermann [14].

The authors intend to give a contribution in this direction, in the case of
the convection-diffusion equations with dominant convection, discretized in space
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with piecewise linear finite elements, combined with a non standard explicit Euler
scheme for the time integration, and a standard Galerkin approach. Our main
theoretical result states that the numerical solution is stable in the L∞-norm in
both space and time, and even convergent under certain angle conditions, provided
that roughly the time step is bounded by the space mesh parameter multiplied by
a mesh-independent constant that we specify. As the authors should clarify, the
scheme studied in this paper follows similar principles to the one long exploited
by Kawahara and collaborators, for simulating convection dominated phenomena
(see, e.g., [10], [11] and [12] among several other papers published by them before
and later on). The originality of our contribution relies on the fact that we not
only introduce a reliable scheme for any space dimension, but also exhibit rigorous
conditions for it to provide converging sequences of approximations in the sense of
the maximum norm. In addition to the theoretical results, numerical examples with
known exact solution are given, in order to illustrate the adequacy of our numerical
approach.

An outine of the paper is as follows: In Section 2 we recall the problem to
solve and make some assumptions on the data. In Section 3 we describe the type of
discretization corresponding to the new method, and more specially the weighted
manner to deal with the mass matrices on both sides of the discrete equations.
In Section 4 we give stability results for our method in the sense of the space
and time maximum norm, applying to a non restrictive set of weights. Then in
Section 5 we specify conditions to be satisfied by the weights allowing for optimal
error estimates. A convergence result is also given in Section 5, applying to the
particular case where the mesh is of the acute type (see, e.g., [21]). Next in Section 6
we give a particularly representative summary of the numerical results that we have
obtained so far with our new scheme. Finally in Section 7 we draw some conclusions
about the whole work.

2. Problem Statement

Let us consider a time-dependent convection-diffusion problem described as
follows: Find a scalar valued function u(x, t) defined in Ω̄ × [0,∞), Ω being a
bounded open subset of �N with boundary ∂Ω , N = 1, 2 or 3, such that,

⎧⎨
⎩
ut + a · ∇u− νΔu = f in Ω × (0,∞),
u = g on ∂Ω × (0,∞),
u = u0 in Ω , for t = 0,

(1)

where ut represents the first order derivative of u with respect to t, ν is a positive
constant and a is a given solenoidal convective velocity at every time t, assumed
to be uniformly bounded in Ω × (0,∞). The data f and g are respectively, a
given forcing function belonging to L∞[Ω × (0,∞)], and a prescribed value on
L∞[∂Ω × (0,∞)]. We further assume that u0 ∈ L∞(Ω) and that for every x ∈ ∂Ω
g(x, · ) is of bounded variation in (0,∞).
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We first set (1) in the following equivalent variational form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

For every t ∈ (0,∞), find u( · , t) ∈ H1(Ω) with ut( · , t) ∈ L2(Ω),
u( · , t) = g( · , t) on ∂Ω , and u = u0 in Ω , for t = 0, such that∫
Ω

(ut + a · ∇u)v + ν

∫
Ω

∇u · ∇v =
∫
Ω

fv, ∀v ∈ H1
0 (Ω).

(2)

Henceforth we consider only normalized dimensionless lenghts, time and ve-
locity. In so doing ν−1 represents the so-called Péclet number (see also [9]), and
the convective dominant case corresponds to a low value of ν. Whenever ν is not
so small, the diffusion will influence the phenomenon being modelled practically
everywhere in the domain, and convection will not be dominant.

3. Space and time discretizations

In all the sequel, for the sake of simplicity, and without loss of essential aspects,
we assume that Ω is an interval if N = 1, a polygon if N = 2 or a polyhedron
if N = 3. In so doing we next consider a partition Th of Ω into N -simplices,
with maximum edge length equal to h. We assume that Th satisfies the usual
compatibility conditions for finite element meshes, and that it belongs to a quasi-
uniform family of partitions. We further define a second mesh parameter hmin as
the minimum height of all the elements of Th if N = 2 or 3 and the minimum length
of K ∈ Th if N = 1.

Now for every K ∈ Th we denote by P1(K) the space of polynomials of degree
less than or equal to one defined in K. In so doing we introduce the following spaces
or manifolds associated with Th:

Vh := {v | v ∈ C0(Ω̄) and v|K ∈ P1(K), ∀K ∈ Th},
V 0

h := Vh ∩H1
0 (Ω).

We further introduce for any function φ defined in C0(∂Ω) the following
manifold of Vh:

V φ
h := {v ∈ Vh | v(P ) = φ(P ), ∀ vertex P of Th on ∂Ω}.

Now let u0
h be the field of V g( · ,0)

h satisfying u0
h(P ) = u0(P ) for every vertex P

of Th, and Δt > 0 be a given time step. Defining gn on ∂Ω by gn( · ) = g( · , nΔt),
fn in Ω by fn( · ) = f( · , nΔt) and an in Ω by an( · ) = a( · , nΔt), for n = 1, 2, . . . ,
idealistically we wish to determine approximations un

h( · ) of u( · , nΔt) for n ∈ N
∗,

by solving the following finite element discrete set of equations, corresponding to
the first order forward Euler scheme.⎧⎪⎨
⎪⎩

For n successively equal to 1, 2, . . . , find un
h ∈ V gn

h satisfying ∀v ∈ H1
0 (Ω),∫

Ω

un
hv =

∫
Ω

un−1
h v + Δt

[∫
Ω

fn−1v −
∫
Ω

an−1 · ∇un−1
h v − ν

∫
Ω

∇un−1
h · ∇v

]
.

(3)
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Now we expand un
h into a sum of the form,

un
h =

Nh∑
j=1

un
j ϕi,

where ϕj is the canonical basis function of Vh associated with the j-th node of
Th, say Pj , un

j ∈ � is the value of un
h at Pj , and Nh is the dimension of Vh. We

assume that the nodes Pj are numbered in such a manner that the first Ih nodes
are located in the interior of Ω and the remaining Nh−Ih nodes are located on ∂Ω .
Now we choose v successively equal to ϕi, for i = 1, 2, . . . , Ih, and we approximate
for every n,

∫
Ω

(an · ∇)ϕjϕi by
∫
Ω

(an
i · ∇)ϕjϕi, and

∫
Ω
fnϕi by

∫
Ω
fn

i ϕi, where
an

i := an(Pi) and fn
i := fn(Pi).

Still denoting the resulting values of un
h(Pj) by un

j for j = 1, 2, . . . , Nh, the
unknown coefficients un

j for j = 1, 2, . . . , Ih and n = 1, 2, . . . , are recursively deter-
mined by solving the following linear system of equations:

Nh∑
j=1

mC
iju

n
j =

Nh∑
j=1

[
mC

ij − Δt an−1
ij

]
un−1

j + Δt bni , for i = 1, . . . , Ih, (4)

n = 1, 2, . . . , where the coefficients mC
ij , a

n
ij and bni are given by

mC
ij =

∫
Ω

ϕjϕi,

an
ij =

∫
Ω

[(an
i · ∇)ϕjϕi + ν∇ϕj · ∇ϕi],

bni =
∫
Ω

fn−1
i ϕi.

(5)

Actually, since for every i ∈ Ih, ϕi vanishes on ∂Ω and an is solenoidal, by
integration by parts we easily derive

∫
Ω

(an
i · ∇)ϕiϕi = 0.

Hence, denoting by δij the Kronecker symbol, we may rewrite (5) as follows:

an
ij =

∫
Ω

{(1 − δij)[(an
i · ∇)ϕjϕi] + ν∇ϕj · ∇ϕi}. (6)

The L∞-stability of the explicit scheme (3) is not ensured in general. Therefore
stabilizing techniques have been introduced such as upwinding (cf. [20] and [2]), in
which the integral corresponding to the convection term is computed only in the
element(s) situated upwind to the node Pi, with respect to an

i . Our strategy here is
restricted to the use of two different quadrature formulae to compute the coefficients
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mC
ij , according to the side of equation (3). In the particular choice made in this

work, on the left hand side of (4) mC
ij is approximated by the trapezoidal rule, and

on the right hand side the approximate value of mC
ij denoted by mW

ij is obtained
by an asymmetric quadrature formula (at least for non uniform meshes) specified
below. We recall that the trapezoidal rule gives an approximation of the integral
of a continuous function ψ in Ω expressed by

Jh(ψ) =
∑

K∈Th

meas(K)
N + 1

N+1∑
i=1

ψ(SK
i ),

where the SK
i ’s denote the vertices of the N -simplex K, with i = 1, 2, . . . , N + 1.

Hence, letting Si denote the support of ϕi, and Πi represent its measure, the
aproximation of mC

ii on the left hand side of (4) is just the well-known lumped mass
diagonal coefficient mL

ii = Πi

N+1 , and the one of mC
ij for i �= j equals zero.

In so doing, the unknown nodal values of un
h still denoted by un

j , for j =
1, 2, . . . , Ih and n = 1, 2, . . . , are determined by

un
i =

Nh∑
j=1

[m̃ij − Δt ãn−1
ij ]un−1

j + Δt b̃ni , for i = 1, . . . , Ih, n = 1, 2, . . . , (7)

where m̃ij , ãn
ij are just N + 1 times the quotient between mW

ij , an
ij and Πi, and as

we easily conclude, b̃ni = fn−1
i .

Notice that this approach is a sort of compromise between the lumped mass
scheme and the consistent mass scheme, both widespread among finite element
users for about fourty years.

The approximate coefficients mW
ij on the right hand side are determined as

follows: Let Mi be the number of nodes different from Pi lying in the closure of Si,
i.e., S̄i, and Pkj

be such nodes for j = 1, 2, . . . ,Mi with 1 ≤ kj ≤ Nh. Let also W i
j

be the measure fractions associated with Pkj
given by

W i
j =

meas(Si ∩ Skj
)

N + 1
(8)

and ωi
j be corresponding strictly positive weights satisfying

Mi∑
j=1

ωi
jW

i
j =

NΠi

(N + 1)(N + 2)
. (9)

Notice that since each N -simplex in Si appears in exactly N measure fractions W i
j ,

we necessarily have

Mi∑
j=1

W i
j =

NΠi

N + 1
. (10)
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Now selecting the nodes Pkj
in S̄i different from Pi, we define

mW
ikj

=
hmin

ν + hmin
ωi

jW
i
j for i �= kj (11)

together with

mW
ii =

ν

hmin + ν
mL

ii +
hmin

hmin + ν
mC

ii . (12)

Now recalling that (cf. [19]),

mC
ii =

2Πi

(N + 1)(N + 2)
(13)

from (9) and (11) we have
∑Mi

j=1m
W
ikj

= N
2

hmin
ν+hmin

mC
ii . On the other hand we know

that mL
ii = (N+2)mC

ii

2 . Then since (12) implies that mW
ii = mL

ii + hmin
hmin+ν (mC

ii −mL
ii),

it easily follows that we actually have ∀i ∈ {1, 2, . . . , Ih},

mW
ikj

=
hmin

ν + hmin
ωi

jW
i
j for Pkj

∈ S̄i, i �= kj ,

mW
ii = mL

ii −
Mi∑
j=1

mW
ikj
.

(14)

Naturally enough, by definition, mW
ij = 0 if Pj does not lie in S̄i. Typically

we may choose ωi
j = 1

N+2 for every j and for every node Pi, thereby generating a
weighted combination of the lumped mass and the consistent mass matrix (cf. [19])
on the right hand side of (4), with weights equal to ν

hmin+ν and hmin
hmin+ν , respectively.

However, except for the case of uniform meshes, in principle this is not the choice
to make, if one wishes to reach the best results in terms of accuracy, as seen in
Section 5.

4. Stability results

In this section we show that, provided Δt is chosen conveniently small with
respect to the spacial mesh parameter, the scheme (7) is stable in the sense of L∞.
First we have to define the following quantities:
• A = supt∈(0,∞) max1≤i≤Ih

|ai(t)|;
• ω = min1≤i≤Ih

min1≤j≤Mi
ωi

j .
It is interesting to note that from (9) and (10) we easily establish that

ω ≤ 1
N + 2

. (15)

Next we prove the following lemma, which directly leads to the stability result
stated in Theorem 4.2 hereafter.
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Lemma 4.1. If Δt fulfills the condition

Δt ≤ ωh3
min

(ν + hmin)[Ahmin + (N + 1)ν]
, (16)

the Ih ×Nh matrix Cn = {cnij} given by

cnij = m̃ij − Δt ãn−1
ij (17)

is a non-negative matrix having a unit row-norm in the following sense:
⎧⎪⎪⎨
⎪⎪⎩
cnij ≥ 0 ∀i ∈ {1, 2, . . . , Ih} and ∀j ∈ {1, 2, . . . , Nh},
Nh∑
j=1

cnij = 1 ∀i ∈ {1, 2, . . . , Ih}.
(18)

Proof. First we treat the coefficients cnii, which are given by

cnii =
N + 1

Πi

(
mW

ii − Δt an−1
ii

)
, (19)

where mW
ii is defined by (12) and an

ii is given by

an
ii =

∫
Si

ν|∇ϕi|2.

Straightforward calculations lead to the result:

an−1
ii ≤ νh−2

minΠi. (20)

On the other hand from (12) and (13) we easily derive

mW
ii =

ν(N + 2) + 2hmin

(N + 1)(N + 2)(ν + hmin)
Πi. (21)

It follows from (19)–(21) that cnii ≥ 0 ∀i ∈ {1, 2, . . . , Ih} if

Δt ≤ [2hmin + ν(N + 2)]h2
min

ν(hmin + ν)(N + 1)(N + 2)
. (22)

Now we switch to the coefficientes cnij for i �= j. Noticing that cnij = 0 if Pj does
not belong to S̄i, for those nodes Pkj

that do, j = 1, 2, . . . ,Mi, we have for kj �= i,

cnikj
=
N + 1

Πi

(
mW

ikj
− Δt an−1

ikj

)
,

where mW
ikj

is defined by (11) and an
ikj

is given by

an
ikj

=
∫
Ω

{(an
i · ∇)ϕkj

ϕi + ν∇ϕkj
· ∇ϕi}. (23)
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From (11), (8) and the definition of ω we trivially have

mW
ikj

≥
∑

K∈Si∩Skj

ωhmin

(N + 1)(ν + hmin)
meas(K).

Now in an element K belonging to Si ∩ Skj
, let θK

ikj
be the angle between the

gradients of ϕi and ϕkj
for N = 2 or N = 3, and θK

ikj
= π for N = 1. Then after

straightforward calculations we obtain for all n ≥ 0 (see also [7]),

∣∣an−1
ikj

∣∣ ≤ ∑
K∈Si∩Skj

[
A

hmin(N + 1)
+ ν

∣∣cos θK
ikj

∣∣
h2

min

]
meas(K).

It immediately follows that cnikj
≥ 0 for i �= kj , if (16) holds.

On the other hand, according to well-known properties of the basis functions
ϕj , we have

∑Nh

j=1 ϕj = 1 everywhere in Ω . Hence by linearity, we easily derive for
every i ∈ {1, 2, . . . , Ih} and for all n ≥ 0,

Nh∑
j=1

an
ij = 0. (24)

Morevover from (14) we readily derive

Nh∑
j=1

mW
ij = mW

ii +
Mi∑
j=1

mW
ikj

= mL
ii.

Thus for every i ∈ {1, 2, . . . , Ih},

Nh∑
j=1

mW
ij =

Πi

N + 1
. (25)

Then using the definitions ãn
ij = (N + 1)an

ij

Πi
and m̃ij = (N + 1)mW

ij

Πi
, together

with (17), (24) and (25), we readily conclude that for every i ∈ {1, 2, . . . , Ih},

Nh∑
j=1

cnij = 1.

Finally recalling (15), we easily infer that, if Δt fulfills (16), then (22) also
holds. This completes the proof. �

Theorem 4.2. Let Δt satisfy condition (16). Then the finite element solu-
tion sequence {un

h}n given by un
h =

∑Nh

j=1 u
n
j ϕj generated by (7) for n = 1, 2, . . .

satisfies the following stability result for every m ∈ N, whereby ‖F‖0,∞,D denotes
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the L∞-norm of a function F defined in an open set D of �N , and BV [G] rep-
resents the standard norm of the space of functions G(t) having bounded variation
for t ∈ (0,∞),

‖um
h ‖0,∞,Ω ≤ ‖u0‖0,∞,Ω + max

{
max
P∈∂Ω

BV [g(P, · )],Δt
m∑

n=1

‖fn−1‖∞,Ω

}
. (26)

Proof. Recalling (7)–(17), we may write for convenience, for n = 1, 2, . . . ,

un
i =

Nh∑
j=1

cniju
n−1
j + Δt b̃ni , i = 1, 2, . . . , Ih. (27)

Now we extend (27) to i= Ih+1, . . . , Nh, by setting for every j ∈{1, 2, . . . , Nh},
cnij = δij and b̃ni = gn(Pi)−gn−1(Pi)

Δt .
Since (16) holds, according to Lemma 4.1, (18) is also true. Therefore we have

for n = 1, 2, . . . ,

un
i ≤ max

1≤j≤Nh

un−1
j + Δt b̃ni , for i = 1, 2, . . . , Nh, (28)

together with

−un
i ≤ max

1≤j≤Nh

(
−un−1

j

)
− Δt b̃ni , for i = 1, 2, . . . , Nh. (29)

From (28)–(29) we infer that

max
1≤i≤Nh

|un
i | ≤ max

1≤i≤Nh

|un−1
i | + Δt max

1≤i≤Nh

|b̃ni |. (30)

Then adding up (30) from n = 1 to n = m we obtain for every m,

max
1≤i≤Nh

|um
i | ≤ max

1≤i≤Nh

|u0
i | + Δt

m∑
n=1

max
1≤i≤Nh

|b̃ni |. (31)

The remainder of the proof is a mere application of the definition of the
variation of g(P, t) for P ∈ ∂Ω and t ∈ [0, ∞), together with the fact that
max1≤i≤Nh

|u0
i | ≤ ‖u0‖0,∞,Ω . �

To conclude this section let us consider the particular case where the partition
Th is of the acute type (see, e.g., [21]), which means that ∀i ∈ {1, 2, . . . , Ih}, π/2 ≤
θK

ikj
≤ π ∀j ∈ {1, 2, . . . ,Mi}. In this case we can refine the stability result of the

above theorem in the following manner.

Theorem 4.3. Assume that the partition Th is of the acute type. Then if Δt
satisfies the condition

Δt ≤ h2
min

ν + hmin
min

[
ω

A
,
ν(N + 2) + 2hmin

ν(N + 1)(N + 2)

]
, (32)
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the finite element solution sequence {un
h}n given by un

h =
∑Nh

j=1 u
n
j ϕj generated by

(7) for n = 1, 2, . . . satisfies the stability condition (26).

Proof. This theorem is a mere consequence of a modification of Lemma 4.1 in
order to accomodate the replacement of bound (16) by (32). Recalling (23) we have

an−1
ikj

=
∑

K∈Si∩Skj

[
an−1

i · ∇ϕkj
+ ν cos θK

ikj
|∇ϕi| |∇ϕkj

|(N + 1)
]meas(K)
N + 1

.

Therefore from the assumption that the partition Th is of the acute type, we may
assert that

an−1
ikj

≤
∑

K∈Si∩Skj

an−1
i · ∇ϕkj

meas(K)
N + 1

≤
AW i

j

hmin
.

It follows that cnikj
≥ 0 if

Δt ≤ ωh2
min

A(ν + hmin)
.

On the other hand, (22) is still a condition for cnii to be non negative in this
case. Then the remainder of the proof goes in the very same way as for Theorem 4.2.

�

5. Error estimates and convergence result

In this section we derive error estimates for the approximations of the solution
of (1) generated by (7) under condition (16). We also prove that, provided the
weights ωi

j are suitably chosen, this scheme provides convergent approximations in
the maximum norm, as both h and Δt go to zero, under the assumption (32) of
Theorem 4.3. For this purpose we will mostly work with Sobolev spaces Wm,∞(D)
equipped with the standand norm and seminorm denoted respectively by ‖·‖m,∞,D

and | · |m,∞,D, where m is a non negative integer and D is a subset of �N (cf. [1]).
As usual we need here a suitable consistency result, which together with the

stability results established in the previous section will lead to convergence. Besides
standard arguments mostly borrowed from classical or celebrated works such as [21]
and [20], the consistency of our scheme will be a consequence of the following lemma.

Lemma 5.1. Let Pi be a node of Th, for i ∈ {1, 2, . . . , Ih}, and lij be the
vector leading from Pi to its neighbor Pkj

, that is, the j-th node belonging to S̄i, j =
1, 2, . . . ,Mi. Then there exists strictly positive weights ωi

j satisfying (9) such that

Mi∑
j=1

ωi
jW

i
j l

i
j = 0. (33)
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Proof. First we note that the set Li := {lij | j = 1, . . . ,Mi} generates the
whole space �N . Indeed, if it is not so all the vectors in Li would belong to a
certain proper subspace of �N , and thus there would be elements in the mesh with
zero measure, which is impossible. It follows that there can be no non zero vector
orthogonal to all the vectors of Li at a time.

Furthermore equation (33) corresponds to a homogeneous linear system of N
equations with Mi unknowns, namely, the weights ωi

j .
Now let us assume that there exists a non zero vector d = {dk} ∈ �N such

that the quantities πj(d) given by
∑N

k=1 dkW
i
j{lij}k, satisfy

πj(d) ≥ 0, for j = 1, 2, . . . ,Mi. (34)

Notice that, owing to the argument given in the first sentence of the proof, in
this case it must hold that

∃j0 ∈ {1, 2, . . . ,Mi} such that πj0(d) > 0. (35)

This would mean that d makes angles less than or equal to π/2 with all the
vectors lij . In this case the latter vectors would all belong to the same half space of
�N defined by d, but this is impossible because they are associated with an interior
node of a finite element mesh. The non existence of a vector d ∈ �N such that
both (34) and (35) hold, is the necessary and sufficient condition given by Stiemke
in his theorem of 1915 (cf. [6]) for the homogeneous system (33) to possess strictly
positive solutions. �

Clearly enough, even by enforcing condition (9) the solution of (33) is not
unique in general, except for the case N = 1. Nevertheless, we may obtain unique-
ness by requiring some optimality condition on the weights besides those two and
positiveness, such as the minimum distance to the consistence mass weights, that is,

{ωi
1, ω

i
2, . . . , ω

i
Mi

} = arg min
z∈Zε

[
Mi∑
j=1

∣∣∣∣zj −
1

N + 2

∣∣∣∣
2
]
,

for some sufficiently small ε > 0, with

Zε :=

{
z = {zj}∈�Mi

∣∣∣∣∣ zj ≥ ε ∀j,
Mi∑
j=1

zjW
i
j l

i
j =0,

Mi∑
j=1

zjW
i
j =

NΠi

(N+1)(N+2)

}
.

According to well-known results (see, e.g., [8]) such problem is well posed and has
a unique solution, since Zε is a closed convex set.

In all the sequel in this section we follow the main lines of [20].
To begin with we recall two operators denoted by h and �h associated with

Th. h is the interpolation operator from C0(Ω̄) onto Vh, that is, the operator
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defined by hv(P ) = v(P ) for every node P of the partition Th. �h is the operator
from W 2,∞(Ω) onto Vh, defined as the unique solution of the following problem:⎧⎨

⎩
Given v ∈W 2,∞(Ω) find �hv ∈ Vh such that �hv = hv on ∂Ω , satisfying∫
Ω

∇�hv · ∇w = −
∫
Ω

Δv w, ∀w ∈ V 0
h .

(36)
According to [16], we may assert that if v ∈W 2,∞(Ω) we have

‖�hv − v‖0,∞,Ω ≤ C0h
2|lnh| · ‖v‖2,∞,Ω , (37)

where C0 is a constant independent of h. In so doing we further introduce an
asymmetric averaging operator around the nodes Pi of Th, for i ∈ {1, 2, . . . , Ih},
namely, Ah : C0(Ω̄) → V 0

h defined by

Ahv(Pi) :=
(N + 1)

∑Mi

j=1

[
2
N v(Pi) + v(Pkj

)
]
ωi

jW
i
j

Πi
. (38)

We next establish the following preliminary results.

Lemma 5.2. Assume that for every t ∈ (0,∞) the solution u of (1) belongs
to W 2,∞(Ω), and let un be the function of W 2,∞(Ω) corresponding to the value
of u at time nΔt. Then setting ũn

j := �hu
n(Pj) for j = 1, 2, . . . , Nh, for every

i ∈ {1, 2, . . . , Ih}, we have

ũn
i −

Nh∑
j=1

cnij ũ
n−1
j − Δt b̃ni =

N + 1
Πi

Rn
i (u), (39)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rn
i (u) = αi(un) + βi(un) + γi(un, un−1)

+ ρi(un, un−1,an−1, fn−1) + ζi(un−1,an−1, fn−1)
with

αi(v) :=
∫

Si

hmin

hmin + ν
[(h −Ah)(�hv − v)](Pi)ϕi,

βi(v) :=
∫

Si

hmin

hmin + ν
[(h −Ah)v](Pi)ϕi,

γi(v, w) :=
∫

Si

hmin

hmin + ν
{Ah[�h(v − w)](Pi) −Ah(v − w)(Pi)}ϕi,

ρi(v, w,d, e) :=
∫

Si

{[
hmin

hmin + ν
Ah(v − w)(Pi) +

ν

hmin + ν
�h(v − w)(Pi)

+ Δt (d · ∇�hw − e)
]
ϕi + νΔt∇�hw · ∇ϕi

}
,

ζi(w,d, e) := Δt
∫

Si

{[d(Pi) − d] · ∇�hw + [e− e(Pi)]}ϕi.

(40)
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Proof. First we note that according to (11) and (12), for a given continuous
function v we have

Nh∑
j=1

mW
ij v(Pj) =

hmin

ν + hmin

[
mC

iiv(Pi) +
Mi∑
j=1

ωi
jW

i
jv(Pkj

)

]
+

νmL
ii

ν + hmin
v(Pi).

Then recalling (9) together with (13), we obtain,

Nh∑
j=1

mW
ij v(Pj) =

hmin

ν + hmin

{
Mi∑
j=1

[
2
N
v(Pi) + v(Pkj

)
]
ωi

jW
i
j

}

+
νΠi

(ν + hmin)(N + 1)
v(Pi).

It follows that
∑Nh

j=1 m̃ijv(Pj) = ν
ν+hmin

v(Pi) + hmin
ν+hmin

(Ahv)(Pi), taking into
account the definition (38) of Ah. Then the proof of this lemma is just a matter
of straightforward calculations starting from the definition of coefficients m̃ij , ãn

ij

and b̃ni . �

Lemma 5.3. Assume again that for every t ∈ (0,∞) the solution u of (1)
belongs to C0(Ω̄), and let un

t denote ut at time nΔt. Then recalling (39) and (40),
and denoting by I the identity operator, for every i ∈ {1, 2, . . . , Ih}, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi(un, un−1,an−1, fn−1) = ηi(un, un−1) + χi(un, un−1)

+ σi(un−1,an−1) + τi(un, un−1, un−1
t ),

where

ηi(v, w) :=
∫

Si

hmin

hmin + ν
[Ah(v − w) −h(v − w)](Pi)ϕi,

χi(v, w) :=
∫

Si

ν

hmin + ν
[�h(v − w) −h(v − w)](Pi)ϕi,

σi(v,d) := Δt
∫

Si

d · ∇(�h − I)vϕi,

τi(v, w, s) :=
∫

Si

[h(v − w)(Pi) − Δt s]ϕi.

(41)

Proof. Setting v = ϕi in (2), for t = (n − 1)Δt, and taking into account the
definition of �h, we obtain, ∀i ∈ {1, 2, . . . , Ih},

{∫
Si

(∂n−1
t u+ an−1 · ∇un−1 − fn−1)ϕi + ν

∫
Ω

∇�hu
n−1 · ∇ϕi

}
= 0. (42)
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Now we subtract from ρi(un, un−1,an−1, fn−1) the expression on the left hand
side of (42), multiplied by Δt, and next we add to and subtract from the result the
term En given by

En =
∫

Si

(un − un−1)(Pi)ϕi. (43)

Now it suffices to cancel out identical terms and to group the remaining ones
conveniently, to derive (41). �

Before concluding the consistency analysis we give the following technical
result.

Lemma 5.4. Let the weights ωi
j fulfill (33) and (9), and v be a given function

in W 2,∞(Ω). Then there exists a constant CA independent of h and v such that
for ∀i ∈ {1, 2, . . . , Ih},

∣∣∣∣
∫

Si

[Ah(h)(v) −h(v)](Pi)ϕi

∣∣∣∣ ≤ CAh
2 Πi

N + 1
‖v‖2,∞,Ω . (44)

Proof. Recalling the definition of Ah and (9) we may write

[Ah(h)(v) −h(v)](Pi)Πi

N + 1
=

Mi∑
j=1

ωi
jW

i
j

[
2
N
v(Pi) + v(Pkj

)
]

− N + 2
N

Mi∑
j=1

ωi
jW

i
jv(Pi).

Hence we have

∫
Si

[Ah(h)(v) −h(v)](Pi)ϕi =
Mi∑
j=1

ωi
jW

i
j [v(Pkj

) − v(Pi)].

On the other hand ∀j we have v(Pkj
) − v(Pi) = ∇v(Pi) · lij + Gi

j(v), where
Gi

j(v) is a term whose absolute value is bounded above by CGh
2‖v‖2,∞,Ω , CG being

a constant independent of h, i, j and v. It follows that

∣∣∣∣
∫

Si

[Ah(h)(v) −h(v)](Pi)ϕi

∣∣∣∣ ≤ ∇v(Pi) ·
Mi∑
j=1

ωi
jW

i
j l

i
j

+ CGh
2 NΠi

(N + 1)(N + 2)
‖v‖2,∞,Ω .

Recalling (33) the result follows with CA = CG
N

N+2 . �
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Now we are ready to prove:

Theorem 5.5. Assume that for a given finite time T > 0, for any integer l
with 0 ≤ l ≤ 2 and ∀t ∈ [0, T ], both the solution u of (1) and ut belong to W l,∞(Ω)
equipped with the standand norm and seminorm. Assume also that ∀t ∈ [0, T ],
a( · , t) ∈ [W 1,∞(Ω)]N and f( · , t) ∈W 1,∞(Ω), and (ut)t belongs to L∞(Ω). Then
Δt being given by T

m for a strictly positive integer m, there exists a constant CR

independent of n, h and Δt such that the following estimate applies for every
n ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , Ih}:

|Rn
i (u)| ≤ CR

Πi

N + 1
Δt hBn(u), (45)

where

Bn(u) =
hmin

hmin + ν

h|lnh|
Δt

‖un‖2,∞,Ω + ‖un−1
t ‖1,∞,Ω

+ h|lnh| max
s∈[(n−1)Δt,nΔt]

‖(ut)/t=s‖2,∞,Ω

+
Δt
h

max
s∈[(n−1)Δt,nΔt]

‖(utt)/t=s‖0,∞,Ω

+ ‖an−1‖1,∞,Ω (‖un−1‖1,∞,Ω + h|lnh| · ‖un−1‖2,∞,Ω )

+ |lnh| · ‖an−1‖0,∞,Ω ‖un−1‖2,∞,Ω + ‖fn−1‖1,∞,Ω . (46)

Proof. Recalling the expression of Rn
i (u) given by (40) together with (41),

it suffices to derive proper bounds term by term with appropriate constants in-
dependent of n, h and Δt, denoted by the letter C with subscripts.

To begin with we consider the term αi. From (37) and the obvious bounds of
both hw and Ahw by ‖w‖0,∞,Ω for every w ∈ L∞(Ω), we have for Cα = 2C0,

|αi(un)| ≤ Cαh
2|lnh| hminΠi

(N + 1)(ν + hmin)
‖un‖2,∞,Ω . (47)

From Lemma 5.4, βi is trivially bounded as follows with Cβ = CA:

|βi(un)| ≤ Cβh
2 hminΠi

(N + 1)(ν + hmin)
‖un‖2,∞,Ω . (48)

Again from the boundedness of Ah, the application of �h to the function
un − un−1 together with (37) yields

|γi(un, un−1)| ≤ C0h
2|lnh| hminΠi

(N + 1)(ν + hmin)
(‖un − un−1‖2,∞,Ω ). (49)
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On the other hand from Lemma 5.4 we have

|ηi(un, un−1)| ≤ CAh
2 hminΠi

(N + 1)(ν + hmin)
(‖un − un−1‖2,∞,Ω ). (50)

Moreover, similarly to the case of γi, we obtain

|χi(un, un−1)| ≤ C0h
2|lnh| νΠi

(N + 1)(ν + hmin)
‖un − un−1‖2,∞,Ω . (51)

Now for an integer l ∈ {0, 1, 2} we denote by Dxμ the l-th order partial dif-
ferential operator extended to l = 0, with respect to xμ1

λ1
and xμ2

λ2
, where for two

non negative integers μ1 and μ2, μ = (μ1, μ2) with μ1 + μ2 = l, and λ = (λ1, λ2)
with 1 ≤ λ1 ≤ λ2 ≤ N . In so doing, let ξn

μ(x) be a value of t in the interval
[(n− 1)Δt, nΔt] such that for every x ∈ Ω and for every μ,

Dxμ [un − un−1](x) = ΔtDxμut[ξn
μ(x),x].

Then clearly enough, for Cγηχ = C0 + CA, we derive

|γi(un, un−1)| + |ηi(un, un−1)| + |χi(un, un−1)|

≤ CγηχΔt h2|lnh| Πi

(N + 1)
max

s∈[(n−1)Δt,nΔt]
‖(ut)/t=s‖2,∞,Ω . (52)

Next, since by assumption a is solenoidal and ϕi vanishes on the boundary of
Si, applying integration by parts we easily derive

σi(un−1,an−1) = −Δt
∫

Si

an−1 · ∇ϕi(�h − I)un−1.

On the other hand we have |∇ϕi| ≤ h−1
min for every i, and moreover taking into

account the assumptions on Th, there must exist a constant CS independent of h
such that

h ≤ CShmin. (53)

It follows that for Cσ = C0CS we have

|σi(un−1,an−1)| ≤ CσΔt h|lnh| Πi

N + 1
‖an−1‖0,∞,Ω ‖un−1‖2,∞,Ω . (54)

As for τi we first observe that for every i, n and x ∈ Si there exists a constant
CT such that

|un−1
t (x) − un−1

t (Pi)| ≤ CTh‖un−1
t ‖1,∞,Ω .

On the other hand we have

|[un − un−1](Pi) − Δt un−1
t (Pi)| ≤

Δt2

2
max

s∈[(n−1)Δt,nΔt]
‖(ut)t/t=s‖0,∞,Ω .
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It immediately follows the existence of Cτ = max{CT , 0.5} such that

|τi(un, un−1, un−1
t )|

≤ Cτ
Πi

N + 1
Δt

{
h‖un−1

t ‖1,∞,Ω + Δt max
s∈[(n−1)Δt,nΔt]

‖(ut)t/t=s‖0,∞,Ω

}
. (55)

Finally the term ζi is handled as follows: First we note that, from the assump-
tions on Th, there exists a constant CZ independent of h and i, such that for every
n and ∀x ∈ Si we have

|fn−1(x) − fn−1(Pi)| ≤ CZh‖fn−1‖1,∞,Ω

together with

|an−1(Pi) − an−1(x)| ≤ CZh‖an−1‖1,∞,Ω .

Now we rewrite ζi(un−1,a
n−1, fn−1) as the product with Δt of the integral

over Si of the sum of three terms Z1, Z2 and Z3, namely,

• Z1 = [fn−1 − fn−1(Pi)]ϕi,

• Z2 = [an−1(Pi) − an−1] · ∇un−1ϕi,

• Z3 = [an−1(Pi) − an−1] · ∇ϕi(I −�h)un−1.
Applying arguments already exploited above it is easily seen that

|Z1 + Z2 + Z3|
≤ CZh[‖an−1‖1,∞,Ω (‖un−1‖1,∞,Ω + C0CSh|lnh| · ‖un−1‖2,∞,Ω )

+ ‖fn−1‖1,∞,Ω ]. (56)

It immediately follows from (56) that for Cζ = CZ max{1, C0CS} it holds that

|ζi(un−1,an−1, fn−1)|

≤ Cζ
Πi

N + 1
Δt h[‖an−1‖1,∞,Ω (‖un−1‖1,∞,Ω + h|lnh| · ‖un−1‖2,∞,Ω )

+ ‖fn−1‖1,∞,Ω ]. (57)

Putting together (47), (48), (52), (54), (55) and (57), and recalling (40) and
(41), we readily derive (45) with (46) for a suitable constant CR. �

We are now ready to derive error estimates for scheme (7).

Theorem 5.6. Let the strictly positive weights ωi
j, ∀i ∈ {1, 2, . . . , Ih} and

∀j ∈ {1, 2, . . . ,Mi}, satisfy (33) and (9). Assume that for a given finite time T > 0
both the solution u of (1) and ut belong to W 2,∞(Ω). Assume also that ∀t ∈ [0, T ],
a( · , t) ∈ [W 1,∞(Ω)]N and f( · , t) ∈W 1,∞(Ω), and (ut)t belongs to L∞(Ω). Finally
let a strictly positive integer kT be chosen as be the minimum of all integers k such
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that the quantity Δt := T
k fulfills the condition (16). Then there exists a constant

CE independent of h and Δt such that the following estimate applies for every
m ∈ {1, 2, . . . , kT }:

‖hu
m − um

h ‖0,∞,Ω

≤ CEhΔt
m∑

n=1

{
h2|lnh|

Δt (hmin + ν)
‖un‖2,∞,Ω + ‖un−1

t ‖1,∞,Ω

+ h|lnh| max
s∈[(n−1)Δt,nΔt]

‖(ut)/t=s‖2,∞,Ω

+
Δt
h

max
s∈[(n−1)Δt,nΔt]

‖(ut)t/t=s‖0,∞,Ω

+ ‖an−1‖1,∞,Ω (‖un−1‖1,∞,Ω + h|lnh| · ‖un−1‖2,∞,Ω )

+ |lnh| · ‖an−1‖0,∞,Ω ‖un−1‖2,∞,Ω + ‖fn−1‖1,∞,Ω

}
. (58)

Proof. Let ūn
j := ũn

j − un
j , for n = 0, 1, 2, . . . , kT and j ∈ {1, 2, . . . , Nh}.

Clearly enough recalling (39) and (7) we have ∀i ∈ {1, 2, . . . , Ih},

ūn
i −

Nh∑
j=1

cnij ū
n−1
j − N + 1

Πi
Rn

i (u) = 0.

Furthermore ūn
i = 0 ∀i ∈ {Ih + 1, . . . , Nh}. Thus since (16) holds, taking into ac-

count (53), application of Theorem 4.2 leads in a straightforward manner to a bound
in all similar to (58), except for the discretization step size independent constant
CE , that becomes CI , and for the left hand side, in which �h replaces h. On the
other hand, (37) together with (53), trivially imply the existence of a constant C1

independent of h such that for every m,

‖hu
m − um

h ‖0,∞,Ω ≤ ‖�hu
m − um

h ‖0,∞,Ω + C1
h2|lnh|
hmin + ν

‖um‖2,∞,Ω .

Hence the result follows with CE = CI + C1. �

Owing to the first term in the summation on the right hand side of (58), we
cannot assert that the method converges if only bound (16) holds. Indeed this term
is bounded below by (N+2)A

[
1+(N+1) ν

Ahmin

]
|lnhmin|·‖un‖2,∞,Ω , which tends to

∞ as h goes to zero, asymptotically like h−1|lnh|. Nevertheless whenever ν is very
small, say ν � A, which means that convection is largely dominant, provided the
mesh step size is also significantly greater than ν, we can expect that the scheme (7)
will generate accurate numerical solutions, even if in the limiting process, i.e., as
h approaches ν, we can expect that the scheme will fail to reduce discretization
errors. However in principle, in practical situations such point is out of reach in
the convection largely dominated case.
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To conclude we give a convergence result for scheme (7).

Theorem 5.7. Under the assumptions of Theorem 5.6 on the weights ωi
j

and on the regularity of the solution u of (1), and also of a( · , t) and f( · , t) in
the interval [0, T ], let the strictly positive integer kT be the minimum of all integers
k such that the quantity Δt := T

k fulfills the condition (32). Assume that, besides
belonging to a quasiuniform family of partitions Th is of the acute type. Then there
exists a constant C independent of u, h and Δt, such that the following estimate
applies:

max
1≤m≤kT

‖um − um
h ‖0,∞,Ω

≤ Ch|lnh| max
0≤s≤T

{‖u( · , s)‖2,∞,Ω + ‖ut( · , s)‖1,∞,Ω

+ h‖ut( · , s)‖2,∞,Ω + h‖(ut)t( · , s)‖0,∞,Ω

+ ‖a( · , s)‖1,∞,Ω (‖u( · , s)‖1,∞,Ω + h‖u( · , s)‖2,∞,Ω )

+ ‖a( · , s)‖0,∞,Ω ‖u( · , s)‖2,∞,Ω + ‖f( · , s)‖1,∞,Ω}. (59)

Proof. First we note that, from well known results on interpolation theory
([4]), there exists a constant CP independent of both h, Δt and u, such that for
every m we have

‖um − um
h ‖0,∞,Ω ≤ ‖hu

m − um
h ‖0,∞,Ω + CPh

2‖um‖2,∞,Ω .

On the other hand, since by assumption (32) holds, from (53) we infer the existence
of two mesh independent constants c1 and c2 such that c1h2 ≤ Δt ≤ c2h

2. More-
over in the case of a mesh of the acute type the result (58) trivially holds, as long as
Δt satisfies (32). Hence the result (59) becomes a simple consequence of the argu-
ments already employed in the proof of Theorem 5.6, together with straightforward
calculations starting from (58). �

6. Numerical experiments

In [18] we give numerical results that, in spite of the simplicity of the test
problems, illustrate the good performance of scheme (7), in particular in the explicit
iterative solution of stationary problems. Here we apply our methodology to test
problems with known analytic solution exhibiting exponential time decay.

6.1. One-dimensional computations
As a first test, we experimented both our scheme and the one corresponding

to a combination of the classical lumped mass and consistent mass on the right
hand side, with respective weights equal to ν

ν+hmin
and hmin

ν+hmin
(see, e.g., [10]) for a

one-dimensional problem with sharp boundary layers.



84 V. Ruas, A. Brasil Jr. and P. Trales

More specifically, taking Ω = (0, 1) we wish to solve problem (1) for f = 1,
g = 1 − e−t and a = 1, starting from u0 = v0 + w0 where

v0(x) := 1 + x− 1 − e
x
ν

1 − e
1
ν

and

w0(x) :=
1

e−r1 − e−r2
[(e−r2 − 1)er1(x−1) − (e−r1 − 1)er2(x−1)]

with r1 = 1+
√

1−4ν
2ν and r2 = 1−

√
1−4ν

2ν .
The exact solution given by u(x, t) = v0(x) + e−tw0(x) presents a double

boundary layer of width O(ν) close to the point x = 1. The results given below
are restricted to a given time, namely, T = 1, as they are sufficiently representative
of the behavior of the numerical methods being experimented. This is due to the
exponential decay of the solution.

In order to figure out the influence of the schemes in the numerical results, we
use double precision and non uniform spacial meshes with Nh nodes, Nh being an
odd number. The corresponding step sizes are hi for i = 1, 2, . . . , Nh − 1 where
h2k = h and h2k−1 = Rh, for k = 1, 2, . . . , (Nh−1)/2, R being a real number greater
than one. In so doing hmin = h

R = 2
(Nh−1)(1+R) . Since in the one-dimensional case

the mesh is necessarily of the acute type, we determine Δt = T/kT for each value of
Nh, as the largest possible value that satisfies (32). Notice that the pair of weights
for our method are necessarily either R/3 or R−1/3, according to the parity of
the node subscript. As for the classical method, both weights are equal to 1/3 for
every node.

First we take ν = 10−2 and R = 4. We display in Tables 1 and 2 below
the relative errors for the indicated values of Nh − 1, in L∞(0, 1) and in L2(0, 1),
respectively. Notice that the maximum errors are attained near the abcissa x = 1.

Table 1. L∞ errors for T = 1 and ν = 10−2.

Nh − 1 Present scheme Classical scheme
64 26.357 % 27.152 %

128 22.409 % 22.850 %
256 14.263 % 18.610 %
512 9.832 % 14.998 %

1024 6.026 % 11.207 %

Table 2. L2 errors for T = 1 and ν = 10−2.

Nh − 1 Present scheme Classical scheme
64 9.434 % 9.373 %

128 4.397 % 5.243 %
256 2.902 % 4.067 %
512 1.748 % 2.953 %

1024 0.982 % 1.979 %
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In order to give an idea of what one can be expected, as far as pointwise conver-
gence is concerned, we also display in Table 3 the absolute errors of the computed
approximations of u(0.5, 1) = 0.89033610, for different values of Nh.

Table 3. Errors of u(0.5, T ) for T = 1 and ν = 10−2.

Nh − 1 Present scheme Classical scheme
64 0.03524 0.03541

128 0.01043 0.01496
256 0.00580 0.01019
512 0.00306 0.00656

1024 0.00157 0.00396

Next we take ν = 10−5 and again R = 4. We display in Tables 4 and 5 below
the relative errors for the indicated values of Nh − 1, in L∞(0, 1) and in L2(0, 1),
respectively. In Table 6 we give corresponding absolute errors for the computed
approximations of u(0.5, T ) = 0.89349008.

Table 4. L∞ errors for T = 1 and ν = 10−5.

Nh − 1 Present scheme Classical scheme
512 32.617 % 22.494 %

1024 32.548 % 22.400 %
2048 33.277 % 24.640 %
4096 33.177 % 24.448 %
8182 32.667 % 23.740 %

Table 5. L2 errors for T = 1 and ν = 10−5.

Nh − 1 Present scheme Classical scheme
512 2.268 % 1.818 %

1024 1.571 % 1.259 %
2048 1.241 % 1.046 %
4096 0.854 % 0.721 %
8192 0.575 % 0.489 %

Table 6. Errors of u(0.5, T ) for T = 1 and ν = 10−5.

Nh − 1 Present scheme Classical scheme
512 0.00198 0.00202

1024 0.00074 0.00080
2048 0.00059 0.00059
4096 0.00028 0.00029
8192 0.00018 0.00019

As one can infer from the above results, rather good numerical solutions can
be generated even for problems with largely dominant convection, whose solutions
present very sharp gradients.
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In the case of a moderately dominant convection, i.e., for ν = 10−2, we can
assert that the new scheme performs globally better than the classical one, as one
might expect. Indeed convergence is observed for the former and significantly more
weakly for the latter.

As for the convection largely dominant case with ν = 10−5, it is not possible
to observe convergence in the maximum norm as h diminishes, for none of both
schemes. However, as we should explain, the maximum errors occur at the grid
point next to x = 1, and therefore this effect is not surprising at all. Indeed it is a
well-known fact that the mesh must be even more refined locally, in order to reduce
numerical errors in the interior of such narrow boundary layer, which was not done
here. Notice that for this value of ν both schemes seem to converge in the sense of
L2, with a slight advantage of the classical scheme over the present one, at least up
to the degree of refinement that we have attained.

6.2. Two-dimensional computations
We further tested our scheme and the one corresponding to the combination

of the classical lumped mass and consistent mass on the right hand side, with the
same weights as in our one-dimensional computations, for three two-dimensional
problems. The domain Ω for all the test problems is the unit square (0, 1)× (0, 1),
and as sufficiently representative of the computer results we display only those for
time t = 0.1.

The type of mesh used in the computations is defined as follows: For a given
abcissa value d ∈ (0, 1), we first subdivide Ω into four rectangular subdomains,
namely,

Ω1 := (0, d) × (0, d), Ω2 := (d, 1) × (0, d),

Ω3 := (0, d) × (d, 1), Ω4 := (d, 1) × (d, 1).

Letting Mh be a given positive integer, we next subdivide each one of the intervals
(0, d) and (d, 1) in both directions of the plane into Mh/2 equal parts, thereby
generating two systems of Mh + 1 parallel lines to each coordinate axis, and a
corresponding partition of Ω into M2

h rectangles. The triangular mesh is then
obtained by means of the subdivision of each rectangle of this partition into two
triangles taking its diagonal with a negative slope. As for the weights ωi

j , first we
note that for all inner nodes Pi = (a, b) we have Mi = 6. Next we take ωi

j = 1
N+2

for all inner nodes such that a �= d and b �= d. The weights corresponding to inner
nodes such that a = d or b = d are determined by solving the minimisation problem
stated in Section 5. Notice that there are essentially three types of nodes having d
as an abcissa, and therefore we have to determine just three sets of six weights for
the whole mesh, depending only on the mesh parameter r given by R := d/(1− d).
The particular case of a uniform mesh corresponds to the value R = 1, or yet to
d = 0.5, in which the weights are necessarily equal to 1

N+2 for all the inner nodes.
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• First test problem: We consider a problem with linear exact solution in terms
of the space variables. More precisely we have u(x, y, t) = e−t(x+ y) and we
take a = (1, 1). For such solution the value of f is independent of ν and
is computed accordingly. Here, provided the errors in the approximation of
the time exponential together with round-off errors can be neglected, a really
consistent scheme with linear finite elements must be able to reproduce the
analytical solution exactly. In Tables 7 and 8 below we display the errors of
the approximate solution in both the L∞- and L2-norms obtained with our
scheme and the classical scheme, for R = 4 and Mh = 16 or Mh = 32, and
two different values of ν, namely ν = 1 and ν = 10−5, respectively. For both
schemes we take the same time step Δt, which incidentally is here again the
largest possible value of the form T/KT for an integer KT , with T = 0.1,
satisfying the stability condition (4.3). In order to give an idea of the joint
effect of the mesh and the Péclet number in the computational cost, we give in
Table 9 the number of time stepsKT necessary to attain time T , corresponding
to the different values of ν and Mh, for both schemes.

Table 7. Errors in the L∞- and L2-norms for ν = 1.

Error type Present scheme Classical scheme
L∞; Mh = 16 0.58922 × 10−6 0.13654 × 10+0

L2; Mh = 16 0.31387 × 10−6 0.51440 × 10−1

L∞; Mh = 32 0.18831 × 10−6 0.78026 × 10−1

L2; Mh = 32 0.36951 × 10−7 0.28946 × 10−1

Table 8. Errors in the L∞- and L2-norms for ν = 10−5.

Error type Present scheme Classical scheme
L∞; Mh = 16 0.35978 × 10−4 0.41779 × 10+0

L2; Mh = 16 0.22387 × 10−4 0.13698 × 10+0

L∞; Mh = 32 0.24186 × 10−4 0.30262 × 10+0

L2; Mh = 32 0.14870 × 10−4 0.86072 × 10−1

Table 9. Values of KT .

Case KT

ν = 1 and Mh = 16 5120
ν = 1 and Mh = 32 20480
ν = 10−5 and Mh = 16 80
ν = 10−5 and Mh = 32 160

As we can infer from Tables 7 and 8, the consistency of the new scheme is
confirmed by the numerical results, whereas the lack of consistency of the
classical scheme is clearly shown.
Notice that the higher is the Péclet number, the smaller is KT as expected.
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• Second test problem: In this test the exact solution is given by u(x, y, t) =
e−txy and we take a = (y, x)/2. Here again the value of f is independent
of ν and is determined accordingly. In Tables 10, 11, 12 and 13 below we
display the relative errors of the approximate solution in either the L∞- or
the L2-norms as indicated, obtained with our scheme and the classical scheme
for R = 2 and increasing values of Mh. Tables 10 and 11 correspond to the
value ν = 1 and Tables 12 and 13 correspond to the value ν = 10−5. Moreover,
in order to illustrate the effect of a non uniform mesh, we also give results
obtained with R = 1, that is with a uniform mesh having the same number of
nodes. Notice that in this case our scheme coincides with the classical one.

Table 10. L∞ relative errors: ν = 1, R = 2 or uniform mesh.

Mh Present scheme Classical scheme R = 1
8 0.10520 × 10+0 0.17385 × 10+0 0.38972 × 10−1

16 0.97713 × 10−1 0.10321 × 10+0 0.11084 × 10−1

32 0.47445 × 10−1 0.56811 × 10−1 0.57410 × 10−2

64 0.25705 × 10−1 0.29906 × 10−1 0.27483 × 10−2

Table 11. L2 relative errors: ν = 1, R = 2 or uniform mesh.

Mh Present scheme Classical scheme R = 1
8 0.40587 × 10−1 0.94531 × 10−1 0.16150 × 10−1

16 0.26945 × 10−1 0.56323 × 10−1 0.46988 × 10−2

32 0.15733 × 10−1 0.30942 × 10−1 0.24474 × 10−2

64 0.85408 × 10−2 0.16249 × 10−1 0.12479 × 10−2

Table 12. L∞ relative errors: ν = 10−5, R = 4 or uniform mesh.

Mh Present scheme Classical scheme R = 1
32 0.23769 × 10+0 0.40101 × 10+0 0.54364 × 10−2

64 0.15305 × 10+0 0.28415 × 10+0 0.23567 × 10−2

128 0.89362 × 10−1 0.19934 × 10+0 0.10837 × 10−2

256 0.48039 × 10−1 0.13754 × 10+0 0.50561 × 10−3

Table 13. L2 relative errors: ν = 10−5, R = 4 or uniform mesh.

Mh Present scheme Classical scheme R = 1
32 0.75640 × 10−1 0.22298 × 10+0 0.92090 × 10−2

64 0.50552 × 10−1 0.13092 × 10+0 0.48018 × 10−2

128 0.30219 × 10−1 0.74728 × 10−1 0.24667 × 10−2

256 0.16841 × 10−1 0.42084 × 10−1 0.12561 × 10−2

Tables 10 through 13 confirm the predicted superiority of the new scheme
over the classical one, for both small and large Péclet numbers. It is also
clear from the above results that our scheme is much more accurate, in case
uniform meshes are employed, but unfortunately this is seldom possible in
practical situations.
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• Third test problem: Finally we deal with a problem whose exact solu-
tion presents a sharp boundary layer, close to the boundary edges given
by x = 1 and y = 1. More precisely we take a = (1, 1)/π and u(x, y, t) =
e−t[s(x) sin(πy) + s(y) sin(πx)], where, for z ∈ [0, 1],

s(z) :=

[
e

π2ν−1
πν − 1

]
eπz + (eπ − 1)e

(π2ν−1)(1−z)
πν

e
2π2ν−1

πν

.

The corresponding value of the right hand side is given by f(x, y, t) =
e−t[s(x) cos(πy) + s(y) cos(πx)], while the boundary values of u are given by
g(0, y, t) = g(1, y, t) = e−t sin(πy) and g(x, 0, t) = g(x, 1, t) = e−t sin(πx). In
Tables 14, 15, 16 and 17 below we display the relative errors of the approxi-
mate solution in either the L∞- or the L2-norms as indicated, obtained with
our scheme and the classical scheme for R = 4, and increasing values of Mh.
Tables 14 and 15 correspond to the value ν = 10−2 and Tables 16 and 17
correspond to the value ν = 10−5. Here again, we also give results obtained
with a uniform mesh having the same number of nodes.

Table 14. L∞ relative errors: ν = 10−2, R = 4 or uniform mesh.

Mh Present scheme Classical scheme R = 1
32 0.55253 × 10+0 0.53996 × 10+0 0.40427 × 10+0

64 0.33698 × 10+0 0.32935 × 10+0 0.21973 × 10+0

128 0.24904 × 10+0 0.24454 × 10+0 0.16351 × 10+0

256 0.15691 × 10+0 0.15601 × 10+0 0.10785 × 10+0

Table 15. L2 relative errors: ν = 10−2, R = 4 or uniform mesh.

Mh Present scheme Classical scheme R = 1
32 0.44118 × 10+0 0.44715 × 10+0 0.13929 × 10+0

64 0.15759 × 10+0 0.16228 × 10+0 0.68628 × 10−1

128 0.10290 × 10+0 0.10733 × 10+0 0.50245 × 10−1

256 0.61345 × 10−1 0.65283 × 10−1 0.32450 × 10−1

Table 16. L∞ relative errors: ν = 10−5, R = 4 or uniform mesh.

Mh Present scheme Classical scheme R = 1
32 0.47320 × 10+0 0.46739 × 10+0 0.32787 × 10+0

64 0.47378 × 10+0 0.46936 × 10+0 0.32539 × 10+0

128 0.47439 × 10+0 0.47239 × 10+0 0.32244 × 10+0

256 0.47377 × 10+0 0.47363 × 10+0 0.32327 × 10+0

Table 17. L2 relative errors: ν = 10−5, R = 4 or uniform mesh.

Mh Present scheme Classical scheme R = 1
32 0.44118 × 10+0 0.44715 × 10+0 0.14754 × 10+0

64 0.33172 × 10+0 0.33134 × 10+0 0.12560 × 10+0

128 0.24608 × 10+0 0.24582 × 10+0 0.99616 × 10−1

256 0.17891 × 10+0 0.17963 × 10+0 0.74348 × 10−1
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A quick inspection of Tables 13 through 17 shows that, like in the one-
dimensional case, the new scheme and the classical scheme behave very similarly in
the presence of moderate to sharp boundary layers. This means that in this case,
at least for meshes insufficiently refined such as those used in our computations,
both schemes are roughly equivalent. On the other hand for sharp boundary layers,
it is not surprising at all that the error in the maximum norm is much larger than
the error in the L2-norm (see Tables 4 and 5 too).

7. Conclusions

As a conclusion it is possible to assert that the method studied in this paper
is a promising technique for solving, not only time-dependent convection-diffusion
problems, but also stationary ones, and this is particularly true of the convection
dominant case. First of all this assertion relies on the method’s simplicity, since
a piecewise linear finite element space discretization is employed. Moreover the
method is based on a standard Galerkin formulation, thereby avoiding the addition
of SUPG stabilizing terms or the use of upwinding techniques. Other important
advantages of the method are low storage requirements, since it deals with ex-
plicit time integration. As for the computer time necessary to run the method,
we can say that it remains fairly reasonable, as long as the mesh step size is not
too small. Notice however that in real life problems, specially in higher dimension
spaces, computations with discretization parameters as small as those used in the
computations reported in Subsection 6.1 are generally out of reach. Nevertheless,
whatever the case, the explicit time integration is a procedure well suited to parallel
computations. which can be a good remedy for eventually excessive computational
effort. Finally the authors would like to stress the fact that the method’s reli-
ability in terms of both stability and convergence is ensured, provided a simple
non restrictive geometrical condition related to the spacial mesh, is satisfied by the
time step.

Another interesting conclusion on the experiments carried out in this work
is that the classical scheme of the type extensively exploited by Kawahara and
collaborators (cf. [10], [11], [12]) seems sufficiently accurate in all cases, although it
is probably not convergent in the strict mathematical sense for non uniform meshes.

Numerical experiments with our new scheme in situations with physical mean-
ing are underway, and will be notified in due course.
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