
Japan J. Indust. Appl. Math., 26 (2009), 1–14 Area 〈2〉

Generalized Approximate Inverse Preconditioners

for Least Squares Problems

Xiaoke Cui∗ and Ken Hayami†

∗Department of Informatics, School of Multidisciplinary Sciences
The Graduate University for Advanced Studies (Sokendai)
E-mail: xkcui@nii.ac.jp

†Principles of Informatics Research Division
National Institute of Informatics
E-mail: hayami@nii.ac.jp

Received January 29, 2008

Revised August 4, 2008

This paper is concerned with a new approach for preconditioning large sparse least
squares problems. Based on the idea of the approximate inverse preconditioner, which
was originally developed for square matrices, we construct a generalized approximate
inverse (GAINV) M which approximately minimizes ‖I − MA‖F or ‖I − AM‖F. Then,
we also discuss the theoretical issues such as the equivalence between the original least
squares problem and the preconditioned problem. Finally, numerical experiments on
problems from Matrix Market collection and random matrices show that although the
preconditioning is expensive, it pays off in certain cases.

Key words: approximate inverse, least squares problem, preconditioning, rectangular
matrix

1. Introduction

Approximate inverse (AINV) preconditioners [16] were originally developed for
solving large sparse linear systems of the form,

Ax = b, (1.1)

where A ∈ R
n×n is a nonsingular matrix and b ∈ R

n is a right-hand-side vector.
As is well known, the rate of convergence of iterative methods for solving (1.1)
is strongly influenced by the spectral properties of A. It is therefore natural to
transform the original system into an equivalent system with more favorable spec-
tral properties, and this transformation is called preconditioning. There are many
approaches for preconditioning [5]. Some algorithms focus on constructing an ap-
proximation to the coefficient matrix A. One of the most popular algorithms in
this category is the incomplete LU factorization. On the other hand, there are also
algorithms which construct a direct approximation to the inverse of A. One way to
accomplish this construction is to find a matrix M which minimizes the following
Frobenius norm

min
M∈S

‖I − MA‖F or min
M∈S

‖I − AM‖F (1.2)

2 X. Cui and K. Hayami

over all n×n matrices with a certain sparsity pattern S, where I is the n×n identity
matrix. Hence, MA and AM are approximations to an identity matrix, which
implies that M is an approximation to the inverse of A. This idea of constructing
M by minimizing the Frobenius norm ‖I −AM‖F was first proposed by Benson in
his master’s thesis [3]. See also Benson and Frederickson [4].

However, it is very difficult to choose a suitable sparsity pattern for M . Hence
several authors developed adaptive methods which start from a simple initial non-
zero pattern and gradually refine it until ‖I − MA‖F < ε is achieved, where ε is a
threshold [6, 10, 12, 13]. The most successful of these methods is the one proposed
by Grote and Huckle [13], which is called SPAI. Unfortunately, the setup time for
adaptive SPAI is often high [1, 2, 6]. Thus, Chow and Saad developed the minimal
residual (MR) [9] method so that no nonzero pattern needs to be prescribed in
advance. For the left preconditioning case, the algorithm can be written in the
following form.

Algorithm 1.1. MR algorithm [16]

1. Set M0 = α0A
T, α0 = ‖A‖2

F
‖ATA‖2

F
.

2. for k = 1, 2, . . . until convergence, do
3. Compute Rk−1 = I − Mk−1A, and Gk−1.
4. Compute αk = trace(RT

k−1Gk−1A)/‖Gk−1A‖2
F.

5. Compute Mk := Mk−1 + αkGk−1.
6. Apply numerical dropping to Mk.
7. end do

In the above algorithm, α0 is chosen to minimize ‖I −αATA‖F, and αk, k ≥ 1
are chosen to minimize

‖I − (Mk−1 + αGk−1)A‖F. (1.3)

One choice for Gk is the residual matrix Rk = I−MkA, and another popular choice
is Gk = (I − MkA)AT, which is the direction of steepest descent.

There is another way to minimize (1.2). Instead of minimizing globally as a
function of matrix M , it can be minimized column by column (row by row), as
follows:

min‖I − MA‖F ⇐⇒ min‖ei − miA‖2, i = 1, . . . , n,

min‖I − AM‖F ⇐⇒ min‖ei − Ami‖2, i = 1, . . . , m,

where ei and mi are rows of the identity matrix I and M , ei and mi are columns
of the identity matrix I and M , respectively. The advantage of performing the
minimization column by column or row by row is that it can be easily parallelized.
For the left preconditioning, the row-oriented algorithm [16] is as follows.

Preconditioners for Least Squares Problems 3

Algorithm 1.2.

1. Set M0 = α0A
T, α0 = ‖A‖2

F
‖ATA‖2

F
.

2. for j = 1, . . . , n do
3. Define mj = ejM .
4. for k = 1, . . . , nk do
5. rj = ej − mjA

6. αj = 〈rjA,rj〉
‖rjA‖2

2

7. mj = mj + αjrj

8. Apply numerical dropping to mj .
9. end do

10. end do

In this paper, we consider applying Saad’s MR algorithm to the least squares
problems

min
x∈Rn

‖b − Ax‖2, (1.4)

where A ∈ Rm×n, rank(A) = r, b ∈ Rm, which to the authors’ knowledge, is new.
Thus, we aim to construct a preconditioner M ∈ R

n×m which minimizes

‖I − MA‖F or ‖I − AM‖F, (1.5)

where I is an n×n or m×m identity matrix, respectively. Since now matrices A and
Mk are rectangular, we cannot choose the correction matrix Gk as Rk = I −MkA.
Hence, we let Gk = (I − MkA)AT. We will also give mathematical justifications
for applying the method to least squares problems.

The rest of the paper is organized as follows. In Section 2, we discuss for
the left preconditioning, under what condition we can use this generalized approxi-
mate inverse to precondition a least squares problem. Similar theoretical results for
the right preconditioning are developed in Section 3. Finally, we present numerical
results in Section 4. The results suggest that although the preconditioning is expen-
sive, good convergence behavior can be achieved, so that it becomes a competitive
option for solving least squares problems with multiple right-hand-sides.

2. Left preconditioning

Consider solving the least squares problem (1.4) by transforming it into a left
preconditioned form,

min
x∈Rn

‖Mb − MAx‖2, (2.1)

where A ∈ R
m×n, M ∈ R

n×m, and b is a right-hand-side vector b ∈ R
m.

4 X. Cui and K. Hayami

For preconditioning, one important issue is whether the solution of the pre-
conditioned problem is the solution of the original problem. For square nonsingular
linear systems, the condition for this equivalence is that the preconditioner M

should be nonsingular. Since we are dealing with rectangular problems, we need
some other conditions to ensure that the preconditioned problem (2.1) is equivalent
to the original least squares problem (1.4).

First note the following [14], where R(X) denotes the range space of matrix X.

Lemma 2.1.

‖b − Ax∗‖2 = min
x∈Rn

‖b − Ax‖2

and

‖Mb − MAx∗‖2 = min
x∈Rn

‖Mb − MAx‖2

are equivalent for all b ∈ R
m, if and only if R(A) = R(MTMA).

Hence, in order that the preconditioned problem (2.1) is equivalent with the
original problem (1.4), the matrix M of Algorithm 1.1 should satisfy the condition
in Lemma 2.1.

In order to analyze this condition, we rewrite Algorithm 1.1 for left pre-
conditioning on the rectangular matrix A as follows.

Algorithm 2.1.

1. Set M0 = α0A
T, α0 = ‖A‖2

F
‖ATA‖2

F
.

2. for k = 1, 2, . . . until convergence, do
3. Compute Rk−1 = I − Mk−1A.
4. Compute Gk−1 = Rk−1A

T.
5. Compute αk = ‖Gk−1‖2

F/‖Gk−1A‖2
F.

6. Compute Mk := Mk−1 + αkGk−1.
7. Apply numerical dropping to Mk.
8. end do

In the above Algorithm 2.1, M0 = α0A
T, where α0 minimizes ‖I − αATA‖F

over all real scalar α. Hence, we have

M1 = M0 + α1G0

= M0 + α1(I − M0A)AT

= (α0 + α1 − α0α1A
TA)AT

= p1(ATA)AT,

Preconditioners for Least Squares Problems 5

where pk(·) is a polynomial of degree k. Similarly, if we assume Mk−1 =
pk−1(ATA)AT, then for Mk, we have

Mk = Mk−1 + αkGk−1

= Mk−1 + αk(I − Mk−1A)AT

= Mk−1(I − αkAAT) + αkAT

= (pk−1(ATA)(I − αkATA) + αk)AT

≡ pk(ATA)AT.

Combining all the above argument, we have the following.

Theorem 2.1. If no numerical droppings are performed, Mk in Algo-
rithm 2.1 can be expressed as Mk = pk(ATA)AT, where pk(·) is a polynomial
of degree k, p0 is the scalar α0 defined in Algorithm 2.1.

By expressing Mk in the form Mk = pk(ATA)AT, we can easily deduce a
condition for the equivalence between the preconditioned problem (2.1) and the
original problem (1.4) as follows.

Theorem 2.2. The preconditioned problem (2.1) is equivalent to the original
problem (1.4) if and only if pk(σ2

i) �= 0 for all singular values σi > 0 of A.

Proof. By Lemma 2.1, we only need to prove R(A) = R(MT
k MkA). Since

R(MT
k MkA) = R(Apk(ATA)pk(ATA)AT)

⊆ R(A),

R(A) = R(MT
k MkA) is equivalent to

rank(A) = rank(MT
k MkA). (2.2)

Assume that the SVD of A is A = UΣ V T, where U is an m×m orthogonal matrix,
V is an n × n orthogonal matrix, and Σ = diag{σ1, . . . , σr, 0, . . . , 0}m×n, σi > 0,
i = 1, . . . , r. Then,

MT
k MkA = Apk(ATA)pk(ATA)ATA

= UΣ p2
k(ΣTΣ)ΣTΣ V T

= U diag{σ3
1p2

k(σ2
1), . . . , σ3

rp2
k(σ2

r), 0, . . . , 0}m×nV T.

Hence, (2.2) is equivalent to pk(σ2
i) �= 0 for σi > 0, i = 1, . . . , r. �

It is difficult to prove that pk(σ2
i) �= 0 for σi > 0, i = 1, . . . , r. However, we

can assume that it holds generically, i.e., the probability of pk(σ2
i) = 0 for any

1 ≤ i ≤ r is zero. Also in our numerical experiments, we never observed pk(σ2
i) = 0

to happen.

6 X. Cui and K. Hayami

Besides the above equivalence theorem, we are also concerned whether any
breakdown may occur when we solve the preconditioned problem (2.1) using Krylov
subspace methods. Brown and Walker [8] gave a necessary and sufficient condition
such that the GMRES method [17] does not break down. Let N (X) denote the
null space of X.

Lemma 2.2. The GMRES method determines a least squares solution of
Ax = b, A ∈ Rn×n, without breakdown for arbitrary b ∈ Rn and initial guess
x0 ∈ Rn if and only if N (A) = N (AT).

Hence, for the GMRES method, we have the following.

Theorem 2.3. For Mk in Algorithm 2.1, MkA is symmetric, so that the
GMRES method determines a least squares solution of the preconditioned prob-
lem minx∈Rn‖Mkb − MkAx‖2 without breakdown for arbitrary b ∈ Rm and initial
guess x0 ∈ Rn.

Proof. The proof follows directly from Theorem 2.1 and Lemma 2.2. Since
Mk = pk(ATA)AT, MkA is symmetric, which implies N (MkA) = N ((MkA)T).

�

From Theorem 2.2 and Theorem 3.3, the GMRES method can be used to solve
the preconditioned least squares problem (2.1) with the preconditioner Mk from
Algorithm 2.1, to obtain a least squares solution to the original least squares prob-
lem (1.4) without breakdown. Moreover, since MkA is symmetric, the MINRES
method [15], which is equivalent to the GMRES method for symmetric matrices and
uses short recurrences, can be used instead to save computation time and memory.

Remark 2.1. In Theorem 2.1 we assume that there is no numerical droppings
performed so that we have Theorem 2.2 and Theorem 3.3. When the numerical
dropping strategy is used, Mk cannot be written in the polynomial form pk(ATA)AT

as we show in the following.
In Algorithm 2.1, M0 = α0A

T, where α0 minimizes ‖I −αATA‖F over all real
scalars α. When A is sparse, we do not need to do numerical droppings for M0.
Denote the dropped part in the process of computing Mi as Ei, Hence, we have

M1 = M0 + α1(I − M0A)AT − E1

= p1(ATA)AT − E1,

M2 = M1 + α2(I − M1A)AT − E2

= p1(ATA)AT − E1 + α2(I − p1(ATA)ATA − E1A)AT − E2

= p1(ATA)AT + α2(I − p1(ATA)ATA)AT − E1 − α2E1AAT − E2

= p2(ATA)AT − E1 − E2 − α2E1AAT,

. . .

where pk(·) is a polynomial of degree k.

Preconditioners for Least Squares Problems 7

According to the above discussion, we cannot ensure the equivalence and the
breakdown free theorems when numerical droppings are used. However, in our
numerical experiments, when the dropping threshold is not too large, we did not
encounter breakdown of GMRES.

The row-oriented Algorithm 1.2 can also be modified to be applied to rectan-
gular matrices.

Algorithm 2.2.

1. Set M0 = α0A
T, α0 = ‖A‖2

F
‖ATA‖2

F
.

2. for j = 1, . . . , n do
3. Define mj = ejM .
4. for i = 1, . . . , ni do
5. rj = ej − mjA

6. gj = rjA
T

7. αj = ‖gj‖2
2

‖rjATA‖2
2

8. mj = mj + αjgj

9. Apply numerical dropping to mj .
10. end do
11. end do

However, it is difficult to show equivalence theorems for this row-oriented
method.

3. Right preconditioning

So far we have discussed left preconditioning. For over-determined prob-
lems, i.e., A ∈ R

m×n, m > n, left preconditioning is more favorable, since the
size of the preconditioned matrix MkA is n×n. However, if we are considering
an under-determined problem, i.e., A ∈ R

m×n, m < n, right preconditioning is
more suitable. Results analogous to the left preconditioning hold for the right
preconditioning case.

When we precondition the original least squares problem (1.4) from the right-
hand-side, we have,

min
y∈Rm

‖b − AMy‖2. (3.1)

First note the following [14].

Lemma 3.1. minx∈Rn‖b−Ax‖2 = minz∈Rm‖b−AMz‖2 holds for all b ∈ R
m

if and only if R(A) = R(AM).

Next, we rewrite Algorithm 2.1 for right preconditioning as follows.

8 X. Cui and K. Hayami

Algorithm 3.1.

1. Set M0 = α0A
T, α0 = ‖A‖2

F
‖AAT‖2

F
.

2. for k = 1, 2, . . . until convergence, do
3. Compute Rk−1 = I − AMk−1.
4. Compute Gk−1 = ATRk−1.
5. Compute αk = ‖Gk−1‖2

F/‖AGk−1‖2
F.

6. Compute Mk := Mk−1 + αkGk−1.
7. Apply numerical dropping to Mk.
8. end do

Similar to the left preconditioning case, Mk from Algorithm 3.1 also has a
polynomial form.

Theorem 3.1. Mk in Algorithm 3.1 can be expressed as Mk = ATpk(AAT),
where pk(·) is a polynomial of degree k, p0 is a scalar α0 defined in Algorithm 3.1.

Proof. According to Algorithm 3.1,

M0 = α0A
T

≡ ATp0(AAT),

M1 = M0 + α1G0

= α0A
T + α1A

T(I − α0AAT)

= AT(α0 + α1 − α0α1AAT)

≡ ATp1(ATA).

Thus assume Mk−1 can be expressed as Mk−1 = ATpk−1(AAT). Then,

Mk = Mk−1 + αkGk−1

= ATpk−1(AAT) + αkAT(I − AATpk−1(AAT))

= AT((I − αkAAT)pk−1(AAT) + αk)

≡ ATpk(AAT). �

Combining this Theorem 3.1 and Lemma 3.1, we get the following equivalence
theorem for right preconditioning.

Theorem 3.2. The preconditioned problem (3.1) is equivalent to the original
problem (1.4) if and only if pk(σ2

i) �= 0 for all singular values σi > 0 of A.

Proof. By Lemma 3.1, we only need to prove R(A) = R(AMk). Since

R(AMk) = R(AATpk(AAT))

⊆ R(A),

R(A) = R(AMk) is equivalent to

rank(A) = rank(AMk). (3.2)

Preconditioners for Least Squares Problems 9

Let the SVD of A be A = UΣ V T, where U is an m × m orthogonal matrix, V

is an n × n orthogonal matrix, and Σ = diag{σ1, . . . , σr, 0, . . . , 0}m×n, σi > 0,
i = 1, . . . , r. Then,

AMk = AATpk(AAT)

= UΣΣTpk(ΣΣT)UT

= U diag{σ2
1pk(σ2

1), . . . , σ2
rpk(σ2

r), 0, . . . , 0}m×mUT.

Now, it is easy to see that the equation (3.2) holds if and only if pk(σ2
i) �= 0 for

σi > 0, i = 1, . . . , r. �

Again, we may expect that pk(σ2
i) �= 0 for σi > 0, i = 1, . . . , r holds generically.

Combining Lemma 2.2 and Theorem 3.1, we also obtain a breakdown free
theorem for the right preconditioning case.

Theorem 3.3. For Mk in Algorithm 3.1, AMk is symmetric, so that the
GMRES method determines a least squares solution of the preconditioned prob-
lem minx∈Rm‖b − AMkx‖2 without breakdown for arbitrary b ∈ Rm and initial
guess x0 ∈ Rn.

Proof. The proof follows directly from Theorem 3.1 and Lemma 2.2. Since
Mk = ATpk(AAT), AMk is symmetric, which implies N (AMk) = N ((AMk)T).

�

4. Numerical Results

In this section, we compare our preconditioning method with well known meth-
ods, i.e., CGLS and the diagonally scaled CGLS method [7]. Table 1 provides some
basic information about the test matrices. In the table, m is the number of the
rows, n is the number of columns, nnz is the total number of nonzeros, density is
the density of the nonzeros in the matrices, cond is the condition number of the
matrices. The first matrix illc1850 was taken from the Matrix Market [11], and the
matrix sprandn8L and sprand8S are random matrices generated by the MATLAB
command: sprandn.

Table 1. Test matrices

Origin m n nnz density cond
illc1850 Matrix Market 1850 712 8636 0.007 103

sprandn8L Random matrix 10000 1000 487816 0.0488 108

sprandn8S Random matrix 2000 500 48788 0.0488 108

All computations were done on the IBM Thinkpad T60 (CPU 2 GHz, 997 MHz
1 GB RAM) with MATLAB 7.5. All the computation times in the tables are results
of averaging a hundred runs.

10 X. Cui and K. Hayami

For the first matrix, we use a random right-hand-side vector, which is generated
by MATLAB, and the problem is inconsistent. The initial guess was set to x0 = 0.
The convergence criterion we used for this problem is

‖AT(b − Axk)‖2 < 10−8‖ATb‖2.

The time to compute ‖AT(b − Axk)‖2 was neglected in all the iteration times.
The numerical results are given in Table 2. In Table 2, no numerical dropping
was performed, i.e., no nonzero elements were neglected in Mk. Hence, MkA is
symmetric, and we can use the MINRES method instead of the GMRES method
to solve the preconditioned problems (2.1).

Table 2. Results for illc1850

Method k ITS Pre. T Its. T Tot. T

Global Pre(k) +
GMRES

0 700 1.6e − 2 4.25 4.27
1 661 9.40e − 2 4.59 4.69
2 573 2.81e − 1 3.86 4.14
3 516 6.10e − 1 3.50 4.11
4 476 8.75e − 1 3.04 3.92
5 445 1.14 2.82 3.96

10 354 2.44 1.94 4.38

Global Pre(k) +
MINRES

0 1904 1.6e − 2 1.84e − 1 2.00e − 1
1 1317 9.40e − 2 9.40e − 2 1.88e − 1*
2 1066 2.81e − 1 6.24e − 2 3.43e − 1
3 802 6.10e − 1 3.42e − 2 6.44e − 1
4 796 8.75e − 1 3.76e − 2 9.13e − 1
5 663 1.14 3.12e − 2 1.17

Row-oriented(k) +
GMRES

1 658 7.5e − 1 4.54 5.29
2 553 1.35 3.65 5.00
3 485 2.03 3.15 5.17
4 449 2.21 2.78 4.99
5 418 2.29 2.44 4.73

10 333 2.72 1.75 4.48
CGLS 2083 0.00 3.26e − 1 3.26e − 1
Diag-CGLS 2081 5.31e − 3 3.66e − 1 3.72e − 1

In Table 2, we choose different k in Algorithm 2.1 to precondition GMRES and
MINRES. In the table, ‘ITS’ is the number of iterations for the algorithm to reach
convergence, ‘Pre. T’ is the preconditioning time, ‘Its. T’ is the iteration time,
and ‘Tol. T’ is the total time, in seconds, respectively. The asterisk ∗ indicates
the shortest total time in the table. According to the table, we observe that as
k increases, the number of iterations decrease significantly for both MINRES and
GMRES. All the preconditioners Mk can achieve better iteration numbers than
CGLS and diagonal scaled CGLS. The MINRES preconditioned by Algorithm 2.1

Preconditioners for Least Squares Problems 11

with k = 1 was the fastest in computation time. Comparing MINRES and GMRES,
the GMRES required less number of iterations, but the iteration time was longer
than MINRES. The reason is that GMRES is more robust against rounding error,
but at the cost of the more expensive Gram–Schmidt process. Comparing the
global preconditioner and the row-oriented preconditioner, the row-oriented pre-
conditioner required less iterations. However, it requires more preconditioning time
than global preconditioners do. When k = 0, the global preconditioner and row-
oriented preconditioner give the same M0, thus we did not list the result of k = 0
for row-oriented preconditioner.

In Table 3 , we gave results for an over-determined problem sprandn8L, which
is larger, much more ill-conditioned and denser. We chose b as A[1, . . . , 1]T as the
right-hand-side vector, so that the problem is consistent. The convergence criterion
was chosen as

‖b − Axk‖2 < 10−6‖b‖2.

Table 3. Results for sprandn8L

Method k ITS Pre. T Its. T Tot. T

Global Pre(k) +
GMRES,
τglobal = 10−5

0 840 4.80e − 1 1.17e + 1 1.22e + 1*
1 847 7.18 1.19e + 1 1.91e + 1
2 857 1.53e + 1 1.23e + 1 2.75e + 1
3 865 2.36e + 1 1.25e + 1 3.61e + 1

Row-oriented(k) +
GMRES,
τrow-oriented = 10−4

1 890 2.83e + 1 1.34e + 1 4.17e + 1
2 882 4.09e + 1 1.42e + 1 5.51e + 1
3 876 4.85e + 1 1.44e + 1 6.28e + 1

CGLS 50000+ 0.00 2.54e + 2 2.54e + 2
Diag-CGLS 21548 1.60e − 2 1.10e + 2 1.10e + 2

Since this problem is larger than the first problem, the numerical dropping
strategy was used, which implies that MkA is not symmetric and the MINRES
method cannot be employed. For the global preconditioner we dropped the (i, j)
element in G = (I − MA)AT when

|G(i, j)| < τglobal‖G‖1

holds. For the row-oriented preconditioner, we dropped the i-th element in gj =
(ej − mjA)AT when

|gj(i)| < τrow-oriented‖gj‖2

holds. The notations are the same as the ones used in Algorithm 2.2. The numerical
results are given in Table 3. Compared to the global preconditioner, the row-
oriented preconditioner usually gives a denser Mk. Thus, the preconditioning time
is much longer than that of the global preconditioner. In the table, we set τglobal

12 X. Cui and K. Hayami

to 10−5, and τrow-oriented to 10−4, since they are nearly optimal and give Mk with
approximately the same density.

Table 3 shows that increasing k does not necessarily result in improved con-
vergence for the global method with droppings. On the other hand, for the row-
oriented preconditioner the convergence improves as k is increased. However, the
numbers of iterations are more than the global preconditioner. For this extremely
ill-conditioned matrix A, the convergence criterion is stricter than ‖AT(b−Axk)‖2 <

10−8‖ATb‖2. The criterion ‖b − Axk‖2 < 10−6‖b‖2 is approximately equivalent to
‖AT(b−Axk)‖2 < 10−12‖ATb‖2, and the convergence behavior becomes somewhat
irregular when a very accurate solution is required.

From Table 2 to Table 3, we observe that the proposed preconditioning is time-
consuming compared to the iteration time especially for large k. Improvement in
the iteration time cannot compensate the expense for preconditioning. However,
when dealing with multi-right-hand-side problems, the CPU time spent on pre-
conditioning pays off. In Table 4, we solved a multiple right-hand-side problem.
The coefficient matrix A is the matrix sprand8S of Table 1. The right-hand-side
vectors were given by A times a series of random vectors which were also generated
by MATLAB.

Table 4. Results for multiple right-hand-side problem (sprandn8S)

Number of
subproblems

k = 0 k = 1 k = 2 k = 6 k = 7 Diag-CGLS

1 1.453 2.798 3.734 6.704 7.357 7.190e−1*

25 4.014e+1 2.946e+1 2.725e+1 2.312e+1 2.174e+1 1.998e+1*

50 7.969e+1 5.670e+1 5.232e+1 4.057e+1 3.720e+1* 3.981e+1

75 1.189e+2 8.448e+1 7.803e+1 5.802e+1 5.262e+1* 5.903e+1

100 1.583e+2 1.128e+2 1.020e+2 7.460e+1 6.738e+1* 7.867e+1

In Table 4, we give the total computation time in seconds for solving the least
squares problems with different number of right-hand-side vectors b. The global left
preconditioning with the MINRES method was used. We can observe that as the
number of the right-hand-side vectors increases, the preconditioners become more
and more competitive. This is also shown in Fig. 1.

From Fig. 1, we see that as k increases, the preconditioning time becomes
larger, but the iteration time per problem decreases. When k keeps increasing to 8,
the iteration time per problem starts to increase. Hence, there is an optimal k

which minimizes the total CPU time. For this problem, the optimal k is 7.

Preconditioners for Least Squares Problems 13

Fig. 1. Multiple right-hand-side problem

5. Conclusion

We applied the approximate inverse preconditioner to least squares problem.
Based on the preconditioner Mk from the MR algorithm, we gave equivalence theo-
rems and breakdown free theorems for both the left preconditioning case and the
right preconditioning case.

Numerical experiments showed that with the above preconditioning, the
MINRES method achieves a faster convergence for solving least squares problems,
although the preconditioning is time-consuming. However, for multiple right-hand-
side problems, the CPU time spent on preconditioning pays off.

References

[1] R.E. Bank and C. Wagner, Multilevel ILU decomposition. Numer. Math., 82 (1999),
543–574.

[2] S.T. Barnard, L.M. Bernardo and H.D. Simon, An MPI implementation of the SPAI pre-
conditioner on the T3E. Int. J. High Perform. Comput. Appl., 13 (1999), 107–128.

[3] M.W. Benson, Iterative Solution of Large Scale Linear Systems. Master’s Thesis, Lakehead
Universeity, Thunder Bay, ON, Canada, 1973.

[4] M.W. Benson and P.O. Frederickson, Iterative solution of large sparse linear systems arising
in certain multidimensional approximataion problems. Utilitas Math., 22 (1982), 127–140.

[5] M. Benzi, Preconditioning techniques for large linear systems: a survey. J. Comp. Phy., 182
(2002), 418–477.

[6] M. Benzi and M. Tůma, A comparative study of sparse approximate inverse preconditioners.
Appl. Numer. Math., 30 (1999), 305–340.

[7] A. Björck, Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[8] P.N. Brown and H.F. Walker, GMRES on (nearly) singular system. SIAM J. Matrix Anal.
Appl., 18 (1997), 37–51.

14 X. Cui and K. Hayami

[9] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations.
SIAM J. Sci. Comput, 19 (1998), 995–1023.

[10] J.D.F. Cosgrove, J.C. D́az and A. Griewank, Approximate inverse preconditioning for sparse
linear systems. Int. J. Comput. Math., 44 (1992), 91–110.

[11] I.S. Duff, R.G. Grimes and J.G. Lewis, Sparse matrix test problems. ACM Trans. Math.
Software, 15 (1989), 1–14.

[12] N.I.M. Gould and J.A. Scott, Sparse approximate-inverse preconditioners using norm-
minimization techniques. SIAM J. Sci. Comput., 19 (1998), 605–625.

[13] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses. SIAM
J. Sci. Comput., 18 (1997), 838–853.

[14] K. Hayami, J.-F. Yin and T. Ito, GMRES methods for least squares problems. NII Technical
Report, NII-2007-009E, July 2007, 1–28.

[15] C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12 (1975), 617–629.

[16] Y. Saad, Iterative Methods for Sparse Linear Systems (2nd edition). SIAM, Philadelphia,
2003.

[17] Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual method for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7 (1986), 856–869.

