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We examine the effect of finite size of population on the distribution of family names.
As the result we observe that the power-law behavior of size-frequency distribution in
Reed–Hughes ([15]) model collapses to show the convex shape on the logarithmic graph.
We can approximately calculate the average distribution of size-frequency distribution of
family names obtained by the similar method for Ewens sampling formula.
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1. Introduction

Up to the present, various data indicate the power-law of size-frequency dis-
tribution for the family names, and the several models are shown to reveal the
mechanism to generate it ([12, 14, 15, 16, 17, 18]). Especially, our model in this
paper is based on the model by [15], so we briefly explain it here.

Reed and Hughes distinguish two dynamics for the population dynamics within
each family name and the number of family names. The former is defined by the
continuous-time birth process with immigration, and the latter by discrete-time
Galton-Watson branching process. Then they obtain an asymptotic size-frequency
distribution by power-law, which determines the relative effect of the model pa-
rameters on the data, i.e. the birth rate for the number of family names and the
population growth rate within each family name. In this asymptotic behavior the
immigration rate never concerns to the distribution, so one may consider that the
immigration term has no effect on the dynamics, but we have the trivial state as
an equilibrium, i.e. no individuals and no family names, when the immigration rate
becomes zero.

In this paper we examine that the finite size effect of population by the in-
troduction of density dependent population growth to Reed–Hughes model, which
naturally restrict the number of family names under the population dynamics. In
the study of population ecology, it is common to assume that the resource such as
habitat or food are restricted, and we observe the finite size of population as the
result. Especially logistic model have often been used and succeeded to explain
the phenomena qualitatively, partially because of its tractability to analyse and
its simplicity to be modelling. Also in the dynamics of family names it seems to
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be natural to introduce the finiteness of population size and to be interesting to
examine its effect.

When we analyze our model, we find it rather difficult to evaluate its charac-
teristics, e.g. size-frequency distribution, quantitatively. Therefore we adopt an ap-
proximation under the assumption that the total population size remains around an
average and the probability distribution for the size-frequency distribution reaches
an equilibrium. In that case we can apply the technique of random partition, which
have been used in the analyses of neutral allele models in the field of population
genetics. Ewens sampling formula may be one of the most investigated distribution
since [6], which is proved by [10]. Though the derivation of this Ewens sampling for-
mula seems rather complicated (e.g. [13]), several authors independently devise its
derivation by the urn model or its modified ([8, 9, 11]). Among these, we adopt the
“finitary characterization” method proposed recently by the group of Costantini,
which has been developed in the field of economics (e.g. [2, 5, 7] and the refer-
ences therein), which seems to be much easier to understand. They also clarify the
differences between their method and others’ ([5]).

2. Model

We construct the population dynamics as the stochastic processes in continuous
time for each family name with logistic type of density dependent effect, and as
well as for the number of family names can change exponentially (alteration or
modification as an interpretation) with immigration from the outside. As the former
process, we simply assume that the birth occurs at a proportinal (or linear) to the
population size and the death occurs by the term of second degree, although there
are infinitely many combinations for these rates to be considered (e.g. [1]).

First of all, we consider the dynamics of population size in the case of fixed
number of family names. In the present at time t there exists l family names
with population size m(i) = m(i)(t), i = 1, 2, . . . , l, then the joint probability of
population size P (m(1), . . . ,m(l)) at time t will change as

dP (m(1), . . . ,m(l))(t)
dt

= δ

l∑
i=1

(m(i) − 1)P (m(1), . . . ,m(i) − 1, . . . , m(l))(t)

+ δ
l∑

i=1

(m(i) + 1)
1 +

∑l
j=1 m(j)

K
P (m(1), . . . ,m(i) + 1, . . . ,m(l))(t)

− δ

(
l∑

i=1

m(i)

)
P (m(1), . . . ,m(l))(t)

− δ

(∑l
i=1 m(i)

)2
K

P (m(1), . . . ,m(l))(t),

(1)

where the summation of the first term in RHS takes i only for m(i) ≥ 1. The
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parameter δ corresponds to the intrinsic rate of natural increase for the average
size of total population, which will be explained below, and here we assume that
the dynamics follows by two processes: density-independent birth and the density-
dependent death. The first and the third terms indicate the increase of population
size by exponential growth corresponding to Galton–Watson branching processes by
Reed–Hughes model. The remaining second and fourth terms represent the death
events by density dependent effect, which is characterized by the multiple of the
population size in the focal family name by the total populaton size.

This equation is rather complicated, so we consider the following form of the
same equation instead. Let define Pm,n as the probability that the popoulation size
in focal family name is m and the total population size is n = n(t) =

∑l
i=1 m(i)(t).

Here notice that m ≤ n always holds by definition. Then we can rewrite the
population dynamics by this probability as

dPm,n(t)
dt

= δ(m−1)Pm−1,n−1(t)+δ(n−1−m)Pm,n−1(t)

+
δ(m+1)(n+1)

K
Pm+1,n+1(t)+

δ(n+1−m)(n+1)
K

Pm,n+1(t)

−δnPm,n− δn2

K
Pm,n(t),

(2)

where the first and the second temrs disappear when m or n is less than 1. When
we multiply n and take summation on m and n on both sides, then

LHS =
d

dt

( ∞∑
n=0

n

n∑
m=0

Pm,n(t)

)
=

dn̂

dt

and

RHS = δ

∞∑
n=1

n∑
m=1

(m − 1)nPm−1,n−1(t)

+ δ

∞∑
n=1

n−1∑
m=0

n(n − 1 − m)Pm,n−1(t)

+
δ

K

∞∑
n=0

n∑
m=0

n(m + 1)(n + 1)Pm+1,n+1(t)

+
δ

K

∞∑
n=0

n+1∑
m=0

n(n + 1 − m)(n + 1)Pm,n+1(t)

− δ

∞∑
n=0

n∑
m=0

n2Pm,n − δ

K

∞∑
n=0

n∑
m=0

n3Pm,n(t)

= δn̂ − δ

K
n̂2,
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where we use the relation
∑n

m=0 Pm,n = Pn, which is the probability that the
total population size is equal to n, and introduce new notations as n̂ =

∑∞
n=0 nPn

(i.e. mean or first order moment) and n̂2 =
∑∞

n=0 n2Pn (i.e. mean square or second
order moment).

In the second place, the probability of i distinct kinds of family names qi will
change by the following exponential growth at rate λ with immigration at rate ρ in
the case of no death of family names, i.e. no family names from one individual to
zero (see [15])

⎧⎪⎪⎨⎪⎪⎩
dqi(t)

dt
= λ(i − 1)qi−1(t) − λiqi(t) + ρqi−1(t) − ρqi(t), (i ≥ 1)

dq0(t)
dt

= −ρq0(t).
(3)

Namely, the average size of total population is considered to follow by the lo-
gistic type of dynamics with intrinsic rate of natural increase δ and the carrying
capacity K, and the number of family names changes by the exponential growth (at
rate λ) with immigration (at rate ρ). We regard it that the latter dynamics is ex-
actly the same as Reed–Hughes model but the former is modified for Reed–Hughes
model with two differences: time development by discrete-time to continuous-time
and branching process (without carrying capacity) to logistic growth (with carrying
capacity).

So far it is not clear the relation between the probabilities Pm,n and qi whose
dynamics are given by equation (1) (or equation (2)) and equation (3). Indeed we
should introduce the terms corresponding to the dynamics of population size with
the creation of new family names and the annihilation of existent family names
with only one individual by the death, and these terms combine the two kinds of
dynamics dependent each other. However, the equations becomes complicated but
not useful even when we explicitly add the expression of these terms, so we omit it.

In the case that the total population remains around the carrying capacity
n, we assume to consider approximately the population size n as the quasi-steady
state then we can evaluate qualitative results for the average size-frequency dis-
tribution or the probability distribution of the number of family names (or the
average number of family names). In this paper we only concentrate on the former
distribution.

Then we can approximately consider the above process at the quasi-steady
state as the following dynamics with fixed population size. Let n as the fixed
number of total population size. Assume that there exist k family names in the
present. We choose an individual at random with equal probability, and replace it
either by one of the remaining n−1 individuals with probability δ/(δ+ρ+kλ) or by
an individual from outside of the population with probability (ρ+kλ)/(δ +ρ+kλ),
which means that an individual with new family name immigrates from outside or
the novel family name is created from each family name by modification or mistake.
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We can interpret the above dynamics as the following random partition ([5]).
We fix the population size as n, and introduce g kinds of family names, which
includes nonexistent ones, and this number g is large enough compared to the total
population size n. Let n = (n1, . . . , ng) as g-dimensional vector, whose i-th element
ni indicates the population size of i-th family name. In the initial condition we set
k ≤ n distinct family names and so n = (n1, . . . , nk, 0, . . . , 0). We define the set
A = {i : ni > 0}, then the number of family names k equals |A|, which represents
the cardinality of A. We put the conditional probability

P (nj
i |n) =

⎧⎪⎪⎨⎪⎪⎩
ni

n

nj − δij

(ρ + kλ)/δ + n − 1
for nj > 0

ni

n

1
g − k

(ρ + kλ)/δ

(ρ + kλ)/δ + n − 1
for nj = 0,

where δij indicates the Kronecker’s delta, nj
i = (n1, . . . , ni − 1, . . . , nj + 1, . . . , ng)

for i �= j, and ni
i = n. This vector denotes the resulting state after the transitions

that the death of an individual in i-th family name occurs and then the birth in j-th
does. The rate of the event of birth differs dependent on either the present family
names or the absent. Notice that this process gives Ewens sampling formula, when
we replace (ρ + kλ)/δ with θ, because the event by this rate, which is normalized
so that ratio of the rate of newborn by the absent family names to the present,
corresponds to the mutation, i.e. the normalized rate that the novel family names
is created ([5]). Using this conditional probability with detailed balance condition,
then we can obtain the following equilibrium distribution (Appendix A):

P (n) ∝ (g − k)! (λ/δ)kΓ (k + ρ/λ)∏
j∈A nj

(4)

where Γ indicates the gamma function, then we can rewrite it by the partition
vector z = (z1, . . . , zn), zi = |{j : nj = i, j = 1, . . . , n}| as

P (z) ∝
{

n∏
i=1

(
λ

iδ

)zi 1
zi!

}
Γ

(
n∑

i=1

zi +
ρ

λ

)
, (5)

where we use the relation k =
∑n

i=1 zi and n =
∑n

i=1 izi, and the fact that the
number of distinct family names with the same z is g!/((g − k)! z1! · · · zn!). The
proportion constant is the reciprocal number of the summation of the RHS in
equation (5) over all possible partitions, which we use to depict the figure in the
next section. In order to check whether this equilibrium distribution obeys power-
law or not, however, we need not this proportion constant for this probability,
because it only affects the value of an intercept on the vertical axis but not the
form of the graph.

3. Results

Here we show the time evolution by the original dynamics combined both
equation (1) (or equation (2)) with the increase by new born family names and
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Fig. 1. Time evolution of the number of total population size (black circles) and family

names (gray circles) by Monte Carlo simulation corresponding to the combined

dynamics of equation (1) (or equation (2)) with the increase by new born family

names and equation (3) with the decrease caused by the annihilation of family

names of population size equal to unity.

equation (3) with the decrease caused by the annihilation of family names of pop-
ulation size equal to unity (Fig. 1). This figure suggests that the dynamics reaches
an equilibrium distribution quickly which results in the quick convergence to the
total population size and the number of family names within some range. Here
notice that it is rather difficult to enumerate all partition vectors even for small
value n, but in turn we have the large fluctuation in time when the mean total
population size becomes small. For example, the number of the kinds of partition
vectors can be calculated as 5604 for n = 30, which is obtained e.g. by Mathe-

matica R©. We depict Fig. 1 with the parameters δ = 1.0, λ = 0.75, ρ = 0.1, in
which the ratio λ/δ = 0.75 corresponds to the data for Japanese family names (see
[14]), starting from 100 individuals whose family names are different each other as
an initial condition. The remaining parameter K is adjusted so that the average
total population size becomes nealy equal to 30, which results in K = 23, because
we cannot succeed to evaluate both the mean total population size and the mean
number of family names on the steady state distribution, then we can compare the
result by equation (5) setting with the same parameters for δ, λ, ρ and n = 30.

Using this parameter set, Fig. 2 gives the mean equilibrium distribution for size-
frequency to examine the quantitative accuracy of equation (5) compared to Monte
Carlo simulation. At a glance, our approximation scheme by random partition with
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Fig. 2. Size-frequency distribution at equilibrium. Black circles: equation (5), Gray

circles: Monte Carlo simulation.

fixed number of total population size succeeds to obtain the satisfactory accuracy
for the average size-frequency distribution.

We calculate the average distribution as follows. In the approximation using
the partition vector equation (5), it becomes

∑
z

P (z)z =

(∑
z

P (z)z1, . . . ,
∑
z

P (z)z30

)
,

where the summation is taken over 5604 kinds of partition vector z. On the other
hand in Monte Carlo simulation, we consider the partition vector

z(i) =
(
z
(i)
1 , . . . , z

(i)
23

)
, i = 1, . . . , 1000,

in which the dimension of 23 and the number 1000 correspond to the value of K

and the number of realizations, respectively. We show an average of these 1000
vectors in the figure:

1
1000

1000∑
i=1

z(i) =

(∑1000
i=1 z

(i)
1

1000
, . . . ,

∑1000
i=1 z

(i)
23

1000

)
.

We can see by the graphs that the size-frequency distribution becomes a convex
function instead of straight line, which may be attributed to the effect of finite size
population.
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4. Discussion

In this paper we approximate the dynamics of Reed–Hughes model with finite
size population under the assumption that the total population size reaches an
equilibrium. When we compare this approximation to Monte Carlo simulation,
it seems that this approximation gives quantitaively accurate distribution for this
model but we should continue to do exact analyses.

In the real population dynamics in the world, we have not yet had the evidence
to support the logistic growth of population, but several people consider that the
population in the world have already reached into the region of carrying capacity
([4]). Besides that, it is theoretically meaningful to consider the case of finite size
of population caused by logistic-type density dependent effect as the starting point.

As the result we obtained the equilibrium distribution similar convex graph
as the exponential growth population model instead of power-law. When [3] suc-
ceeded to construct the scale-free network with power-law distribution for degree
distribution, they pointed out two important features of network construction; the
preference attachement and the network growth. Our model only has the former
character but not the latter which may result in discrepancy with the power-law
distribution.

We have not yet determined both the constant parameter for the eqilibrium
distribution and the average distribution exactly, and we leave them as the future
problems.

One of the interesting and important factors for the dynamics of family names
may be the introduction of spatial structure of populations. For example, we can
consider the metapopulation for Japanese populations divided by 47 prefectures.
Although Tokyo or Osaka has large populations with large degrees, Shizuoka be-
longs to intermediate size of population. Directed graph (or network) can be a
possible model to capture the real dynamics. Besides that we will try to find the
general mechanism for power-law by the analyses in the case of foreign countries.

Finally we want to comment on the relation between the size-frequency distri-
bution and the order-size distribution because we are concerned with the possibility
of power-law behavior for various points of view by the same data. As shown in
[14], these two relations are sometimes considered separately whether the power-law
distributions hold or not. However, we can estimate the latter distribution when
we assume the former distribution in the following. Indeed, as [15] shows, suppose
that the size(m)-frequency(f) distribution obeys the nearly truncated power-law
distribution with maximum size mmax and the exponent γ = 2

f(m) =
(

1 +
1

mmax

)
Γ (m)

Γ (m + 2)

=
(

1 +
1

mmax

)
1

m(m + 1)

(6)
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then the order(x)-size(m) distribution has the following distribution

m(x) =
n + 1 − x

x − 1 + n/mmax
, (x ≥ 1), (7)

which can be obtained as the solution of the following equation on m

x = 1 + n

(
1 −

∑m
i=1 Γ (i)/Γ (i + 2)∑mmax

i=1 Γ (i)/Γ (i + 2)

)
= 1 +

n(mmax − m)
mmax(m + 1)

.

Here the term 1−(∑m
i=1 Γ (i)/Γ (i+2)

)/(∑mmaxΓ(i)/Γ(i+2)
i=1

)
represents the fraction

of individuals who belong to the family names with population size larger than m,
and so the multiplication by total population size n equals to the population size of
them. As an continuum approximation for x, which should be integer by definition
in fact, it is natural to assume that the order of the family name whose population
size is m becomes this value added to unity. We show these relations in Fig. 3,
and it is clear that the latter distribution does not follow the power-law when the
former does but instead we can observe almost straight lines with different slopes
for both sides of the graph (power-law in each part) as indicated by [14]. In the
similar way, we can consider the case exactly following the truncated power-law
distribution with continuum approximation for x (Appendix B).

Appendix A. Probability function of n at steady state

We derive the probability function of n at steady state following the method
by [5]. Suppose that P (n) ∝ f(k)/g(n), where k = k(n) is the cardinality of
A = {i : ni > 0}. For i �= j we can derive P (n) at steady state by the detailed
balance equation:

P (nj
i )P (n |nj

i ) = P (n)P (nj
i |n).

(i) The case for nj > 0.
We have k(nj

i ) = k(n), P (nj
i |n) = Bninj , P (n |nj

i ) = B(ni − 1)(nj + 1),
where B is the constant parameter equal to {n((ρ + kλ)/δ + n− 1)}−1. Then

P (nj
i )

P (n)
=

P (nj
i |n)

P (n |nj
i )

=
ni

ni − 1
nj

nj + 1
,

which is satisfied by g(n) =
∏

j∈A nj .
(ii) The case that nj = 0.

(ii-1) The case that ni > 1.
We have k(nj

i ) = k(n) + 1, P (nj
i |n) = B(1/(g − k))ni((ρ + kλ)/δ),

P (n |nj
i ) = B(ni − 1). Then

P (nj
i )

P (n)
=

P (nj
i |n)

P (n |nj
i )

=
ni

ni − 1
ρ/λ + k

(g − k)δ/λ
,
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Fig. 3. Relation between size-frequency distribution and order-size distribution.

(a) assumed size-frequency distribution by equation (6). (b) resulted order-size

distribution by equation (7).
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which is satisfied by f(k) = (g − k)! (λ/δ)kΓ (ρ/λ + k).
(ii-2) The case that ni = 1.

We have k(nj
i ) = k(n), P (nj

i |n) = P (n |nj
i ) = B(1/(g−k))((ρ+kλ)/δ),

and

P (nj
i )

P (n)
=

P (nj
i |n)

P (n |nj
i )

= 1,

which is satisfied by the above definition of g(n) and f(k).

Appendix B. Relation between size-frequency distribution and order-
size distribution for truncated power-law distribution

We assume size(m)-frequency(f) distribution exactly obeys the truncated
power-law distribution with maximum size mmax and the exponent γ:

f(m) =
m−γ∑mmax

l=1 l−γ
,

namely,

log f(m) = −γ log m − log
mmax∑
l=1

l−γ .

By the similar continuum approximation on order x, we can obtain the relation
between order (x) and size (m) as follows:

x = 1 + n

(
1 −

∑m
i=1 i−γ∑mmax

i=1 i−γ

)
.

However, it is difficult to obtain the explicit solution on the size m, and then we
can evaluate the relation by numerical calculation, which gives the similar graph as
Fig. 3.
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