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In this paper, the two-layer viscous shallow-water equations are derived from the three-
dimensional Navier-Stokes equations under the hydrostatic assumption. It is noted that
the combination of upper and lower equations in the two-layer model produces the classical
one-layer equations if the density of each layer is the same. The two-layer equations are
approximated by a finite element method which follows our numerical scheme established

for the one-layer model in 1978. Finally, it is numerically demonstrated that the interfacial
instability generated when the densities are the same can be eliminated by providing a
sufficient density difference.

Key words: shallow-water, layer model, Navier-Stokes equations, finite element scheme

1. Introduction

This research focuses on shallow-water equations produced using the layer
model [9], [10], which is a well-known technique for quasi-three-dimensional com-
putations. The research attempts to generate a computational method using finite
element techniques based on the previous investigations of Kanayama and Ohtsuka
(1978) [4]. First, a two-layer shallow-water equation system is derived from the
Navier-Stokes equations, based on the assumption of hydrostatic pressure in the
direction of gravity. Next, it is noted that when the upper-layer and lower-layer
densities are the same, combination of the equations produces an equation system
that is identical to the one-layer equations [5]. Finally, results of one-layer and
two-layer computations are presented, and it is numerically demonstrated that the
interfacial instability [9] generated when the densities are the same can be elimi-
nated by providing a sufficient density difference.

The layer model is useful when the density of each layer is different and two
layers are stratified. Some examples of such a case are stratification of the sea wa-
ter in some season, stratification due to oil spreading by accidents and others. Our
main concern in this paper is to remodel such a two layer sea flow by using the layer
model and to produce a suitable numerical method to compute the phenomena by
using the finite element method. Though the two layer model is well known [9], [10],
we reconstruct the model so that the combination of each layer equations produces
the classical one layer equation system [5]. Appendixes 1 and 2 are added for com-
pleteness and self-containment. Appendix 1 shows how the two-layer shallow-water
system is derived. Appendix 2 also shows details of combination when the upper-
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layer and lower-layer densities are the same. Then finite element approximations of
two layer equations are performed following our previous work [4] for the one layer
equations. To show the validity of our approach, we pick up two concrete exam-
ples. One is the wind–driven flow in Mikawa Bay for which one layer computation
was performed in [2]. The other is concerned with the Ariake Sea which several
researchers are trying to study from some view points because of recent environ-
mental problems. In this paper, we also consider the wind-driven flow in the Ariake
Sea because our main concern of numerical experiments is whether the interfacial
instability observed in [9] still occurs in our reformulated two layer model and also
it is overcome by a density difference or not. Since observed data are not got easily,
we show results of a simple physical experiment in Fig. 4, which demonstrate that
stratification of the two layer model really happens if a sufficient condition is given.
Appendix 3 explains a similar numerical experiment to the above physical one and
again shows that the interfacial instability still occurs and that it is overcome by
a sufficient density difference. It may be very surprising that combination of the
equations produces an equation system that is identical to the one-layer equations
when the upper-layer and lower-layer densities are the same, but that the two-layer
shallow-water system is then difficult to solve numerically because of the interfacial
instability. So, this a little contradictious point may be one of our original claims.
The interfacial instability firstly and shortly appeared in Murakami (1989) [9] in
which the instability was simply explained as one of numerical instabilities without
detail descriptions. The present authors strongly insist that this numerical insta-
bility inherently comes from the two-layer model and not from numerical schemes
like our finite element scheme. Since the interface of the two-layer model is quite
artificial when the upper-layer and lower-layer densities are the same, it may be
natural to be removed quickly in computation. So, the one-layer model should be
used in the absence of the density difference. When the density difference is not so
large, numerical computations also become difficult. The remedy remains an open
problem.

2. Derivation of Two-Layer Viscous Shallow-Water Equations

The physical domain is divided into two layers, as shown in Fig. 1. It is
assumed that the horizontal length scale is much larger than water depth, and that
there is the shallow-water low-frequency flow. First, two-layer viscous shallow-water
equations will be derived. As shown in Fig. 1, orthogonal coordinates [m] are used
wherein x1 and x2 represent directions in the horizontal plane, and x3 represents
the normal direction. Time [s] is represented by t. Assuming hydrostatic pressure
in the x3 direction, the system is formulated using the Navier-Stokes equations,
with Coriolis forces occurring in the x1 and x2 directions and gravity acting in the
x3 direction.

3∑
j=1

∂

∂xj
uj = 0, (2-1)
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0 = −1
ρ

∂p

∂x3
− g. (2-4)

u(x1, x2, x3, t) represents velocity [m/s] in the xi (i = 1, 2, 3) direction, p(x1, x2,

x3, t) denotes pressure [N/m2], ρ denotes density [kg/m3], τij denotes stress [N/m2]
in the direction xi acting on the xj plane, f denotes the Coriolis coefficient [1/s] and
g denotes acceleration [m/s2] due to gravity. In addition, the vertical displacement
of the water’s free surface is represented by the ordinate ζ, the vertical displacement
of the interface is represented by the ordinate d, and the ordinate representing
the bottom boundary surface of the water is represented by b. On the water’s
free surface plane, interfacial plane and water bottom plane, there is no velocity
component in the normal direction, and so the following conditions are used for u3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u3 =
∂ζ

∂t
+

2∑
j=1

uj
∂ζ

∂xj
(x3 = ζ(x1, x2, t)),

u3 =
∂d

∂t
+

2∑
j=1

uj
∂d

∂xj
(x3 = d(x1, x2, t)),

u3 =
2∑

j=1

uj
∂b

∂xj
(x3 = b(x1, x2)).

(2-5)

We integrate with respect to x3 each of the equations (2-1), (2-2) and (2-3),
from the ocean floor b to the interface d, and from the interface d to the water surface
ζ. Then, the two-layer viscous shallow water equations are derived that express
averaged rates for each layer. As shown in Fig. 1, the upper layer is denoted the
u layer while the lower layer is denoted the l layer. Thus, the velocity component
in the xi (i = 1, 2) direction averaged over the layer m (m = u, l) is taken as
Um

i (x1, x2, t). The thickness of the m layer is denoted by Hm(x1, x2, t). We consider
fluids of different densities in the two layers, with the constant density in the m

layer represented by ρm. Hm and Um
i are represented by the following equations;

H l = d − b, Hu = ζ − d,

U l
i =

1
H l

∫ d

b

ui dx3, Uu
i =

1
Hu

∫ ζ

d

ui dx3.

In addition, stress in the xi direction acting on the xj surface of the m layer is
represented by τ̃m

ij , stress in the xi direction acting on the top surface of the m layer
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is represented by Sm
i , and stress in the xi direction acting on the bottom surface

is represented by Bm
i . The horizontal viscosity constant [Ns/m2] is represented by

μH , the wind effect constant is represented by θ, the air density is represented by
ρa, the wind speed in the xi direction is represented by Wi, the Chezy constant
[m1/2/s] is represented by C, and the viscosity constant in the vertical direction is
represented by μ. The following two-layer viscous shallow-water equations are thus
derived [3] (see also Appendix 1 for completeness and self-containment).

∂

∂t
Hm +

2∑
j=1

∂

∂xj

(
HmUm

j

)
= 0. (2-6)
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In the above,

Su
i = θρaWi

(
(W1)

2 + (W2)
2
) 1

2
, Bl

i =
ρlg

C2
Ui

(
(U1)2 + (U2)2

) 1
2 ,

Bu
i = Sl

i =
2μ

(
Uu

i − U l
i

)
Hu + H l

, τ̃m
ij = μH

(
∂Um

i

∂xj
+

∂Um
j

∂xi

)
,

Ui =
HuUu

i + H lU l
i

Hu + H l
, Um

3 = Um
1 .

3. Comparison between One-Layer and Two-Layer Viscous Shallow-
Water Equations

The two-layer viscous shallow-water equations correspond to the one-layer vis-
cous shallow-water equations when the densities of the upper layer and lower layer
are the same (ρ = ρl = ρu) and the upper layer and lower layer equations are
combined. The one-layer equation system [5] is presented below.

∂

∂t
ζ +

2∑
j=1

∂

∂xj
(HUj) = 0, (3-1)
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− g

C2
Ui

(
(U1)

2 + (U2)
2
) 1

2
+ (−1)i+1fHUi+1, (3-2)

where

H = Hu + H l, Ui =
1
H

∫ ζ

b

ui dx3 =
HuUu

i + H lU l
i

Hu + H l
,

τ̃ij = μH

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, U3 = U1.

(3-1) is produced by combining the u form of (2-6) with the l form of (2-6). In
fact, when the u form of (2-6) and the l form of (2-6) are added, (3-1) is produced
as follows;
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=
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∂

∂xj
(HUj) = 0.

The sum of the u layer and l layer forms of (2-7) can also produce (3-2) in the sense
of Appendix 2, using a similar addition. For details refer to the cited literature [3]
(see also Appendix 2 for completeness and self-containment).

4. Finite Element Approximations for Two-Layer Viscous Shallow-
Water Equations

A finite element approximation for the two-layer viscous shallow-water equa-
tions (2-6) and (2-7) in conjunction with appropriate initial and boundary condi-
tions is performed. The computational domain is the two-dimensional polygonal
region Ω surrounded by boundaries Γ1 and Γ2. In this region, the orthogonal coor-
dinates x = (x1, x2) are used. The boundary conditions on Γ1 and Γ2, and initial
conditions at t=0 are presented below.
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Boundary conditions:

Um
i (x, t) = 0 on Γ1,

Hm(x, t) = Hm
Γ2

(x, t)
2∑

j=1

τ̃m
ij nj = 0

⎫⎪⎪⎬⎪⎪⎭ on Γ2.

ni denotes the xi component of the unit-normal vector with respect to the boundary.
Initial conditions:

Um
i (x, 0) = Um

i0 (x), Hm(x, 0) = Hm
0 (x).

Hm
Γ2

(x, t) is specified on Γ2. The initial value Hm
0 (x) is specified depending on the

sea floor topography b and where the layers are initially delimited. Um
i0 (x) is the

initial value for Um
i .

The finite element approximation is as follows. First, the respective test func-
tions are assigned for (4-1) and (4-2), and integration is performed over the compu-
tational domain Ω. Next, approximation is carried out using an explicit method for
terms involving a derivative with respect to time. The finite element approxima-
tion [4] is carried out using the basis function ϕ̂k of a piecewise-linear triangulation
for terms including spatial derivatives, and using the step function ϕk for terms
without spatial derivatives. The step function is 1 in the barycentric region around
node k, and is 0 at other places.
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∂
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)
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)
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(
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+
(
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m,n
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)
. (4-4)

In the above, dn+1
k and ζn+1

k are determined from (4-3), and Um,n+1
i,k is computed

from these values and Um,n
i,k using (4-4). In this computation, dn

k , ζn
k and Um,n

i,k are,
respectively, approximate values for d(x, t), ζ(x, t) and Um

i (x, t) at node k after n

time steps. In addition, Δt represents the size of time step. Symbols are defined
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below.(
∂Um

i

∂xj
, v

)
=
∫

Ω

∂Um
i

∂xj
v dx, Ûm,n

i =
∑

k

Um,n
i,k ϕ̂k, U

m,n

i =
∑

k

Um,n
i,k ϕk.

Based on essential boundary conditions, (4-3) is produced for nodes excluding those
on Γ2, and (4-4) is produced for nodes excluding those on Γ1. On the boundary
Γ2, the upwind approximations of Tabata (1977) [4], [11] are used in the numerical
approximation for the advection term of (4-4).

Note 1. For purposes of simplification, Hm,n+1
k appears as an unknown func-

tion in (4-3), but actually, Hm,n+1
k is computed by determining ζn+1

k and dn+1
k . In

this case, a value for dn+1
k is necessary when ζn+1

k is determined, and (4-3) for the
l layer is computed prior to (4-3) for the u layer.

Note 2. Numerical justification for the approximation scheme for the lin-
earized equations related to the scheme for the one layer equations in [4] appears
in Kanayama-Ushijima (1988, 1989) [6], [7].

5. Computational Examples

Results of computations for the Ariake Sea [1], [8] under a northerly wind,
and Mikawa Bay [2] under a northwesterly wind are presented with and without a
density difference.

5.1. Results of computation for a wind-driven flow in Mikawa Bay
Computation was carried out with Coriolis coefficient f = 2ω sin φ, planetary

angular velocity ω = 0.00416 [deg/s], latitude φ = 35◦, horizontal viscosity coeffi-
cient μH = 10, 000 [Ns/m2], wind effect factor θ = 0.0026, wind speed W1 = 2.45
[m/s], W2 = −5.91 [m/s], Chezy coefficient C = 61.4 [m1/2/s], and time step size
Δt = 1 [s]. Regarding mesh data, the total node number is 426, and the total
element number is 729. Triangular elements are used, where the minimum per-
pendicular length is 760 [m] and the maximum triangular element side length is
1771 [m]. In order to simplify the problem, an average is used for the ocean floor
ordinate, thus b is constant with value selected to be at −10 [m]. Initial condi-
tions are given by Um

i0 (x) = 0 and Hm
0 (x) = −b/2, and boundary conditions by

Hm
Γ2

(x, t) = Hm
0 (x). With these parameters, results are presented below for a case

where the vertical viscosity coefficient μ is 10,000 [Ns/m2] and the density ρl = ρu

is 1000 [kg/m3] (Cond. 1), and for a case where μ = 10 [Ns/m2], ρu = 950 [kg/m3]
and ρl = 1050 [kg/m3] (Cond. 2). It is noted that the viscosity constant in the
vertical direction is fairly larger even in Cond. 2 than the value adopted in [1]
though the horizontal viscosity constant has the same order. In Cond. 1 without
the density difference, the constant μ is, for simplicity, taken as the same as the
constant μH since we have the one-layer system (3-1) and (3-2) where μ does not
appear explicitly if the two-layer system (2-6) and (2-7) is combined. In 5.2, we will
again consider the effect of the value μ. Also, the density difference is a little larger
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compared with that between the sea water and the natural water. The reason why
such a big density difference is adopted will be mentioned at the last part of this
chapter.

The results of one-layer and two-layer computations under Cond. 1 are com-
pared. Figure 2 (a) is a graph showing 0.004 [m] contour lines for the water level ζ

after 75 hours. The water level contour lines are found to be nearly perpendicular
with respect to the wind direction. Similar analysis was carried out for a one-layer
scheme as well, and similar results were obtained. Figure 2 (b) shows the evolu-
tion in time of the water level ζ from its initial value at three points indicated
in Fig. 2 (a). The plots are only visible for these three points, and the one-layer
results and two-layer results are found to be very similar. Figure 2 (c) is a graph
showing change in the interface d over time from the initial values. The values give
an unstable interface under Cond. 1. Figure 2 (d) is a graph showing the evolu-
tion in time of the interface d from initial values for Cond. 1 and Cond. 2 at some
locations. The computation time is lengthened relative to that of Fig. 2 (c). The
values at nodes M1(2) and M5(2) are stable under Cond. 2, but those at M1(1)
and M5(1) are unstable under Cond. 1. Although the values at M2(1) and M2(2)
are both stable, a large discrepancy between these two values is found. Finally, it
is also noted that under Cond. 2, the interface d is lower under the wind while the
water level ζ is higher under the wind [3].

5.2. Results of computation for a wind-driven flow in the Ariake Sea
Numerical results are also presented for the Ariake Sea; without a density dif-

ference (Cond. 3), and with a density difference (Cond. 4). Computations were car-
ried out with wind speed W1 = 0 [m/s], W2 = −10 [m/s], total node number = 3907,
total element number = 7326, triangular element average side length = 1000 [m],
and ocean floor coordinates b = −60 to −10 [m]. When not specifically defined,
the same values as for Mikawa Bay were used for physical values, and initial and
boundary conditions. Under these parameters, results are presented below for the
vertical viscosity coefficient μ = 10, 000 [Ns/m2], density ρl = ρu = 1000 [kg/m3],
initial conditions Hm

0 (x) = −b/2 (Cond. 3), and μ = 10 [Ns/m2], density ρu = 1000
[kg/m3], ρl = 1100 [kg/m3], initial conditions Hu

0 (x) = 7.5 [m] and H l
0(x) = −7.5−b

[m] (Cond. 4). To cover the gap between Cond. 3 and Cond. 4, we may consider
Cond. 3a which adopts μ = 10 [Ns/m2], density ρl = ρu = 1000 [kg/m3] and ini-
tial conditions Hu

0 (x) = 7.5 [m] and H l
0(x) = −7.5 − b [m]. However, it is noted

that computation under Cond. 3a stops at an early stage because the interface d

becomes unstable quickly.
The results of one-layer and two-layer computations are compared under Cond.

3. Figure 3 (a) is a diagram showing 0.014 [m] contour lines for the water level ζ

after 55 hours. It is clear that the water level contour lines are nearly perpendicular
with respect to the wind direction. Figure 3 (b) is a graph showing the evolution
in time of the water level ζ from initial conditions for the four points indicated in
Fig. 3 (a). As with the Mikawa Bay graph, only four points can be seen, and it is
found that one-layer results and two-layer results are nearly identical. Figure 3 (c)
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is a graph showing 0.02 [m] contour lines after 55 hours, starting from the initial
value for the interface d. A mottled form is presented, and thus the interface d is
found to be unstable. Figure 3 (d) is a graph showing the evolution in time from
initial values of the interface d.

Figure 3 (e) is a graph showing 0.6 [m] contour lines obtained after 380 hours,
starting from initial values for the interface d and the water level ζ under Cond.
4. For the case with a density difference, it is found with both the water level ζ

and the interface d that the contour lines are perpendicular to the wind direction.
Again, in this case, the values for the water level ζ are higher under the wind,
whereas the values for the interface d are lower under the wind. Figure 3 (f) is a
graph based on computations under Cond. 4, showing the evolution in time of the
interface d and the water level ζ starting from initial values. It is found that the
values converge in both d and ζ. Figure 3 (g) and Figure 3 (h) are corresponding
velocity vectors after 380 hours for the upper layer and lower layer, respectively. It
is noted that relatively high speed appears near on Γ2. This may come from the
boundary conditions on Γ2. Some improvement may be required.

It is also found for the present problem that the interface is unstable in the
absence of a density difference, whereas results indicating the same stable interface
as with Mikawa Bay are obtained when a density difference is applied. The density
difference is a little larger. However, more smaller density difference could not give
a stable solution. This 10% difference seems to be a limited density difference and
it is concluded that such a big density difference can only produce this type of two
layer flows under the present conditions. Furthermore, it is conjectured that the
interface is always unstable in the absence of the density difference. So, the one-layer
model should be used in that case. Authors further believe that the two-layer model
should not be used in that case because it necessarily produces numerical instability
which comes from the instability of the interface (the interfacial instability [9]) and
not from the instability of our finite element scheme. The similar situation may
happen if the density difference is not so sufficient and it is a little difficult to
compute such a two-layer flow. It is strongly hoped that these conjectures will be
rigorously justified in future.

6. Concluding Remarks

In this study, a numerical scheme for the solution of shallow-water equations
using the layer model based on the method in [4] has been presented. When den-
sities are the same in the derived two-layer viscous shallow-water equations, it is
found that the equations for the upper layer and lower layer are combined to pro-
duce a form equivalent to the one-layer equations. Moreover, it is numerically
demonstrated that interfacial instability produced when densities are the same can
be resolved by providing a suitable density difference.

Since observed data are not got easily, we show results of a simple physical
experiment, which demonstrate that stratification of the two layer model really
happens if a sufficient condition is given. Figure 4 shows a two layer flow produced
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by a simple physical experiment. Three driers blow from the right hand, yielding
an upper oil layer which is higher under the wind and a lower water layer which is
lower under the wind.

Acknowledgements. Kanayama (1981) [2] and others have carried out analyses
regarding Mikawa Bay, and Kyozuka, Furuse and Kimura (2002) [8] and Aoyama,
Ikeda and Takatori [1] have carried out analyses regarding the Ariake Sea. We would
like to make specific mention that these investigations were referenced regarding
data collection in ocean regions such as wind speed [1] and physical values [2].
Finally, authors would like to mention sincere thanks to referees of this paper for
their crucial advices, without which this paper would not have appeared for ever.
This work was partially supported by the Japan Society for the Promotion of Sci-
ence (JSPS) 21st Century COE Program.

References

[ 1 ] T. Aoyama, K. Ikeda and A. Takatori, Study on Closing Water Area. Environmental
Research Institute Tokyo home page, http://eritokyo.jp/independent/gulf/index.html (in
Japanese).

[ 2 ] H. Kanayama, A numerical experiment on the wind-driven flow in Mikawa Bay. Proceedings
of 15th Symposium on Matrix Analysis Method, JSSC, 1981, 407–412 (in Japanese).

[ 3 ] H. Kanayama and T. Ishikawa, A finite element scheme of the two layer viscous shallow

water equations. Proceedings of 16th Computational Fluid Dynamics Symposium, D29-1,
2002 (in Japanese).

[ 4 ] H. Kanayama and K. Ohtsuka, Finite element analysis on the tidal current and COD dis-

tribution in Mikawa Bay. Coastal Engineering in Japan, 21 (1978), 157–171.
[ 5 ] H. Kanayama and T. Ushijima, On the viscous shallow-water equations I —Derivation and

conservation laws —. Memoirs of Numerical Mathematics, 8/9 (1981/1982), 39–64.
[ 6 ] H. Kanayama and T. Ushijima, On the viscous shallow-water equations II —A linearized

system —. Bulletin of University of Electro-Communications, 1, No.2 (1988), 347–355.
[ 7 ] H. Kanayama and T. Ushijima, On the viscous shallow-water equations III —A finite element

scheme —. Bulletin of University of Electro-Communications, 2, No.1 (1989), 47–62.
[ 8 ] Y. Kyozuka, K. Furusho and Y. Kimura, A numerical simulation of water flow by opening the

floodgate of embankment in Isahaya Bay. Engineering Sciences Reports, Kyushu University,
23, No.2 (2002), 207–215 (in Japanese).

[ 9 ] K. Murakami, Calculations of vertical circulation in stratified waters by 2-level and 2-layer
models. Proceedings of Coastal Engineering, JSCE, 36, (1989), 204–208 (in Japanese).

[10] T. Sawaragi (ed.), New Coastal Engineering in Global Environment. Fuji Technosystem Co.,
2002, 89–96 (in Japanese).

[11] M. Tabata, A finite element approximation corresponding to the upwind finite differencing.
Memoirs of Numerical Mathematics, 4, (1977), 47–63.



Finite Element Scheme for Two-Layer Viscous Shallow-Water 173

Appendix 1

The integration of (2-1) from b to d in the x3 direction yields

3∑
j=1

∫ d

b

∂

∂xj
uj dx3 = 0.

In the above, ∫ d

b

∂

∂x3
u3 dx3 = u3

∣∣∣∣x3=d

x3=b

.

Moreover, for i = 1 and i = 2,

∫ d

b

∂

∂xi
ui dx3 =

∂

∂xi

∫ d

b

ui dx3 −
(

ui
∂

∂xi
x3

) ∣∣∣∣x3=d

x3=b

.

Hence,

2∑
j=1

∂

∂xj

∫ d

b

uj dx3 +

(
u3 −

2∑
j=1

uj
∂

∂xj
x3

) ∣∣∣∣x3=d

x3=b

= 0.

From (2-5), it holds that(
u3 −

2∑
j=1

uj
∂

∂xj
x3

) ∣∣∣∣x3=d

x3=b

=
∂

∂t
d.

Thus, we have

∂

∂t
d +

2∑
j=1

∂

∂xj

(
H lU l

j

)
= 0. (2-6l)

Similarly, the integration of (2-1) from d to ζ in the x3 direction yields

∂

∂t
(ζ − d) +

2∑
j=1

∂

∂xj

(
HuUu

j

)
= 0. (2-6u)

Now, we integrate (2-4) in the x3 direction. In the case of the upper layer (x3 =
d ∼ ζ),

0 = −p − ρug x3 + C1,

where C1 is a constant. Since the atmospheric pressure pair is assumed to be
constant on the sea surface, it holds that

pair = −ρugζ + C1.
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Therefore,

p = −ρug x3 + ρugζ + pair. (2-8u)

In the case of the lower layer (x3 = b ∼ d),

0 = −p − ρlg x3 + C2,

where C2 is another constant. Since p should be continuous at the interface (x3 =
d), it holds that

ρug (ζ − d) + pair = −ρlg d + C2.

Therefore,

p = −ρlg x3 + ρugζ +
(
ρl − ρu

)
g d + pair. (2-8l)

The integration of (2-2) from b to d in the x3 direction yields

∫ d

b

∂

∂t
u1 dx3 +

3∑
j=1

∫ d

b

uj
∂

∂xj
u1 dx3

= −
∫ d

b

1
ρl

∂p

∂x1
dx3 +

1
ρl

3∑
j=1

∫ d

b

∂

∂xj
τ1j dx3 +

∫ d

b

fu2 dx3.

Then,

∫ d

b

∂

∂t
u1 dx3 +

3∑
j=1

∫ d

b

uj
∂

∂xj
u1 dx3

=
∫ d

b

∂

∂t
u1 dx3 +

3∑
j=1

∫ d

b

(
∂

∂xj
(uju1) − u1

∂

∂xj
uj

)
dx3⎡⎣ From (2-1),

3∑
j=1

∫ d

b

u1
∂

∂xj
uj dx3 =

∫ d

b

u1

3∑
j=1

∂

∂xj
uj dx3 = 0.

⎤⎦
=

∂

∂t

∫ d

b

u1 dx3 +
2∑

j=1

∂

∂xj

∫ d

b

uju1 dx3 +
{

u1

(
u3 − ∂

∂t
x3 −

2∑
j=1

uj
∂

∂xj
x3

)} ∣∣∣∣x3=d

x3=b⎡⎣ From (2-5),
{

u1

(
u3 − ∂

∂t
x3 −

2∑
j=1

uj
∂

∂xj
x3

)} ∣∣∣∣x3=d

x3=b

= 0.

⎤⎦
=

∂

∂t

∫ d

b

u1 dx3 +
2∑

j=1

∂

∂xj

∫ d

b

uju1 dx3

=
∂

∂t

∫ d

b

u1 dx3 +
∂

∂x1

∫ d

b

(
(u1)

2 − 2u1U
l
1 +

(
U l

1

)2)
dx3
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+
∂

∂x2

∫ d

b

(
u1u2 − u1U

l
2 − u2U

l
1 + U l

1U
l
2

)
dx3

+
∂

∂x1

∫ d

b

(
2u1U

l
1 −

(
U l

1

)2)
dx3 +

∂

∂x2

∫ d

b

(
u1U

l
2 + U l

1u2 − U l
1U

l
2

)
dx3

=
∂

∂t

(
H lU l

1

)
+

∂

∂x1

{
H l

(
U l

1

)2}
+

∂

∂x2

(
H lU l

1U
l
2

)
+

∂

∂x1

∫ d

b

(
u1 − U l

1

)2
dx3

+
∂

∂x2

∫ d

b

(
u1 − U l

1

) (
u2 − U l

2

)
dx3[

Set ũl
1 = u1 − U l

1 and ũl
2 = u2 − U l

2.
]

=
∂

∂t

(
H lU l

1

)
+

∂

∂x1

{
H l

(
U l

1

)2}
+

∂

∂x2

(
H lU l

1U
l
2

)
+

∂

∂x1

∫ d

b

(
ũl

1

)2
dx3

+
∂

∂x2

∫ d

b

ũl
1ũ

l
2 dx3.

Here, ∂
∂x1

∫ d

b

(
ũl

1

)2
dx3 + ∂

∂x2

∫ d

b
ũl

1ũ
l
2 dx3 is sent to the right hand side. Then,

∂

∂t

(
H lU l

1

)
+

∂

∂x1

{
H l

(
U l

1

)2}
+

∂

∂x2

(
H lU l

1U
l
2

)
= −

∫ d

b

1
ρl

∂p

∂x1
dx3 +

1
ρl

3∑
j=1

∫ d

b

∂

∂xj
τ1j dx3 − ∂

∂x1

∫ d

b

(
ũl

1

)2
dx3

− ∂

∂x2

∫ d

b

ũl
1ũ

l
2 dx3 +

∫ d

b

fu2 dx3. (2-7a)

On the other hand, we have

∂

∂t

(
H lU l

1

)
+

∂

∂x1

{
H l

(
U l

1

)2}
+

∂

∂x2

(
H lU l

1U
l
2

)
= H l ∂

∂t
U l

1 + U l
1

∂

∂t
H l + U l

1

∂

∂x1

(
H lU l

1

)
+ H lU l

l

∂

∂x1
U l

1

+ U l
1

∂

∂x2

(
H lU l

2

)
+ H lU l

2

∂

∂x2
U l

1

= H l ∂

∂t
U l

1 + H lU l
1

∂

∂x1
U l

1 + H lU l
2

∂

∂x2
U l

1

+ U l
1

(
∂

∂t
(d − b) +

∂

∂x1

(
H lU l

1

)
+

∂

∂x2

(
H lU l

2

))
[

From (2-6l), U l
1

(
∂

∂t
(d − b) +

∂

∂x1

(
H lU l

1

)
+

∂

∂x2

(
H lU l

2

))
= 0.

]
= H l

(
∂

∂t
U l

1 + U l
1

∂

∂x1
U l

1 + U l
2

∂

∂x2
U l

1

)
.
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Now, we change the right hand side of (2-7a). For the pressure term, since we have,
by (2-8l),

∂p

∂x1
= ρug

∂ζ

∂x1
+
(
ρl − ρu

)
g

∂d

∂x1
,

it holds that

−
∫ d

b

1
ρl

∂p

∂x1
dx3 = −

∫ d

b

(
g
ρu

ρl

∂ζ

∂x1
+ g

ρl − ρu

ρl

∂d

∂x1

)
dx3

= −gH l

(
ρu

ρl

∂ζ

∂x1
+

ρl − ρu

ρl

∂d

∂x1

)
.

For the stress terms, it holds that

1
ρl

3∑
j=1

∫ d

b

∂

∂xj
τ1j dx3 − ∂

∂x1

∫ d

b

(ũl
1)

2 dx3 − ∂

∂x2

∫ d

b

ũl
1ũ

l
2 dx3

=
1
ρl

∂

∂x1

∫ d

b

τ11 dx3 − ∂

∂x1

∫ d

b

(ũl
1)

2 dx3 +
1
ρl

∂

∂x2

∫ d

b

τ12 dx3

− ∂

∂x2

∫ d

b

ũl
1ũ

l
2 dx3 +

1
ρl

(
τ13 − τ11

∂

∂x1
x3 − τ12

∂

∂x2
x3

) ∣∣∣∣x3=d

x3=b

.

Here, set

1
ρl

(Sl
1 − Bl

1) =
1
ρl

(
τ13 − τ11

∂

∂x1
x3 − τ12

∂

∂x2
x3

) ∣∣∣∣x3=d

x3=b

.

We have the following experimental expressions for Sl
1 and Bl

1,

1
ρl

Sl
1 =

2μ
(
Uu

1 − U l
1

)
ρl (ζ − b)

and
1
ρl

Bl
1 =

g

C2
U1

(
(U1)2 + (U2)2

) 1
2 ,

where

Ui =
HuUu

i + H lU l
i

Hu + H l
.

Moreover, set

τ̃ l
11 =

1
H l

∫ d

b

τ11 dx3 − ρl

H l

∫ d

b

(
ũl

1

)2
dx3,

τ̃ l
12 =

1
H l

∫ d

b

τ12 dx3 − ρl

H l

∫ d

b

ũl
1ũ

l
2 dx3.

Then, we have

−
∫ d

b

1
ρl

∂p

∂x1
dx3 +

1
ρl

3∑
j=1

∫ d

b

∂

∂xj
τ1j dx3 − ∂

∂x1

∫ d

b

(
ũl

1

)2
dx3

− ∂

∂x2

∫ d

b

ũl
1ũ

l
2 dx3 +

∫ d

b

fu2 dx3
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= −gH l

(
ρu

ρl

∂ζ

∂x1
+

ρl − ρu

ρl

∂d

∂x1

)
+

1
ρl

(
∂

∂x1

(
H lτ̃ l

11

)
+

∂

∂x2

(
H lτ̃ l

12

))
+

2μ
(
Uu

1 − U l
1

)
ρl (ζ − b)

− g

C2
U1

(
(U1)2 + (U2)2

) 1
2 + fH lU l

2.

Therefore, for the lower layer, (2-7a) becomes

H l

(
∂

∂t
U l

1 + U l
1

∂

∂x1
U l

1 + U l
2

∂

∂x2
U l

1

)
= −gH l

(
ρu

ρl

∂ζ

∂x1
+

ρl − ρu

ρl

∂d

∂x1

)
+

1
ρl

(
∂

∂x1

(
H lτ̃ l

11

)
+

∂

∂x2

(
H lτ̃ l

12

))
+

2μ
(
Uu

1 − U l
1

)
ρl (ζ − b)

− g

C2
U1

(
(U1)2 + (U2)2

) 1
2 + fH lU l

2. (2-7l)

Similarly, the integration of (2-2) from d to ζ in the x3 direction yields∫ ζ

d

∂

∂t
u1 dx3 +

3∑
j=1

∫ ζ

d

uj
∂

∂xj
u1 dx3

= −
∫ ζ

d

1
ρu

∂p

∂x1
dx3 +

1
ρu

3∑
j=1

∫ ζ

d

∂

∂xj
τ1jdx3 +

∫ ζ

d

fu2 dx3.

Then, ∫ ζ

d

∂

∂t
u1 dx3 +

3∑
j=1

∫ ζ

d

uj
∂

∂xj
u1 dx3

=
∂

∂t
(HuUu

1 ) +
∂

∂x1

{
Hu (Uu

1 )2
}

+
∂

∂x2
(HuUu

1 Uu
2 )

+
∂

∂x1

∫ ζ

d

(u1 − Uu
1 )2 dx3 +

∂

∂x2

∫ ζ

d

(u1 − Uu
1 ) (u2 − Uu

2 ) dx3[
Set ũu

1 = u1 − Uu
1 and ũu

2 = u2 − Uu
2 .

]
=

∂

∂t
(HuUu

1 ) +
∂

∂x1

{
Hu (Uu

1 )2
}

+
∂

∂x2
(HuUu

1 Uu
2 )

+
∂

∂x1

∫ ζ

d

(ũu
1 )2 dx3 +

∂

∂x2

∫ ζ

d

ũu
1 ũu

2 dx3.

Here, ∂
∂x1

∫ ζ

d
(ũu

1 )2 dx3 + ∂
∂x2

∫ ζ

d
ũu

1 ũu
2 dx3 is sent to the right hand side. Then,

∂

∂t
(HuUu

1 ) +
∂

∂x1

{
Hu (Uu

1 )2
}

+
∂

∂x2
(HuUu

1 Uu
2 )

= −
∫ ζ

d

1
ρu

∂p

∂x1
dx3 +

1
ρu

3∑
j=1

∫ ζ

d

∂

∂xj
τ1j dx3

− ∂

∂x1

∫ ζ

d

(ũu
1 )2 dx3 − ∂

∂x2

∫ ζ

d

ũu
1 ũu

2 dx3 +
∫ ζ

d

fu2 dx3 (2-7b)
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Again, we have

∂

∂t
(HuUu

1 ) +
∂

∂x1

{
Hu (Uu

1 )2
}

+
∂

∂x2
(HuUu

1 Uu
2 )

= Hu

(
∂

∂t
Uu

1 + Uu
1

∂

∂x1
Uu

1 + Uu
2

∂

∂x2
Uu

1

)
.

Also, we change the right hand side of (2-7b). For the pressure term, we have, from
(2-8u),

−
∫ ζ

d

1
ρu

∂p

∂x1
dx3 = −gHu ∂ζ

∂x1
.

For the stress terms, since we have the following experimental expressions for Sl
1

and Bl
1,

1
ρu

Su
1 =

θρa

ρu
W1

(
(W1)

2 + (W2)
2
) 1

2
,

and
1
ρu

Bu
1 =

2μ
(
Uu

1 − U l
1

)
ρu (ζ − b)

,

with

τ̃u
11 =

1
Hu

∫ ζ

d

τ11 dx3 − ρu

Hu

∫ ζ

d

(ũu
1 )2 dx3,

and

τ̃u
12 =

1
Hu

∫ ζ

d

τ12 dx3 − ρu

Hu

∫ ζ

d

ũu
1 ũu

2 dx3,

it holds that

−
∫ ζ

d

1
ρu

∂p

∂x1
dx3 +

1
ρu

3∑
j=1

∫ ζ

d

∂

∂xj
τ1j dx3 − ∂

∂x1

∫ ζ

d

(ũu
1 )2 dx3

− ∂

∂x2

∫ ζ

d

ũu
1 ũu

2 dx3 +
∫ ζ

d

fu2 dx3

= −gHu

(
∂ζ

∂x1

)
+

1
ρu

(
∂

∂x1
(Huτ̃u

11) +
∂

∂x2
(Huτ̃u

12)
)

+
θρa

ρu
W1

(
(W1)

2 + (W2)
2
) 1

2 − 2μ
(
Uu

1 − U l
1

)
ρu (ζ − b)

+ fHuUu
2 .

Therefore, for the upper layer, (2-7b) becomes

Hu

(
∂

∂t
Uu

1 + Uu
1

∂

∂x1
Uu

1 + Uu
2

∂

∂x2
Uu

1

)
= −gHu

(
∂ζ

∂x1

)
+

1
ρu

(
∂

∂x1
(Huτ̃u

11) +
∂

∂x2
(Huτ̃u

12)
)

+
θρa

ρu
W1

(
(W1)

2 + (W2)
2
) 1

2 − 2μ
(
Uu

1 − U l
1

)
ρu (ζ − b)

+ fHuUu
2 . (2-7u)
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The integration of (2-3) is omitted.

Appendix 2

Addition is performed separately. The addition of the pressure terms yields

−gHu ∂ζ

∂xi
− gH l

(
ρu

ρl

∂ζ

∂xi
+

ρl − ρu

ρl

∂d

∂xi

)
= −gH

∂ζ

∂xi
.

Addition of friction terms also yields

θρa

ρ
Wi

(
(W1)

2 + (W2)
2
) 1

2 − 2μ
(
Uu

i − U l
i

)
ρ (ζ − b)

+
2μ

(
Uu

i − U l
i

)
ρ (ζ − b)

− g

C2
Ui

(
(U1)2 + (U2)2

) 1
2

=
θρa

ρ
Wi

(
(W1)

2 + (W2)
2
) 1

2 − g

C2
Ui

(
(U1)2 + (U2)2

) 1
2 .

The Coriolis force terms produce

fHuUu
i+1 + fH lU l

i+1 = f

(∫ ζ

d

ui+1 dx3 +
∫ d

b

ui+1 dx3

)
= fHUi+1.

Finally addition of other terms yields

Hu ∂

∂t
Uu

i +
2∑

j=1

HuUu
j

∂

∂xj
Uu

i − 1
ρu

(
2∑

j=1

∂

∂xj
Huτ̃u

ij

)

+ H l ∂

∂t
U l

i +
2∑

j=1

H lU l
j

∂

∂xj
U l

i −
1
ρl

(
2∑

j=1

∂

∂xj
H lτ̃ l

ij

)

=
∂

∂t
(HuUu

i ) +
2∑

j=1

∂

∂xj

(
HuUu

j Uu
i

)− 1
ρu

(
2∑

j=1

∂

∂xj
Huτ̃u

ij

)

+
∂

∂t

(
H lU l

i

)
+

2∑
j=1

∂

∂xj

(
H lU l

jU
l
i

)− 1
ρl

(
2∑

j=1

∂

∂xj
H lτ̃ l

ij

)

=
∂

∂t
(HuUu

i )+
2∑

j=1

∂

∂xj

(
HuUu

j Uu
i

)− 1
ρu

(
2∑

j=1

∂

∂xj

(∫ ζ

d

τij dx3 − ρu

∫ ζ

d

ũu
i ũu

j dx3

))

+
∂

∂t

(
H lU l

i

)
+

2∑
j=1

∂

∂xj

(
H lU l

jU
l
i

)− 1
ρl

(
2∑

j=1

∂

∂xj

(∫ d

b

τij dx3 − ρl

∫ d

b

ũl
iũ

l
j dx3

))

=
∂

∂t
(HUi) − 1

ρ

(
2∑

j=1

∂

∂xj

∫ ζ

b

τij dx3

)

+
2∑

j=1

∂

∂xj

(
HuUu

j Uu
i + H lU l

jU
l
i +

∫ ζ

d

ũu
i ũu

j dx3 +
∫ d

b

ũl
iũ

l
j dx3

)
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=
∂

∂t
(HUi) − 1

ρ

(
2∑

j=1

∂

∂xj

∫ ζ

b

τij dx3

)
+

2∑
j=1

∂

∂xj

(
HuUu

j Uu
i + H lU l

jU
l
i

+
∫ ζ

d

(ui − Uu
i )

(
uj − Uu

j

)
dx3 +

∫ d

b

(
ui − U l

i

) (
uj − U l

j

)
dx3

)
=

∂

∂t
(HUi) − 1

ρ

(
2∑

j=1

∂

∂xj

∫ ζ

b

τij dx3

)
+

2∑
j=1

∂

∂xj

(
HuUu

j Uu
i + H lU l

jU
l
i

+
∫ ζ

d

(
uiuj − Uu

i uj − uiU
u
j + Uu

i Uu
j

)
dx3

+
∫ d

b

(
uiuj − U l

iuj − uiU
l
j + U l

iU
l
j

)
dx3

)
=

∂

∂t
(HUi) − 1

ρ

(
2∑

j=1

∂

∂xj

∫ ζ

b

τij dx3

)
+

2∑
j=1

∂

∂xj

∫ ζ

b

uiuj dx3

=
∂

∂t
(HUi) − 1

ρ

(
2∑

j=1

∂

∂xj

∫ ζ

b

τij dx3

)
+

2∑
j=1

∂

∂xj

∫ ζ

b

(ui − Ui) (uj − Uj) dx3

+
2∑

j=1

∂

∂xj

∫ ζ

b

(uiUj + Uiuj − UiUj) dx3

=
∂

∂t
(HUi) +

2∑
j=1

∂

∂xj
(HUjUi) − 1

ρ

2∑
j=1

∂

∂xj

(∫ ζ

b

τij dx3 − ρ

∫ ζ

b

ũiũj dx3

)

= H

(
∂

∂t
Ui +

2∑
j=1

Uj
∂

∂xj
Ui

)
− 1

ρ

2∑
j=1

∂

∂xj
(Hτ̃ij) .

Finally, it is noted that the above equality is independent of the concrete expressions
of the horizontal viscosity terms.

Appendix 3

A similar numerical experiment to the simple physical experiment shown in
Fig. 4 has been performed. Horizontal sizes of the water tank are 50× 10 [m2]. We
set Hu

0 (x) = 7.5 [m] and H l
0(x) = 2.5 [m]. Other similar data as for Mikawa Bay

are used for physical values and numerical conditions. Figure 5 (a) and Figure 5 (b)
are stationary contour lines of the water level ζ and the interface d with a shift
of Hu

0 respectively for a sufficient density difference. Figure 5 (c) to Figure 5 (f)
are corresponding contour lines of the interface d with a shift of Hu

0 when the
density difference is gradually reduced. The interface becomes unstable as the
density difference becomes small. In Fig. 5 (d) to Fig. 5 (f), computations soon stop
because the interface d suddenly rises windward and becomes lower under the wind.
























