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Let A be a principally polarized Abelian surface defined over Q with End(A) = Z and eA
be the reduction at a good prime p. In this paper, we study the density of prime numbers

p for which eA(Fp) is a cyclic group and establish a conjecture which relates this density.
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1. Introduction

Let A be an Abelian variety A defined over Q and p be a rational prime. Let
Ã be the reduction of A at a good prime p. In this paper, we study the structure
of the group of rational points of the reduction of A modulo a rational prime p. In
particular, we want to investigate the density

CA := lim
X→∞

#{p ∈ π1(X) | Ã(Fp) is cyclic}
#π1(X)

,

for a given Abelian variety A defined over Q. Here π1(X) = π1(A,X) := {p ≤ X | A

has good reduction at a prime p}. We will study this for principally polarized
Abelian surfaces defined over Q to avoid some difficulties that come up when A

is higher dimensional.
In the case of elliptic curves E, Serre and Murty studied CE and obtained

the following result by using Hooley’s method which is so called simple asymptotic
sieve (p. 212 in [8]).

Theorem 1.1 ([17], [13]). Let E be an elliptic curve over Q and p be a
rational prime. Let E[m] be the kernel of multiplication by an integer m on E.
Assume the generalized Riemann hypothesis (GRH for short). Then,

{p ≤ X | Ẽ(Fp) is cyclic and p is a good prime} ∼ CE · X

log X
,

where CE =
∑

m:squarefree≥1
μ(m)

#Gal(Q(E[m])/Q) and μ is the Möbius function.
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Using Theorem 1.1, we can asymptotically compute the density CE for a semi-
stable elliptic curve E over Q by Corollary 1 at p. 308 in [15] and Proposition 3.2 in
[4]. Gupta obtained a more explicit form for CE of E = E1(a) : y2 = x3 − ax (note
End(E) = Z[

√−1]) [6] and Takeuchi did the same for E = E2(a) : y2 = x3+a (note
End(E) = Z[

√−3]) [21]. In both cases, the densities are given by the combinatorial
formula in the parameter a ∈ Z. We remark that the assumption of the GRH can
be removed if E has complex multiplication ([13] and [3]).

After these works, it is quite natural to expect a similar result for the higher
dimensional case and compute the density explicitly. We formulate the following
conjecture:

Conjecture 1.2. Let A be a principally polarized Abelian surface defined
over Q and A[m] be the kernel of multiplication by an integer m on A. Assume the
GRH. Then,

CA =
∑

m:squarefree≥1

μ(m)#Tm

#Gal(Q(A[m])/Q)
,

where Tm = {σ ∈ Gal(Q(A[m])/Q) | dimZ/�Z(A[�]σ) ≥ 2 ∀� | m}. Here A[�]σ =
{P ∈ A[�] | P σ = P} for a rational prime �. In other words,

#{p ≤ X | Ã(Fp) is cyclic and p is a good prime} ∼ CA · X

log X
.

Then we will prove the following theorem which is the algebraic part in our
results.

Theorem 1.3. Let � be a rational prime and A be a principally polarized
Abelian surface defined over Q. Assume End(A) = Z and the image of mod �

Galois representation associated to A is isomorphic to GSp4(F�) (see Section 2).
Then we have

#T� = �2(2�5 − �4 − �3 − �2 − 3� − 1).

The above theorem asserts us that a new phenomena appears in the case
higher dimension which is greater than one, though it also appears some difficulties
by reason of this. We remark that #Tm = 1 for any m in the case elliptic curves.

The following theorem is the analytic part in our results which will be discussed
in Section 3.

Theorem 1.4. Let A be a principally polarized Abelian surface defined over
Q with End(A) = Z. Assume the GRH and Conjecture 3.5 (see p. 315), then
Conjecture 1.2 is true for A.

The above theorem is easy to prove, since the tools and methods which we
apply are already known. Therefore, it is crucial to prove Conjecture 3.5 though it
seems to be difficult to do it in the current situation.

This paper is organized as follows. We will study T� for Abelian surfaces
with End(A) = Z in Section 2 and give the proof of Theorem 1.3. We will prove
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Theorem 1.4 in Section 3. In Section 4, we will give a numerical evidence of Con-
jecture 1.2 to compute the asymptotical value of CA for the Jacobian surface of the
hyperelliptic curve defined by y2 = x5 − x + 1.

In this paper, we use the notation f(x) � g(x) if there exists a constant c ≥ 0
such that f(x) ≤ cg(x) for any sufficiently large x. For a parameter X ≥ 0, we
denote by π(X) the set of rational primes which are less than or equal to X.

2. Computation of T�

Throughout this section we will assume that Gal(Q(A[�])/Q)) 	 GSp4(F�).
This assumption is satisfied for all but finitely many � when A is a principally
polarized Abelian surface with End(A) = Z. This well-known fact is a celebrated
theorem of Serre (see Theorem 3 in [18]). To compute T� for an odd prime �, we
begin from the following easy exercises in linear algebra.

Let V be a vector space over a field k. Let f : V ×V → k be a non-degenerate,
alternating form.

Lemma 2.1. Assume char(k) �= 2. Then there exists a basis {u1, v1, . . . , un,

vn} such that f(ui, uj) = f(vi, vj) = 0 and f(ui, vj) = δij, where δij is Kronecker’s
delta. In particular the dimension of V is even.

Proof. Take a non zero element u1 in V . Since f is non-degenerate on V ,
there exists v1 ∈ V such that f(u1, v1) = 1. Since f is an alternating form, u1 and
v1 are independent over k. Let W := ku1 ⊕ kv1. Clearly, f |W is non-degenerate on
W . Then the following exact sequence splits:

0 → W⊥ → V → W ∗ → 0,

where W⊥ := {v ∈ V | f(v, w) = 0 (∀w ∈ W )}, W ∗ = Homk(W,k) is the dual of
W , and the second arrow means that V  v �→ f(v, ∗) ∈ W ∗. Iterating the same
procedure for W⊥, we get the claim. �

Let W be a subspace of V and W0 = Ker(W  w �→ f(∗, w) ∈ W ∗). Here W ∗

means the dual of W .

Lemma 2.2. Take the symplectic complement W1 of W in V . Then there
exists a subspace W2 of V which satisfies the following conditions
(a) dim(W0) = dim(W2),
(b) f(w1, w2) = 0 for any w1 in W1 and any w2 in W2,
(c) W ∩ W2 = {0},
(d) f |W0⊕W2 is non-degenerate.

Proof. Let dimk V = n, dimk W = m, and dimk W0 = r. We denote by
{v1, . . . , vn} a basis of V such that {v1, . . . , vr} is a basis of W0 and {vr+1, . . . , vm}
is a basis of W1. Since f is non-degenerate on V , we can take the basis {v∗

1 , . . . , v∗n}
which corresponds to the dual basis of V . Let W2 be the k-vector subspace of V
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which is spanned by {v∗
1 , . . . , v∗r}. Then clearly W2 satisfies (a) and (b) by choosing

a basis of W1 above.
Let v ∈ W2 ∩ W . Then f(w0, v) = 0 for all w0 ∈ W0, since v ∈ W . Then we

get v = 0, since v ∈ W2. This asserts (c).
For (d), it follows from that W0 ⊕ W2 has the basis {v1, . . . , vr, v

∗
1 , . . . , v∗r}.

�

For a subspace W ⊂ V , we define by the degenerate degree d(W ) of W the
dimension of W0. Let Sr,s := {W ⊂ V | dim(W ) = r, d(W ) = s}. Since f is an
alternating form, r − s is even, and r + s ≤ dim(V ) by Lemma 2.2.

Using above two lemmas, we now compute T� for any odd prime number �. We
assume A has a principal polarization for simplicity. Then the image of mod � Galois
representation of �-section points of A can be embedded in GSp4(F�). Namely,

Gal(Q(A[�])/Q) ↪→ GSp(A[�], e�) 	 GSp4(F�).

Here e� is the Weil pairing and GSp(A[�], e�) = {g ∈ Aut(A[�]) | ∃χ(g) ∈ F∗
� :

e�(gx, gy) = χ(g)e�(x, y), ∀x, y ∈ A[�]}. Recall Tm = {σ ∈ Gal(Q(A[m])/Q) |
dimZ/�Z(A[�]σ) ≥ 2 ∀� | m} for a squarefree integer m ≥ 1.

We now prove Theorem 1.2, namely

#T� = �2(2�5 − �4 − �3 − �2 − 3� − 1).

Assume Gal(Q(A[�])/Q) 	 GSp(A[�], e�). Let V = A[�] (	 F⊕4
� ) and f = e�. Let

Sr,s = {W ⊂ V | dim(W ) = r, d(W ) = s}. Then, r − s is even and r + s ≤
dim(V ) = 4.

We decompose T� by using Sr,s as follows:

T� =
∐
(r,s)

∐
W∈Sr,s

Tr,s(W ),

where Tr,s(W ) = {g ∈ Gal(Q(A[�])/Q) | V g = W} and (r, s) runs over {(2, 2), (2, 0),
(3, 1), (4, 0)}. For any W,W ′ ∈ Sr,s, we can see that Tr,s(W ) and Tr,s(W ′) are
conjugate. So #Tr,s(W ) is independent of the choice of W . We define #Tr,s :=
#Tr,s(W ) for some W ∈ Sr,s. From this, we have #T� =

∑
(r,s) #Sr,s #Tr,s.

We take a basis 〈u1, v1, u2, v2〉 of V as in Lemma 2.1.
In the case (r, s) = (2, 2). Put W = 〈u1, u2〉 ∈ S2,2. So g ∈ T2,2(W ) if and

only if

g =
(

I2 B

0 D

)
,

where B,D ∈ M2(F�). Since g ∈ GSp(V, f), we have

t(
I2 B

0 D

)(
0 I2

−I2 0

)(
I2 B

0 D

)
= λ

(
0 I2

−I2 0

)
,
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for some λ ∈ F∗
� . Then we get D = λI2, tB = B. The number of such g is

�3(� − 1). Furthermore, g fixes some subspace of V of dimension 3 if and only if
λ = 1 and det(B) = 0 (note that tB = B). The number of such g is �2. So #T2,2 =
�3(� − 1) − �2.

In the case (r, s) = (2, 0), we take W = 〈u1, v1〉 ∈ S2,0. So g ∈ T2,0(W ) if and
only if

g =
(

I2 B

0 D

)
,

where B,D ∈ M2(F�). Since g ∈ GSp(V, f), we have

t(
I2 B

0 D

)(
J 0
0 J

)(
I2 B

0 D

)
= λ

(
J 0
0 J

)
, J =

(
0 1
−1 0

)
,

where B,D ∈ M2(F�) and λ ∈ F∗
� . From this, we have λ = 1, B = 0, and tDJD =

J (i.e. D ∈ SL2(F�)). The number of such g is �(�2 − 1). Furthermore, g fixes
some subspace of V of dimension 3 if and only if D fixes some subspace of V of
dimension 1. The number of such g is �2. So #T2,0 = �(�2 − 1) − �2.

In the case (r, s) = (3, 1), we take W = 〈u1, v1, u2〉 ∈ S3,1. So g ∈ T3,1(W ) if
and only if

g =
(

I2 0
0 D

)
, D =

(
1 b

0 d

)
∈ GL2(F�).

Since g ∈ GSp(V, f), we have

t(
I2 0
0 D

)(
J 0
0 J

)(
I2 0
0 D

)
= λ

(
J 0
0 J

)
,

where λ ∈ F∗
� . From this, we have d = 1. Furthermore, V g = V if and only if b = 0.

So #T3,1 = � − 1.
In the case (r, s) = (4, 0). This is the trivial case so that #T4,0 = 1.
On the other hand, it is easy to compute #Sr,s:

#Sr,s = �4t−2t2−2ts
t−1∏
j=0

�4−2j − 1
�2t−2j − 1

s−1∏
j=0

�4−2t−2j − 1
�s−j − 1

,

where t := r−s
2 and we set the first (resp. second) product to be 1 if t = 0 (resp.

if s = 0).
Summing up the computations above, we have

#T� = (�3(� − 1) − �2)S2,2 + (�3 − �2 − �)S2,0 + (� − 1)S3,1 + S4,0

= (�3(� − 1) − �2)(�3 + �2 + � + 1) + (�3 − �2 − �)(�4 + �2)

+ (� − 1)(�3 + �2 + � + 1) + 1

= �2(2�5 − �4 − �3 − �2 − 3� − 1).
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3. Cyclicity of Ã(F�)

Let A be a principally polarized Abelian surface defined over Q. In this section,
we first give another interpretation of the density CA. For a squarefree integer m,
let Tm = {σ ∈ Gal(Q(A[m])/Q) | dimZ/�Z(A[�])σ ≥ 2 ∀� | m} and let Sm(X) :=
{p ∈ π1(X) | Frobp(Q(A[�])/Q) ⊂ T�, ∀� �= p, � | m}. By Čhebotarev’s density
theorem, we have

lim
X→∞

#Sm(X)
#π1(X)

=
#Tm

#Gal(Q(A[m])/Q)
.

Lemma 3.1. Sm(X) = {p ∈ π1(X) | Ã(Fp) ⊃ (Z/�Z)⊕2 ∀� �= p, � | m}.
Proof. Let Ã be the reduction of A at a good prime p and � �= p be a

prime. By the proper smooth base change theorem (see [11]), the specialization
map H1

et(A ×Q Q, Z�) → H1
et(Ã ×F�

F�, Z�) gives a Z�-linear isomorphism and it
preserves the action of Frobp. Since the Tate module T�(A) (resp. T�(Ã)) of A

(resp. Ã) is the dual of H1
et(A ×Q Q, Z�) (resp. H1

et(Ã ×F�
F�, Z�)) as GQ-modules

(resp. GF�
-modules) (cf. [11]), A[�] = T�(A)/�T�(A) and Ã[�] = T�(Ã)/�T�(Ã) are

isomorphic as F�-modules and this isomorphism preserves the action of Frobp. From
this “⊂”-part is easy to follow.

For “⊃”-part, take p from the right side in the claim, then by the criterion
of Néron–Ogg–Shafarevich [20] the lift of Frobenius map is uniquely determined.
Then we have the assertion from the same as above. �

We say a finite group M is “cyclic outside p” if its p-primary part is cyclic.
Then Ã(Fp) is cyclic outside p if and only if Ã(Fp) �⊃ (Z/�Z)⊕2 for all primes �
different from p. By lemma 3.1, we expect the probabilistic density of {p ∈ π1(X) |
Ã(Fp) is cyclic outside p} to be PA :=

∏
�

(
1− #T�

#Gal(Q(A[�])/Q)

)
which will be more or

less different from CA by the contribution of the conductor of A (cf. p. 518–520 [4]).
We have to treat the case l = p separately to compute the density. To do this,

we compute the density of U(X) := {p ∈ π1(X) | Ã(Fp) ⊃ (Z/pZ)⊕2}.
Let Fp(t) ∈ Z[t] be the characteristic polynomial of the Frobenius map Frobp

acting on the Tate module T�(Ã) of Ã for some good prime � and αi, i = 1, . . . , 4
be its roots. By Weil conjecture, |αi| =

√
p, i = 1, . . . , 4 ([22]). This reads the

following:

#Ã(Fp) =
4∑

i=0

Trace(Frob−1
p | Hi

et(Ã ×F�
F�, Z�))

=
4∑

i=0

Trace

(
Frob−1

p

∣∣∣∣∣
i∧

H1
et(Ã ×F�

F�, Z�)

)

=
4∏

i=1

(1 − αi) ≤ (
√

p + 1)4.
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If #Ã(Fp) = mp2 for some m ≥ 2, then we have the inequality p2 ≤ 4p
√

p + 6p +
4
√

p + 1. This inequality does not hold if p ≥ 29. Therefore we may consider
U1(X) = {p ∈ π1(X) | #Ã(Fp) = p2} instead of U(X). Take p in U1(X). Let
Fp(t) = t4 − a1t

3 + a2t
2 − pa1t + p2 be the characteristic polynomial of Frobp.

Since p2 = Fp(1), we have |a1| ≤ |a2|+1
p+1 ≤ 6p+1

p+1 ≤ 6. Then Trace(Frobp) = a1 ∈
{0,±1,±2,±3,±4,±5,±6}.

Lemma 3.2. Assume End(A) = Z. Then lim
X→∞

#U1(X)
#π1(X) = lim

X→∞
#U(X)
#π1(X) = 0.

Proof. From Theorem 3 in [18], the image of the �-adic representation ρ�

associated to the �-adic Tate module T�(A) is open in GSp(T�, e�) 	 GSp4(Z�)
for a sufficiently large �. Since U1(X) ⊂ ⋃6

i=−6{p ∈ π1(X) | Trace(Frobp) = i},
ρ�(Frobp) is lying on a finite union of some hyperplanes in GSp(T�, e�) 	 GSp4(Z�).
Since the Haar measure of hyperplanes in GSp4(Z�) is zero (cf. Chapter 1 in [14]),
the assertion follows from this. �

Lemma 3.3 ([16]). Let K/Q be a finite Galois extension which is ramified
only at the primes p1, . . . , pm, then

1
[K : Q]

log|dK | ≤ log[K : Q] +
m∑

j=1

log pj,

where dK is the discriminant of K/Q.

Proposition 3.4 ([9], [16]). Let K/Q be a Galois extension of degree n and
C ⊂ Gal(K/Q) be closed under conjugation. Assume the GRH. Then,

#πC(X) =
#C

n
· #π(x) + O

(
#C

n
X1/2(log dK + n log X)

)
,

where πC(X) = {p ≤ X | p : unramified in K and Frobp(K/Q) ⊂ C}.
We claim the following under the GRH and Conjecture 3.5 below: if End(A) =

Z, then

CA = lim
X→∞

#{p ∈ π1(X) | Ã(Fp) is cyclic outside p}
#π1(X)

.

To see this we apply Hooley’s method. Let f(A,X) := #{p ∈ π1(X) | Ã(Fp) is
cyclic outside p} for a principally polarized Abelian surface with End(A) = Z. If
Ã(Fp) ⊃ (Z/�Z)⊕2 for a good prime p of A, then we have �2 ≤ (

√
p + 1)4 by the

Weil bound. So p ≤ X leads � ≤ 3X. Let

N(X,Y ) = #{p ∈ π1(X) | Ã(Fp) �⊃ (Z/�Z)⊕2, ∀� ≤ Y , �= p},

and

M(X,Y ) = #{p ∈ π1(X) | Ã(Fp) ⊃ (Z/�Z)⊕2, for some � �= p, s.t. Y ≤ � ≤ 3X}.
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Here Y is a parameter depending on X, to be chosen later. Then we have

N(X,Y ) − M(X,Y ) ≤ f(A,X) ≤ N(X,Y ).

First, we estimate N(X,Y ). By the inclusion-exclusion principle,

N(X,Y ) =
∑′

m

μ(m)#Sm(X),

where the summation is over all squarefree integers m all of whose prime factors
are less than or equal to Y . We set S1(X) = π1(X) if m = 1. Applying Proposi-
tion 3.4 for G = Gm := Gal(Q(A[m])/Q) and C = Tm, we have the following under
the GRH:

Sm(X) =
#Tm

#Gm
· #π(X) + O

(
#Tm

#Gm
X1/2(log|dm| + #Gm log X)

)
,

where dm is the discriminant of Q(A[m]). Therefore,

N(X,Y ) =
∑′

m

μ(m)
#Tm

#Gm
· #π(X) + O

(∑′

m

#Tm

#Gm
X

1
2 (log dm + #Gm log X)

)
.

Using Lemma 3.3, we have

1
#Gm

log dm ≤ log #Gm + log(Nm) � log m,

where N is the conductor of A. Then

O

(∑′

m

#Tm

#Gm
X1/2(log dm + #Gm log X)

)
= O

(∑′

m

(log m) #TmX1/2 log X

)
.

Let us observe that m ≤ ∏ p|m
p≤Y

p ≤ e2Y . By Theorem 3 in [18] and Theorem 1.2,

it is easy to see that∣∣∣∣∣∑′

m

(log m) #Tm

∣∣∣∣∣� ∑
1≤m≤e2Y

m8 � (e2Y )9 = e18Y ,

since Tm ⊂∏�|m T�. Now we chose Y to be 1
18 log Xδ for a positive constant δ < 1

2 .
Then we have

N

(
X,

1
18

log Xδ

)
=
∑′

m

μ(m)
#Tm

#Gm
· #π(X) + o

(
X

log X

)
,

for sufficiently large X.
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We remain to estimate M(X,Y ) for Y = 1
18 log Xδ. We are hopeful that

M
(
X, 1

18 log Xδ
)

= o
(

X
log X

)
to prove Conjecture 1.2. However it seems to be dif-

ficult to prove it with the current tools in analytic number theory or algebraic
number theory. We set up the following conjecture which we expect to be true
from the (naive) numerical evidence in Section 4.

Conjecture 3.5. The notations being as above. Then M
(
X, 1

18 log Xδ
)

=
o
(

X
log X

)
.

The estimation for N(X,Y ) and Conjecture 3.5 give us

f(A,X) =
∑′

m

μ(m)
#Tm

#Gm
· #π(X) + o

(
X

log X

)
,

under the GRH. Then we have

lim
X→∞

#{p ∈ π1(X) | Ã(Fp) is cyclic outside p}
#π1(X)

= lim
X→∞

f(A,X)
#π(X)

=
∑′

m

μ(m)
#Tm

#Gm
.

Remark 3.6.

(a) A naive estimation gives us that

M

(
X,

1
18

log Xδ

)
≤

∑
1
18 log Xδ≤�≤3X

#S�(X)

=
∑

1
18 log Xδ≤�≤3X

#T�

#G�
· #π(X) + O(X

17
2 ).

(b) In the proofs of Theorem 1.1, Serre and Murty make use of the fact that the
division fields Q(E[�]) (here � is a prime) contain cyclotomic fields, and thus
a prime p splitting completely in Q(E[�]) satisfies the congruence condition
p ≡ 1 (mod �). As such, they can invoke the Brun–Titchmarch Theorem to
estimate M(X,Y ). In current situation of an Abelian surface, this argument
can not be invoked because the invariant #T� becomes large with order �7

when � is large (see Theorem 1.2). Contrary to this situation, #T� = 1 for
any � if A is an elliptic curve.

Proof of Theorem 1.4. By Lemma 3.2 and the observations above,∑′

m

μ(m)
#Tm

#Gm
= lim

X→∞
#{p ∈ π1(X) | Ã(Fp) is cyclic outside p}

#π1(X)

= lim
X→∞

#{p ∈ π1(X) | Ã(Fp) is cyclic}
#π1(X)

+ lim
X→∞

#U(X)
#π1(X)

= CA. �
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4. Numerical evidence

In this section, we compute the asymptotic values of CA for some Jacobian
surface A and compare this value with the probabilistic density PA. In general,
Tm is not multiplicative function for m and then CA does not coincide with PA.
However, we expect these two values become close, since PA is an interpretation of
CA in the probabilistic point of view.

We consider an algebraic curve C : y2 = x5 − x + 1 with End(J(C)) = Z.
Let A = J(C).

We first compute the value of the probabilistic density PA (see p. 312). The
following result is known by L. Dieulefait.

Theorem 4.1 (see p. 509 in [5]). Assume the Serre’s conjecture ( 3.2.4? [19]).
Then

Gal(Q(J(C)[�]))/Q 	 GSp4(F�),

for � ≥ 3.

Lemma 4.2. The notations are as above. Then #T2 = 46.

Proof. Let Pi = (αi, 0), i = 1, 2, 3, 4, 5 where αi is a root of x5 − x + 1 and
let Di = Pi − ∞ ∈ J(C), where ∞ is the infinite point on C. Then J(C)[2] =⊕4

i=1 F2Di (cf. Section 5 in [12]) and D1 + D2 + D3 + D4 = D5, since the divisor
of y is

(∑5
i=1 Pi

)− 5∞. Using this, we have the Galois representation

ρ : Gal(Qf/Q) → GL4(F2),

where Qf is the decomposition field of f(x) = x5 − x + 1 (note that Qf =
Q(J(C)[2])). For σ ∈ Gal(Qf/Q), σ ∈ T2 if and only if the rank of the ma-
trix ρ(σ) − I4 is less than or equal to 2.

We know Gal(Qf/Q) = S5 by using Pari-gp calculator [1]. To compute T2, we
have only to consider the conjugacy classes of S5.

Let {(1), (12), (123), (1234), (12345), (12)(34), (12)(345)} be the complete set of
conjugacy classes of S5. Clearly, (1) ∈ T2. Let {ei}4

i=1 be the canonical basis of
F⊕4

2 . For σ = (12), the number of elements of S5 conjugate to σ is equal to 10 and
we have

ρ(σ) = (e2, e1, e3, e4).

From the criterion above, σ ∈ T2.
For σ = (123), the number of elements of S5 conjugate to σ is equal to 20 and

we have

ρ(σ) = (e3, e1, e2, e4).

From the criterion above, σ ∈ T2.
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For σ = (1234), the number of elements of S5 conjugate to σ is equal to 30
and we have

ρ(σ) = (e4, e1, e2, e3).

From the criterion above, σ �∈ T2.
For σ = (12345), the number of elements of S5 conjugate to σ is equal to 24

and we have

ρ(σ) = (e4, e1 + e4, e2 + e4, e3 + e4).

Here we use the relation D1+D2+D3+D4 = D5. From the criterion above, σ �∈ T2.
For σ = (12)(34), the number of elements of S5 conjugate to σ is equal to 15

and we have

ρ(σ) = (e2, e1, e4, e3).

From the criterion above, σ ∈ T2.
For σ = (12)(345), the number of elements of S5 conjugate to σ is equal to 20

and we have

ρ(σ) = (e2 + e4, e1 + e4, e4, e3 + e4).

Here we use the relation D1+D2+D3+D4 = D5. From the criterion above, σ �∈ T2.
From the computations above, we have #T2 = 1 + 10 + 20 + 15 = 46. �

From Theorem 4.1 and Theorem 1.2, we have

PA =
(

1 − 46
5!

)∏
�≥3

(
1 − �2(2�5 − �4 − �3 − �2 − 3� − 1)

�4(� − 1)(�2 − 1)(�4 − 1)

)
= 0.5945 · · · .

So we would like to expect that the density

CA = lim
X→∞

#{p ∈ π1(X) | Ã(Fp) is cyclic}
#π1(X)

Table 1. The cyclicity of J̃(C)(Fp)

X #π1(X) cyclic Density
1000 163 91 0.5582 · · ·
2000 298 176 0.5906 · · ·
3000 425 258 0.6070 · · ·
4000 544 318 0.5845 · · ·
5000 663 393 0.5927 · · ·
6000 777 453 0.5830 · · ·
7000 894 524 0.5861 · · ·
8000 1001 578 0.5774 · · ·

Here we exclude p = 2, 3, 5.
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is close to PA. To support this, we calculate #{p∈π1(X)| eA(Fp) is cyclic}
#π1(X) by 1000 units

as X = 1000, 2000, . . . , 8000.
Here “cyclic” in the third column in Table 1 means the number of primes p

such that J̃(C)(Fp) is cyclic. We hope that Density above become close to CA and
also PA.
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lications Mathematiques de l’IHES, 54 (1981), 123–201.
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