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In this paper, we investigate a mode selection problem for the Turing patterns generated
from small random initial disturbances in one-dimensional reaction-diffusion systems on
a sufficiently large domain. For this problem, it is widely accepted that the maximizer
of the dispersion relation give rise to the wavenumber to be selected. Even in a small
neighborhood of the bifurcation point, our numerical experiments show that this is not
always true.
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1. Introduction

In various biological phenomena, many interesting macro-scopic spatial pat-
terns are self-organized such as formation and development of embryo, animal coat,
and so on. A theoretical approach for understanding such pattern formation mech-
anism was initiated by a simple but profound idea of Turing [13] that chemicals can
react and diffuse in such a way as to produce inhomogeneous spatial structures.
This original idea has been refined through applications to bifurcation problems
in reaction-diffusion systems. Roughly speaking, if one varies a parameter in a
reaction-diffusion system, then a spatially uniform steady state of the system be-
comes unstable, and there appear other stable steady states with spatial structure.
They are called the Turing patterns which exhibit spatially periodic structure near
the bifurcation point.

In such a situation, we are interested in what pattern is to be uniquely selected
among many bifurcating solutions. It is a typical and fundamental problem in
pattern formation theory, known as pattern selection problem. As evidenced in
[2, 10, 11], such problem has been intensively studied and selection criteria have
been proposed since the early 1980’s. These criteria have been influential and
played very important roles in various pattern selection problems, however, from a
mathematical viewpoint, they are not fully understood.

In this paper, we investigate a mode selection problem for the Turing
patterns generated from small random initial disturbances in one-dimensional
reaction-diffusion systems on a sufficiently large domain under the periodic bound-
ary conditions. Although our problem looks quite elementary, there are very
few literatures which treat such a problem from a comprehensive viewpoint. For
example, [10, Section 14.6] gives a brief explanation as follows. “If the initial con-
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ditions consist of small random perturbations about the uniform steady state then
the likely pattern to evolve is that with the largest linear growth.” In other words,
the maximizer of the dispersion relation exactly corresponds to the wavenumber
of the Turing pattern to be selected near the bifurcation point. This is a widely
accepted criterion and seems to be consistent to our naive intuition. However, is it
true that the Turing pattern to be selected is really determined by such a simple
criterion? We propose a condition under which the criterion is most likely valid in
many practical applications, and give examples for which such criterion fails.

Pattern selection is a subject of broad interest, not only from mathematical
analysis but also from various fields of sciences such as biological morphology, chem-
ical reaction, thermal convection, crystal growth, and so on. Therefore, we present
essential points of our results in such a manner to allow those who are interested in
pattern selection problems. The organization of this paper is as follows: In the next
section, we review a mode selection problem for the Turing patterns and explain
about the selection criterion through a concrete example. In Section 3, we examine
the dynamics around the uniform steady state of the example, and propose a prac-
tical condition to guarantee the validity of the criterion. Then, near the bifurcation
point, where nonlinearity is not significant, we exhibit numerical examples which
indicate that the criterion fails. In Section 4, we point out some relevant subjects
and further problems related to the results presented in the previous sections. In
Section 5, we conclude with a summary of this paper.

2. Mode selection of the Turing patterns in one-dimensional reaction-
diffusion systems

In this section, we review a mode selection problem for the Turing patterns
near the bifurcation point through a simple reaction-diffusion system of activator-
inhibitor type.

Let us consider {
τ1ut = d1uxx + αu− σu3 − βv,

τ2vt = d2vxx + βu− γv,
(2.1)

where τ1, d1, d2, α, β, γ, σ > 0 and τ2 ≥ 0. (2.1) is a reaction-diffusion system with
the FithHugh–Nagumo mechanism, which has been intensively studied in many
literatures ([10, 11] and the references therein). We begin to construct the Turing
patterns which are bifurcating stationary solutions of (2.1). Let (ū, v̄) = (0, 0) be
a spatially uniform steady state of (2.1), which is an onset of bifurcating patterns.
We consider a situation in which (ū, v̄) loses its stability and gives rise to the
appearance of spatially periodic stationary solutions. To do so, we consider the
linearized eigenvalue problem at (ū, v̄) = (0, 0)

Twt = Dwxx +Bw, (2.2)
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where w = (w1, w2)T ∈ C2 and

T =
(
τ1 0
0 τ2

)
, D =

(
d1 0
0 d2

)
, B =

(
α −β
β −γ

)
.

We are looking for solutions of the following form:

w = Ψk exp(λt+ ikx), Ψk ∈ C2. (2.3)

Substituting (2.3) into (2.2), we obtain a system of linear equations

(λT + sD −B)Ψk = 0, (2.4)

where s = k2, 〈Ψk,Ψk〉 = 1. In order for a stationary solution to bifurcate from ū,
it is necessary that (2.4) possesses a non-trivial solution for λ = 0. Hence it follows
from det(sD −B) = 0 that

β2 − (α− sd1)(γ + sd2) = 0, (2.5)

so that (2.4) has nontrivial solution Ψk = (pk, qk)T for λ = 0, where

p2
k =

β2

β2 + (α− sd1)2
and q2k =

(α− sd1)2

β2 + (α− sd1)2
. (2.6)

Here we choose d2 as a Turing bifurcation parameter. By using (2.5), we have

d2 = d̂2(s) =
β2

s(α− sd1)
− γ

s

for 0 < s < α/d1. Notice that d2 = d̂2(s) does not depend on τ1 and τ2. By using
d̂′2 = 0, we have

sc = k2
c =

α
√
β2 − αγ

d1(β +
√
β2 − αγ)

> 0 (2.7)

and

dc
2 = d̂2(sc) =

d1(β +
√
β2 − αγ)2

α2
, (2.8)

and obtain the following graph of d2 = d̂2(s) as in Fig. 1.
Furthermore, we suppose that a quadratic equation in λ

G(λ, s; d2) := det(λT + sD −B) = 0

gives the dispersion relations

λj = λj(s; d2) (j = 1, 2) (2.9)
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Fig. 1. The graph of d2 = d̂2(k
2) when d1 = 0.25, α = 1.0, β = 1.5, γ = 2.0. In this

case, the bifurcation point is given by (kc, d
c
2) = (1.0, 1.0). The Turing patterns

appear for d2 > d̂2(k
2).

satisfying the following properties:

Reλ1(s; d2) < 0 for all s and d2 < dc
2, (2.10)

λ1(sc; dc
2) = 0 and Reλ1(s; dc

2) < 0 for s �= sc, (2.11)

λ1(s; d2) is real valued near the bifurcation point (sc, d
c
2), (2.12)

∂

∂d2
λ1(s; d2)

∣∣∣∣
(s,d2)=(sc,dc

2)

> 0, (2.13)

Reλ2(s; d2) < 0 for all s and d2. (2.14)

Note that the dispersion relations are dependent on τ1 and τ2. λ1 = λ1(s; d2) is
called the critical dispersion relation, which plays a central role in the subsequent
analysis. It is corresponding to the maximum of the real parts of the roots of
G(λ, s; d2) = 0. Fig. 2 shows a typical example of the behavior of λ1 = λ1(s; d2)
near d2 = dc

2. The conditions (2.10)–(2.14) guarantee that the rest state (ū, v̄) =
(0, 0) is stable for d2 < dc

2. If d2 > dc
2, then (ū, v̄) = (0, 0) becomes unstable, and

the instability for the direction of the Fourier mode exp(±kx) corresponding to
λ1 = λ1(s; d2) > 0 (s = k2) grows up, and another stable steady state appears.
It should be noted that the mode with the largest growth rate is given by the
maximizer of the critical dispersion relation.

In what follows, we abbreviate “the critical dispersion relation” to “the dis-
persion relation” unless any confusion does occur.

Under the above assumptions, we can construct the Turing patterns

φ(x; k, d2) = aeikxΨk + c.c.+ h.o.t. (2.15)
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Fig. 2. The behavior of the critical dispersion relation λ1 = λ1(s; d2) for d2 = 1.0, 1.1, 1.2

when d1 = 0.25, α = 1.0, β = 1.5, γ = 2.0, τ1 = τ2 = 1.0. It is corresponding to

the maximum of the real parts of the roots of G(λ, s; d2) = 0.

for d2 > d̂2(k2) near the bifurcation point (kc, d
c
2) provided

0 < α < γ and β2 − αγ > 0, (2.16)

where Ψk = (pk, qk)T is given by (2.6), and c.c. and h.o.t. denote the com-
plex conjugate and higher order terms with respect to a, respectively. a =
a(k, d2 − d̂2(k2)) ≥ 0 denotes the amplitude of the Turing patterns, which is
sufficiently small with a(k, 0) = 0. Roughly speaking, it is determined as follows:
Substituting (2.15) into

d1uxx + αu− σu3 − βv = 0 and d2vxx + βu− γv = 0, (2.17)

and solve (2.17) with respect to a by using a standard procedure known as the
Liapunov–Schmidt method. For more details, see textbooks [5, 10]. In this case,
we can easily check (2.10)–(2.14) and obtain

φ(x; k, d2) = 2

√
(d2 − d̂2(k2))k2

3σ
cos(kx)

(
α− d1k

2

(α− d1k
2)2

)
+ h.o.t.

Notice that σ which characterize the intensity of nonlinearity affects on the ampli-
tude of the Turing pattern, but not on the wavenumber explicitly.

Remark 1. The Turing patterns which we construct are obtained in a weakly
nonlinear region near the bifurcation point, where standard local analysis such as
the bifurcation theory [5] and the reductive perturbation method [6] are effective.
In other words, we do not deal with situations in which the intensity of nonlinearity
is strong or a bifurcation parameter is far away from the bifurcation point.
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From the above argument, we see that there is a family of the Turing patterns
parameterized by the wavenumber k for each fixed d2 > dc

2 near the bifurcation
point. We now investigate what Turing pattern is to be uniquely selected among
many near the bifurcation point. To do so, we numerically solve (2.1) with a
small random initial data on a sufficiently large domain for a sufficiently large time
interval, i.e.,

{
τ1ut = d1uxx + αu− σu3 − βv, τ2vt = d2vxx + βu− γv,

u(x, 0) = εu0(x), v(x, 0) = εv0(x), 0 < x < L, 0 < t < T,
(2.18)

where u0(x), v0(x) ∈ (−1/2, 1/2) are uniform distributions generated by pseudo-
random numbers. Here we impose the periodic boundary condition on (2.18) be-
cause the spectral properties of the linearized eigenvalue problem at a stationary
solution of (2.1) on the whole domain are well approximated to that of (2.18) with
the periodic boundary conditions. We examine the final state of a solution of (2.18),
i.e., the spatial profile and the Fourier power spectrum of u(x, T ) for sufficiently
large T .

From the above argument, we may expect that u(x, T ) is sufficiently close to
the Turing pattern φ(x; k, d2) with the wavenumber corresponding to the maximizer
of the critical dispersion relation λ1 = λ1(s; d2) defined by G(λ, s; d2) = 0.

Differentiating G(λ, s; d2) = 0 with respect to s, we obtain Gλ ·λ′(s)+Gs = 0,
so that

λ′(s) = −Gs/Gλ. (2.19)

We solve Gs = 0 under the condition G = 0. It follows from Gs = 0 that

λ =
αd2 − γd1 − 2d1d2

d2τ1 + d1τ2
.

Substituting this into G = 0, it turns out that the maximizer of the critical disper-
sion relation is given by

s = k2
u(d2) :=

β(d2τ1 + d1τ2) −
√
d1d2(γτ1 + ατ2)√

d1d2(d2τ1 − d1τ2)
, (2.20)

which may determine the wavenumber of the Turing pattern to be uniquely selected.
Hereafter, we denote by ku(d2) the maximizer of the critical dispersion relation.

We now numerically solve (2.18) for d2 = 1.20 by using the pseudo-spectral
method and the discrete FFT when

d1 = 0.25, α = 1.0, β = 1.5, γ = 2.0,

τ1 = τ2 = 1.0, σ = 1.0 and ε = 0.0001.
(2.21)

This method is the only one which gives reliable numerical solutions of (2.18)
on a sufficiently large domain under the periodic boundary conditions in a small
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neighborhood of the bifurcation point [4]. In this case, the bifurcation point is
given by (kc, d

c
2) = (1.0, 1.0). We set L = 200π so that the discrete FFT can

detect a variation of the wavenumber of the Turing pattern in the accuracy δk =
2π/L = 0.01. Fig. 3 shows some examples of the spatial profile and the Fourier
power spectrum of u(x, T ) for T = 3000, where T is determined by the time when
a solution of (2.18) reaches a (meta)stable steady state.

Fig. 3. Some examples of the spatial profile and the Fourier power spectrum of u(x, T ).

They are presented in windows 0 ≤ x ≤ 50π and 0.64 ≤ k ≤ 1.28, respectively.

As seen in Fig. 3, the Fourier power spectrum does not necessarily have a
clear (bell) shape while the spatial profile looks like a sinusoidal function with a
particular wavenumber. Therefore we compute the power spectra of u(x, T ) for 30
random initial data, and take their average. The result is as follows:

k 0.96 0.97 0.98 0.99 1.00 1.01
û(k) 6.95 10.71 15.82 22.93 24.37 32.14

k 1.02 1.03 1.04 1.05 1.06 1.07
û(k) 30.27 25.94 18.41 14.10 8.69 6.20

Fig. 4. The average of the Fourier power spectra of u(x, T ) for 30 random initial data.
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The above result shows that the wavenumber k = 1.01 is selected with the
highest probability. We call this wavenumber the selected wavenumber denoted by
ks = ks(d2). In this case, ks(1.20) = 1.01, which implies that ks(1.20) ≈ ku(1.20)
by virtue of (2.20). Notice that ks(d2) is a statistical quantity while ku(d2) is a
deterministic one.

Similarly, solving (2.18) numerically for d2 = 1.05 and d2 = 1.10 under the
same parameters as above, we obtain the following results:

Table 1. The selected wavenumber ks(d2) for d2 = 1.05, 1.10 and 1.20.

d2 1.05 1.10 1.20
ku(d2) 1.00 1.01 1.01
ks(d2) 1.00 1.01 1.01

We emphasize that the selected wavenumber ks(d2) do not depend on σ the
coefficient of the nonlinear term because the almost same numerical results as
Tables 2 and 3 are obtained for σ = 0.1 and σ = 10. More precisely, σ affects
on the amplitude of the Turing pattern to be selected, but not on the wave-
number explicitly. This implies that our numerical experiments are done in a
small neighborhood of the bifurcation point.

In this case, considering the accuracy of our numerical computations, Table 1
shows that ks(d2) ≈ ku(d2), which supports that the Turing patten observed with
the highest probability can be given by the maximizer of the critical dispersion
relation.

Thus, we see that our mode selection problem for the Turing patterns is a
statistical one. Moreover, the above example supports a widely accepted criterion
that the wavenumber of the Turing pattern generated from a small random initial
disturbance can be predicted by the maximizer of the critical dispersion relation.
In the next section, we give a supporting argument for the above numerical results
and exhibit numerical examples which indicate that the criterion fails.

3. Deviation from the predicted wavenumber of the Turing patten

In this section, we examine the dynamics of (2.18) around the uniform steady
state, and propose a practical condition to guarantee that the wavenumber of the
Turing pattern observed with the highest probability is given by the maximizer of
the dispersion relation. Then we give examples for which the criterion fails.

In the previous section, we numerically solved (2.18) for d2 = 1.20 by using
the pseudo-spectral method and the discrete FFT under the values of parameters
(2.21). The following pictures in Fig. 5 show the dynamics of solutions for (2.18)
around the uniform steady state.

As seen Fig. 5, every numerical solution starting from a random initial data
quickly goes to the uniform steady state (ū, v̄) = (0, 0), and stay in a small neighbor-
hood of (ū, v̄) = (0, 0) for some time, and then evolves into the Turing pattern
as time passes. This implies that near the bifurcation point, the uniform steady
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Fig. 5. Snapshots of spatial profiles of u component for numerical solutions of (2.18)

around the uniform steady state in a small window 0 < x < 8π, −0.00015 <

y < 0.00015 under the values of parameters (2.21) when d2 = 1.20; (a) t = 0,

(b) t = 0.5, (c) t = 2.5, (d) t = 5, (e) t = 10, (f) t = 20, (g) t = 30, (h) t = 40,

(i) t = 60, (j) t = 80. They show the dynamics of (2.18) in the early stage. The

fully developed Turing patterns with the amplitude about 0.25 are out of this

small window.
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state is a saddle point in the PDE dynamics. In other words, the uniform steady
state becomes unstable after super-critical bifurcation, however, it attracts almost
every solution in the early stage of the PDE dynamics. Consequently, the uniform
steady state plays crucial role to determine direction of time evolution of solutions.
Therefore, the criterion that the maximizer of the dispersion relation predicts the
wavenumber of the Turing pattern can be applicable if the uniform steady state
attracts solutions starting from random initial disturbances to its sufficiently small
neighborhood (see Fig. 6).

Fig. 6. A heuristic picture of the dynamics around the uniform steady state. In the

case (a), solutions go through a sufficiently small neighborhood of the uniform

steady state, so that the maximizer of the dispersion relation can predict the

wavenumber to be selected. On the other hand, in case (b), solutions do not

come close enough to the uniform steady state, so that the criterion may not be

effective.

After an almost instantaneous smoothing process induced by diffusion effect
at the initial stage, the solutions of (2.18) virtually become spatially constant.
Therefore, the diffusion effect subsides and the subsequent PDE dynamics of (2.18)
closely follows the ODE dynamics given by

{
τ1ut = αu− σu3 − βv,

τ2vt = βu− γv,
(3.1)

in which (ū, v̄) = (0, 0) is a stable equilibrium. This means that the temporary
attraction of random initial disturbances to the uniform steady state is characterized
by the eigenvalues of the linearization of (3.1) at (ū, v̄) = (0, 0), i.e.,

μ1 =
−(γτ1 − ατ2) +

√
(γτ1 + ατ2)2 − 4τ1τ2β2

2τ1τ2
,

μ2 =
−(γτ1 − ατ2) −

√
(γτ1 + ατ2)2 − 4τ1τ2β2

2τ1τ2
.

Notice that μj (j = 1, 2) are not dependent on a bifurcation parameter d2, and

λj(0; d2) = μj (j = 1, 2),
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where λj = λj(s; d2) (j = 1, 2) are the dispersion relations given by (2.9). As for
the example treated in the previous section, we find that

Reμ1 	 0 < max
s
λ1(s; d2) (3.2)

for d2 > dc
2. In fact, under the parameters (2.21),

μ1 = −0.5 	 0 < max
s
λ1(s; d2)

holds (for example, 0.05983 ≈ maxs λ1(s; d2) when d2 = 1.2). We propose (3.2)
as a practical condition to guarantee that the maximizer of the dispersion relation
can predict the wavenumber of the Turing pattern generated from a small random
initial disturbance.

In order to examine the validity of the above condition, we choose parameters
so as to Reμ1 � 0. After verifying (2.10)–(2.14), we numerically solve (2.18) under
the same values of parameters as (2.21) except τ2 = 1.99, i.e.,

d1 = 0.25, α = 1.0, β = 1.5, γ = 2.0,

σ = 1.0, τ1 = 1.0, τ2 = 1.99 and ε = 0.0001.
(3.3)

For these parameters, the bifurcation diagram given by d2 = d̂2(s) is same as Fig. 1,
however, the behavior of the critical dispersion relation around s = 0 is different
from Fig. 2 as follows:

Fig. 7. The behavior of the critical dispersion relation λ1 = λ1(s; d2) for d2 = 1.0, 1.1, 1.2

under (3.3). It is corresponding to the maximum of the real parts of the roots of

G(λ, s; d2) = 0, which has a double root at the singular point of the above curves.

It should be noted that the critical dispersion relation satisfies usual conditions
for the Turing bifurcation as seen in [5, 10, 11] because (2.10)–(2.14) hold. In
this case, μ1 ≈ −0.00251 + 0.3544i and μ2 ≈ −0.00251− 0.3544i, so that solutions
starting from random initial disturbances oscillate and approach the uniform steady
state in the early stage of the dynamics when d2 = 1.20. In contrast to the previous
case as seen in Fig. 5, the solutions do not come close enough to the uniform steady
state (see Fig. 6 (b)).



292 M. Kuwamura

In a similar manner to the previous section, under the values of parameters
(3.3) with d2 = 1.20, we numerically verify that the Turing patterns appear from
the uniform steady state, and find that ks(1.20) ≈ 1.00 by the following statistical
result.

k 0.95 0.96 0.97 0.98 0.99 1.00
û(k) 5.74 8.32 14.13 20.38 23.45 31.90

k 1.01 1.02 1.03 1.04 1.05 1.06
û(k) 29.26 22.28 19.11 15.21 9.73 4.90

Fig. 8. The average of the Fourier power spectra of u(x, T ) for 30 random initial data.

Considering the accuracy of our numerical computation, the above result shows
that the wavenumber of the Turing pattern deviates from the maximizer of the
dispersion relation to the right because ku(1.20) ≈ 0.97 by virtue of (2.20). A reason
for this deviation is due to that almost every solution starting from a random initial
data can not come close enough to the uniform steady state since the condition (3.2)
does not hold under (3.3).

Although the above result is based on a concrete example (2.1), it seems to be
valid for general two component reaction-diffusion systems. In fact, after appro-
priate spatio-temporal rescaling, without loss of generality, we may suppose that
general two component reaction-diffusion system

{
τ1ut = d1uxx + f(u, v),

τ2vt = d2vxx + g(u, v)
(3.4)

satisfies

fv(ū, v̄) = −gu(ū, v̄), (3.5)

where (ū, v̄) denotes the uniform steady state. The minus sign of (3.5) means that
two types of components with opposite interaction such as activator-inhibitor is
necessary to produce the Turing patterns. Recalling our experimental fact that
the nonlinearity of reaction-diffusion systems does not explicitly affect the wave-
number to be selected, we may consider that a mode selection mechanism for the
Turing patterns of (3.4) is similar to the one of (2.1). Actually, in our numerical
experiments, we could not find out a concrete example of two component reaction-
diffusion system such that the wavenumber of the Turing pattern is not less than
the maximizer of the dispersion relation.

Next, we give another example which indicates that the wavenumber of the
Turing pattern deviates from the maximizer of the dispersion relation to the left.
It is not so easy to find out such an example because we have to consider three or
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more component reaction-diffusion systems with many parameters. Let us consider
a three component system⎧⎪⎪⎨

⎪⎪⎩
τ1ut = d1uxx + αu− σu3 − βv − νw,

τ2vt = d2vxx − γv + βu− cw,

τ3wt = d3wxx − ρw + νu+ cv,

(3.6)

which consists of one activator u and two inhibitors v and w. When c = 0, (3.6) was
studied in [1] which concerned with the dynamics of localized patterns such as a
traveling spot. Moreover, (3.6) with c = 0 has a skew-gradient structure explained
in the next section. The parameter c describes the internal interaction between two
inhibitors.

We consider the Turing patterns on the trivial steady state (ū, v̄, w̄) = (0, 0, 0),
in which we choose d2 as a bifurcation parameter. In order to seek suitable value
of each parameter, we set d3 = 0 and carry out a concrete calculation with the aid
of computer algebra. Then we consider a situation for small d3 > 0.

In the same fashion as the two-component system (2.1) treated in the previous
section, when d3 = 0, we have

d2 = d̂2(s) =
β2

s(α− sd1 − ν2/ρ)
− γ

s
− c2(α− sd1)
ρs(α− sd1 − ν2/ρ)

. (3.7)

Differentiating (3.7) with respect to s, we find that the bifurcation point

sc = k2
c =

−h1 +
√
h2

d1ρ(γρ+ c2)
and dc

2 = d̂2(sc), (3.8)

where

h1 := ρ{(β2 − αγ)ρ+ ν2γ − c2α} > 0 (3.9)

and

h2 := (βρ+ νc)(βρ− νc)h1 > 0. (3.10)

In this case, we expect that the Turing pattens appear for d2 > d̂2(k2) near the
bifurcation point (kc, d

c
2) under appropriate values of parameters.

Next, we consider the critical dispersion relation. In a similar manner to the
previous section, we consider

G(λ, s; d2) := θ1θ2θ3 + β2θ3 + ν2θ2 + c2θ1 = 0, (3.11)

where θ1 = λτ1 + sd1 − α, θ2 = λτ2 + sd2 + γ and θ3 = λτ3 + sd3 + ρ. Notice that
G(λ, s; d2) does not include σ which indicates the intensity of nonlinearity. Suppose
that G(λ, s; d2) = 0, a cubic equation in λ, gives dispersion relations

λj = λj(s; d2) (j = 1, 2, 3)
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Fig. 9. The graph of d2 = d̂2(s) when d1 = 0.25, d3 = 0.01, α = c = γ = ρ = 1.0, β =

1.5, ν = 0.5. The Turing patterns appear for d2 > d̂2(s). This graph is obtained

by a perturbation of (3.7).

satisfying the following properties:

Reλ1(s; d2) < 0 for all s and d2 < dc
2, (3.12)

λ1(sc; dc
2) = 0 and Reλ1(s; dc

2) < 0 for s �= sc, (3.13)

λ1(s; d2) is real valued near the bifurcation point (sc, d
c
2), (3.14)

∂

∂d2
λ1(s; d2)

∣∣∣∣
(s,d2)=(sc,dc

2)

> 0, (3.15)

Reλ2(s; d2), Reλ3(s; d2) < 0 for all s and d2. (3.16)

When d3 = 0, we choose the following values of parameters

d1 = 0.25, α = c = γ = ρ = 1, β = 1.5, ν = 0.5,

τ1 = τ2 = τ3 = 1
(3.17)

so as to satisfy (3.12)–(3.16). For these parameters, we find sc = k2
c = 1.0 and

dc
2 = 2.0 by virtue of (3.8).

We now take a small d3 > 0, say d3 = 0.01. In this case, we can numerically
obtain the graph of d2 = d̂2(s), and verify

(kc, d
c
2) = (1.003754156, 1.999944522) ≈ (1.00, 2.00),

and the conditions (3.12)–(3.16). Moreover, Fig. 10 (a) shows the behavior of λ1 =
λ1(s; d2) when d3 = 0.01 and (3.17).

When d3 = 0.01, σ = 1.0 and (3.17), we numerically solve (3.6) for d2 = 2.05,
2.10 and 2.20 corresponding to |d2 − dc

2|/dc
2 ≈ 0.025, 0.05 and 0.1, respectively. By
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Fig. 10. The behavior of the critical dispersion relation λ1 = λ1(s; d2) for d2 = 2.0, 2.1,

2.2 when d1 = 0.25, d3 = 0.01, α = c = γ = ρ = 1.0, β = 1.5, ν = 0.5, τ1 =

τ2 = 1.0. It is corresponding to the maximum of the real parts of three roots of

G(λ, s; d2) = 0. (a) τ3 = 1.0, (b) τ3 = 10.0. G(λ, s; d2) = 0 has a double real

root at the singular point of curves in (b).

using the pseudo-spectral method and the discrete FFT as applied to (2.18), we
can solve⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ1ut = d1uxx + αu− σu3 − βv − νw,

τ2vt = d2vxx − γv + βu− cw,

τ3wt = d3wxx − ρw + νu+ cv,

u(x, 0) = εu0(x), v(x, 0) = εv0(x), w(x, 0) = εw0(x),

0 < x < L, 0 < t < T,

(3.18)

where L = 200π, ε = 0.0001 and u0(x), v0(x), w0(x) ∈ (−1/2, 1/2) are uniform
distributions generated by pseudo-random numbers. For sufficiently large T , the
spatial profile of u(x, T ) looks like a sinusoidal function with a particular wave-
number. Computing the power spectra of u(x, T ) for 30 random initial data, and
taking their average, we obtain the following results:

k 0.95 0.96 0.97 0.98 0.99 1.00
û(k) 1.99 3.69 8.72 13.22 20.71 26.34

k 1.01 1.02 1.03 1.04 1.05 1.06
û(k) 22.35 16.62 13.78 6.74 3.58 1.90

Fig. 11. The average of the Fourier power spectra of u(x, T ) for 30 random initial data

when d2 = 2.2.
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Table 2. The selected wavenumber ks(d2) for d2 = 2.05, 2.10 and 2.20.

d2 2.05 2.10 2.20
ku(d2) 1.00 1.00 1.00
ks(d2) 1.00 1.00 1.00

The above table shows ks(d2) ≈ ku(d2), where ku(d2) is given by the maximizer
of the critical dispersion relation λ1 = λ1(s; d2). This result supports that the
maximizer of the dispersion relation can predict the wavenumber of the Turing
pattern generated from a small random initial disturbance under the condition
(3.2). In fact, μ1 is real and

μ1 ≈ −0.21445 	 0 < max
s
λ1(s; d2)

holds (for example, 0.02765 ≈ maxs λ1(s; d2) when d2 = 2.2), so that (3.2) holds.
On the other hand, we numerically solve (3.18) under the same values of

parameters as (3.17) except τ3 = 10, i.e.,

d1 = 0.25, d3 = 0.01, α = c = γ = ρ = 1, β = 1.5, ν = 0.5,

τ1 = τ2 = 1, τ3 = 10.
(3.19)

In this case, we can numerically verify (3.12)–(3.16) and the behavior of the critical
dispersion relation as in Fig. 10 (b). In the same way as the previous case, we solve
(3.18) under (3.19) and obtain the following statistical results:

k 0.99 1.00 1.01 1.02 1.03 1.04
û(k) 0.90 1.81 5.29 11.76 18.50 27.68

k 1.05 1.06 1.07 1.08 1.09 1.10
û(k) 24.57 18.26 8.60 3.67 1.28 0.48

Fig. 12. The average of the Fourier power spectra of u(x, T ) for 30 random initial data

when d2 = 2.2.

Table 3. The selected wavenumber ks(d2) for d2 = 2.05, 2.10 and 2.20.

d2 2.05 2.10 2.20
ku(d2) 1.03 1.05 1.08
ks(d2) 1.02 1.03 1.04

Considering the accuracy of our numerical computations, we find that ks(d2)
deviates from ku(d2) to the left. In this case, μ1 is a complex number with the
non-zero imaginary part, and

Reμ1 ≈ −0.03178 < 0 < max
s
λ1(s; d2)
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holds (for example, 0.03814 ≈ maxs λ1(s; d2) when d2 = 2.2), so that (3.2) does
not hold.

In addition, we verify that the selected wavenumber ks(d2) do not depend on
σ the coefficient of the nonlinear term because the almost same numerical results
as Tables 2 and 3 are obtained for σ = 0.1 and σ = 10. This implies that our
numerical experiments are done in a small neighborhood of the bifurcation point.

Thus, it is possible for three component reaction-diffusion systems that the
wavenumber of the Turing pattern deviates from the maximizer of the dispersion
relation to the left.

Remark 2. The Routh–Hurwitz theorem [10, Appendix 2] is an useful tool
for checking the conditions (3.12)–(3.16) which impose strict restrictions on a range
of parameters. In general reaction-diffusion systems with three or more components,
however, it is not easy to verify (3.12)–(3.16) because G(λ, s; d2) = 0 becomes a
quite involved and lengthy equation.

Remark 3. When c = 0, we can not take τ3 relatively larger than τ1 and
τ2 satisfying (3.12)–(3.16), so that the deviation from the predicted wavenumber
to the left can not be observed. We can not give a rigorous proof of this fact,
however, we may expect that the parameter c plays a crucial role in our numerical
experiments.

4. Discussion

As we have observed in the arguments so far, our mode selection problem
for the Turing patterns is a statistical problem. We have examined the dynamics
around the uniform steady state near the bifurcation point, and propose a practical
condition to guarantee the criterion that the wavenumber of the Turing pattern gen-
erated from a small random initial disturbance can be predicted by the maximizer
of the dispersion relation.

In this section, we briefly mention some relevant subjects and further problems
related to the results presented in previous sections. They suggest us to reconfirm
the validity of well accepted assertions concerning pattern selection from both ex-
perimental and theoretical points of view.

4.1. Mode selection for gradient/skew-gradient systems
One of useful approach to study pattern selection problem is to find a free en-

ergy (variational principle), which determines direction of time evolution of systems.
In other words, the selected pattern can be indicated by the (global) minimizer of
free energy. This is intuitively natural, however, is not always true. In fact, the
minimizer of a free energy does not always have the largest basin of attraction. As
for a mode selection problem for the Turing patterns generated from small random
initial disturbances, the dispersion relation plays a more important role than a free
energy. In order to understand this fact, we recall reaction-diffusion systems with
gradient/skew-gradient structure [7, 14].
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A reaction-diffusion system

Tut = DΔu +Q∇uF (u), u = (u1, . . . , un)T (4.1)

is said to have gradient/skew-gradient structure when (4.1) satisfies the following
assumptions:
(A1) T is a non-degenerate positive diagonal matrix.
(A2) D is a regular matrix satisfying DTQ = QD, where Q is a symmetric matrix

with Q2 = In.
(A3) f(u) = Q∇uF (u), where F = F (u) : Rn → R is a smooth function.

Under the above assumptions, we immediately see that (4.1) has a (skew) free
energy defined by

E [u] =
∫ {

1
2
〈〈D∇u, Q∇u〉〉 −H(u)

}
dx,

where

〈〈D∇u, Q∇u〉〉 :=
∑
i,j

dij∇uj · qij∇uj .

In fact, we can easily (formally) check that the (skew) energy equation

d

dt
E [u(x, t)] = −

∫
〈ut, QTut〉 dx

holds, where 〈 · , · 〉 denotes the usual inner product defined on Rn. (4.1) is said
to have gradient structure when QT is nonnegative symmetric, and skew-gradient
structure otherwise. As for (2.1), we can easily see that

d

dt
E [u(x, t), v(x, t)] = −

∫
(τ1u2

t − τ2v
2
t ) dx

holds, where E [u, v] is given by

E [u, v] =
∫
d1

2
u2

x − d2

2
v2

x − F (u, v) dx

and F (u, v) = αu2/2 − u4/4 − βuv + γv2/2. Therefore, (2.1) has a skew-gradient
structure for τ2 > 0 while gradient structure for τ2 = 0. In both cases, the selected
wavenumber is given by the maximizer of the critical dispersion relation under a
condition such as (3.2). Notice that it is different from the minimizer of a (skew)
free energy. In other words, the gradient system (2.1) with τ2 = 0 is a typical
example such that the pattern to be selected is not corresponding to the minimizer
of a free energy. As was mentioned in [7], however, we may expect that the selected
wavenumber is not greater than the minimizer of a (skew) free energy under a
certain condition as (3.2).
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4.2. Scalar equation vs. system
It is well known [9] that one-dimensional scalar reaction-diffusion equation can

not exhibit the Turing patterns. However, a fourth order scalar equation such as the
Swift–Hohenberg equation has a family of spatially periodic bifurcating stationary
solutions which are considered as the Turing patterns. In fact, as was mentioned in
[8], such fourth order scalar equation can be formally rewritten as two component
reaction-diffusion system. For example, the Swift–Hohenberg equation

ut = αu− (1 + ∂xx)2u− u3 (4.2)

can be rewritten as a 2-component gradient system (4.1) by setting (u1, u2)= (u, v),
where v = u+ uxx and

T =
(

1 0
0 0

)
, D =

(
0 −1
1 0

)
, Q =

(
1 0
0 −1

)
,

F = F (u, v) =
α

2
u2 − 1

4
u4 − uv +

1
2
v2.

We immediately find that the dispersion relation for (4.2) is given by

λ1 = α− (1 − k2)2, (4.3)

which implies that bifurcating stationary solutions with wavenumber k ≈ 1 appear
for α > 0. Notice that the dispersion relation of a scalar equation has a single
branch. Substituting u = ε cos(kx) to (4.2) and using the long wavelength approxi-
mation cos3(kx) = (3 cos(kx) + cos(3kx))/4 ≈ 3 cos(kx)/4, we can easily obtain

u = ε cos(kx) +O(ε3), ε = 2
√

(α− (1 − k2)2)/3, (4.4)

which gives a family of bifurcating stationary solutions of (4.2) for α > 0. In a
similar manner to the previous sections, we investigate a mode selection problem for
spatially periodic patterns (4.4) near the bifurcation point. In the scalar equation
(4.2), for any small random initial disturbance, the Fourier power spectrum of
u(x, T ) for sufficiently large T > 0 has a clear bell shape independent of initial
data as in Fig. 13. In this case, the deviation from the predicted wavenumber by
the dispersion relation can not be observed. Therefore, the resulting pattern seems
to be selected in a deterministic way, and it is the most outstanding difference
between fourth order scalar equations such as (4.2) and reaction-diffusion systems
such as (2.1). This fact is characteristic of a scalar equation, and may be one of
reason why a scalar equation is mainly used for verifying the validity of various
assertions concerning pattern selection [2, 12]. In the above scalar equation, the
dispersion relation (4.3) satisfies the condition (3.2). For a scalar equation, it may
be a necessary condition that the wavenumber of a bifurcating pattern seems to be
selected in a deterministic way.
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Fig. 13. The Fourier power spectrum of u(x, T ) for solutions of (4.2) for T = 2000 when

α = 0.01.

4.3. Propagation of the Turing patterns
We have investigated a mode selection problem for the Turing patterns gen-

erated from small initial disturbances. We are also interested in a mode selection
problem for spatially periodic patterns generated from sufficiently localized initial
data. In this case, a small localized initial perturbation evolves into the fully devel-
oped Turing pattern on a sufficiently small region, then spreading into the uniform
steady state as in Fig. 14, and eventually covering the entire region.

Fig. 14. A schematic picture of the Turing pattern spreading into the uniform steady

state.

Our problem is to predict the speed of a pattern forming front and the wave-
number of a spatially periodic stationary pattern far behind the front. For such
problems, we may suppose that the speed of a front is determined by the dynamics
of the leading edge of the front, which can be analyzed by the linearization of the
dynamics around the uniform steady state. According to [11, 12], we briefly review
a standard procedure to predict the speed of a pattern forming front by using the
dispersion relation, and consider the wavenumber of the Turing pattern far behind
the front.

Let ψ be a perturbation of the form ψ ∼ e−iωt+ikx. In the same way as
the argument in Section 2, substituting ψ ∼ e−iωt+ikx into the linearization of a
given equation around the uniform steady state, we obtain the dispersion relation,
expressing as a function of k,

ω = ω(k).

Here, ω and k are allowed to be complex numbers. That is, ki := Im k determines
the order of spatial decay at infinity and the shape of the envelop, while kr := Re k
indicates the wavenumber within the envelop. Moreover, ωi := Imω determines
whether the perturbation decays or grows, and ωr := Reω describes whether the
temporal behavior is oscillatory or monotone.
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For each fixed ki, we assume that the temporal growth rate ωi, as a function
of the wavenumber kr, has the functional form as in Fig. 15. Under the above
assumption, we consider the fastest growing wavenumber defined by

∂ωi

∂kr
= 0,

∂2ωi

∂k2
r

< 0

for each fixed ki, which determines kr as a function of ki. Then we introduce the
envelop velocity

c = c(ki) =
ωi

ki
,

and seek the minimizer of c = c(ki) defined by

∂c

∂ki
=

1
k2

i

(
∂ωi

∂ki
ki − ωi

)
= 0.

Thus we obtain the linear marginal stability criterion

c∗ =
ωi

ki
=
∂ωi

∂ki
,

∂ωi

∂kr
= 0, (4.5)

which gives the selected wave speed c∗ and the corresponding wavenumber k∗r at
the leading edge of a front. We may expect that this criterion is valid near the
bifurcation point, where nonlinearity is not significant.

Fig. 15. The functional form of ωi = ωi(kr) for fixed ki, and c = c(ki).

Next, we consider the wavenumber of a spatially periodic stationary pattern
far behind a pattern forming front, which is different from k∗r . In the moving
frame with the speed c∗, the temporal profile of a solution in the leading edge is
oscillatory, which is described by e−i(ω∗

r−k∗
rc∗)t. Therefore, the nodes created at

the leading edge pass any fixed position near the leading edge with the angular
frequency |ω∗

r −k∗rc∗|. On the other hand, in this moving frame, the Turing pattern
with the wavenumber q∗ far behind a front has the wave speed c∗, so that the
nodes pass a fixed position far behind the front with the angular frequency c∗q∗ in
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the moving frame. Applying the node conservation condition c∗q∗ = |ω∗
r − k∗rc

∗|,
we obtain

q∗ = |ω∗
r/c

∗ − k∗r |. (4.6)

For example, applying (4.5) and (4.6) to the Swift–Hohenberg equation (4.2),
we have

c∗ =
4

3
√

3
(2 +

√
1 + 6α)(−1 +

√
1 + 6α)1/2, (4.7)

q∗ =
3(3 +

√
1 + 6α)3/2

8(2 +
√

1 + 6α)
. (4.8)

As reported in [3, 12], we can numerically confirm the validity of (4.8).
Thus we see that the linear marginal stability criterion and the node conserva-

tion condition can predict the speed of a pattern forming front and the wavenumber
of the Turing pattern far behind the front for a scalar equation as (4.2). However,
noting the difference between scalar equations and systems as mentioned before,
and recalling our results concerning the wavenumber of the Turing patterns gener-
ated from random initial disturbances, we should examine whether or not c∗ and
q∗ exactly correspond to the speed of a front and the wavenumber of the Turing
pattern far behind the front for reaction-diffusion systems. Our investigation is now
in progress, and will be reported in a separate paper.

5. Summary

In this paper, we investigate a mode selection problem for the Turing patterns
generated from small initial disturbances in one-dimensional reaction-diffusion sys-
tems on a sufficiently large domain. We examine the validity of a widely accepted
criterion that the wavenumber of the Turing pattern exactly corresponds to the
maximizer of the dispersion relation. This criterion asserts that the wavenumber of
the Turing pattern observed with the highest probability is given by the maximizer
of the dispersion relation.

For our problem, it is a simple but important fact that the uniform steady
state is a saddle point in the PDE dynamics defined by reaction-diffusion systems.
That is, the uniform steady state becomes unstable after super-critical bifurcation,
however, it attracts almost every solution in the early stage of the PDE dynamics.
The dominant part of the dynamics of this stage can be expressed by the ODE
derived from the PDE without diffusion terms. This implies that the attractivity
of solutions for the PDE starting from random initial disturbances to the uniform
steady state is characterized by the eigenvalues of the linearized ODE. Therefore, in
many practical applications, it is to be checked a condition that all the eigenvalues
of the linearized ODE at the uniform steady state are far away from the real axis
to the left. In fact, the criterion is not always true if the condition is not satisfied.

As for pattern selection problems, useful and practical selection criteria have
been proposed, however, they are not fully understood from a mathematical view-
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point. Therefore, the accumulation of basic knowledge as presented in this paper
is indispensable for precise understanding of such criteria in various problems for
pattern selection which is one of fundamental topics of pattern formation theory.

Acknowledgment. The author expresses his sincere gratitude to Professors
Masayasu Mimura, Toshiyuki Ogawa and Kunimochi Sakamoto for their helpful
comments and advices to complete this work. This work was supported in part by
Grant-in-Aid for Scientific Research (C) No. 18540120, JSPS, Japan.

References

[ 1 ] M. Bode, A.W. Liehr, C.P. Schenk and H.-G. Purwins, Interaction of dissipative solitons:
particle-like behavior of localized structures in a three-component reaction-diffusion system.
Physica D, 161 (2002), 45–66.

[ 2 ] M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys.,
65 (1993), 851–1112.

[ 3 ] G. Dee and J.S. Langer, Propagating pattern selection. Phys. Rev. Lett., 50 (1983), 383.
[ 4 ] J.C. Eilbeck, The pseudo-spectral method and following in reaction-diffusion bifurcation

studies. SIAM J. Sci. Stat. Comput., 17 (1986), 599–610.
[ 5 ] G. Iooss and D.D. Joseph, Elementary Stability and Bifurcation Theory. Springer-Verlag,

1980.
[ 6 ] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence. Springer-Verlag, 1984.
[ 7 ] M. Kuwamura, On the Turing patterns in one-dimensional gradient/skew-gradient dissipa-

tive systems. SIAM J. Appl. Math., 65 (2005), 618–643.
[ 8 ] M. Kuwamura and E. Yanagida, Krein’s formula for indefinite multipliers in linear periodic

Hamiltonian systems. J. Differential Equations, 230 (2006), 446–464.

[ 9 ] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations.
Publ. Res. Inst. Math. Sci., 15 (1979), 401–485.

[10] J.D. Murray, Mathematical Biology, 2nd edition. Springer-Verlag, 1993.
[11] Y. Nishiura, Far-from-Equilibrium Dynamics. Transl. Math. Monogr., 209, AMS, Provi-

dence, RI, 2002.
[12] W. van Saarloos, Front propagation into unstable states. Physics Reports, 386 (2003),

29–222.
[13] A.M. Turing, The chemical basis of morphogenesis. Phil. Roy. Soc. B, 237 (1952), 37–72.
[14] E. Yanagida, Standing pulse solutions in reaction-diffusion systems with skew-gradient struc-

ture. J. Dynamics Differential Equations, 4 (2000), 89–205.




