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In many expositions of fuzzy methods, fuzzy techniques are described as an alternative to a
more traditional statistical approach. In this paper, we present a class of fuzzy statistical
decision process in which testing hypothesis can be naturally reformulated in terms of
interval-valued statistics. We provide the definitions of fuzzy mean, fuzzy distance as
well as investigation of their related properties. We also give some empirical examples to
illustrate the techniques and to analyze fuzzy data. Empirical studies show that fuzzy
hypothesis testing with soft computing for interval data are more realistic and reasonable
in the social science research. Finally certain comments are suggested for the further
studies. We hope that this reformation will make the corresponding fuzzy techniques
more acceptable to researchers whose only experience is in using traditional statistical
methods.
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1. Introduction

A statistical test is general conducted by means of a hypothesis testing for
which the probability distribution is determined by the assumption that the null
hypothesis H0 is true. Under the significant level α, a critical region is compute
such that if the observed statistics falls in the critical reason, we reject the null
hypothesis. The statistical test provides information from which we can decide the
significance of the increase (or decrease) in any experimental result.

However there are some vague information, formulated by terms from natural
language, is not easy to describe in statistical terms. To handle this information
and knowledge, it is natural to use intelligent computing techniques. Fortunately, in
many expositions of intelligent computing methods, fuzzy techniques are described
as an alternative to a more traditional statistical approach. Such a description
makes fuzzy techniques difficult to understand and difficult to accept for researchers
who are accustomed to statistical methods.

In this paper we will introduce the concept of fuzzy statistics via discrete fuzzy
sample and continuous fuzzy sample. The definitions of fuzzy mean for two kinds
of fuzzy data are proposed. Using these definitions we are able to set up the fuzzy
testing hypothesis such as fuzzy equals to and the fuzzy belongs to. These testing
processes are very useful tools for decision make in a fuzzy system.

Although the statistical methods used to testing fuzzy sample mean are based
on the traditional decision theory, extended Neyman–Peason’s lemma about most
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powerful test are not austerely investigated for two reasons: (i) soft-computing for
critical region with fuzzy number is still not identified. (ii) distribution for fuzzy
population is vague, incomplete or unknown.

Since our main objectives is to promote the understanding of these two classes
of techniques—statistics and fuzzy—to researchers who may only know well one of
theses techniques, we go into some detail explaining the basics of techniques. A
reader who is well familiar with one or both of these techniques is advised to at
least browse through or exposition of their basics.

In reality, more complex situations are possible, in which an expert is not
100 % sure whether a given estimate xi is possible; in this case, we can no longer
use polling to get numerical characteristics of the expert knowledge. Fuzzy set
methodology can handle such more complex situation as well. The above polling
method of eliciting the values of the membership functions is only one of the many
known elicitation techniques; see, e.g., [1, 3, 4, 6, 8].

In this paper, we present a class of fuzzy statistical decision process in which
testing hypothesis can be naturally reformulated in terms of interval-valued statis-
tics. To describe these situations we will start with a brief motivation of traditional
statistical techniques, and then give a brief motivation of the corresponding fuzzy
methods, and then describes the relation between these two classes of techniques.
We provide the definitions of fuzzy mean, fuzzy distance as well as investigation
of their related properties. We also give some empirical examples to illustrate the
techniques and to analyze fuzzy data. Empirical studies show that fuzzy hypothesis
testing with soft computing for interval data are more realistic and reasonable in
the social science research. Finally certain comments are suggested for the further
studies.

Our result is in good agreement with a general result from [7], [9], according
to which an arbitrary fuzzy set can be interpreted in statistical terms: namely, as
a random set. For the latest developments in this area, see, e.g., [2], [5]. We hope
that this reformation will make the corresponding fuzzy techniques more acceptable
to researchers whose only experience is in using traditional statical methods.

2. Fuzzy data with soft computing

2.1. Membership function
In the traditional statistical approach, we assume that each expert provides

the exact estimate of the desired quantity x; so, after polling the experts, we get,
for each possible value xi of this quantity, the probability p(xi) that a randomly
chosen expert selected this value as his/her estimate.

In the fuzzy case, we take into consideration that expert often cannot provide
definite estimates. The simplest case is when an expert has in mind several possible
values of the estimated quantity. In this case, instead of asking each expert for a
definite estimate, we can ask each experts which of ν values they consider possible
and which not. As a result, for each value xi, we can count the total number N(xi)
of experts who consider this value possible.
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Similar to the statistical approach, we do not want to ask all N experts, so
we would like to get a representative sample of n � N experts, and ask only these
n experts. In doing this, we hope that for each xi the portion μ(xi) = n(xi)/n of
experts in this sample who consider xi to be a possible estimate is approximately
the same as the portion N(xi)/N corresponding to all N experts. Therefore, we
must consider the ratios μ(xi) = n(xi)/n.

Similarly to probabilities, these numbers belong to the interval [0, 1]. However,
we can no longer call these values probabilities, because they do not necessarily add
up to 1. For example, if every expert considers all the values possible, then μ(xi) = 1
for all i, so the sum of these values is which no longer equal to 0. The values μ(xi)
are called degrees of possibility, and the function μ which maps each value xi into
the corresponding degree μ(xi) is called a membership function, or a fuzzy set.

In considering the question related with fuzzy property, we consider the infor-
mation itself has the uncertainty and fuzzy property. Hence, let’s firstly give an
easy and precise explanation about fuzzy numbers.

Definition 2.1 (Fuzzy Number (Nguyen and Wu 2006 [5], p. 111)). Let U be
an universal set, A = {A1, A2, . . . , An} be the subset of discussion factors in U . For
any term or statement X on U , it’s membership corresponding to {A1, A2, . . . , An}
is {μ1(X), μ2(X), . . . , μn(X)}, here μ : U → [0, 1] is a real function. Then the fuzzy
number of X can be written as the following:

μU (X) =
n∑

i=1

μi(X)IAi
(X), (2.1)

where IAi
(x) = 1, if x ∈ Ai; IAi

(x) = 0, if x /∈ Ai.
If the domain of the universal set is continuous, then the fuzzy number can be

written as: μU (X) =
∫

Ai⊆A
μi(X)IAi

(X).

In the research of social science, the sampling survey is always used to evaluate
and understand public opinion on certain issues. The traditional survey forces
people to choose one answer from the survey, but it ignores the uncertainty of human
thinking. For instance, when people need to choose the answer from the survey
which lists five choices including “Very satisfactory,” “Satisfactory,” “Normal,”
“Unsatisfactory,” “Very unsatisfactory,” traditional survey become quite exclusive.

The advantages of evaluation with fuzzy number include: (i) Evaluation pro-
cess becomes robust and consistent by reducing the degree of subjectivity of the
evaluator. (ii) Self-potentiality is highlighted by indicating individual distinctions.
(iii) Provide the evaluators with an encouraging, stimulating, self-reliant guide that
emphasizes on individual characteristics. While the drawback is that the calculating
process will be a little complex than the conventional one.

2.2. Fuzzy mean
In the traditional statistical approach, we start with a collection of real num-

bers, i.e., in more precise terms, we used number-valued statistics. In an interval
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situation, we start with a collection of intervals instead of a collection of numbers.
So, if we use statistical methods to process this collection, it is natural to call these
statistical methods interval-valued.

Let us see what statistical characteristics we can naturally extract from this
collection. In traditional statistical techniques, each expert presents a single num-
ber, and from this collection, we can extract the probabilities p(xi) and cumulative
probabilities F (xi). In the interval case, each expert presents two numbers x−

and x+. So instead of a single collection of numbers, we have two collections: a
collection of the lower endpoints x−, and the collection of upper endpoints x+. It
is therefore natural to apply the standard statistical procedure to each of these
collections.

Fuzzy techniques were developed to describe and analyze the situation when
an expert is not sure about the value of the estimated quantity x, and may consider
several different values to be possible.

We start with the set X = {x1, . . . , xv} of all possible values of x. In principle,
the values which an expert considers possible can form an arbitrary subset of this
set. Usually, however, not all subset occur. Typically, if an expert believes that two
values x′ < x′′ are possible, than all intermediate values x (i.e., values for which
x′ < x < x′′) are possible as well. In such a situation, to describe the set of all the
values x which an expert consider possible, it is sufficient to describe the smallest
x− and the largest x+ of these values; then all the values between x− and x+ are
possible as well. In other words, in such situation, the set of all values xi which an
expert considers possible forms an interval [x−, x+] = {x− ≤ x ≤ x+}.

Therefore, all we have to collect from the experts is these interval, i.e., to be
more precise, their endpoints. As a result, we have a collection of intervals.

Definition 2.2 (Fuzzy mean of data with interval values). Let U be the
universe set, and {FSi = [ai, bi], ai, bi ∈ R, i = 1, 2, . . . , n} be a sequence of
random fuzzy sample on U . Then the fuzzy expected value is defined as FX =[

1
n

∑n
i=1 ai,

1
n

∑n
i=1 bi

]
.

Definition 2.3 (Fuzzy mean for unbounded sample). Let U be the universe
set, and {FSi = [ai,∞), ai ∈ R, i = 1, 2, . . . , n} be a sequence of random fuzzy
sample on U . Then the fuzzy expected value is defined as FX =

[
a1+a2+·+an

n , 8
)
.

If X1 = (8, b1], . . . , Xn = (8, bn], then the fuzzy expected value is defined as FX =(
8, b1+b2+···+an

n

]
.

Example 2.1. In a survey with the starting salary for the new undergraduate
students’ salary, we find the following 5 data as follows: [1000, 2000], [2000, 2500],
[3000, 4000], [1500, 2000], [1000, 1500]. Then according to the Definition 2.2 the
fuzzy mean becomes:

FX =
[
1 + 2 + 3 + 1.5 + 1

5
,
2 + 2.5 + 4 + 2 + 1.5

5

]
= [1.7, 2.4] (unit: thousand).
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Definition 2.4 (Defuzzyfication for discrete fuzzy data). Let D is a fuzzy
sample on universe domain U with ordered linguistic variable {Li; i = 1, . . . , k}.
μD(Li) = mi is the membership with respect to Li,

∑k
i=1 μD(Li) = 1. We say

Df =
∑k

i=1 miLi is the defuzzyfication value for discrete fuzzy data D.

Definition 2.5 (Defuzzyfication for interval fuzzy data). Let C is a fuzzy
sample on universe domain U with support on [a, b], that is, the membership of

μC(x) = f(x), if x ∈ [a, b], 0 ≤ f(x) ≤ 1 is a convex function. The Cf =
R b

a
xf(x) dx

R b
a

f(x) dx

is called the defuzzyfication value for interval fuzzy data.

3. Some properties and soft computing about fuzzy data

It is a new research topic about the hypothesis testing of fuzzy mean with
interval values. First of all, we will give a brief definition about the defuzzification.
Then under the fuzzy significant level δ, we make a one side or two side testing.
These methods are a little different from traditional significant level α. In order to
get the robustic characteristic properties, we will set up the rejection area level Fδ,
according to the fuzzy population.

3.1. Fuzzy equal and fuzzy belongs to for fuzzy data

Definition 3.1 (Fuzzy equal for discrete data). Let U be a universe domain,
L = {L1, L2, . . . , Lk} be sequence of rank ordering of linguistic variables on U .{
Xi = m1l

L1
+ mi2

L2
+ · · · + mik

Lk
, i = 1, 2

}
,

∑k
j=1 mij = 1 are two random samples

from U . If m1j = m2j (j = 1, 2, . . . , k). Then we say that X1 fuzzy equals to X2,
denoted by X1 ≈F X2.

Definition 3.2 (Fuzzy index equal for discrete data). Let U be a universe
domain, L = {L1, L2, . . . , Lk} be sequence of rank ordering of linguistic variables on
U .

{
Xi = mi1

L1
+ mi2

L2
+ · · ·+ mik

Lk
, i = 1, 2

}
,
∑k

j=1 mij = 1 are two random samples

from U . Then the center of fuzzy number for discrete type is CX i =
∑k

j=1 mijLj.
If CX 1 = CX 2, we say that X1 fuzzy index equals to X2, denoted by X1 ≈I X2.

Definition 3.3 (Fuzzy equal for interval data). Let A, B be two fuzzy data
with membership functions μA : [a, b] → [0, 1], μB : [c, d] → [0, 1]. If A, B have the
same support and f , g are all convex functions then we say A is fuzzy equal to B,
written as A =F B, or briefly A =F [c, d].

For left unbounded or right unbounded, the definitions are similar.

Definition 3.4 (Fuzzy belongs to for interval data). Let A, B be two fuzzy
data with membership functions μA : [a, b] → [0, 1], μB : [c, d] → [0, 1]. If the support
of A is contained in the support B, f , g are all convex functions, then we say A

is fuzzy belongs to B, written as A ∈F B, or briefly A ∈F [c, d].
For left unbounded or right unbounded, the definitions are similar.
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In order to set up an appropriate testing hypothesis on the fuzzy data, it is
necessary for us to give definitions about measurement of distance of fuzzy set. In
the following, we set up firstly, the definition of fuzzy distance with fuzzy interval
data. The definition is different from the traditional interval operations. Our
consideration is concentrated on the statistical point of view.

Definition 3.5 (Distance of fuzzy interval set). Let A, B be two fuzzy data
with membership functions μA : [a, b] → [0, 1], μB : [c, d] → [0, 1]. We give three
definitions of distance:

d1(A,B) = inf{|x − y| : x ∈ A, y ∈ B},
d2(A,B) = sup{|x − y| : x ∈ A, y ∈ B},
d3(A,B) = inf{ε1, ε2},
ε1 = inf{ε : [c, d] ⊂ [a − ε, b + ε]}, ε2 = inf{ε : [a, b] ⊂ [c − ε, d + ε]},
d4(A,B) = sup{ε1, ε2}.

Example 3.1. Let A, B be two fuzzy data with support [1, 3], [2, 5]. Then

d1(A,B) = inf{|x − y| : x ∈ A, y ∈ B} = 0,

d2(A,B) = sup{|x − y| : x ∈ A, y ∈ B} = 4,

ε1 = inf{ε : [c, d] ⊂ [a − ε, b + ε]} = 2, ε2 = inf{ε : [a, b] ⊂ [c − ε, d + ε]} = 1,

d3(A,B) = inf{ε1, ε2} = 1,

d4(A,B) = sup{ε1, ε2} = 2.

3.2. Some properties about Fuzzy data

Property 3.1. Let A, B be two fuzzy data with membership functions
μA : [a, b] → [0, 1], μB : [c, d] → [0, 1]. The fuzzy equals implies fuzzy belongs to.
The inverse is not true.

Proof. If A =F [c, d], since [a, b] = [c, d], then [a, b] ⊂ [c, d]. Hence A ∈F [c, d].
�

Property 3.2.

(i) For any fuzzy set C with support [m,n] which has no intersection with the
support of A and B, if b < m, d < m and d1(A,C) = d1(B,C), d2(A,C) =
d2(B,C), then A =F B.

(ii) For any fuzzy set C with support [m,n] which have no intersection with the
support of A, B, if a > n, c > d and d1(A,C) = d1(B,C), d2(A,C) =
d2(B,C), then A =F B.

Proof. (i) If d1(A,C) = d1(B,C), since inf{|x − z| : x ∈ A, z ∈ C} =
inf{|y−z| : y ∈ B, z ∈ C}, then m−b = m−d, we get b = d. If d2(A,C) = d2(B,C),
since sup{|x− z| : x ∈ A, z ∈ C} = sup{|y − z| : y ∈ B, z ∈ C}, then n− a = n− c,
we get a = c. Hence A =F B.
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(ii) is proved similarly. �

Property 3.3. For any fuzzy set C with support [m,n] which has no inter-
section with the support of A and B, if A ∈F B, then d1(A,C) ≥ d1(B,C) and
d2(A,C) ≤ d2(B,C). The inverse is not true.

Proof. We only prove d < m case. The other cases are similar.
Since A ∈F B, a ≥ c, b ≤ d, m − b ≥ m − d, and n − a ≤ n − c. So we have

d1(A,C) ≥ d1(B,C) and d2(A,C) ≤ d2(B,C).
On the other hand, if we choose [a, b] = [1, 3], [c, d] = [15, 18], [m,n] = [8, 10],

then d1(A,C) ≥ d1(B,C) and d2(A,C) ≤ d2(B,C), but A /∈F B. �

Property 3.4. Let [a, b]∩ [c, d] = ∅ and d−c ≥ b−a. Then d3(A,B) = c−a

if b < c; d3(A,B) = b − d, if a > d.

Proof. Considering b < c (the other case are similar)

ε1 = inf{ε : [c, d] ⊂ [a−ε, b+ε]} = d−b, ε2 = inf{ε : [a, b] ⊂ [c−ε, d+ε]} = c−a.

Since ε1 − ε2 = (d − c) − (b − a) ≥ 0, d3(A,B) = inf{ε1, ε2} = c − a. �

Property 3.5. Let [a, b] ∩ [c, d] �= ∅ and [a, b] �⊂ [c, d] and d − c ≥ b − a.
Then d3(A,B) = c − a if a < c; d3(A,B) = b − d if b > d.

Proof. Since d− c ≥ b− a, we have d− b ≥ c− a. The rest of proof is similar
to that of Property 3.4. �

Property 3.6. If [a, b] ⊂ [c, d] then d3(A,B) = 0.

Proof. ε1 = inf{ε : [c, d] ⊂ [a−ε, b+ε]} > 0, ε2 = inf{ε : [a, b] ⊂ [c−ε, d+ε]} =
0, hence d3(A,B) = 0. �

Property 3.7. For any fuzzy set C with support [m,n],
(i) if n − m ≥ d − c and A ∈F B, then d3(A,C) ≤ d3(B,C);
(ii) if n − m ≥ d − c and A =F B, then d3(A,C) = d3(B,C).

Proof. (i) If A ∈F B then a ≥ c, b ≤ d.
Case 1: d < m, then d3(A,C) = m − a ≤ m − c = d3(B,C).
Case 2: c < n, then d3(A,C) = b − n ≤ d − n = d3(B,C).
Case 3: c < m, a < m, d ≥ m then d3(A,C) = m − a ≤ m − c = d3(B,C).
Case 4: c < m, a ≥ m, then d3(A,C) = 0 < m − c = d3(B,C).
Case 5: c ≥ n, d ≤ n, then d3(A,C) = 0 = d3(B,C).
Case 6: c ≤ n, b > n, d > n, then d3(A,C) = b − n ≤ d − n = d3(B,C).
Case 7: c ≤ n, b ≤ n, d > n, then d3(A,C) = 0 < d − n = d3(B,C).

The proof is completed.
(ii) is proved similarly. �
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4. Testing hypothesis with fuzzy data

It is a new research topic about the hypothesis testing of fuzzy mean with
interval values. First of all, we will give a brief definition about the defuzzification.
Then under the fuzzy significant level δ, we make a one side or two side testing.
These methods are a little different from traditional significant level α. In order to
get the robustic properties, we will set up the rejection area level Fδ, according to
the fuzzy population.

4.1. Testing hypothesis for fuzzy equal
Let U be the universal set (a discussion domain), L = {L1, L2, . . . , Lk} a set of

k-linguistic variables on U , and A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bn}
be two sets of fuzzy sample drawn from categorical populations with numbers on
U . For each sample we assign a linguistic variable Lj and a normalized membership
mij (

∑k
j=1 mij = 1), and let FnAj

=
∑m

i=1 Lnij , FnBj
=

∑n
i=1 Lnij j = 1, 2, . . . , k

be the total memberships for each data set. The following statements are process
for testing hypothesis

Testing hypothesis of fuzzy equal for discrete fuzzy mean
Consider a k-cell multinomial vector n = {n1, n2, . . . , nk} with

∑
i ni = n.

The Pearson Chi-squared test (χ2 =
∑

i

∑
j

nij−eij

eij
) is a well known statistical test

for investigating the significance of the differences between observed data arranged
in k classes and the theoretically expected frequencies in the k classes. It is clear
that the large discrepancies between the observed data and expected cell counts
will result in larger values of χ2.

However, a somewhat ambiguous question is whether (quantitative) discrete
data can be considered categorical data, for which the traditional χ2-test can be
used. For example, suppose a child is asked the following question: “how much do
you love your sister?” If the responses is a fuzzy number (say, 70 % of the time),
it is certainly inappropriate to use the traditional χ2-test for the analysis. We will
present a χ2-test for fuzzy data as follows:

Procedures for testing hypothesis of fuzzy equal for discrete fuzzy mean
1. Hypothesis: two populations have the same distribution ratio.

2. χ2 =
∑

i∈A,B

∑c
j=1

([Fnij ]−eij)
2

eij
. (In order to preform the Chi-square test

for fuzzy data, we transfer the decimal fractions of Fnij in each cell of fuzzy
category into the integer [Fnij ] by counting 0.5 or higher fractions as 1 and
discard the rest.)

3. Decision rule: under significance level α, if χ2 > χ2
α(k−1), then we reject H0.

Testing hypothesis of fuzzy index equal for discrete fuzzy mean
Let FX be the fuzzy sample mean, X̄f be the defuzzyfication of FX. Under

the fuzzy significant level Fδ, and the corresponding critical value Fδ, we want to
test H0 : FX = Fμ, where Fμ is the fuzzy mean of the underlying population. Let μ

is the defuzzyfication value of Fμ, then the above hypothesis becomes H0 : μ = μ0.
1. Hypothesis: H0 : Fμ = Fμ0 vs. H1 : Fμ �= Fμ0.
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2. Statistics: find FX from a random sample {Si, i = 1, . . . , n}.
3. Decision rule: under the fuzzy significant level Fδ, if |X̄f − μ0| > δ, then

reject H0.
Note: for left side test H0: μ ≤ μ0 vs. H1: μ > μ0 under the fuzzy significant level
Fδ, if μ0 − X̄f > δ, we reject H0. The right hand side testing is similar.

Testing hypothesis with continuous fuzzy mean
1. Hypothesis: H0: Fμ =F [a, b] vs. H1: Fμ �=F [a, b].
2. Statistics: find FX = [xl, xu] from a random sample {Si, i = 1, . . . , n}.
3. Decision rule: under the significant level Fδ, find k = dr (where r = b− a), if

|xl − a| > k or |xu − b|> k then reject H0.

4.2. Testing hypothesis for fuzzy belongs to
Testing of fuzzy belongs to with bounded sample
1. Hypothesis: H0: Fμ ∈F [a, b] vs. H1: Fμ /∈F [a, b].
2. Statistics: find FX = [xl, xu] from a random sample {Si, i = 1, . . . , n}.
3. Decision rule: under the significant level Fδ, find k = dr (where r = b − a),

if xl < a − k or xu > b + k, then reject H0.

Testing of fuzzy belongs to with unbounded below sample
1. Hypothesis: H0: Fμ ∈F (−∞, b] vs. H1: Fμ ∈F (−∞, b].
2. Statistics: find FX = (∞, xu] from a random sample {Si, i = 1, . . . , n}.
3. Decision rule: under the significant level Fδ, find k = dr (where r is a con-

stant), if xu > b + k, then reject H0.

Testing of fuzzy belongs to with unbounded above sample
1. Hypothesis: H0: Fμ ∈F [a,∞) vs. H1: Fμ /∈F [a,∞).
2. Statistics: find FX = [xl, 8) from a random sample {Si, i = 1, . . . , n}.
3. Decision rule: under the significant level Fδ, find k = dr (where r is a con-

stant), if xl < a − k, then reject H0.

5. Empirical studies

Example 5.1. How do Chinese and English-speaking children’s conditional
reasoning and expressions develop over time? Is language difference, such as En-
glish versus Chinese, related to children’s understanding of conditionals? Among
the testing stimuli, six conditional questions with different degrees of hypothetical-
ity were asked based on a picture book to the two groups of children in their native
language respectively. The questions are listed below.

The test for fuzzy equals is shown in the following table.
From Table 5.2 we find that, there was no difference between these two groups.

The fuzzy testing hypothesis of fuzzy equal for discrete fuzzy data, uses more dif-
ferentiated categories and tends to reflect a more truthful picture of the data.

Example 5.2. A farmer wants to adapt a new cooking style of fry chicken
from traditional techniques. He invites 5 experts to join the evaluating experiment.
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Table 5.1. Types of conditional questions and examples.

Conditional questions Examples
1. Future open conditionals If you ask your Mom whether she loves you,

what will she say?
2. Present open conditionals If somebody bites you, does it hurt?
3. Past open conditionals There are lions in the zoo. If I have been to

the zoo, would I see the lions?
4. Imaginative conditionals Which animal would you like to be if you were

the piglet? Why would you want to be a
?

5. Present counterfactuals The mother pig is afraid after the piglet be-
comes a lion because the lion might bite her
with its sharp teeth. What if the lion didn’t
have sharp teeth?

6. Past counterfactuals The piglet was a lion before. But he changed
back to be a piglet again at the end. What
if the piglet had not changed back to himself,
what would the mommy pig have done then?

Table 5.2. A comparison of the traditional and fuzzy statistical analyses on Chinese- and

English-speaking children’s responses to 6 conditional questions.

H0: Language difference does
not affect children’s under-
standing of conditionals, i.e.,
H0: FμChinese =F FμEnglish

Con.a Ind.b Non. Con.c Chi-Square Teste

1. Future open con-
ditionals

Chinese 29.8 21.1 5 χ2 = 3.71, p = 0.16
Accept H0English 16.8 4.4 0.8

2. Present open con-
ditionals

Chinese 20.6 22.4 12.6 χ2 = 4.68, p = 0.096
Reject H0English 14.2 5.6 2.2

3. Past open condi-
tionals

Chinese 22.8 23.2 10 χ2 = 0.55, p = 0.76
Accept H0English 11.4 8 2.6

4. Imaginative con-
ditionals

Chinese 42.2 12.4 1.4
χ2 = 0.41d

English 17 4.8 0.2
5. Present counter-
factuals

Chinese 25 9.2 1.8 χ2 = 0.34, p = 0.84
Accept H0English 14.4 6 1.6

6. Past counter-
factuals

Chinese 25.6 22.4 8 χ2 = 2.76, p = 0.25
Accept H0English 10.8 5.2 6

Note. aConditional response, bIndeterminate response, cNon-conditional response, dMore than
two cells numbers are ≤ 1, Chi-Square test is invalid. eIn order to perform the Chi-square test
for fuzzy data, we transfer the decimal fractions in each cell of fuzzy category into the integer by
counting 5 and higher fractions as 1 and discard the rest.
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After they tested the new fry chicken, they are asked to give a fuzzy grading with:
very unsatisfactory = 1, unsatisfactory = 2, no difference = 3, satisfactory = 4,
very satisfactory = 5. Table 5.3 shows the result of the 5 experts’ evaluation.

Table 5.3. Evaluation result for 5 experts.

Expert Very un-
satisfactory = 1

Unsatisfactory
= 2

No difference
= 3

Satisfactory
= 4

Very satis-
factory = 5

A 0 0 0 0.7 0.3
B 0 0 0 0 1.0
C 0 0.4 0.6 0 0
D 0 0 0 0.8 0.2
E 0.1 0.9 0 0 0

Let’s set up the hypothesis testing for fuzzy index equal: H0: X̄f = 3 vs. H1:
X̄f �= 3. Under the significant level δ = 0.1, since X̄f = 2.4 and μ0−X̄f = 3−2.4 =
0.6 > 0.1. Hence we reject H0. And since the sample fuzzy index X̄f is less than
3, the manager will not apply this new cooking style.

Example 5.3. A company administrator wants to control the time of turning
on air-condition base on the energy saving reason. He feel that the temperature
over 28◦C will be hot and is the time to turn on. However, he wants to know how
the other staff feeling. So, he asks for five staffs at random to investigate and then
gets five data [27,∞), [26,∞), [29,∞), [24,∞), [26,∞).

Hypothesis H0: μ = [28,∞) vs. H1: μ �= [28,∞).
After simple computation, we have FX = [26.4,∞). Under the significant

level δ = 0.2, since 28 − 26.4 > 0.2, we reject H0 and suggest that turn on the air
condition when the temperature is below 28◦C.

Example 5.4. The human resource department announced that 20 to 26 years
old people request their salary between 20 thousands and 40 thousands with de-
viation 5 thousands. The manger asks the statistical department to check it up.
Suppose they find 10 young man between 20 and 26 years old, survey their request
salary, the sample data are: [3, 4], 1.8, [2, 3], [4, 6], [1.5, 2], [3, 4], 2, [2, 3], [3, 5],
[2.5, 4] (unit: 10 thousands).

Hypothesis H0: Fμ ∈F [2, 4] vs. H1: Fμ /∈F [2, 4].
We treat 1.8 as [1.8, 1.8]. After simple computation, we get

FX

=
[
3+1.8+2+4+1.5+3+2+2+3+2.5

10
,
4+1.8+3+6+2+4+2+3+5+4

10

]

= [2.38, 3.48].

Under the significant level δ = 0.5, since 2.38 > 2 − 0.5 and 3.48 < 4 + 0.5 and
2.38 < 2+0.5 but 3.48 < 4−0.5, we do not accept what human resource department
say. We accept H0: FX ∈F [2, 4].
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Example 5.5. Suppose a salesman wonder how the living standard will influ-
ence the sales of volume for two communities X and Y . They want to find out
which has higher income level to make the sales strategy. He chooses 100 families
at random from each community and gets data.

Hypothesis H0: Two communities have same income level, H1: Two commu-
nities have different income level.

After simple computation, we get FX = [4.3, 5.5] and FY = [6.7, 7.7] (unit:
10 thousands). Under the significant level Fδ = 1, FXδ = 4.9, FY δ = 7.2. Since
7.2 − 4.9 > 1, we say community Y has higher income level than that of X.

6. Conclusion

Fuzzy statistical analysis grows as a new discipline from the necessity to deal
with vague samples and imprecise information caused by human thought in certain
experimental environments. In this paper, we made an attempt to link the gap be-
tween the binary logic based on multiple choice survey with a more complicated yet
precise fuzzy membership function assessment, such as fuzzy mode, fuzzy median,
fuzzy weight and α-cut etc. We carefully revealed how theses factors can be prop-
erly and easily utilized in various fields to reveal the contradictory characteristics
of human concepts. Through these processes, human ideas are no longer presented
as discrete but as a natural and continuous flow. There are illustrated examples
demonstrated to explain how to find the fuzzy mode and fuzzy median, and how
to use the results to help people reaching their decisions.

However, there are still some problems we need to investigate in the future:
1. We can further research on data simulation so that we can understand features

of the fuzzy linguistic, multi-facet assessment, and the balance of the moving
consensus. Moreover, the choice of different significant α-cut will influence
the statistical result. An appropriate criterion for selecting significant α-cut
should be investigated in order to reach the best common agreement of human
beings.

2. There are other types of membership functions we could explore in the fu-
ture. For the fuzzy mode of continuous type, we can extend the uniform and
triangular types of membership functions to non-symmetric or multiple peaks
types.
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