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This paper is concerned with global existence of weak solutions to a model equations of
magnetization reversal by spin-polarized current in a layer introduced in [19]. The local
magnetization of the ferromagnet satisfies the usual Landau-Lifshitz equation which is
coupled to the nonlinear heat equation satisfied by the spin accumulation field defined in
all the layer. The coupling is due to the contact interaction energy. We use an hyperbolic
regularization method with penalization of the saturation constraint satisfied by the local

magnetization to prove global existence result, in any finite time interval, of weak solutions
with finite energy. We present other models of equations describing the magnetization
switching by spin-polarized current and show that our method can be used to solve them.
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1. Introduction

The recent discovery that a spin-polarized electrical current can apply a large
torque to a ferromagnet through direct transfer of spin angular momentum, offers
the possibility of manipulating magnetic-device elements without applying any mag-
netic fields. Magnetic multilayers, devices which consist of alternating nanometer-
scale-thick films of magnetic and nonmagnetic materials, have been the focus of
scientific and technological interest since the discovery of their giant magnetore-
sistance. While the effect of the magnetic layers on the current has been widely
studied, the controverse phenomenon, the effect of the current on the orientation
of the magnetic layers, has received less attention. Recent theories [12, 2] predict
that a large spin-polarized current passing perpendicularly through the layers can
exert torques on the magnetic moments in the layers, due to direct transfer of spin
angular momentum from the conduction of electrons to the magnets. Convincing
experiments have been now achieved and several theoretical approaches, extending
the initial theory, have been recently developed for the interpretation of the existing
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experimental data. However the current density needed in the existing experiments
is still relatively high, of the order of 107-109 A/cm2, and a better understanding
of the spin transfer mechanisms seems necessary to obtain a significant reduction
of the current density. Another effect of the same type but probably requiring a
smaller current density is the displacement of a domain wall by spin transfer from a
spin-polarized current. It was found experimentally that the current-induced spin
torque has many unique properties. Among them, the spin torque distorts domain
structures, drives domain walls out of equilibrium, makes magnetization switching
from one direction to another, and creates spin excitations. While several theoret-
ical models have been put forward to formulate the spin torque, the exact form is
still the subject of much debate. These theories suggest an interesting magnetiza-
tion relaxation process caused by a spin-polarized current. A conventional physical
picture consists of a magnetic junction with two ferromagnetic layers one of which
(layer 1) is pinned and the other (layer 2) is free. Very thin spacer layer exists be-
tween the layers 1 and 2. The layer 2 has finite thickness and contacts at the second
end with some nonmagnetic conductor (layer 3). The spin-polarized current may
inject (or extract) nonequilibrium spins into layer 2. At a sufficiently large current
density, the effective field leads to the magnetization reversal of the layer 2. In
order to focus further on these phenomena which have the important consequence
that they can act as an additional magnetic field on the magnetic background, one
assumes that when the bilinear or biquadratic interlayer exchange coupling exists,
their effects are negligibles or one chooses the spacer layer thick enough to reduce
the magnetic coupling between ferromagnets. We refer respectively to [7] and [6]
for some mathematical results on these effects.

The main model equation we consider in this work is introduced by Zhang, Levy
and Fert [19]. The effective magnetic field He is given by He = HLLG + Jm where
Jm corresponds to the contact interaction energy which is of the type −J

∫
Ω

m ·
Mdx and HLLG is the classical effective magnetic field in the micromagnetic theory.
The spin accumulation field m satisfies to a nonlinear heat equation coupled to the
LLG equation. The main difference for the new magnetization equation relies in
the fact that the energy of the system is not conserved. So, we consider the coupled
system for m and the local magnetization M on the finite time interval [0, T ] for
any T > 0 fixed.

Other models appear in the recent publications in the field of physics to de-
scribe the magnetization reversal by current injection after the pioneer contribution
of Slonczewski [12] and Berger [2]. Some of them are [13], [1], [17] and [18] for a dif-
ferent approach. There is also other models, close to the previous ones, to describe
the motion of domain wall by spin polarized current see [17]. In the last section
of this work we recall these models equations and discuss their mathematical ap-
proaches.

Having briefly discussed the general context of this paper, let us go into its
structure. In Section 2, we set down the model equations and the initial-boundary
conditions for spin accumulation and magnetization. Section 3 is dedicated to our
main results. We investigate the global existence of weak solutions to the coupled
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problem for spin accumulation and local magnetization dynamics. We first give
formal estimates and then by regularization procedures we prove global existence
of weak solutions in the time interval [0, T ] for all fixed and finite T . In Section 4,
we discuss the case of stationary spin accumulation equation. We prove global
existence of weak solutions by proceeding along the lines of the proof given in
Section 3. The last section is devoted to some other models appearing in the recent
papers. We show that our method can be performed to establish global existence
theory for weak solutions.

In the sequel we use the following notations. If D is an open and regular
set of R

n, L
2(D) is the vectorial Lebesgue space (L2(D))3 with norm and scalar

product denoted respectively by | · |D and (·; ·)D. The Hilbert space H
1(D) is the

usual Sobolev space (H1(D))3. If D is a bounded domain of R
n, |D| will denote its

Lebesgue measure.

2. The Model Equations

The calculations presented in this paper combine phenomenological constitu-
tive equations for the electric current and the spin current with a Landau-Lifshitz-
Gilbert equation generalized to include spin-transfer torque. We adopt the model
equations of magnetization switching by spin current proposed by [19], [11]. We
also refer to [9] for the same model equations. Let (e1,e2,e3) be the canoni-
cal basis of R

3 and let Ω̂ be an open, bounded and regular domain of R
2 with

generic point x̂ = (y, z). We denote by x the abscissa of a point X = (x, x̂) of
R

3, Ω0 = (−h, h) × Ω̂ denotes the nonmagnetic spacer (N), Ω1 = (h, l) × Ω̂ and
Ω2 = (−L,−h)× Ω̂ the ferromagnetic materials (F ). We consider a magnetic junc-
tion of the type F/N/F represented by the horizontal cylinder O = Ω1 ∪Ω0 ∪Ω2.
At the plane x = −L an electric current je is injected in the direction e1 and flows
in the domain I = [−L, l]. Then the background magnetization receives a spin
torque. This torque leads to spin accumulation in N and in the regions of F close
to the F/N and N/F interfaces. If one denotes by m(t, x) the spin accumulation
vector in the domain O for t ≥ 0 and x ∈ I, then the magnetization current jm, in
the case where the local magnetization M is assumed to be uniform in Ω = Ω1∪Ω2

(with respect to the variable X), is given by the expression

jm = βjeM − 2D0(∂xm − ββ′M(M · ∂xm)). (1)

Here, β > 0 and β′ > 0 represent the spin polarization parameters, D0 > 0 the
diffusion parameter. Theoretical analysis has been mostly confined to the case
where the magnetization M of the layers is uniform. If M is not uniform in Ω

then we can extend the expression (1) by setting

jm = βje〈M〉 − 2D0(∂xm − ββ′〈M〉(〈M〉 · ∂xm)) (2)
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where 〈M〉 is the mean value of M in Ω̂, 〈M〉 = |Ω̂|−1
∫
�Ω

M(t, x, x̂) dx̂. Hence,
the spin accumulation is governed for t ≥ 0 and x ∈ I, by the equation see [19], [11]

1
d2
∂tm − ∂x(A(〈M〉)(∂xm)) +

1
λ2

J

m × 〈M〉 +
1
λ2

sf

m = − β

d2
∂x(je〈M〉) (3)

where we defined the matrix A(〈M〉) by

A(〈M〉)(ξ) = ξ − ββ′(〈M〉 · ξ)〈M〉 (4)

for all ξ ∈ R
3. The constants appearing in the equation are given by

d =
√

2D0, λsf = d
√
τsf , λJ = d

√
�/J, (5)

where τsf is the spin-flip relaxation time of the conduction electron, J > 0 is the
exchange interaction constant and � is the Planck constant.

The equation (3) is completed by initial and boundary conditions. First, we
assume that the spin accumulation m as well as the magnetization current jm are
continuous across the interfaces x = −h and x = h (notice that M = 0 in Ω0). We
have the transmission boundary conditions[

m(t, ·)
]
−h

=
[
m(t, ·)

]
h

= 0,
[
jm(t, ·)

]
−h

=
[
jm(t, ·)

]
h

= 0 (6)

where we use the notation
[
u(t, ·)

]
x0

= u(t, x0 + 0) − u(t, x0 − 0) for a function
u. The electric current je(t, x) is a given function defined for t ≥ 0 in the interval
−L ≤ x ≤ l and is linked to the spin accumulation m by (2). The boundary
conditions for m at the interfaces x = −L and x = l take the form(

A(〈M〉)(∂xm)(t, ·) − β

d2
je〈M〉(t, ·)

)∣∣x=−L, l
= 0. (7)

The spin accumulation equation is coupled to the local magnetization
M(t, x, x̂) which satisfies the LLG equation in R

+ ×Ω see [8], [3] for example

∂tM − αM × ∂tM = −γM × (He + Jm) (8)

where Jm is the field associated with the contact interaction between the local mo-
ment and the spin accumulation. The parameters γ > 0 and α > 0 are respectively
the gyromagnetic and the Gilbert damping parameters. The effective magnetic field
He contains the contribution of the magnetostatic, the volume anisotropy and the
magnetic field associated with the exchange energy

He(M) = ∇ · (a∇M) + ∇ϕ−∇Mψ(M) (9)

where the exchange function a(X) takes two positive values a1 > 0 in Ω1 and
a2 > 0 in Ω2 and where ϕ(t,X) satisfies in R

+ × R
3 the stray field equation

∇ · (∇ϕ+ χ(Ω)M) = 0 (10)
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and ∇Mψ is the volume anisotropy field associated with a regular function ψ ∈
C2(R3) satisfying ψ(X) ≥ 0 and |D2ψ(X)| ≤ C for all X ∈ R

3.
To end this description of the model equations, let us rewrite the initial-

boundary conditions satisfied by the field (m,M). We have for m

m(0, x) = m0(x) in I, jm(t,−L) = jm(t, l) = 0 in R
+ (11)

and for M⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M(0,X) = M0(X), |M0(X)|2 = 1 a.e. in Ω

M(t, h+ 0, x̂) = M(t,−h− 0, x̂) in R
+ × Ω̂

(M × a1∂xM)(t, h+ 0, x̂) = (M × a2∂xM)(t,−h− 0, x̂) in R
+ × Ω̂

M × (a∇ · n)M = 0 on R
+ × (∂Ω \ (Γ 1 ∪ Γ 2))

(12)

where we set Γ 1 = {(h, x̂), x̂ ∈ Ω̂}, Γ 2 = {(−h, x̂), x̂ ∈ Ω̂} and n is the unit outward
normal to the boundary ∂Ω of Ω. Finally, the magnetization M(t,X) satisfies the
saturation condition

|M(t,X)|2 = 1 a.e. in R
+ ×Ω.

As it is said in the introduction, we may use more complex boundary conditions
coupling the interfaces z = ±h as the bilinear exchange one see [7] or the biquadratic
exchange one see [6] for example.

In the next section we discuss the model equations (3)–(11)–(8)–(12).

3. Global Weak Solutions to the Problem

Our starting point is to give formally the a priori estimates satisfied by the
solutions of the system (3)–(11)–(8)–(12).

3.1. Formal estimates
Any regular solution to the LLG equations (8) satisfies the relation

α|∂tM |2 = γ(He + Jm) · ∂tM

which leads after integration over Ω to

1
2

d
dt

E(M) +
α

γ
|∂tM |2Ω = J

∫
Ω

m · ∂tM dX (13)

where E(M) is the energy of the system given by

E(M) =
∫

Ω

a|∇M |2 dX +
∫

R3
|∇ϕ|2 dX + 2

∫
Ω

ψ(M) dX. (14)

By Cauchy-Schwarz inequality we get the estimate

1
2

d
dt

E(M) +
α

2γ
|∂tM |2Ω ≤ γJ2|Ω̂|

2α
|m|2I . (15)
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Integration with respect to the time variable t leads to

E(M(t)) +
α

γ

∫ t

0

|∂tM(s)|2Ω ds ≤ E(M0) +
γJ2|Ω̂|
α

∫ t

0

|m(s)|2I ds (16)

where E(M0) is the initial energy defined by

E(M0) =
∫

Ω

a|∇M0|2 dX +
∫

R3
|∇ϕ0|2 dX + 2

∫
Ω

ψ(M0) dX (17)

where ϕ0 satisfies the stray field equation associated with M0.
Let us consider for M fixed the heat equation satisfied by m. We have the

energy estimate

1
2d2

d
dt

|m|2I +
1
λ2

sf

|m|2I + (A(〈M〉)∂xm; ∂xm)L2(I) =
β

d2

∫
I

je〈M〉 · ∂xm dx. (18)

Assuming the parameters β and β′ are such that

1 − ββ′ > 0 (19)

then the matrix A(〈M〉) satisfies{
A(〈M〉)(ξ) · ξ ≥ (1 − ββ′)|ξ|2

|A(〈M〉)(ξ)| ≤ (1 + ββ′)|ξ|
(20)

for all ξ ∈ R
3. We deduce, by using the saturation condition |M(t,X)|2 = 1, the

inequality

1
2d2

|m(t)|2I +
1
λ2

sf

∫ t

0

|m(s)|2I ds+
1 − ββ′

2

∫ t

0

|∂xm|2I ds

≤ 1
2d2

|m0|2I +
β2

2d4(1 − ββ′)

∫ t

0

|je|2I ds.
(21)

Estimates (16) and (21) lead to a bound for the energy of the local magnetization
M on the interval [0, T ] for T fixed and finite.

Remark 3.1. Notice that the contact interaction energy satisfies the inequal-
ity ∣∣∣∣∫

Ω

m · M dX

∣∣∣∣ ≤ |Ω̂|1/2

(∫
I

|m|2 dx
)1/2

. (22)

It follows that energy is controlled by the contribution of the spin accumulation
energy.

We shall prove a global existence result for weak solutions to problem (3)–
(11)–(8)–(12). We set Q = (0, T ) ×Ω and ω = (0, T ) × I for T > 0 fixed.
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3.2. Regularization: the intermediary problem
We proceed along the lines of the method introduced in [5]. See also [6]. The

idea is to write, by using the saturation condition, the LLG equation in the form
M×

(
(1/γ)M×∂tM +(α/γ)∂tM−He−Jm−(q(|M |)M)

)
= 0 for any function q

of |M |. Hence, for a small fixed parameter ε > 0, we introduce the vector function
Uε satisfying the intermediary problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

γ
∂tU

ε −∇ · (a∇Uε) +
1
ε2

∇U (p(|Uε|)) = L(Uε) + Rε(Uε, ∂tU
ε) + Jmε in Q

Uε(0,X) = M0(X) in Ω, |M0(X)|2 = 1 a.e. in Ω

Uε(t, h+ 0, x̂) = Uε(t,−h− 0, x̂) in (0, T ) × Ω̂

a1∂xU
ε(t, h+ 0, x̂) = a2∂xU

ε(t,−h− 0, x̂) in (0, T ) × Ω̂

(a∇ · n)Uε = 0 on (0, T ) × (∂Ω \ (Γ 1 ∪ Γ 2)).
(23)

The spin accumulation field mε satisfies the heat equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
d2
∂tm

ε − ∂x(Aε(〈Uε〉)(∂xmε)) +
1
λ2

sf

mε

= − 1
λ2

J

mε × 〈Uε〉 − β

d2
∂x(je〈Uε〉) in ω

mε(0, x) = m0(x) in I

jε(Uε,mε)(t,−L) = jε(Uε,mε)(t, l) = 0 in (0, T )

(24)

where we set

L(Uε) = ∇ϕε −∇Uψ(Uε), Rε(V,W ) =
1
γ

Sε(V ) ×W

Sε(ξ) = ξ/(ε+ |ξ|), ∀ξ ∈ R
3, T ε(V ) = 〈V 〉/(ε+ 〈|V |〉)

p(r) = |
√

1 + r2 −
√

2|2, r ∈ R
+

Aε(〈V 〉)ξ = ξ − ββ′(T ε(V ) · ξ)T ε(V ), ∀ξ ∈ R
3

jε(V,m) = βje〈V 〉 − d2Aε(〈V 〉)(∂xm).

(25)

Operator L is Lipschitz continuous from L
2(Ω) into L

2(Ω) by using the lin-
earity of the stray field equation and the bound, |D2ψ(ξ)| ≤ C for all ξ, of ψ. We
have for all U, V ∈ L

2(Ω) the estimate

|L(U) − L(V )|Ω ≤ C|U − V |Ω (26)

where C > 0 represents various constants which are independent of ε. Moreover,
operator Rε(Uε, ∂tU

ε) satisfies locally the orthogonality property Rε(Uε, ∂tU
ε) ·

Uε = Rε(Uε, ∂tU
ε) · ∂tU

ε = 0. As we have for all r ≥ 0

r2 − 1 = p(r) + 2
√

2(
√
r2 + 1 −

√
2) (27)
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we can deduce the L
2(Ω) bound for U knowing the L1(Ω) bound of p(|U |). The

matrix operator Aε satisfies for all ξ ∈ R
3 the bounds

Aε(〈V 〉)(ξ) · ξ ≥ (1 − ββ′)|ξ|2, |Aε(〈V 〉)(ξ)| ≤ (1 + ββ′)|ξ| (28)

and T ε satisfies for all functions U1, U2 ∈ L
∞(Q), the estimates{

|T ε(U1)| ≤ 1, |T ε(U1) − T ε(U2)|∞ ≤ Cε|U1 − U2|∞
|T ε(U1) ⊗ T ε(U1) − T ε(U2) ⊗ T ε(U2)|∞ ≤ Cε|U1 − U2|∞

(29)

where Cε > 0 is a constant depending only of ε, | . |∞ denotes the norm of the
two spaces L

∞(Q) and L
∞(ω) while V ⊗W is the matrix (V ⊗W )i, j = ViWj ,

1 ≤ i, j ≤ 3 for all vectors V,W ∈ R
3. Moreover, for all ξ1, ξ2, η1, η2 ∈ R

3,
we may write (Aε(η1)ξ1 − Aε(η2)ξ2) · (ξ1 − ξ2) = Aε(η1)(ξ1 − ξ2) · (ξ1 − ξ2) −
ββ′(T ε(η1)⊗T ε(η1)−T ε(η2)⊗T ε(η2))ξ2 ·(ξ1−ξ2) and then we get for all functions
U1, U2 ∈ L

∞(Q), V1, V2 ∈ L
2(ω)

(Aε(〈U1〉)V1 −Aε(〈U2〉)V2;V1 − V2)ω

≥ (1 − ββ′)
2

|V1 − V2|2ω − (ββ′)2

2(1 − ββ′)
C2

ε |U1 − U2|2∞|V2|2ω.
(30)

Let us give another property satisfied by operator Rε. Since Sε is Lipschitz con-
tinuous with Lipschitz constant Cε then for all U1, U2 ∈ L

∞(Q), V1, V2 ∈ L
2(Q) we

have γ(Rε(U1, V1) − Rε(U2, V2);V1 − V2)Q = ((Sε(U1) − Sε(U2)) × V2;V1 − V2)Q

and then we get

|(Rε(U1, V1) −Rε(U2, V2);V1 − V2)Q| ≤
Cε

γ
|U1 − U2|∞|V2|Q|V1 − V2|Q. (31)

3.3. Solving the intermediary problem (23)–(24)
Let us consider for ν > 0 fixed the hyperbolic regularization of (23)⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν2∂2

tU
ε
ν −∇ · (a∇Uε

ν ) + Bε(ρν � Ũε
ν , ∂tU

ε
ν )

= − 1
ε2

∇U (p(|Uε
ν |)) + L(Uε

ν ) + Jmε
ν in Q

Uε
ν (0,X) = M0(X) in Ω, |M0(X)|2 = 1 a.e., ν2∂tU

ε
ν (0,X) = 0 in Ω

(32)

with Uε
ν satisfying the boundary condition of problem (23). We set

Bε(U, V ) =
α

γ
V −Rε(U, V ) (33)

Ũ denotes the extension of U by 0 outside Q, � is the convolution product with
respect to (t,X) and ρν is a regularizing sequence. Notice that operator Bε satisfies,
locally for all U and V , the property

Bε(U, V ) · V =
α

γ
|V |2. (34)
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The spin accumulation field mε
ν satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
d2
∂tm

ε
ν − ∂x(Aε(〈ρν � Ũε

ν 〉)(∂xmε
ν)) +

1
λ2

sf

mε
ν

= − 1
λ2

J

mε
ν × T ε(ρν � Ũε

ν ) − β

d2
∂x(jeT ε(ρν � Ũε

ν )) in ω

mε
ν(0, x) = m0(x) in I

jε
ν(Uε

ν ,m
ε
ν)(t,−L) = jε

ν(Uε
ν ,m

ε
ν)(t, l) = 0 in (0, T )

(35)

where jε
ν(U,m) = βjeT ε(ρν � Ũ) − d2Aε(〈ρν � Ũ〉)(∂xm).

We fix ε and ν. In the sequel of this paragraph, we will show existence of
solutions for the regularized problem (32)–(35) by applying a fixed point procedure.
Let V ∈ L2(0, T ; L2(Ω)) be fixed, we consider now the spin accumulation equation
(35) associated with V⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
d2
∂tm − ∂x(Aε(〈ρν � Ṽ 〉)(∂xm)) +

1
λ2

sf

m

= − 1
λ2

J

m × T ε(ρν � Ṽ ) − β

d2
∂x(jeT ε(ρν � Ṽ )) in ω

m(0, x) = m0(x) in I

jε
ν(V,m)(t,−L) = jε

ν(V,m)(t, l) = 0 in (0, T ).

(36)

The solution of (36) is such that m ∈ L∞(0, T ; L2(I)), ∂xm ∈ L2(0, T ; L2(I)) and
∂tm ∈ L2(0, T ; H−1(I)). Moreover, the following energy inequality holds

1
2d2

|m(t)|2I +
1
λ2

sf

∫ t

0

|m(s)|2I ds+
1 − ββ′

2

∫ t

0

|∂xm(s)|2I ds

≤ 1
2d2

|m0|2I +
β2

2d4(1 − ββ′)

∫ T

0

|je|2I ds.
(37)

We define the map Q : V ∈ L2(0, T ; L2(Ω)) �→ m = Q(V ) solution of (36). We
have

Lemma 3.1. Q is Lipschitz continuous from L2(0, T ; L2(Ω)) into
L2(0, T ; L2(I)).

Proof. Let Vk ∈ L2(0, T ; L2(Ω)) and mk = Q(Vk) be the solution of (36)
associated with Vk for k = 1, 2. We set m = m1 −m2 and V = V1 − V2. It follows
that m satisfies the equation

1
d2
∂tm − ∂x(Aε(〈ρν � Ṽ1〉)(∂xm1) −Aε(〈ρν � Ṽ2〉)(∂xm2)) +

1
λ2

sf

m

= − 1
λ2

J

m × T ε(ρν � Ṽ1) −
1
λ2

J

m2 × (T ε(ρν � Ṽ1) − T ε(ρν � Ṽ2))

− β

d2
∂x(je(T ε(ρν � Ṽ1) − T ε(ρν � Ṽ2)))

(38)
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with homogeneous initial and boundary conditions. Multiplying by m, integrating
by parts and using the property satisfied by Aε we get

1
2d2

|m(t)|2I +
1

2λ2
sf

∫ t

0

|m(s)|2I ds+
1 − ββ′

2

∫ t

0

|∂xm(s)|2I ds

≤ C2
ε |ρν � Ṽ |2∞

∫ t

0

(1
2
λ2

sfλ
−2
J |m2|2I +

β2|β′|2
1 − ββ′ |∂xm2|2I +

β2

(1 − ββ′)d4
|je|2I

)
ds.

(39)

Finally arguing the fact that |ρν � Ṽ |∞ ≤ Cν |V |Q we deduce the continuity of the
map Q from L2(0, T ; L2(Ω)) into L∞(0, T ; L2(I)) ∩ L2(0, T ; H1(I)). The Lipschitz
continuity in these spaces is then a consequence of (37).

Let us consider now for V fixed in L2(0, T ; L2(Ω)) the equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν2∂2

tU −∇ · (a∇U) + Bε(ρ � Ṽ , ∂tU) = − 1
ε2

∇U (p(|U |))

+ L(U) + JQ(V ) in Q

U(0,X) = M0(X) in Ω, |M0(X)|2 = 1 a.e., ν2∂tU(0,X) = 0 in Ω

(40)

with the same boundary conditions as in (23). Since the right-hand side of the
equation is Lipschitz continuous (with respect to U) from L2(0, T ; L2(Ω)) into
L2(0, T ; L2(Ω)) then the wave equation (40) admits a unique global weak solution
U with finite energy see [4], [16], [14], [10]. It satisfies the estimate

ν2|∂tU(t)|2Ω + E(U(t)) +
2
ε2

∫
Ω

p(|U(t)|) dX +
α

γ

∫ t

0

|∂tU(s)|2Ω ds

≤ E(M0) +
J2|Ω̂|γ
α

∫ t

0

|Q(V )(s)|2I ds.
(41)

Let K be the map defined by K(V ) = U , U solution of (40). We have the result

Lemma 3.2. Operator K : L2(0, T ; L2(Ω)) → L2(0, T ; L2(Ω)) is continuous
and compact.

Proof. For ν and ε fixed, operator K is bounded from L2(0, T ; L2(Ω)) into
the Banach space X = L∞(0, T ; H 1(Ω)) ∩ H1(0, T ; L2(Ω)). By using Aubin’s
compactness lemma it follows that X is compactly embedded into L2(0, T ; L2(Ω))
and then K is compact from L2(0, T ; L2(Ω)) into itself. Let us prove that K is
continuous. Let Vk ∈ L2(0, T ; L2(Ω)) k = 1, 2 and Uk = K(Vk) be the solution of
(40). We set V = V1 − V2 and U = U1 − U2. Hence U satisfies the equation

ν2∂2
tU −∇ · (a∇U) + Bε(ρν � Ṽ1, ∂tU)

= Rε(ρν � Ṽ1, ∂tU2) −Rε(ρν � Ṽ2, ∂tU2) −
1
ε2

[∇U (p(|U1|))

−∇U (p(|U2|))] + L(U1) − L(U2) + J(Q(V1) −Q(V2))

(42)
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with homogeneous initial condition and the same boundary conditions as in (23).
Multiplying this equation by ∂tU , integrating by parts, using the Lipschitz property
of ∇U (p(|U |)) and ∇Uψ and the property satisfied by Rε we get

ν2|∂tU(t)|2Ω + |
√
a ∇U(t)|2Ω + |∇ϕ(t)|2Ω +

α

γ

∫ t

0

|∂tU(s)|2Ω ds

≤ +
3J2|Ω̂|γ

α

∫ t

0

|Q(V1) −Q(V2)|2I ds+
3C2

ε

α
|ρν � Ṽ |2∞

∫ T

0

|∂tU2(s)|2Ω ds

+
3C2

εγ

α

∫ t

0

|U(s)|2Ω ds

(43)

where ϕ is the solution of the stray equation associated with U . Next, using the
inequality |U(s)|2 ≤

∫ s

0
|U(α)|2 dα +

∫ t

0
|∂tU(α)|2 dα for all 0 ≤ s ≤ t ≤ T we get

the estimate |U(s)|2 ≤ (1 + ses)
∫ t

0
|∂tU(α)|2 dα and finally the previous energy

estimate implies the following

ν2|∂tU(t)|2Ω ≤ C|Q(V1) −Q(V2)|2ω + Cε,T |ρν � Ṽ |2∞ + Cε,T

∫ t

0

|∂tU(s)|2Ω ds. (44)

Then using Gronwall inequality we obtain

|∂tU(t)|2Ω ≤ Cε,ν,T (|Q(V1) −Q(V2)|2ω + |ρν � Ṽ |2∞) (45)

where C, Cε,T and Cε,ν,T are various positive constants. Finally since we have
|ρν � Ṽ |∞ ≤ Cν |V |L2(0,T ;L2(Ω)) and operator Q is Lipschitz continuous by the pre-
vious lemma we conclude that |∂tU(t)|2Ω ≤ Cε,ν,T

∫ T

0
|V (s)|2Ω ds and |U(t)|2Ω ≤

Cε,ν,T

∫ T

0
|V (s)|2Ω ds. At the end we return to the energy estimate to deduce that

|∇U(t)|2Ω ≤ Cε,ν,T

∫ T

0

|V (s)|2Ω ds. (46)

The continuity of operator K is then proved from L2(0, T ; L2(Ω)) into X and con-
sequently operator K is continuous and compact from L2(0, T ; L2(Ω)) into itself.

Applying Schauder’s fixed point theorem, it follows that there exists a fixed
point Uε

ν ∈ L2(0, T ; L2(Ω)) satisfying K(Uε
ν ) = Uε

ν . Moreover setting mε
ν = Q(Uε

ν )
it follows that Uε

ν ∈ X , mε
ν ∈ L∞(0, T ; L2(I)) ∩ L2(0, T ; H1(I)) and (Uε

ν ,m
ε
ν) is a

weak solution of (32)–(35).
We proved the following result

Theorem 3.1. Let ν > 0 and ε > 0 be fixed. Let m0 ∈ L
2(I), M0 ∈ H

1(Ω)
such that |M0(x)|2 = 1 a.e. and je ∈ L2(ω). Then there exists a weak solution
(mε

ν , U
ε
ν ) ∈ L2(0, T ; H 1(I)) × H

1(Q) of the coupled problem (32)–(35). Moreover
we have mε

ν ∈ L∞(0, T ; L2(I)), Uε
ν ∈ L∞(0, T ; L 2(Ω)) and the following energy
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inequalities hold

ν2|∂tU
ε
ν (t)|2Ω + E(Uε

ν (t)) +
2
ε2

∫
Ω

p(|Uε
ν (t)|) dX

+
α

γ

∫ t

0

|∂tU
ε
ν (s)|2Ω ds ≤ E(M0) +

J2|Ω̂|γ
α

∫ t

0

|mε
ν(s)|2I ds

(47)

and
1

2d2
|mε

ν(t)|2I +
1
λ2

sf

∫ t

0

|mε
ν(s)|2I ds+

1 − ββ′

2

∫ t

0

|∂xmε
ν(s)|2I ds

≤ 1
2d2

|m0|2I +
β2

2d4(1 − ββ′)

∫ T

0

|je|2I ds

(48)

for all t ∈ [0, T ].

3.4. Passing to the limit for ν → 0
The estimates deduced from (47) and (48) allow to pass to the limit as ν → 0

in the coupled problem (32)–(35). We have

Lemma 3.3. There exists C > 0 which is independent of ν and ε such that{
|Uε

ν |L∞(0,T ;H 1(Ω)) + |∂tU
ε
ν |L2(0,T ;L2(Ω)) + |∇ϕε

ν |L∞(0,T ;L2(R3)) ≤ C

|mε
ν |L2(0,T ;H 1(I)) + |∂tm

ε
ν |L2(0,T ;H −1(I)) ≤ C.

(49)

The L
2-bound of Uε

ν is deduced from the inequality (associated with the func-
tion p(r))

|Uε
ν (t)|2Ω ≤ |Ω| +

∫
Ω

p(|Uε
ν (t)|) dX + 2

√
2
∫

Ω

√
p(|Uε

ν (t)|) dX. (50)

Therefore we can extract subsequences such that Uε
ν converges towards a limit

Uε weakly in H
1(Q) and mε

ν converges to a limit mε weakly in L2(0, T ; H1(I)).
Moreover as a consequence of Aubin’s compactness lemma we have the strong
convergences

Lemma 3.4. Let ε > 0 be fixed. Under the hypotheses of Theorem 3.1 there
exist subsequences Uε

ν and mε
ν such that⎧⎪⎪⎨⎪⎪⎩

Uε
ν → Uε strongly in L2(0, T ; L2(Ω))

ρν � Ũε
ν → Ũε strongly in L

2(R4)

mε
ν → mε strongly in L2(0, T ; L2(I)).

(51)

Since Sε is Lipschitz continuous, we get that Sε(ρν � Ũε
ν ) → Sε(Uε) strongly

in L
2(Q) which allows to pass to the limit in (32). Therefore the equation (23)

is satisfied in the sense of distributions and the boundary conditions are fulfilled.
Moreover the property of T ε leads to the weak convergence

Aε(〈ρν � Ũε
ν 〉)(∂xmε

ν) ⇀ Aε(〈Uε〉)(∂xmε) in L
2(ω) (52)
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as well as the strong convergences

mε
ν × T ε(ρν � Ũε

ν ) → mε × T ε(Uε) in L
2(ω) (53)

and

jeT ε(ρν � Ũε
ν ) → jeT ε(Uε) in L

2(ω). (54)

Thus mε satisfies in the sense of distributions the equation

1
d2
∂tm

ε− ∂x(Aε(〈Uε〉)(∂xmε)) +
1
λ2

sf

mε

= − 1
λ2

J

mε × T ε(Uε) − β

d2
∂x(jeT ε(Uε)).

(55)

Consequently (1/d2)∂tm
ε − ∂x(Aε(〈Uε〉)(∂xmε) − (β/d2)jeT ε(Uε)) ∈ L

2(ω) so as
if we set pε = −Aε(〈Uε〉)(∂xmε) + (β/d2)jeT ε(Uε), we have ((1/d2)mε, pε) ·N

∣∣
∂ω

which is well defined in H
−1/2(∂ω). Here N denotes the outward unit normal to

the boundary ∂ω of ω.
Let θ ∈ H

1/2(∂ω) and η ∈ H
1(ω) such that η

∣∣
∂ω

= θ. Thus setting pε
ν =

−Aε(〈ρν �Ũε
ν 〉)(∂xmε

ν)+(β/d2)jeT ε(ρν �Ũε
ν ) and Dε

ν = ((1/d2)(mε
ν −mε), pε

ν −pε)
we have ∫

∂ω

θDε
ν ·Ndσ =

∫
ω

∇η ·Dε
ν dxdt+

∫
ω

η∇ ·Dε
ν dxdt

where dσ is the Lebesgue measure on ∂ω, ∇ = (∂t, ∂x). We get∫
∂ω

θDε
ν ·Ndσ =

∫
ω

∇η ·Dε
ν dxdt− (1/λ2

sf)
∫

ω

η(mε
ν − mε) dxdt

− (1/λ2
J)

∫
ω

η(mε
ν × T ε(ρν � Ũε

ν ) − mε × T ε(Uε)) dxdt

which leads to limν→0

∫
∂ω
θDε

ν ·N dσ = 0 that is

lim
ν→0

(
(1/d2)

(∫
I

θ(T, x)(mε
ν − mε)(T, x) dx−

∫
I

θ(0, x)(m0(x) − mε(0, x)) dx
)

+
∫ T

0

θ(t, l)(pε
ν − pε)(t, l) dt−

∫ T

0

θ(t,−L)(pε
ν − pε)(t,−L) dt

)
= 0

Then for adequate test functions θ, we get the desired boundary conditions. So mε

satisfies (24). We proved the following result

Theorem 3.2. Let ε > 0 be fixed. Let m0 ∈ L
2(I), M0 ∈ H

1(Ω) such that
|M0(X)|2 = 1 a.e. and je ∈ L2(ω). Then there exists a weak solution (mε, Uε) ∈
L2(0, T ; H 1(I))×H

1(Q) of the coupled problem (23)–(24). Moreover we have mε ∈
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L∞(0, T ; L2(I)), Uε ∈ L∞(0, T ; H 1(Ω)) and the following energy inequalities hold

|
√
a∇Uε(t)|2Ω +

2
ε2

∫
Ω

p(|Uε(t)|) dX

+ |∇ϕε(t)|2
R3 + 2

∫
Ω

ψ(Uε(t)) dX +
α

γ

∫ t

0

|∂tU
ε(s)|2Ω ds

≤ E(M0) +
J2|Ω̂|γ
α

∫ t

0

|mε(s)|2I ds

(56)

and

1
2d2

|mε(t)|2I +
1
λ2

sf

∫ t

0

|mε(s)|2I ds+
1 − ββ′

2

∫ t

0

|∂xmε(s)|2I ds

≤ 1
2d2

|m0|2I +
β2

2d4(1 − ββ′)

∫ T

0

|je|2I ds
(57)

for t ∈ [0, T ].

3.5. Global solutions to (8)–(3)
We want to pass to the limit as ε → 0 in the system (23)–(24). The estimate

satisfied by Uε given in Theorem 3.2 is rewritten as

Eε(Uε(t)) +
α

γ

∫ t

0

|∂tU
ε|Ω ds+

2
ε2

∫
Ω

p(|Uε(t)|) dX

≤ E(M0) + C0|m0|2I + C1

∫ T

0

|je|2I ds
(58)

where C0 > 0 and C1 > 0 are two positive constants which are independent of ε
and T . It follows that ∫

Ω

p(|Uε(t)|) dX ≤ Cε2. (59)

Since we have r2 − 1 = p(r) + 2
√

2(
√

1 + r2 −
√

2) then we get∫
Ω

||Uε|2 − 1| dX ≤ C(ε2 + |Ω|1/2ε). (60)

Hence the sequence (Uε)ε is bounded in L∞(0, T ; L2(Ω)). It follows that there
exists a subsequence and M ∈ L

2(Q) such that we have{
Uε ⇀ M weakly in L

2(Q)

|Uε|2 → 1 strongly in L
1(Q).

(61)

The energy inequality leads also to

|∂tU
ε|L2(0,T ;L2(Ω)) + |∇Uε|L∞(0,T ;L2(Ω)) ≤ C (62)
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which implies by using the classical compactness lemma the strong convergence

Uε → M strongly in L2(0, T ; L2(Ω)) (63)

so we have

|M(t,X)|2 = 1 a.e. in Q. (64)

We pass to the limit in the weak formulation of the intermediary problem (23)
satisfied by Uε. We use test functions of the type φ×Uε where φ is a test function
defined in Q satisfying φ(t, h+ 0, x̂) = φ(t,−h− 0, x̂) in (0, T ) × Ω̂. We have

α

γ

∫
Q

∂tU
ε · φ× Uε dX dt+

∫
Q

a∇Uε · ∇φ× Uε dX dt

−
∫

Q

Rε(Uε, ∂tU
ε) · φ× Uε dX dt

=
∫

Q

L(Uε) · φ× Uε dX dt+ J

∫
Q

mε · φ× Uε dX dt.

(65)

We get the following result

Theorem 3.3. Let T > 0 be fixed and M0 ∈ H
1(Ω) be such that |M0(X)|2 =

1 a.e., m0 ∈ L
2(I) and je ∈ L2(ω). Then, there exists a global weak solution

(m,M) of the coupled problem (8)–(12)–(3)–(11) such that M ∈ L∞(Q) ∩ H
1(Q),

|M(t,X)|2 = 1 a.e., m ∈ L∞(0, T ; L2(I)) ∩ L2(0, T ; H1(I)) and satisfying the
energy inequalities

E(M(t)) +
α

γ

∫ t

0

|∂tM(s)|2Ω ds ≤ E(M0) + C0|m0|2I + C1

∫ T

0

|je|2I ds

|m(t)|2I + C2

∫ t

0

|m(s)|2I ds+
1 − ββ′

2

∫ t

0

|∂xm(s)|2I ds

≤ C0|m0|2I + C1

∫ T

0

|je|2I ds

(66)

for all t ∈ [0, T ] where C0 > 0, C1 and C2 are positive constants independent of
(m,M) and T .

Proof. It is easy to see that the operator M �→ ∇ϕ with ∇·(∇ϕ+χ(Ω)M) = 0
in (0, T ) × R

3 is linear continuous from L
2 into itself. Therefore we can pass to

the limit in the stray field equation by using the strong convegence of Uε to obtain
that the strong limit ∇ϕ of ∇ϕε in L

2((0, T )×R
3) satisfies the stray field equation

(10). Moreover the Lipschitz continuity of ∇Uψ allows to pass to the limit in the
volume anisotropy field ∇Uψ(Uε) so that we have L(Uε) → L(M) strongly in
L2(0, T ; L2(Ω)). Next, for all φ ∈ L

2(Q) we have Sε(Uε) × φ → M × φ a.e. and
strongly in L2(0, T ; L2(Ω)). Consequently Rε(Uε, ∂tU

ε) ⇀ 1
γ M × ∂tM weakly in

L2(0, T ; L2(Ω)) and then
∫

Q
Rε(Uε, ∂tU

ε) · φ × Uε dX dt → 1
γ

∫
Q

M × ∂tM · φ ×
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M dX dt. We pass to the limit in (65) to get

α

γ

∫
Q

∂tM · φ× M dX dt+
∫

Q

a(X)∇M · ∇φ× M dX dt

− 1
γ

∫
Q

M × ∂tM · φ× M dX dt

=
∫

Q

L(M) · φ× M dX dt+ J

∫
Q

m · φ× M dX dt

(67)

where m is the weak limit of mε in L2(0, T ; L2(I)). Hence M satisfies the equation
(8) with the initial-boundary conditions (12). In addition of the energy inequality,
mε is such that (∂tm

ε)ε is uniformly bounded in L2(0, T ; H−1(I)) so mε converges
towards m weakly in L2(0, T ; H1(I)) and strongly in L2(0, T ; L2(I)). Let us con-
sider the convergence of Aε(〈Uε〉)(∂xmε). First of all 〈Uε〉 → 〈M〉, 〈|Uε|〉 → 1
a.e. in ω. Therefore T ε(Uε) → 〈M〉 and T ε(Uε) ⊗ T ε(Uε) → 〈M〉 ⊗ 〈M〉 a.e.
in ω so T ε(Uε) ⊗ T ε(Uε)φ → 〈M〉 ⊗ 〈M〉φ strongly in L

2(ω) for all φ ∈ L
2(ω).

Consequently, we obtain

Aε(〈Uε〉)(∂xmε) ⇀ A(〈M〉)(∂xm) weakly in L
2(ω).

A similar argument gives mε×T ε(Uε) ⇀ m×〈M〉 weakly in L
2(ω) and jeT ε(Uε)→

je〈M〉 strongly in L
2(ω) so taking the limit in (24), we get the equation (3). Pro-

ceeding along the lines of the precedent paragraph, we verify that m satisfies the
initial and boundary conditions (11).

Finally we consider the energy inequalities satisfied by Uε and mε, we make
use of the weak and strong convergences obtained and the lower semi-continuity of
the norms to deduce the wished energy estimates on M and m.

4. The Stationary Spin Accumulation Equation

The time scale appearing in the spin magnetization is shorter than the time
scale of the LLG equation (see [19], [11] for a discussion) then we may consider
stationary solutions of the spin accumulation equation⎧⎪⎨⎪⎩ ∂x(A(〈M〉)∂xm) − 1

λ2
sf

m − 1
λ2

J

m × 〈M〉 =
β

d2
∂x(je〈M〉)

jm(t,−L) = jm(t, l) = 0
(68)

where je is assumed to be independent of time. We are interested with the global
solutions to the system (8)–(12)–(68). We should verify that the energy associated
with m allows to deduce an uniform bound for the energy of M . For all t ≥ 0, we
have

(1 − ββ′)
2

|∂xm|2I +
1
λ2

sf

|m|2I ≤ β2

2d4(1 − ββ′)
|je|2I . (69)
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Next, it holds that

J

∣∣∣∣∫ t

0

∫
Ω

m · ∂tM dX ds
∣∣∣∣

≤ α

2γ

∫ t

0

∫
Ω

|∂tM |2 dX ds+
J2γ|Ω̂|

2α
β2λ2

sf

2d4(1 − ββ′)
|je|2I t.

(70)

Hence our method allows to prove a global existence result for weak solutions to
the system (8)–(12)–(68). To do that we introduce the regularized problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

ν2∂2
tU

ε
ν −∇ · (a(X)∇Uε

ν ) + Bε(ρν � Ũε
ν , ∂tU

ε
ν )

= − 1
ε2

∇U (p(|Uε
ν |)) + L(Uε

ν ) + Jmε
ν

Uε
ν (0,X) = M0(X), |M0(X)|2 = 1 a.e., ν2∂tU

ε
ν (0,X) = 0 in Ω

(71)

coupled to the elliptic equation

−∂x(Aε(〈ρν � Ũε
ν 〉)(∂xmε

ν)) +
1
λ2

sf

mε
ν

= − 1
λ2

J

mε
ν × T ε(ρν � Ũε

ν ) − β

d2
∂x(jeT ε(ρν � Ũε

ν ))
(72)

with the boundary conditions defined previously. Proceeding along the lines of
the proof given in Section 3 we can prove the same global existence result of weak
solutions (m,M) on the finite time interval [0, T ] for all T > 0 fixed. More precisely,
we have

Proposition 4.1. Let T > 0 be fixed, M0 ∈ H
1(Ω) be such that |M0(X)|2 =

1 a.e. and je ∈ L2(I). There exists a global weak solution (m,M) of the coupled
system (8)–(12)–(68) such that M ∈ L

∞(Q) ∩ H
1(Q), |M(t,X)|2 = 1 a.e., m ∈

H
1(I) and satisfying the energy inequalities

E(M(t)) +
α

γ

∫ t

0

|∂tM(s)|2Ω ds ≤ E(M0) + C1T |je|2I ,

1
λ2

sf

|m|2I +
1 − ββ′

2
|∂xm|2I ≤ C2|je|2I

(73)

for all t ∈ [0, T ] where C1 > 0 and C2 are positive constants which are independent
of (m,M) and T .

Remark 4.1. The energy estimate shows that the energy satisfies the upper
bound E(M(t)) ≤ C0 + C1T . It is interesting to obtain a lower bound of that
energy.

5. Concluding Remarks

In the case where the local magnetization is uniform in the ferromagnet layer
the torque m⊥ acting on the switching of the magnetization takes the form see [19]
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and [11]

Jm⊥ = bM2 + aM2 × M1 (74)

where the transverse spin accumulation m⊥ represents the components of m which
are orthogonal to M1, the local magnetization of the thin layer Ω1, a and b are
two constants. We denote by M2 the local magnetization of the thick layer Ω2. It
is assumed that in the thick ferromagnet, the local magnetization M2 polarizes the
current and is uniform and pinned. Notice that the longitudinal component m‖
(parallel to M1) of the spin accumulation has no effect in the product M1 × m.
Hence, the LLG equation becomes

∂tM − αM × ∂tM = −γM × (He + bV + aV × M) (75)

where we set M = M1 and V = M2. Generally, the following form V = cos(θ)e3−
sin(θ)e1 is used where θ ∈ [0, π/2] is the angle between V and e3 the final position
of M . In this model the effective magnetization field does not contain the exchange
magnetic field ∇ · (a∇M) and then the LLG becomes a set of ordinary differential
equations.

In [15], the authors developped a theory of domain wall dynamics including
the effect of electric current in the two limiting cases: adiabatic (thick) and thin
walls. They also presented some expectations based on qualitative behaviour. In
order to see whether this experimental situation can be understood quantitatively,
a micromagnetic study is proposed in [17]. Let us discuss the model used in [17]
to describe the switching of the local magnetization across a ferromagnetic domain
wall. Let Ω = (−l, l) × Ω̂ be a bounded and regular horizontal cylinder of R

3

representing the ferromagnet. The cross section Ω̂ is included in the plane (e2,e3).
The local magnetization satisfies in Ω the equation

∂tM − αM × ∂tM = −γM ×He − u∂xM (76)

where x denotes the coordinate along which the current flows, X = (x, x̂) ∈ Ω

with x̂ = (y, z). The effective magnetic field He contains exchange energy, volume
anisotropy energy and magnetostatic. The initial-boundary conditions are

M(0,X) = M0(X) in Ω, M × ((a∇ · n)M) = 0 on (0, T ) × ∂Ω. (77)

Multiplying equation (76) by M , we get the transport equation ∂t|M |2+u∂x|M |2 =
0 which implies the saturation condition if initially it holds. Therefore we may write
u∂xM = −uM × (M × ∂xM). The equation (76) has the equivalent form

∂tM − αM × ∂tM = −γM ×
(
He −

u

γ
M × ∂xM

)
(78)

A model equations of the same type is used in [1] to describe the dynamic of
the local magnetization in the presence of spin-polarized current in a layer of the
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type F/N/F . The modified LLG equations in the ferromagnet layer Ω are given
by

∂tM − αM × ∂tM = −γM × (He + βM × (j · ∇)M) (79)

where β > 0 is a constant and j the current. Initial-boundary conditions and
transmission boundary conditions at the interfaces F/N and N/F are assumed to
be verified. The equations can be rewritten as

∂tM − αM × ∂tM = −γM × (He − β(j · ∇)M). (80)

To solve this problem, we proceed as in Section 3 and introduce the regularized-
penalized equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

ν2∂2
tU

ε
ν −∇ · (a∇Uε

ν ) + Bε(ρν � Ũε
ν , ∂tU

ε
ν )

= − 1
ε2

∇U (p(|Uε
ν |)) + L(Uε

ν ) + β(j · ∇)Uε
ν

Uε
ν (0,X) = M0(X), |M0(X)|2 = 1 a.e., ν2∂tU

ε
ν (0,X) = 0.

(81)

The following energy estimate holds

ν2|∂tU
ε
ν (t)|2Ω + E(Uε

ν (t)) +
2
ε2

∫
Ω

p(|Uε
ν (t)|) dX +

α

2γ

∫ t

0

|∂tU
ε
ν (s)|2Ω ds

≤ E(M0) +
2γβ
α

|j|2∞
∫ t

0

|∇Uε
ν |2Ω ds.

(82)

For V ∈ L2(0, T ; L2(Ω)) we introduce U = R(V ) the solution of the wave equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν2∂2

tU −∇ · (a∇U) + Bε(ρν � Ṽ , ∂tU)

= − 1
ε2

∇U (p(|U |)) + L(U) + β(j · ∇)U

U(0,X) = M0(X), |M0(X)|2 = 1 a.e., ν2∂tU(0,X) = 0.

(83)

Proceeding along the lines of the proof of our main theorem, we prove that R is
continuous and compact from L2(0, T ; L2(Ω)) into itself. Then as a consequence
of Schauder fixed point theorem we get a solution Uε

ν of the intermediary wave
equation. We pass to the limit as ν → 0 then as ε → 0 and finally prove, as in
Section 3, a global existence result of weak solutions.

To end this review, let us discuss the model equations considered in [18] to
describe the magnetization switching by spin-polarized current. It is given by

∂tM = −γM ×He − αM × (M ×He) − f‖(t)M (84)

where the time dependent function f‖ is related to the injected current see [18].
One observes that the saturation condition is not fulfilled by M and we have

|M(t,X)|2 = |M0(X)|2eF (t), F (t) = −
∫ t

0

f‖(s) ds. (85)
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Assuming that the magnetic field He(M) depends linearly on M and setting U =
Me−F (t) we deduce that U satisfies the classical form of the LLG equation

∂tU = −γ(t)U ×He(U) − α(t)U × (U ×He(U)) (86)

with the following time dependent gyromagnetic and damping coefficients

γ(t) = γeF (t), α(t) = αe2F (t). (87)

One has |U(t)|2 = 1 and as usual we can transform this equation in the LLG form.
We have U × ∂tU = −γ(t)U × (U × He(U)) + α(t)U × He(U). Consequently
−α(t)U × (U ×He(U)) = (α(t)/γ(t))U × ∂tU − (α2(t)/γ(t))U ×He(U). We get

∂tU − α(t)
γ(t)

U × ∂tU = −α
2(t) + γ2(t)

γ(t)
U ×He(U) (88)

and α(t)/γ(t) = (α/γ)eF (t), (α2(t) + γ2(t))/γ(t) = ((α2e2F (t) + γ2)/γ)eF (t) and
also

∂tU +
α(t)
γ(t)

U × ∂tU =
α2(t) + γ2(t)

α(t)
He(U). (89)

The energy estimate follows from the equality |∂tU |2+((α2(t)+γ2(t))/α(t))He(U)·
∂tU = 0 which gives

E(U(t)) + 2
∫ t

0

α(s)
α2(s) + γ2(s)

|∂tU(s)|2 ds = E(M0). (90)

where E is the classical energy of the ferromagnet. Notice that we have

α(s)
α2(s) + γ2(s)

=
α

α2e2F (s) + γ2
≥ α

α2e2MT + γ2
(91)

for all s by assuming that |f‖(t)| ≤M for all t ∈ [0, T ]. Hence under this hypothesis,
the global existence theory of weak solutions can be performed by using the method
developped here.
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