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ABSTRACT. In many areas of science, through the use of
modern computer-controlled instrumentation, highly accurate
indirect measurements of the phenomenon/process of interest
are being generated on a (very) fine spatial and/or temporal
grid. Consequently, this is creating new opportunities for the
enhanced recovery of information about the underling phe-
nomenon/process being studied. In particular, an enhanced
role for numerical differentiation is emerging in the application
of derivative spectroscopy, which has its origins in the analysis
of various forms of spectroscopic data. For example, through
its use, information about the molecular components in plant
material, such as barley seeds, is being recovered by com-
paring the fourth derivatives of their measured near infra-red
(NIR) spectroscopic responses. As well as practical matters
that arise with the utilization of derivative spectroscopy in the
recovery of information, there are theoretical questions that
require investigation about the choice of the numerical differ-
entiator, the interpretation of the fourth derivative and an as-
sessment of how high a level of differentiation that given data
will support. Such matters have already been investigated in
considerable detail except for the question of estimating the
maximum level of differentiation that given data can support
before the onset of instability. This is the focus of the current
paper, which highlights how published results can be reinter-
preted to answer this question. In particular, it will be shown
that, if circumstances are such that, for a particular numerical
differentiator, an accurate approximation to the first deriva-
tive of the available observational data can be guaranteed,
then it is highly likely that it can be utilized to generate good
approximations to second, third and fourth derivatives. Inter-
estingly, this runs contrary to the historical view that, as the
order k of the differentiation of observational data increases,
the onset of instability increases rapidly.
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1. Introduction. Though it is a technology that dates from the
invention of micro-processors in the 1960s, computer-controlled instru-
mentation, because of the impact of computer micro-chip technology, is
playing an increasingly importance role in enhancing the performance
of various classes of instruments and devices. Traditionally, the con-
trol was external with a computer system designed to interface to a
particular instrument in order to improve its operation in a variety of
different ways (speed, automation, accuracy) [6, 7, 19, 24, 25, 32].
Through the utilization of micro-chip technology, the computer has be-
come an essential internal part of the hardware of the instrument and
is programmed to control and enhance its operation.

Examples of the latter class include various types of modern spec-
trometers [6, 32], automated capillary electrophoresis [24], automated
monitoring of dangerous substances [19] and automated remote con-
trolled vehicles [25]. In such instruments, the internal computer-control
has been programmed to perform a large number of repeated scans of
the signal being measured, usually on a very fine temporal and/or spa-
tial grid, and to then average them to become the output signal for
subsequent display, analysis and interpretation. Consequently, the av-
eraging ensures that the resulting output is a highly accurate realization
of the signal being measured. Having been recorded on a very fine grid,
a plot of the output appears, visually, to be a plot of some well-behaved
smooth analytic function (e.g., Figures 3, 4 and 5 in Wiley et al. [34]).

In many situations, such outputs will correspond to indirect mea-
surements of some underlying phenomenon/process, for which a cor-
responding information recovery must be performed. Consequently, in
solving the associated inverse problem, the availability of such highly
accurate indirect measurements has created new opportunities and
challenges for the recovery of the relevant information. For example,
the need to pre-smooth the data, parametrically or non-parametrically,
is often no longer necessary. In a way, this has already been performed
by the averaging of a large number of sweeps.

In addition, the availability of such accurate output has created an
enhanced opportunity for the numerical differentiation of observational
data in the form of derivative spectroscopy.

For example, by comparing the fourth derivatives of their measured
near infra-red (NIR) spectroscopic responses [5, 18], information is
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being recovered about the molecular components in plant material,
such as barley seeds [34], the content of pharmaceutical mixtures [10]
and the whey protein content in milk [26]. As well as the practical
matters that arise with the utilization of derivative spectroscopy in the
recovery of information, there are theoretical questions that require
investigation about the choice of the numerical differentiator, the
interpretation of the fourth derivative and an assessment of how high a
level of differentiation that a given highly accurate data set will support.
Estimating the maximum level of differentiation is the focus of the
current paper.

The paper has been organized in the following manner. Section 2
gives background information about derivative spectroscopy and, for
motivation, briefly discusses its use in solving an inverse problem associ-
ated with the recovery of molecular information from NIR spectroscopy
measurements. Section 3 examines, using appropriate numerical esti-
mates including interpolatory inequalities, the problem of estimating
the maximum level of differentiation that can be performed on given
data before the onset of instability is likely to occur.

2. Derivative spectroscopy. In their discussions of and com-
ments about the history of derivative spectroscopy, Fell and Smith [13]
give Lord Rutherford the credit for its original conceptualization for
suggesting “the first derivative for more sensitive mass spectrometric
detection of gas excitation potentials” [11]. Fell and Smith went on to
comment that, as discussed in [21, 22], the concept of second and third
derivative detection was patented in 1953 by two industrial chemists
who “first demonstrated the usefulness of higher derivatives in analytic
spectroscopy”. Fell and Smith also noted that it was the advent of
the “low noise operational amplifiers” which initiated the use of high-
quality electronic differentiators which led to the early applications of
derivatives to the analysis of spectroscopic data. It is now computer-
controlled instrumentation that has replaced the “low noise operational
amplifiers” as the source for the continuing popularity of derivative
spectroscopy.

In conjunction with this scientific activity, various papers were pub-
lished about the background mathematical methodology [7, 14]. In
subsequent years, an interesting list of novel applications have emerged
which illustrate how derivative spectroscopy has become a key tool for
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the recovery of molecular information [23, 24]. It is now used to esti-
mate the amount of vitamin C in medication [31]. In NIR spectroscopy,
in order to have a common basis for comparison, the first and second
derivatives of the measured spectrum are routinely utilized to remove
the effects attributed to sample particle size and scatter [29].

The utility of derivative spectroscopy has been illustrated in two in-
dependent ways. In earlier literature [28], the effect of successively
differentiating the Gauss probability distribution was the popular ex-
ample. More recently, in order to highlight the spectral enhancement of
small amplitude high frequency components in the measured spectrum,
the successive differentiation of functions like y(z) = sin(z)+ A sin(wz),
with A < 1 and w > 1, have become popular [34]. Such a model gener-
alizes naturally to the situation where the perturbation in the measured
spectrum can be given as a Fourier series.

From a theoretical perspective, the issues that have been discussed
in some detail include the optimization of the choice of the numerical
differentiation procedure to be applied to the data, the interpretation
of the fourth derivatives (relative to the original curve) and error
estimates. The popularity of the fourth derivative relates to it being
back in phase with the original data, and has been utilized in a wide
variety of practical situations [10, 23, 26, 34|. The justification
includes the facts that the fourth derivative of a Gaussian has a peak
back at the same position as the original Gaussian (but modified by the
presence of side lobes), that considerable enhancement of the higher
frequency structure in the data has occurred and that it has been
successful in resolving practical issues in earlier endeavors. However,
the level of differentiation that given data can support before the onset
of stability has not been specifically addressed. As discussed below,
there is an extensive literature on the error analysis for computing
higher order numerical derivatives. However, the question of the
maximum level that can be performed is not specifically addressed. In
fact, it is often tacitly implied that, as the order k of the differentiation
of observational data increases, the onset of instability increases rapidly.
As the discussion below will highlight, this is not usually the situation.

In practical situations, where derivative spectroscopy has played a
key role in resolving or clarifying the issues under investigation, this
has been achieved because the information coming from the derivatives
of the data can be matched with related quantitative/scientific interpre-
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tations which give meaning to the structure exposed by the derivatives.
For example, in the differentiation of NIR spectra, the wavelengths, at
which peaks occur in the derivatives, actually correspond to the wave-
lengths at which various molecular side chains vibrate [29]. The linking
of this vibrational spectroscopic information with the known material
components in the sample being studied allows conclusions to be drawn
about the proportional presence of various components in the sample.
Using just such a strategy allowed Wiley et al. [34] to draw conclusions
about the protein composition of different classes of barley mutants.

3. Estimating the maximum level of differentiation. There
are various ways in which the performance of the numerical differentia-
tion of observational data can be characterized. They include classical
numerical analysis [15, 16, 33], spectral and Fourier [1, 9, 30], reg-
ularization [4] and interpolatory inequalities [20]. As well as deriving
error estimates, the emphasis is often the comparison of one numerical
procedure with another.

As the discussion below highlights, in most papers, the analysis re-
duces to determining an upper bound on the error [4, 15, 16, 20,
30, 33|, and assuming the worst case situation (that such a bound
identifies) is representative of the general situation for the onset of in-
stability. Consequently, though useful when they identify, as a function
of the level of differentiation being performed, the tradeoff between the
error in the data and some property that characterizes the regularity
of the methodology being examined, upper bounds are sub-optimal in
estimating the maximum level of differentiation that can be performed
in a given situation. The resulting numerical derivative might be much
more realistic than the upper bound implies. A corresponding situation
holds for lower bounds ([33, Theorem 3.1]). Even though they identify
the best possible outcome, the actual derivative might be quite inferior.

Clearly, what is required is either some nesting between lower and
upper bounds or some tradeoff functional which balances accuracy and
instability as a function of the level of differentiation k. An example
of the former, which holds for Lagrangian differentiation, is given in
Wang and Feng [33] and is discussed below. Possible choices for the
latter are also examined.
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3.1. Standard numerical analysis arguments. In the sequel,
f will denote the function (signal) for which an estimate of its k-
derivative, k > 1, is required, while

fn="F+n, = fall <e

denotes the observed form of f that is actually differentiated. Here,
the interest is primarily on the dependence of ||f*) — fék)H on ¢ for
various choices of k, where f(*¥) = d*f/dz* k = 1,2,.... Though
quite different methodologies have been proposed for the numerical
differentiation of observational data (e.g., [15, 16, 30, 33]), the error
estimates derived to characterize their numerical performance all take
a similar form.

For example, in [12, 15, 16, 17], it is shown how optimal convergence
rates can be achieved by linking the step-length h, for evenly spaced
data, to be a function of &; namely, h ~ £'/?, with p > k. In [30], where
Fourier truncated kth order differentiators are examined, estimates of
the following form are derived,

(1) 175 = P < BMpele=r,

where p defines the order of the Sobolev norm || f||,, for which the bound
IIfll, < E holds. A direct argument is used in [30] to derive (1). This
bound is identical to that which would be derived using interpolatory
inequalities [12]. In [12], the counterpart of having h as a function of €
is a condition that defines the low pass filtering to be performed on the
Fourier representation of f,. In [33], where Lagrangian differentiation
is analyzed, estimates of the following form are derived

17 = 7 < Cre® P,
p=n+1, h=1/n, hxel/P,

(2)
where, here, f, denotes the chosen form of the Lagrange interpolation
formula.

The estimate (1) can be used to explore when high values of k are
possible. It is natural to assume that ¢ < 1 because, as explained
above, the data to be differentiated, because of the averaging of a large
number of replicates on a fine grid, will be quite accurate and dense.
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If, in addition, E < 1, then accurate estimates for f*) for large k will
be ensured. If £ > 1, there are two possibilities. If E is close to 1, then
k/p can be reasonably large before || f(*) — f,sk)H becomes too large. In
this situation, intermediate derivatives are feasible before the onset of
instability surfaces. If, however, F > 1, then numerical differentiation
will become infeasible for small values of k. Similar arguments apply
for the error estimates for other numerical differentiation procedures.
The situation is put on a more rigorous footing in subsection 3.3.

It is clear how the error in the estimation of the kth derivative, for
increasing k, depends on the trade-off between an increasing value for
E*/P and a decreasing value of e!=%/P, At least qualitatively, such
results are informative. For example, if conditions are such that £ < 1,
€ < 1, k < p and the chosen numerical differentiator generates an
accurate approximation to the first derivative, then it will generate
accurate approximations to the second, third, fourth and even higher
derivatives. In fact, it is possible to write down a condition that
guarantees that || f(*) — f,sk) || remains at a constant level § for changing
values of k; namely, as k increases, p is adjusted to guarantee that

k' (InE+Ine¢)

p (Iné+Ine)
This represents a qualitative version of the types of conditions that are
contained in a variety of papers [3, 4] which couple the increasing level
of differentiation to be performed with the need for the length of the
footprint of the differentiator to be increased.

In fact, the failure of the classical numerical analysis technology to
obtain more explicit relationship is a direct consequence of the weak
way in which data errors are characterized; namely, ||f — fn] < e.
In order to determine more definitive results of the type already
mentioned, it is necessary, as detailed in subsection 3.3, to be more
descriptive about the statistics of the discrete errors in measured
(observational) data.

3.2. The phenomenological (signal-to-noise) characteriza-
tion. In a discussion of the advantages of derivative spectroscopy,
Chadburn [8] has given the following relationship (without reference)

Q 5/ ~ 55/ { 52}
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where (S/N);, j = 1,2,...,p, denotes the signal-to-noise ratio after
the jth application of a first order differentiator with (S/N)y denot-
ing the signal-to-noise ratio of the original data, A\ the wavelength
range of the footprint of the numerical differentiation and W the full
bandwidth at half-maximum (FWHM). A related relationship, with
a heuristic proof, can be found in O’Haver and Begley [27]. The
difficulty with such estimates is the choice of the definition and the
calculation of the signal-to-noise ratio. Depending on the applica-
tion, it has various meanings, as explained in the Wikipedia entry
http://en.wikipedia.org/wiki/Signal-to-noise_ratio.

Though phenomenologically correct when 3AXN/W ~ 1, the situation
becomes problematic when 3AN/W > 1, because it implies that, as
the signal-to-noise ratio increases, the associated over smoothing being
performed does not affect the accuracy of the estimate of the derivative
recovered. In reality, such a signal-to-noise enhancement can only oc-
cur if the footprint of the differentiator is so large that it smooths out
fine scale structure in the signal as it performs the differentiation. Nev-
ertheless, it does represent confirming evidence for the comment above
that, in many situations, if conditions are appropriate to guarantee an
accurate approximation to the first derivative (e.g. 3AAN/W ~ 1), then
it is highly likely that it will generate good approximations to second,
third, fourth and even higher derivatives.

The mentioned ambiguity, in the interpretation of the relationship
(3), is a result of assuming that the “lumping” of the discrete measure-
ment errors into a single signal-to-noise ratio term is representative of
the instability encapsulate in the performance of numerical differenti-
ation of observational data. As shown in some detail below, by taking
explicit account of the effect of numerical differentiation on statistically
defined observational error, this “lumping” assumption is problematic.

In addition, such formulas assume that the numerical differentiation is
implemented as p successive first order differentiations. Consequently,
the formula (3) is also sub-optimal because it does not allow for the
possible use of a single pth order numerical differentiator.

3.3. The statistically defined error characterization. By
defining the actual statistical properties of the errors occurring in the
measurements

y; = f(t;) + €4, €; ~ i.i.d zero mean random errors, i =0,1,2,...,n,
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one is able to examine algebraically the action of different operations
on the measurements. This approach is therefore different from that
discussed in the above subsections where the assumptions about the
errors are less specific. As is clear from the results found in Anderssen
et al. [2, 3], though the technical details can become quite involved,
the clear advantage of this approach is that the actual order k (p in
their notation) of the differentiation to be performed is built explicitly
into the conditions that guarantee convergence and stability.

A related analysis can be found in O’Haver and Begley [27]. In their
approach, successive smoothing is applied to the kth derivative of the
data, after it has been determined. In [2, 3], the averaging is performed
as an essential part of the construction of the kth order differentiator.
It is therefore the analysis of [2, 3] that is utilized in the sequel. It
represents an extension of the results in O’Haver and Begley [27].

Let (using the notation in [3] with D* f equivalenced with f®*)):

(a) f be a real-valued function defined on the unit interval [0, 1] with
sufficient regularity that its k-derivative exists.

(b) D*f (= f*)) denote the kth derivative of f.
(c) Gn denote the uniform grid of points

t;=jh, 7=0,1,2,...,n, h=1/n.

(d) Agk) denote the family of central-difference operators with grid

, M

spacing of mh, m = 1,2,..., which satisfy

) = A f(in) = (D*f)(ih) + O((mh)?),

h,m

where Agkznf(zh) only involves the grid values f(t;+jm) with j =
0,1,...,k/2, when k is even, and j = 1,2,...,(k 4+ 1)/2, when k is
odd. The traditional formulas for numerical differentiation correspond
to the choice of m = 1. For m > 1, the same number of evaluations of
f are involved with the footprint of the kth order differentiator having
a length of km.

(e) y® [m] denote the values obtained when the chosen central-

i
difference operator is applied to the observational data {y;}.
Note. The application of the chosen central-difference formula is
limited to the subsets of {y;} values for which a match with the
footprint of the differentiator occurs.
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The algorithm proposed in [3] is based on averaging the values yék) [m]

on the neighborhood of points ty = t;_,... ,t;,... ,t;+, centered on
t;; namely,
" (k) — - k .
(@) oml = y®[m(t) = > Wigl)ml, > Wi=1.
j=-r j==r

In [3], the W; = 1/(2r+1). The essence of the stabilization comes from

the fact that, for very small h (i.e. when n is very large), each of the
(k)
itj
independent statistical estimate of the mean fi(k) [m], which are being
averaged. An alternative explanation for the stabilization comes from

the fact that fi(k) [m] equals the application of the kth differentiation
formula to the following averaged estimate of f;

estimates y;.;[m], j = —r,—(r —1),...,7 — 1,7 can be viewed as an

Gltiim) = Y Wey(tisjmee), > Wi=1,

l=r j=-r

with j =0,1,...,k/2, when kiseven, and j = 1,2, ... ,(k+1)/2, when
k is odd. In both cases, when the terms are statistically independent
with a common mean, the averaging reduces the variance by a factor
of 1/(2r 4+ 1).

In order to avoid statistical dependence (correlation) effects, which
arise if multiple use is made of some of the f(¢;), the value of m was
chosen to have the form 6r + 1 with § > 2 [3]. The choice § = 2
corresponds to the situation where the differentiator uses all successive
points, with no overlap, when they are averaged in blocks of 2r + 1
points.

It is shown in [3] that, for A — 0, convergence is guaranteed if the
values of r and 6 have been chosen to ensure that the following three
conditions are satisfied

(5) Orh — 0,  rh—0,  r/%(6rh)* ~1.

The first two conditions put implicit constraints on the growth of the
number of grid points 27 + 1 and the size of the grid point spacing 6 as
h decreases. The third yields the required constraint on k. Here, it is
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assumed that the failure of convergence is the identifier for the onset
of instability. If it is assumed that

Orh=h*, 0<s<l1,

then the first condition in (5) is automatically satisfied. Moreover, it
follows from the third and second conditions that

T~ h_ka, and h'72%F 0,

respectively. Consequently, a necessary condition for this to occur is

1
(6) k<o
which implies that k can be increased by decreasing s without occurring
divergence. In turn, since §r = h*~!, it follows that, for a given h, the
product fr must be sufficiently large to guarantee a large value of k.
As the size of s directly controls the error of the approximation, the
condition (6) describes the trade-off between the order of differentiation
and the reconstruction error.

4. Conclusions. As explained above, numerical differentiation is
playing an increasingly important role in the recovery of information
from highly accurate data generated by computer controlled instrumen-
tation, and that by using appropriate numerical differentiation formulas
there is no difficulty in obtaining accurate estimates of higher deriva-
tives. In derivative spectroscopy, it is common to work with the fourth.
Interestingly, the above deliberations illustrate how careful one must
be when talking about the ill-posed nature of numerical differentiation.

In the analysis above, it is shown that, for accurate data on a very fine
grid, if the footprint of the differentiator is such the 8r is sufficiently
large then accurate estimates of higher derivatives up to the fourth or
higher are guaranteed.
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