
Japan J. Indust. Appl. Math., 25 (2008), 255–279 Area 〈2〉

On Computation of a Power Series Root

with Arbitrary Degree of Convergence

Takuya Kitamoto

Faculty of Education, Yamaguchi University
1677–1 Yoshida, Yamaguchi 753–8513, Japan
E-mail: kitamoto@yamaguchi-u.ac.jp

Received September 29, 2005

Revised October 12, 2007

Given a bivariate polynomial f(x, y), let φ(y) be a power series root of f(x, y) = 0 with
respect to x, i.e., φ(y) is a function of y such that f(φ(y), y) = 0. If φ(y) is analytic at
y = 0, then we have its power series expansion

φ(y) = α0 + α1y + α2y2 + · · ·+ αryr + · · · . (1)

Let φ(k)(y) denote φ(y) truncated at yk, i.e.,

φ(k)(y) = α0 + α1y + α2y2 + · · ·+ αkyk. (2)

Then, it is well known that, given initial value φ(0)(y) = α0 ∈ C, the symbolic Newton’s
method with the formula

φ(2m−1)(y)← φ(2m−1−1)(y)− f
`
φ(2m−1−1)(y), y

´

∂f
∂x

`
φ(2m−1−1)(y), y

´ (mod y2m
) (3)

computes φ(2m−1)(y) (1 ≤ m) in (2) with quadratic convergence (the roots are computed

in the order φ(0)(y) → φ(21−1)(y) → φ(22−1)(y) → · · · → φ(2m−1)(y)). References
[1] and [3] indicate that the symbolic Newton’s method can be generalized so that its
convergence degree is an arbitrary integer p where its roots are computed in the order

φ(0)(y) → φ(p−1)(y) → φ(p2−1)(y) → · · · → φ(pm−1)(y). Although the high degree
convergent formula in [1] and [3] requires fewer iterations than the symbolic Newton’s
method, it may not be efficient as expected, since one iteration of the formula requires
more computations than one in the symbolic Newton’s method.

In this paper, we combine the polynomial evaluation method in [9] with the formula
of arbitrary degree convergence and propose an algorithm that computes the above power

series root φ(k)(y). We analyze the complexity of the algorithm and give the number of
multiplications/divisions required to compute a power series root in an explicit form. It is
shown that when the degree of polynomial f(x, y) is high, high degree convergent formula
is advantageous over the symbolic Newton’s method.

Key words: symbolic Newton’s method, power series, high degree convergent, complexity
analysis

1. Introduction

The computation of polynomial roots has a long history. One remarkable
outcome of such computation of roots is Abel’s impossibility theorem, which states
that “in general, roots of polynomials with a degree of higher than four can not
be expressed in terms of a finite number of additions, subtractions, multiplications,
divisions, and root extractions.” Because of this theorem, a root φ(y) of given

256 T. Kitamoto

polynomial f(x, y) with respect to x can not be expressed explicitly as a function
of y when the degree of f(x, y) with respect to x is over four. This motivates us to
compute root φ(y) in the form of power series

φ(k)(y) = α0 + α1y + α2y
2 + · · ·+ αkyk (4)

truncated at the k-th degree in y. In the rest of the paper, we refer to the above
root as the “k-th power series root.”

It is well known that power series roots can be computed by the symbolic
Newton’s method with quadratic convergence ([7, 8]), where its roots are computed
in the order φ(0)(y) → φ(21−1)(y) → φ(22−1)(y) → · · · → φ(2m−1)(y). References
[1] and [3] propose a generalization of the symbolic Newton’s method, where its
convergence degree is arbitrary, say p, and its roots are computed in the order
φ(0)(y)→ φ(p1−1)(y)→ φ(p2−1)(y)→ · · · → φ(pm−1)(y).

Since the p-th convergent formula requires �logp(k + 1)� iterations to compute
k-th power series roots, when the degree p of convergence is high, the formula in [1]
and [3] requires far fewer iterations than the symbolic Newton’s method, whose de-
gree p of convergence is two (i.e., p = 2). However, this does not immediately imply
that a high degree convergent formula is more efficient than the symbolic Newton’s
method, because one iteration in a high degree convergence formula needs more
computations than one in the symbolic Newton’s method. In fact, numerical ex-
periments often indicate that direct application of a high degree convergent formula
is not more efficient than the symbolic Newton’s method.

In this paper, we combine the high degree convergent formula in [1] with the
polynomial evaluation method in [9] and derive a formula that is more efficient
than the symbolic Newton’s method when degree n of f(x, y) with respect to x

is large enough. We subject it to complexity analysis and count the number of
multiplications/divisions required to compute a given power series root. We then
analyze the behavior of the high degree convergent formula in terms of its complex-
ity (interestingly, the formula is advantageous over the symbolic Newton’s method
when degree n of f(x, y) with respect to x is large).

This paper is organized as follows: In Section 2 outlines definitions and nota-
tions, and Section 3 briefly discusses computations of a truncated power series. In
Section 4, we review [1] and explain its high degree convergent formula, and in Sec-
tion 5, we review [9], and explain its polynomial evaluation method. In Section 6,
we combine the methods shown in Sections 4 and 5, and propose an algorithm to
compute k-th power series roots φ(k)(y) of a given polynomial f(x, y) with an ar-
bitrary degree of convergence. We then perform complexity analysis and count the
number of multiplications/divisions required to compute k-th power series roots of
a given polynomial f(x, y). Section 6 represents the main contribution of the paper.
In Section 7, we present the results of numerical experiments to confirm the validity
of the complexity analysis in Section 6, and Section 8 outlines the conclusion.

Computation of a Power Series Root 257

2. Definitions and notations

In this paper, we employ the following notations:
Z: the set of integers
N: the set of natural numbers
R: the set of real numbers
C: the set of complex numbers
�z�: the minimum integer equal to or greater than z ∈ R
imod(p, q): remainder of division of p ∈ Z by q ∈ Z
C(r, j): binomial coefficient, i.e., r!

j! (r−j)!

Definition 1. The formula to compute power series root φ(k)(y) in the order
φ(0)(y)→ φ(p−1)(y)→ · · · → φ(pm−1)(y)→ · · · is said to be p-th degree convergent.

3. Computations of truncated power series

In this section, we discuss computations of truncated power series. Given two
power series truncated at the k-th degree in y

a(k) = α0 + α1y + · · ·+ αkyk,

b(k) = β0 + β1y + · · ·+ βkyk,

we can define arithmetic (addition, subtraction, multiplication and division) be-
tween a(k) and b(k) as follows: We will find

c(k) = γ0 + γ1y + · · ·+ γkyk

such that

a(k) � b(k) ≡ c(k) (mod yk+1),

where � is either +, −, ×, /. When � = + or � = −, we obviously have

γi = αi + βi (when � = +) (i = 0, . . . , k),

γi = αi − βi (when � = −) (i = 0, . . . , k).

When � = ×, looking at each coefficient of yi (i = 0, . . . , k) gives us

γi = α0βi + α1βi−1 + · · ·+ αiβ0 (i = 0, . . . , k). (5)

When � = /, from

c(k) = a(k)/b(k) (mod yk+1)

we obtain

a(k) = b(k)c(k) (mod yk+1).

258 T. Kitamoto

Thus, (5) tells us that

α0 = β0γ0,

α1 = β1γ0 + β0γ1,

· · ·
αk = βkγ0 + · · ·+ β1γk−1 + β0γk.

Therefore, solving the above equation with respect to γi (i = 0, 1, . . . , k), we obtain

γi =
αi − (βiγ0 + · · ·+ β1γi−1)

β0
(i = 0, 1, . . . , k).

Thus, we have the following:
• Addition (subtraction) between the k-th power series requires k additions

(subtractions) between numbers.
• Multiplication (division) between the k-th power series requires k(k+1)

2 ad-

ditions (subtractions) and (k+1)(k+2)
2 multiplications or divisions between

numbers.
We therefore assume the following in this paper:
(i) The computation time for arithmetic between numbers is negligible compared

with that between truncated power series.
(ii) The computation time for addition and subtraction between truncated power

series is negligible compared with that for multiplication and division.
(iii) The computation time for multiplication between truncated power series is

the same as that for division between truncated power series.
In complexity analysis, we therefore count only the number of multiplications/divi-
sions between truncated power series.

Throughout the paper, n, k and p denote the degree of f(x, y) with respect to
x, the truncation degree of power series and the degree of convergence, respectively.

Note. Theoretically, power series multiplication and division can be per-
formed at lower cost (an FFT-based multiplication algorithm performs multipli-
cation of the k-th degree polynomial with O(k log k log log k) numerical multiplica-
tions). However, we employ the above O(k2) multiplication algorithm in complexity
analysis for the following reason: in the paper, we focus on analyzing the per-
formance of the algorithm for common problems, and assume that truncation degree
k is in the medium size range (say one hundred or so) where FFT-based algorithms
are not so effective (k must be quite large to make such algorithms effective).

4. High degree convergent formula

Let f(x, y) and φ(y) be a given polynomial and a root of f(x, y) = 0 with
respect to x. When f(x, 0) is square-free, k-th power series expansion φ(k)(y)
of φ(y)

φ(k)(y) = α0 + α1y + α2y
2 + · · ·+ αkyk (6)

Computation of a Power Series Root 259

can be computed by the symbolic Newton’s method

φ(2m−1)(y)← φ(2m−1−1)(y)− f
(
φ(2m−1−1)(y), y

)
∂f
∂x

(
φ(2m−1−1)(y), y

) (mod y2m

) (7)

in the order φ(0)(y)→ φ(2−1)(y)→ φ(22−1)(y)→ · · · → φ(2m−1)(y). Under the same
conditions, reference [1] presented a high degree convergent formula that computes
φ(k)(y) in the order φ(0)(y) → φ(p−1)(y) → φ(p2−1)(y) → · · · → φ(pm−1)(y), where
p (≥ 2) is an arbitrary integer. The high degree convergent formula is given by

φ(pm−1)(y)

← φ(pm−1−1)(y)

− c0

(
φ(pm−1−1)(y)

)
c1

(
φ(pm−1−1)(y)

)− c0

(
φ(pm−1−1)(y)

) H̃p(φ(pm−1−1)(y))

Hp(φ(pm−1−1)(y))

(mod ypm

),

(8)

where H̃p(x) and Hp(x) are defined by

H̃p(x) = Det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c2(x) c0(x) 0 · · · 0

c3(x) c1(x) c0(x) · · · 0
...

...
...

...
...

cp−2(x) cp−4(x) cp−5(x) · · · c0(x)

cp−1(x) cp−3(x) cp−4(x) · · · c1(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Hp(x) = Det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1(x) c0(x) 0 · · · 0

c2(x) c1(x) c0(x) · · · 0
...

...
...

...
...

cp−3(x) cp−4(x) cp−5(x) · · · c0(x)

cp−2(x) cp−3(x) cp−4(x) · · · c1(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

cr(x) =
1
r!

∂rf

∂xr
(x, y)

(9)

(Det M denotes the determinant of matrix M). For details of the formula, refer
to [1]. As an example, we show the 3rd-degree convergent formula.

φ(3m−1)(y)

← φ(3m−1−1)(y)

− f
(
φ(3m−1−1)(y), y

)
∂f
∂x

(
φ(3m−1−1)(y), y

)− 1
2f

(
φ(3m−1−1)(y), y

) ∂2f

∂x2 (φ(3m−1−1)(y),y)
∂f
∂x (φ(3m−1−1)(y),y)

(mod y3m

).

(10)

260 T. Kitamoto

5. Polynomial evaluation

5.1. Polynomial evaluation of f(x, y) and ∂f
∂x

(x, y)
5.1.1. Algorithm description

Ordinarily, a polynomial h(x) = anxn + an−1x
n−1 + · · · + a0 is evaluated at

x = x0 by Horner’s rule

h(x0) = (· · · (anx0 + an−1)x0 + · · ·+ a1)x0 + a0,

which requires n additions and multiplications. With this rule, one iteration of the
symbolic Newton’s method (7) requires 2n power series multiplications or divisions
(n multiplications for evaluation of f(x, y) at x = φ(2m−1)(y), (n− 1) multiplica-
tions for evaluation of ∂f

∂x (x, y) at x = φ(2m−1)(y) and one division). However, poly-
nomials f(x, y) and ∂f

∂x (x, y) are closely related, and evaluation of both at the same
value can be performed more efficiently. In fact, [9] presents an algorithm to evalu-
ate h(x) and h′(x) at x = x0, which requires

(
n + 2

⌈
(n + 1)

1
2
⌉− 1

)
multiplications.

The algorithm is based on the theorem outlined below.

Theorem 1 ([9]). Let h(x) = anxn + an−1x
n−1 + · · · + a0 be a given poly-

nomial. Without loss of generality, we assume that q = (n + 1)
1
2 is an integer (if

this is not the case, we let q =
⌈
(n + 1)

1
2
⌉

and assume that h(x) is a (q2 − 1)-th
degree polynomial whose i-th (i = n + 1, . . . , q2 − 1) coefficients are 0). Defining
Tj,i by

T−1,i−1 = an−ix
s(i)
0 (i = 1, 2, . . . , n),

Tj,j = anx
s(0)
0 (j = 0, 1, . . . , n− 1),

Tj,i = Tj−1,i−1 +Tj,i−1x
s(i−j)−s(i−j−1)+1
0 (j = 0, 1, . . . , n− 1, i = j + 1, . . . , n),

where s(i) = imod(n− i, q), we have

Tj,i = xs(i−j)
i∑

r=j

C(r, j)an−i+rx
r−j (1 ≤ i ≤ n, −1 ≤ j < n). (11)

As a corollary of the above theorem, we obtain the following:

Corollary 1 ([9]). Under the same conditions as the above theorem,
we have

h(j)(x0) = j!
Tj,n

x
s(n−j)
0

(0 ≤ j < n). (12)

Applying j = 0, 1 to the above corollary, we obtain f(x0) = T0,n, f ′(x0) = T1,n

x0
.

Thus, we obtain the following algorithm:

Computation of a Power Series Root 261

Algorithm 1. Polynomial evaluation method [9]

Input: f(x, y) = an(y)xn + · · ·+ a0(y), φ(y);
Output: f(φ(y), y), ∂f

∂x (φ(y), y);

(a) Let q ← ⌈
(n + 1)

1
2
⌉
, N ← q2 − 1

(b) Let ai(y) ← 0 (i = n + 1, . . . , N) (we regard f(x, y) as an N -th degree poly-
nomial w.r.t. x).

(c) Compute and save the value of φ(y)i (i = 2, . . . , q).
(d) Let T−1,i−1 ← aN−i(y)φ(y)s(i) (i = 1, . . . , N), where s(j) = imod(N − j, q).
(e) Let Tj,j ← aN (y)φ(y)q−1 (j = 0, 1).
(f) Let

Tj,i ←
{

Tj−1,i−1 + Tj,i−1φ(y)q, when imod(i− j, q) = 0

Tj−1,i−1 + Tj,i−1, when imod(i− j, q) �= 0

(j = 0, 1, i = j + 1, . . . , N).
(g) Output f(φ(y), y) = T0,N , ∂f

∂x (φ(y), y) = T1,N

φ(y) .

5.1.2. Complexity analysis
As shown in reference [2], the above algorithm requires

(
n+2

⌈
(n+1)

1
2
⌉
+M

)
power series multiplications or divisions, where M is an integer that is either −1
or 0. To simplify the notation, we fix M to M = 0 in the rest of the paper.

5.2. Evaluation of higher derivatives
Algorithm 1 in the previous subsection evaluates f(φ(y), y), ∂f

∂x (φ(y), y). In
this subsection, we discuss extension of the algorithm to evaluate higher derivatives
∂rf
∂xr (φ(y), y) (r = 2, . . . , p− 1).

5.2.1. Algorithm modification
The following modification is enough to compute higher derivatives ∂rf

∂xr (φ(y),y)
(2 ≤ r ≤ p− 1) with Algorithm 1.
(i) In step (e) and (f), “j = 0, 1” should be modified to “j = 0, 1, . . . , p− 1.”
(ii) In step (g), output ∂rf

∂xr (φ(y), y) = r! Tr,N

φ(y)s(n−r) (r = 2, . . . , p − 1) in addition

to f(φ(y), y) = T0,N , ∂f
∂x (φ(y), y) = T1,N

φ(y) .

5.2.2. Complexity analysis
We count the number of additional power series multiplications or divisions

required for each modification of the above algorithm. To simplify the analysis, we
limit the range of convergence degree p to

2 ≤ p ≤ q, (13)

where q is defined by

q = �√n + 1 � (14)

(in the rest of the paper, q denotes �√n + 1 �).

262 T. Kitamoto

(i) Modification in step (e) does not require any additional multiplications or
divisions.

(ii) Modification in step (f) requires (p − 2)(q − 1) additional multiplications or
divisions (multiplication of Tj,i−1 and φ(y)q when j = 2, . . . , p− 1, i = q + j,
2q + j, . . . , (q − 1)q + j).

(iii) Modification in step (g) requires (p− 2) divisions (division of ∂rf
∂xr (φ(y), y) by

φ(y)r where r = 2, . . . , p− 1).
Thus the total number of power series multiplications or divisions required for

the modified algorithm is n+2q+(p−2)(q−1)+(p−2) = n+pq = n+(�√n + 1 �)p.

6. Algorithm to compute power series roots

6.1. Algorithm description
We combine the algorithm for computing power series roots in Section 4 and

the polynomial evaluation algorithm in Section 5 to obtain the algorithm below.

Algorithm 2. Power series root computation

Input: f(x, y), φ(0)(y), p ∈ Z, k ∈ Z;
Output: k-th power series root;
Note: The algorithm is of p-th degree convergence;
(a) Let m← 1.
(b) Compute ∂rf

∂xr

(
φ(pm−1−1)(y), y

)
(r = 0, 1, . . . , p− 1) with the polynomial evalu-

ation algorithm in Section 5, where the truncation degree of the power series
arithmetic is set to min(k, pm − 1).

(c) Compute φ(pm−1)(y) with the formula (8), where truncation degree of the
power series arithmetic is set to min(k, pm − 1).

(d) If (k ≤ pm − 1), then φ(k)(y) is output and the algorithm finishes. Otherwise
let m← m + 1 and go back to step (b).

6.2. Accuracy verification
From formula (8), we see that the numerical errors in coefficients αi (i =

0, 1, . . . , pm−1−1) in (4) directly affect to the numerical errors in the coefficients αi

(i = pm−1, . . . , pm−1). This implies that formula (8) is numerically unstable, i.e.,

numerical error in coefficient αk accumerates as index k increases. (15)

We therefore need to verify the accuracy of the results, when floating point arith-
metic is used. Such verification can be performed as follows: The above point (15)
implies that if a coefficient αk is accurate, then so are the lower degree coefficients
αi (i = 0, 1, . . . , k − 1). Hence, to check the numerical accuracy of a power series
φ(k)(y) computed by formula (8), it is enough to examine the highest degree co-
efficient αk. Reference [6] presents a method to compute a high degree coefficient
αk accurately using Cauchy’s integral formula. Thus, we can verify the accuracy

Computation of a Power Series Root 263

of a power series φ(k)(y) computed, comparing the highest degree coefficient αk of
φ(k)(y) with that computed using the method in [6]. For details of this method of
accuracy verification, refer to [6].

6.3. Complexity analysis
6.3.1. The number of power series multiplications/divisions

We count the number of power series multiplications or divisions in each step
of Algorithm 2. Steps (a) and (d) require no multiplications or divisions. Step (b)
requires (n + (�√n + 1 �)p) multiplications/divisions as indicated in Section 5.2.2.
When p > 2, we need to evaluate
(i) H̃p

(
φ(pm−1−1)(y)

)
, Hp

(
φ(pm−1−1)(y)

)
and evaluate
(ii)

c0(φ(pm−1−1)(y))
c1(φ(pm−1−1)(y))−c0(φ(pm−1−1)(y)) H̃p(φ(pm−1−1)(y))

Hp(φ(pm−1−1)(y))

in step (c). Since both matrices in H̃p(x) and Hp(x) are in Hessenberg form,

each can be evaluated at most with p2−p−6
2 power series multiplications/divisions

(
((p−1)(p−2)

2 − 1
)

for diagonalizations and (p − 3) for multiplications of diagonal
elements). Thus the above (i) therefore takes (p2−p−6) multiplications/divisions.
It is easy to see that the above (ii) takes three multiplications/divisions and, in
total, step (c) requires (p2 − p − 3) multiplications/divisions. When p > 2, each
iteration of Algorithm 2 therefore requires

n + p(�√n + 1 �) + p2 − p− 3 (16)

power series multiplications or divisions.
When p = 2, we have convergent formula (7) (the symbolic Newton’s method)

instead of (8). We therefore need to evaluate

c0

(
φ(2m−1−1)(y)

)
c1

(
φ(2m−1−1)(y)

) (17)

in step (c), which requires one division. Therefore, when p = 2, each iteration of
Algorithm 2 requires

n + p(�√n + 1 �) + 1 (18)

power series multiplications or divisions. From (16) and (18), each iteration of
Algorithm 2 requires

Ψ(n, p) def=

{
n + p(�√n + 1 �) + 1 when p = 2,

n + p(�√n + 1 �) + p2 − p− 3 when p > 2.
(19)

Given k ∈ Z (the truncation degree of the power series root) and p ∈ Z (the
degree of convergence), Algorithm 2 in this section requires �logp(k +1)� iterations

264 T. Kitamoto

to compute a k-th power series root. Hence, the total number of power series
multiplications and divisions in the algorithm is �logp(k + 1)�Ψ(n, p).

However, the above number (the number of power series arithmetic steps) does
not directly reflect the CPU time required to perform the algorithm as the time
taken for one power series multiplication/division depends on its truncation degree
k (recall that one power series multiplication/division requires (k+1)(k+2)

2 multipli-
cations/divisions of numbers). This implies that to make complexity analysis valid,
we need to count the number of numerical multiplications/divisions.

6.3.2. The number of numerical multiplications/divisions
When we perform Algorithm 2, the truncation degree of the power series at

the m-th iteration of steps (b) and (c) is
{

pm − 1 when pm − 1 < k,

k when pm − 1 ≥ k.

Thus at m-th iteration of steps (b) and (c),⎧⎪⎪⎨
⎪⎪⎩

1
2
pm(pm + 1) when pm − 1 < k,

1
2
(k + 1)(k + 2) when pm − 1 ≥ k,

numerical multiplications/divisions are required for each power series calculation.
Since each iteration of steps (b)–(d) requires Ψ(n, p) power series multiplica-
tions/divisions, the number of numerical multiplications/divisions necessary at the
m-th iteration is ⎧⎪⎪⎨

⎪⎪⎩
1
2
pm(pm + 1)Ψ(n, p) when pm − 1 < k,

1
2
(k + 1)(k + 2)Ψ(n, p) when pm − 1 ≥ k.

(20)

Let

t = �logp(k + 1)�, (21)

then the condition (pm−1 < k) is equivalent to m ≤ t−1. Thus, adding the above
(20) for m = 1, 2, . . . , t− 1, t, we obtain

Ω(n, k, p) def=
t−1∑
m=1

(
1
2
pm(pm + 1)Ψ(n, p)

)
+

1
2
(k + 1)(k + 2)Ψ(n, p)

=
Ψ(n, p)

2

{
t−1∑
m=1

(p2m + pm) + (k + 1)(k + 2)

}

=
Ψ(n, p)

2

{
p2t − p2

p2 − 1
+

pt − p

p− 1
+ (k + 1)(k + 2)

}
,

Computation of a Power Series Root 265

which is the number of numerical multiplications/divisions required to perform
Algorithm 2.

6.4. Analysis of Algorithm 2
Having obtained function Ω(n, k, p), which gives the complexity of Algorithm 2,

it is natural to ask what convergence degree p is the most efficient (i.e., which p

gives the minimum of Ω(n, k, p)) for a given n (the degree of f(x, y) with respect
to x) and k (the truncation degree of the power series root). However, the behavior
of the function Ω(n, k, p) is rather chaotic due to the non-continuous properties of
�logp(k + 1)� and �√n + 1 �. We therefore approximate function Ω(n, k, p) and, by
analyzing the properties of the approximated function, we examine the asymptotic
behavior of Ω(n, k, p).

6.4.1. Approximation of Ω(n, k, p)
To analyze the complexity, we approximate t and Ψ(n, p) in (21) with

t̃
def= logp(k + 1) (22)

and

Ψ̃(n, k) def= n + p(�√n + 1 �) + p2 − p− 3 (23)

respectively, and define approximation Ω̃(n, k, p) of Ω(n, k, p) by

Ω̃(n, k, p) def=
Ψ̃(n, p)

2

{
p2t̃ − p2

p2 − 1
+

pt̃ − p

p− 1
+ (k + 1)(k + 2)

}
(24)

(Ω̃(n, k, p) is the same as Ω(n, k, p) except that t and Ψ(n, p) are replaced by t̃

and Ψ̃(n, p), respectively). Since we have t̃ ≤ t and Ψ̃(n, p) < Ψ(n, p), where the
equality holds when k is in the form of

k = pr − 1, (r ∈ Z, p > 2) (25)

it is easy to see that

Ω̃(n, k, p) ≤ Ω(n, k, p), (26)

where the equality holds when k is in the form of (25).
Since we have pt̃ = k + 1, Ω̃(n, k, p) can be written as

Ω̃(n, k, p) =
Ψ̃(n, p)

2

{
(k + 1)2 − p2

p2 − 1
+

(k + 1)− p

p− 1
+ (k + 1)(k + 2)

}

=
kp(kp + 3p + 1)Ψ̃(n, p)

2(p2 − 1)
. (27)

266 T. Kitamoto

6.4.2. Analysis of Ω̃(n, k, p)
We define λ(p) by

λ(p) def= Ω̃(n, k, p) (28)

and regard λ(p) as a function of p with parameters n and k. We have the theorem
shown below on λ(p).

Theorem 2. Let n and k be integers satisfying n ≥ 3, k ≥ 1. Then, in
{p | 4/3 ≤ p ≤ q}, λ(p) is either monotonically decreasing or has exactly one local
minimum.

To prove the above theorem, we need the lemma outlined below.

Lemma 1. Under the same condition as the above theorem, we have

λ′′(p) > 0 (p ≥ 4/3). (29)

Proof. From the above definition, we have

λ′′(p) =
kz(p)

(p2 − 1)3
,

where z(p) is a function defined by

z(p) def= (k+3)p6−3(k+3)p4 +{n+(k+3)q−k−5}p3 +3{k(n−1)+3n+q−4}p2

+3{n+(k+3)q−k−5}p+k(n−3)+3n+q−10 (30)

(q is given by (14)). It is easy to see that the following is enough to prove the
lemma:

z(p) > 0 (p ≥ 4/3). (31)

From z(4)(p) = (360p2 − 72)k + 1080p2 − 216, it is easy to see that z(4)(p) > 0
(p ≥ 4/3). This and the fact that

z(3)(4/3) =
2
9
{27n + (27q + 821)k + 81q + 2409} > 0

imply z(3)(z) > 0 (p ≥ 4/3). This and the fact that

z(2)(4/3) =
2
27
{(81k + 351)n + (108q + 227)k + 405q + 384} > 0

imply z(2)(z) > 0 (p ≥ 4/3). This and the fact that

z′(4/3) =
1
81

[{648(k − 1) + 3267}(n− 3)

+ (675q + 365)(k − 1) + 3348q + 1487] > 0

Computation of a Power Series Root 267

imply z′(p) > 0 (p ≥ 4/3). This and the fact that

z(4/3) =
1

729
[{4617(k − 1) + 23112}(n− 3)

+ {4644q + 316}(k − 1) + 23193q + 1291] > 0

imply (31), which proves the lemma. �

Proof of Theorem 2. Note that we have

λ′(4/3) = − k

294
[{648(k − 1) + 3267}(n− 3)

+ {528(q − 1) + 256}(k − 1) + 2760(q − 1) + 1152] < 0. (32)

If λ′(q) ≥ 0, then (32) and the intermediate value theorem imply that

∃p (4/3 ≤ p ≤ q), λ′(p) = 0,

which prove the existence of a local minimum. The uniqueness of the local minimum
follows from Lemma 1.

If λ′(q) < 0, then Lemma 1 implies that

∀p (4/3 ≤ p ≤ q), λ′(p) < 0,

which indicates that λ(p) is monotonically decreasing. This completes the proof.
�

The above theorem implies that given n (∈ Z) and k (∈ Z), p such that
Ω̃(n, k, p) (4/3 ≤ p ≤ q) takes its minimum, is uniquely determined and is a func-
tion of n and k. We denote such p by p̃(n, k). In other words, p̃(n, k) is a function
of n and k such that

min
4/3≤p≤q

Ω̃(n, k, p) = Ω̃(n, k, p̃(n, k)). (33)

Since we have λ′(p) = ∂Ω̃
∂p (n, k, p), the proof of Theorem 2 implies that the above

p̃(n, k) can be written as

p̃(n, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p such that
∂Ω̃
∂p

(n, k, p) = 0, when
∂Ω̃
∂p

(n, k, q) ≥ 0,

q, when
∂Ω̃
∂p

(n, k, q) < 0.

(34)

By the definition, p̃(n, k) denotes optimal p in (4/3 ≤ p ≤ q) for the given n and k

from the viewpoint of computational complexity.

268 T. Kitamoto

Regarding p̃(n, k) as a function of n with parameter k, we have the theorem
outlined below concerning the behavior of p̃(n, k) when n→∞.

Theorem 3. Let k be a constant number satisfying k ≥ 1. We then have

lim
n→∞ p̃(n, k) =∞. (35)

Proof. From (34), p̃(n, k) is equal to either q or p such that ∂Ω̃
∂p (n, k, p) = 0.

When p̃(n, k) = q, the theorem easily follows from (14). Thus, we will prove the
theorem, assuming that

p̃(n, k) =
(

p such that
∂Ω̃
∂p

(n, k, p) = 0
)

(36)

when n→∞. From Lemma 1, we have

λ′′(p) =
∂2Ω̃
∂p2

(n, k, p) > 0 (n ≥ 3, k ≥ 1),

which implies that ∂Ω̃
∂p (n, k, p0) (n ≥ 3, k ≥ 1) is an increasing function of p. This

and (36) imply that

p0 < p̃(n, k) ⇐⇒ ∂Ω̃
∂p

(n, k, p0) < 0. (37)

To prove (35), it is enough to show that

∀M, ∃N such that (n > N → p̃(n, k) > M). (38)

Given an integer M ∈ Z, let N be

N = max{M5, 2(3k + 10), 32(k + 3)10}. (39)

Suppose that n is an integer satisfying n > N . Then

∂Ω̃
∂p

(
n, k, n

1
5
)

=
kη(n, k)

2(p2 − 1)2
, (40)

where η(n, k) is defined by

η(n, k) = −n
7
5 − (2k + 6)n

6
5 + (2k + 5)n + {(k + 3)q − k − 2}n 4

5

− 4(k + 3)n
3
5 − 3(k + 3)(q − 1)n

2
5 + 2(3k − q + 10)n

1
5 + 3. (41)

Note that (39) implies that

n
1
5 > M, n > 2(3k + 10), n

1
10 >

√
2(k + 3), (42)

Computation of a Power Series Root 269

and from q = �√n + 1 �, we obtain

1 <
√

n < q <
√

2n. (43)

Thus, we have

η(n, k) = −n
7
5 − (2k + 5)

(
n

6
5 − n

)− n
6
5 + (k + 3)qn

4
5 − {

(k + 2)n
4
5 − 3

}
− 4(k + 3)n

3
5 − 3(k + 3)(q − 1)n

2
5 + 2(3k + 10)n

1
5 − 2qn

1
5

< −n
7
5 − n

6
5 + (k + 3)qn

4
5 + 2(3k + 10)n

1
5 (∵ n ≥ 3, k ≥ 1)

< −n
7
5 − n

6
5 +
√

2(k + 3)n
13
10 + 2(3k + 10)n

1
5 (∵ (43))

= −{
n

1
10 −

√
2(k + 3)

}
n

13
10 − {n− 2(3k + 10)}n 1

5

< 0 (∵ (42)).

This and (40) imply that ∂Ω̃
∂p

(
n, k, n

1
5
)

< 0. Thus, (37) with p0 = n
1
5 implies that

p̃(n, k) > n
1
5 > M (∵ (42)), (44)

and (38) is shown. This completes the proof. �

6.4.3. Observations on Ω̃(n, k, p)
Summarizing Theorems 2 and 3, we obtain the following observations on

Ω̃(n, k, p):
(A1) As a function of p, Ω̃(n, k, p) is either monotonically decreasing or has exactly

one local minimum in {p | 4/3 ≤ p ≤ q} for any n (≥ 3) ∈ N and k (≥ 1) ∈ N.
(A2) Let p̃(n,k) denote p such that Ω̃(n,k, p̃(n,k)) gives the minimum of Ω̃(n,k,p)

above. Then, as a function of n, p̃(n,k) satisfies limn→∞ p̃(n,k) =∞.

6.5. Analysis of Ω(n, k, p)
In this subsection, we examine the properties of Ω(n, k, p). First, we recall the

following relationships between Ω(n, k, p) and its approximation Ω̃(n, k, p)

Ω(n, k, p) ≥ Ω̃(n, k, p), (45)

Ω(n, k, p) = Ω̃(n, k, p) (k = pr − 1, r ∈ Z, p > 2). (46)

Thus, as a function of p, Ω̃(n, k, p) supports Ω(n, k, p) from the bottom and
they coincide at p = r

√
k + 1 (r ∈ Z, p > 2). As an illustrative example, we plot

Ω(100, 30, p) (2 ≤ p ≤ q) (denoted by the solid line) and Ω̃(100, 30, p) (2 ≤ p ≤ q)
(denoted by the dashed line) in Fig. 1. From the figure, it is clear that Ω(n, k, p)
does not inherit property (A1) of Ω̃(n, k, p) (obviously, it has plural local mini-
mums as shown in Fig. 1). However, it has a property similar to (A2). To state
this property, let p(n, k) be the same as p̃(n, k), except Ω̃(n, k, p) is replaced with
Ω(n, k, p). In other words, p(n, k) is a function of n and k such that

Ω(n, k, p(n, k)) = min
2≤p≤q

Ω(n, k, p). (47)

270 T. Kitamoto

We then have the theorem outlined below.

Theorem 4. Let k be a constant number satisfying k ≥ 2. We then have

lim
n→∞ p(n, k) = k + 1. (48)

Proof. It is enough to prove that

∃M ∈ R, (n > M) =⇒ p(n, k) = k + 1, (49)

where M is a large enough number determined by k. From the definition of p(n, k),
the above is equivalent to

(n > M) =⇒ min
2≤p≤q

Ω(n, k, p) = Ω(n, k, k + 1). (50)

Note that if we set M so that it satisfies M > (k + 1)2, then we have

(n > M) =⇒ q = �√n + 1 � >
√

(k + 1)2 + 1 > k + 1, (51)

which implies that

(n > M) =⇒ min
2≤p≤q

Ω(n, k, p)

= min{Ω(n, k, 2), . . . ,Ω(n, k, k + 1), . . . ,Ω(n, k, q)}
≤ Ω(n, k, k + 1). (52)

Since we obviously have

min
2≤p

Ω(n, k, p) ≤ min
2≤p≤q

Ω(n, k, p), (53)

if we prove

(n > M) =⇒ min
2≤p

Ω(n, k, p) = Ω(n, k, k + 1), (54)

then (52), (53) and (54) imply (50), and the theorem is proved. To prove (54), we
first note that it can be written as

(n > M) =⇒ ∀p0 (≥ 2), Ω(n, k, k + 1) ≤ Ω(n, k, p0). (55)

We assume that n is an integer satisfying (n > M) in the rest of the proof, and
split the above inequality into the following two inequalities:

(2 ≤ p0 < k + 1) =⇒ Ω(n, k, p0) ≥ Ω(n, k, k + 1), (56)

(k + 1 ≤ p0) =⇒ Ω(n, k, p0) ≥ Ω(n, k, k + 1). (57)

Computation of a Power Series Root 271

First we prove (56). Theorem 3 tells us that, for sufficiently large number M , we
have (recall that n satisfies n > M)

k + 1 ≤ p̃(n, k). (58)

Lemma 1 tells us that λ′(p) = ∂Ω̃
∂p (n, k, p) (2 ≤ p) is monotonically increasing as a

function of p, and this implies

a < b ⇐⇒ ∂Ω̃
∂p

(n, k, a) <
∂Ω̃
∂p

(n, k, b). (59)

Substituting a = p0, b = p̃(n, k) into (59), we obtain

p0 < p̃(n, k) ⇐⇒ ∂Ω̃
∂p

(n, k, p0) <
∂Ω̃
∂p

(n, k, p̃(n, k)). (60)

Note that from (34), we obtain

∂Ω̃
∂p

(n, k, p̃(n, k)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when
∂Ω̃
∂p

(n, k, q) ≥ 0,

∂Ω̃
∂p

(n, k, q) when
∂Ω̃
∂p

(n, k, q) < 0,

(61)

which implies

∂Ω̃
∂p

(n, k, p̃(n, k)) ≤ 0. (62)

This and (60) imply that

p0 < p̃(n, k) =⇒ ∂Ω̃
∂p

(n, k, p0) < 0. (63)

Thus, from (58) we obtain

p0 < k + 1 =⇒ p0 < p̃(n, k) =⇒ ∂Ω̃
∂p

(n, k, p0) < 0. (64)

This shows that Ω̃(n, k, p) is monotonically decreasing as a function of p in the
range (2 ≤ p < k + 1), which implies that

(2 ≤ p0 < k + 1) =⇒ Ω̃(n, k, p0) ≥ Ω̃(n, k, k + 1). (65)

Note that from (45) and (46), we have

Ω̃(n, k, k + 1) = Ω(n, k, k + 1), (66)

Ω(n, k, p0) ≥ Ω̃(n, k, p0). (67)

272 T. Kitamoto

Thus, (65), (66) and (67) imply that

(2 ≤ p0 < k + 1) =⇒ Ω̃(n, k, p0) ≥ Ω̃(n, k, k + 1) (∵ (65))

=⇒ Ω̃(n, k, p0) ≥ Ω(n, k, k + 1) (∵ (66))

=⇒ Ω(n, k, p0) ≥ Ω(n, k, k + 1) (∵ (67)),

which proves (56).
Next we will prove (57). Suppose (k+1)≤p. We then have t=�logp(k+1)�=1.

Thus, we obtain

Ω(n, k, p) =
Ψ(n, p)

2

{
p2t − p2

p2 − 1
+

pt − p

p− 1
+ (k + 1)(k + 2)

}

=
1
2
(k + 1)(k + 2)Ψ(n, p). (68)

From 2 < k + 1 < p, we have

Ψ(n, p) = n + p(�√n + 1 �) + p2 − p− 3.

This and (68) imply that

∂Ω
∂p

(n, k, p) =
1
2
(k + 1)(k + 2)

∂Ψ
∂p

(n, p)

=
1
2
(k + 1)(k + 2)(2p + �√n + 1 � − 1) > 0 (k + 1 < p),

which proves (57). Thus (56) and (57) are proved, which implies (55), hence (54).
This completes the proof. �

As a corollary of the above theorem, we have the following:

Corollary 2. For any integer p0 satisfying p0 ≥ 2, n (∈ Z) and k (∈ Z)
exist such that p0 = p(n, k).

Proof. First, we will prove the corollary for the case p0 = 2. Since function

∂Ω̃
∂p

(1, 1, p) =
8p3 + 21p2 + 18p + 2

2(p + 1)2
(69)

has no real zeros except at p = −0.129793, Ω̃(1, 1, p) (p ≥ 2) is a monotonically
increasing function of p, which implies that

Ω̃(1, 1, 3) ≤ Ω̃(1, 1, p) (p ≥ 3). (70)

Since we have

18 = Ω(1, 1, 2) < Ω̃(1, 1, 3) =
195
8

(71)

and (26), (70) implies that

Ω(1, 1, 2) < Ω(1, 1, p) (p ≥ 3). (72)

Computation of a Power Series Root 273

This indicates that 2 = p(1, 1), and the corollary is proved for the case p0 = 2.
When p0 > 2, let n and k be large enough integers and (p0− 1), respectively. �

Theorem 4 and Corollary 2 imply that the following properties of Ω(n, k, p).
(B1) When n is large enough, as a function of p, Ω(n, k, p) takes the minimum at

p = k + 1.
(B2) For any convergence degree p0, n and k exist such that p0 is optimal in terms

of complexity.
From observations (A1) and (A2) in the previous subsection, Ω̃(n, k, p) is con-

vex as a function of p for any n (≥ 3) and k (≥ 1), and the value of p̃(n, k) tends
to increase as n increases (compare Fig. 2, where Ω(1000, 30, p) and Ω̃(1000, 30, p)
are plotted, with Fig. 1). Thus, as the asymptotic behavior of Ω(n, k, p), we have
the following:
(B3) When n increases, Ω(n, k, p) tends to take a lower value with a higher

value of p.

Fig. 1. Ω(100, 30, p) and Ω̃(100, 30, p)

Fig. 2. Ω(1000, 30, p) and Ω̃(1000, 30, p)

274 T. Kitamoto

6.5.1. Characteristics of Algorithm 2
From observations (B1), (B2) and (B3), we expect the following characteristics

of Algorithm 2 (below n and k denote the degree of f(x, y) with respect to x and
the truncation degree of power series roots, respectively):
(C1) When n is large enough compared with k, the optimal convergence degree

is (k + 1).
(C2) Any convergence degree p is optimal in terms of its complexity for some

values of n and k.
(C3) When k is fixed and n becomes larger, a high degree convergence formula

(i.e., one with a large p) is advantageous.

7. Numerical experiments

To confirm the validity of the observations in the previous section, we per-
formed numerical experiments on a machine with a Pentium M 1.7 GHz processor
and 512 MB of memory. All programs were implemented with Mathematica 5.0.

7.1. Power series arithmetic in Mathematica

To check the properties of power series arithmetic in Mathematica, we per-
formed the following numerical experiments:
• Multiplication test: Compute f1(y)× f2(y), where f1(y), f2(y) are randomly

generated power series whose degrees are k.
• Division test: Compute f1(y)/f2(y), where f1(y), f2(y) are randomly gener-

ated power series whose degrees are k.
Each test was performed 100 times, and the average computation time was recorded.
The results are shown in Table 1 and Table 2, where units are in milliseconds. The
timing data in Table 1 and Table 2 can be approximated quite well by functions

h1(k) = 0.00113194× (k + 1)(k + 2)
2

, h2(k) = 0.00143496× (k + 1)(k + 2)
2

,

respectively (see Fig. 3 and Fig. 4, where the dots denote the results of the multi-
plication and division tests). The discussion and assumptions in Section 3 are thus
confirmed as valid in Mathematica.

Table 1. Result of multiplication test (in milliseconds)

k 30 60 90 120 150 180 210 240 270 300
CPU Time 0.6 2.1 4.71 8.31 12.82 18.53 25.14 33.05 41.76 51.57

Table 2. Result of division test (in milliseconds)

k 30 60 90 120 150 180 210 240 270 300
CPU Time 0.8 2.8 6.01 10.72 16.42 23.64 32.04 41.76 52.87 65.3

Computation of a Power Series Root 275

Fig. 3. Result of Multiplication test

Fig. 4. Result of Divison test

7.2. Problem formulation
The two experiments outlined below were performed, where k, n and p denote

the truncation degree of the power series roots, the degree of f(x, y) with respect
to x and the degree of convergence, respectively.
• Experiment A: n = 100, k = 15, p = 2, . . . , 11.
• Experiment B: n = 300, k = 15, p = 2, . . . , 18.

In each experiment, power series roots of polynomials in the form of

f(x, y) =
n∑

i=0

15∑
j=0

ci,jx
iyj , (73)

where ci,j are randomly generated integers satisfying −10 ≤ ci,j ≤ 10, were com-
puted using Algorithm 2, and the average computation time (out of 10 trials) was
recorded.

276 T. Kitamoto

7.3. Results of Experiment A
The results are shown in Table 3 and plotted in Fig. 5, where the dots (rep-

resenting the data from Experiment A) are connected with straight lines. For the
reference, Ω(100, 15, p) (p = 2, . . . , 11) is also plotted in Fig. 6 with dots connected
with straight lines. We also plot Ω̃(100, 15, p) in Fig. 6 with dashed lines. From
Fig. 5 and Fig. 6, we see that the tendency of the results of Experiment A closely
match those of the complexity analysis (i.e., Ω(100, 15, p)) except at p = 2. Both
results indicate that when (n, k) = (100, 15), Algorithm 2 is the most efficient at
p = 4 (we have Ω(100, 15, 2) = 22755 > Ω(100, 15, 4) = 22338).

Table 3. Result of Experiment A (in seconds)

p 2 3 4 5 6 7 8 9 10 11
CPU Time 1.52 1.10 0.749 0.763 0.780 0.795 0.812 0.830 0.856 0.8864

Fig. 5. Result of Experiment A

Fig. 6. Ω(100, 15, p) and Ω̃(100, 15, p)

Computation of a Power Series Root 277

7.4. Results of Experiment B
The results of Experiment B are shown in Table 4 and Fig. 7, from which we

see that Algorithm 2 is the most efficient at p = 16 (= k + 1) in this case. For
the reference, we plot Ω(300, 15, p) (p = 2, . . . , 18) in Fig. 8 with dots connected by
straight lines. We also plot Ω̃(300, 15, p) in Fig. 8 with dashed lines.

Although the optimal p (p such that the cost function takes the minimum)
for Ω(300, 15, p), i.e., p = 4, is different from that of Experiment B (where it is
p = 16), the tendency of the result from Experiment B closely matches that of

Table 4. Result of Experiment B (in seconds)

p 2 3 4 5 6 7 8 9 10 11
CPU Time 4.83 3.56 2.43 2.48 2.53 2.58 2.63 2.69 2.74 2.80

p 12 13 14 15 16 17 18
CPU Time 2.86 2.92 2.98 3.04 1.56 1.58 1.62

Fig. 7. Result of Experiment B

Fig. 8. Ω(300, 15, p) and Ω̃(300, 15, p)

278 T. Kitamoto

Ω(300, 15, p) (the cost function takes local minima at p = 4 and p = 16 in both of
Fig. 7 and Fig. 8).

From Theorem 4 and characteristic (C1), when n is large enough, the optimal
p should be (k +1). In fact, when n = 105, function Ω(n, 15, p) takes the minimum
at p = 16 (see Fig. 9), and n = 300 is just not large enough.

Fig. 9. Ω(105, 15, p) and Ω̃(105, 15, p)

7.5. Observations
From Experiments A and B, we see the following:

(i) The results of Experiments A and B closely match those of complexity analysis
Ω(n, k, p) in their tendencies, and have the same local minima.

(ii) Although Theorem 4 tells us that the optimal p is (k + 1) when n is large
enough, the required scale of n might be quite large.

(iii) Compared with Ω(n, k, p) (the result of complexity analysis), the results of
Experiments A and B have the tendencies that are more advantageous for a
high degree convergence formula. For example, when (n, k) = (300, 15), the
optimal p is p = 16 in the experiments, while it is p = 4 for Ω(n, k, p).

One of the reasons for (iii) above is that the experiments were performed in
Mathematica. This is an interpreter-type programming language whose running
speed is significantly lower than that of a compiler-type language. The influence of
the number of program steps can therefore not be ignored (we only count the num-
ber of multiplications/divisions in complexity analysis), which makes a high degree
convergent formula more advantageous due to the lower number of program steps.

8. Conclusions

We proposed an algorithm to compute the power series root of a given bivariate
polynomial f(x, y). The algorithm, whose convergence degree is arbitrary, is a
combination of the polynomial evaluation algorithm in [9] and the arbitrary degree
convergent formula in [1]. We performed complexity analysis on the algorithm,
counting the number of numerical multiplications/divisions required to compute
a power series root, and presented the number as a function of n (the degree of

Computation of a Power Series Root 279

given polynomial f(x, y) with respect to x), k (the truncation degree of the power
series root) and p (the degree of convergence) in an explicit form. We analyzed the
function Ω(n, k, p) and derived some of the properties of Algorithm 2 in terms of
its complexity, which indicates the following:
• When n (the degree of given polynomial f(x, y) with respect to x) is large

enough, the optimal convergence degree in terms of its complexity is (k + 1),
where k is the truncation degree of the power series roots.

• Any convergence degree p is optimal in terms of its complexity for some degree
n of f(x, y) with respect to x and truncation degree k of the power series roots.

• When n (the degree of given polynomial f(x, y) with respect to x) is large
enough, the high degree convergent algorithm outlined in this paper is advan-
tageous over the symbolic Newton’s method.

We performed two numerical experiments that confirmed the validity of the above
claims. As with the power series roots in this paper, we can define power series
eigenvalues as power series expansions of the eigenvalues of a matrix with poly-
nomial entries (see [4] for details). Reference [5] proposes algorithms to compute
these power series eigenvalues with arbitrary degree p (∈ Z) of convergence. In fu-
ture work, we would like to analyze the algorithm and examine its characteristics.

References

[1] T. Kitamoto, Hensel construction with an arbitrary degree of convergence. Japan J. Indust.
Appl. Math., 13 (1996), 203–215.

[2] T. Kitamoto, On efficient computation of approximate roots (in Japanese). Trans. IEICE,
J85-A (2002), 189–196.

[3] T. Kitamoto, On extension of symbolic Newton’s method to the formula with high degree
of convergence (in Japanese). Trans. IEICE, J84-A (2001), 983–988.

[4] T. Kitamoto, Approximate Eigenvalues, Eigenvectors and Inverse of a Matrix with Poly-
nomial Entries. Japan J. Indust. Appl. Math., 11 (1994), 75–85.

[5] T. Kitamoto, On Computation of Approximate Eigenvalues and Eigenvectors. Trans. IEICE,
E85-A (2002), 664–675.

[6] T. Kitamoto, Accurate Computation of a High Degree Coefficient of a Power Series Root.
Trans. IEICE, E88-A (2005), 718–727.

[7] H.T. Kung and J.F. Traub, All algebraic functions can be computed fast. J. ACM, 25 (1978),
245–260.

[8] J.D. Lipson, Newton’s method: A great algebraic algorithm. ACM Symposium on Symbolic
and Algebraic Computations Proceedings, 1976, 260–270.

[9] M. Shaw and J.F. Traub, On the number of multiplications for the evaluation of a polynomial
and some of its derivatives. J. ACM, 21 (1974), 161–167.

