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ABSTRACT. This paper focuses on necessary and suffi-
cient conditions for the Bedrosian identity to be valid. It
extends the results of Brown (1986), Xu and Yan (2006) for
L2(R) functions. Meanwhile, the Bedrosian identity for peri-
odic functions is also discussed and some necessary and suffi-
cient conditions are obtained.

1. Introduction. The Hilbert transform, which is defined as the
Cauchy principal value of the following singular integral

(1.1) (Hf)(x) = p.v
1
π

∫ ∞

−∞

f(y)
x − y

dy,

has been widely used in physics, engineering and mathematics. It is a
typical Calderon-Zygmund singular integral operator in mathematics
and a basic mathematical tool for the study of analytic signals, with
which the concept of instantaneous frequency and amplitude of non-
stationary signals are defined precisely. A signal is said to be analytic
if it has no negative frequencies, that is, f̂(ω) = 0 for ω < 0 and dual-
analytic if it has no positive frequencies, namely, f̂(ω) = 0 for ω > 0,
where f̂(ω) is the Fourier transform of f defined by

(1.2) f̂(ω) :=
∫ ∞

−∞
f(t)e−iωtdt
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for f ∈ L1(R) and the L2-limit of the Fourier transform of functions in
L1(R) ∩ L2(R) for f ∈ L2(R) (see [5]). For 1 ≤ p ≤ ∞, Lp(R) stands
for the space of all the p-power integrable functions on R endowed with
the following norm

(1.3) ‖f‖p :=

{(∫
R
|f(t)|pdt

)1/p 1 ≤ p < ∞,

essupx∈R
|f(t)| p = ∞.

It is well-known that the Hilbert transform is a bounded linear operator
on Lp(R) for 1 < p < ∞ and the Fourier transform of Hf satisfies

(1.4) (Hf )̂ (ω) = −isgn(ω)f̂(ω) a.e. ω ∈ R

for f ∈ Lp(R) (1 < p ≤ 2) or f, Hf ∈ L1(R), where sgn(ω) is the
signum function defined as sgn(0) := 0 and sgn(ω) := ω/|ω| for ω �= 0
(cf. [5]).

A (real) signal is usually represented by its amplitude and frequency
according to its physical attributes. In signal analysis, one needs
to compute the amplitude and frequency of a signal s, that is, to
demodulate the signal. A classical method of demodulation is to add
the Hilbert transform Hs of s as the imaginary part to the signal to
produce an analytic signal s(t) + iHs(t) = A(t)eiθ(t), t ∈ R (cf. [7]),
and then extract A(t) and θ(t) as its instantaneous amplitude and
phase. This means that A(t) and θ(t) should satisfy

(1.5) H [A(t) cos θ(t)] = A(t) sin θ(t).

However, it is observed that under proper conditions the following
equality

(1.6) H [A(t) cos θ(t)] = A(t)H cos θ(t)

holds, which means that (1.5) is true if and only if H cos θ(t) = sin θ(t).
Therefore, demodulation (1.5) can be reduced to a question of frequency
demodulation of a unitary amplitude signal [9, 18]. Equation (1.6)
is a very important equality for demodulation of signals in the non-
stationary signal processing, whose general form is

(1.7) H(fg) = fHg.
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Equation (1.7) was first studied by Bedrosian in 1963 and was called
the Bedrosian identity in honor of him. In [1] it was proved that (1.7)
holds if either of the following two conditions is satisfied:

(i) The Fourier transforms f̂ , ĝ satisfy for some a > 0 that f̂(ω) =
0, |ω| > a and ĝ(ω) = 0, |ω| < a;

(ii) Both f(t) and g(t) are analytic or dual-analytic functions.

Later, Nuttall and Bedrosian (1966), and Brown (1974) obtained
more general sufficient conditions by weakening the above condition
(ii) [3, 12]. And in 1986, Brown established the first necessary and
sufficient condition in the time domain and a parellel result in the
frequency domain for the Bedrosian identity [4], which we state as
follows:

(a) If f, g ∈ L2(R) are bounded on R, then H(fg) = fH(g) if and
only if

(1.8) H(f+(t)g−(t)) = if+(t)g−(t), H(f−(t)g+(t)) = −if−(t)g+(t),

or

(1.9) f̂+ ∗ ĝ−(ω) = 0 a.e. ω ∈ R+, f̂− ∗ ĝ+(ω) = 0 a.e. ω ∈ R−,

where ‘∗′ denotes the convolution operator, g+(t) = (ĝ(ω)χR+ )̌ (t)
and g−(t) = (ĝ(ω)χR− )̌ (t) with R+ = (0,∞) and R− = (−∞, 0).
Hereafter, f̌ denotes the inverse Fourier transform of f and χE the
characteristic function of set E.

Recently, as the advent of the empirical mode decomposition for the
non-stationary signal processing and researches on relevant mathemat-
ics problems [6, 8, 10, 14], the Bedrosian identity received much at-
tention again. A new necessary and sufficient condition was proposed
by Xu and Yan in their recent paper [16]:

(b) If f, f ′, g ∈ L2(R), then H(fg) = fH(g) if and only if

(1.10)
∫ 1

0

dt

∫
R

ω

t2
e−2iπxω(t−1)/tf̂

(ω

t

)
ĝ(−ω)dω = 0.

Moreover, Chen, Huang, Riemenschneider and Xu proved that the
Bedrosian identity holds if the function g has vanishing moment of
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order k for some k ∈ N in the sense of Cauchy principal value and
function f is a polynomial of order n ≤ k [6].

Another up-to-date development was given by Yu and Zhang [17]. It
was proved that (1.9) is still a necessary and sufficient condition for the
Bedrosian identity even if the functions f and g in (b) are not bounded
(see Theorem 2.4 of [17]), that is:

(c) If f, g ∈ L2(R), then H(fg) = fH(g) if and only if (1.9) holds.

In Section 2 of this paper it is shown that (1.8) is also a necessary
and sufficient condition for the Bedrosian identity to hold provided
that f, g ∈ L2(R). We also weaken the conditions in (b). Considering
the significance of periodic signals in reality, the Bedrosian identity for
periodic functions is discussed in Section 3.

2. The Bedrosian Identity in L2(R). Analytic signal is a
fundamental concept in time-frequency analysis. It is well-known that
f ∈ L2(R) is analytic if and only if Hf = −if and f ∈ L2(R) is
dual analytic if and only if Hf = if [3]. The result remains true
if f ∈ Lp(R), 1 < p ≤ 2, or f, Hf ∈ L1(R) [5]. Based on it, it
seems that (1.8) and (1.9) are equivalent for all f, g ∈ L2(R) since
(1.9) means that f−g+ is analytic and f+g− is dual analytic. However,
we should point out that the deduction is unreliable because even if
f, g ∈ L2(R) are bounded we do not have f+g−, f−g+ ∈ Lp(R) for
some 1 < p < ∞. Thus, the proof in [4] for the equivalence of (1.8)
and (1.9) is not precise. To clarify this conclusion, we need to know
if Hf = −if is still a characterization of Lebesgue integrable analytic
signals f . Qian proved that f is analytic if it is a tempered upper-
Hardy distribution represented by the boundary value of a function
in Hp(C+) with 1 ≤ p ≤ ∞ (see [13]). In this paper, we extend
the characterization of analytic and dual analytic signals to L1(R) by
making use of the following lemma from [17].

Lemma 2.1. Let f, g ∈ L1(R). Then Hf = g if and only if

−isgn(ω)f̂(ω) = ĝ(ω), ω ∈ R.

With the lemma, the characterization of analytic and dual analytic
signals is extended to L1(R) as follows.
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Lemma 2.2. Let f ∈ L1(R). Then Hf = −if if and only if
f̂(ω) = 0 for ω ∈ R−; Hf = if if and only if f̂(ω) = 0 for ω ∈ R+.

Proof. Suppose Hf = −if , then we have f, Hf ∈ L1(R). Since
(Hf )̂ (ω) = −isgn(ω)f̂(ω) (see [5, Chapter 8]) we conclude that
−if̂(ω) = −isgn(ω)f̂(ω), which implies that f̂(ω) = 0 for ω ∈ R−.
Conversely, if f̂(ω) = 0 for ω ∈ R−, we have −isgn(ω)f̂(ω) = −if̂(ω)
for ω ∈ R, which concludes that Hf = −if by Lemma 2.1. The
equivalence between Hf = if and f̂(ω) = 0 for ω ∈ R+ can be shown
similarly.

Based on Lemma 2.2 it is shown in the following theorem that (1.8)
and (1.9) are equivalent, which shows that (1.8) is still a necessary and
sufficient condition for the Bedrosian identity to be valid even if f, g
are unbounded.

Theorem 2.3. Let f, g ∈ L2(R). Then (1.8) and (1.9) are
equivalent. Consequently, H(fg) = fHg if and only if (1.8) holds.

Proof. Since f+g− ∈ L1(R), by Lemma 2.2 it is deduced that
H(f+g−) = if+g− if and only if (f+g−)̂ (ω) = 0 for ω ∈ R+. Similarly,
H(f−g+) = −if−g+ if and only if (f−g+)̂ (ω) = 0 for ω ∈ R−.
Therefore (1.8) is equivalent to (1.9) for all f, g ∈ L2(R).

Theorem 2.4. Let f, g ∈ L2(R) and let ρ(ω) be a Lebesgue
measurable function on R satisfying

(2.1) ρ(ω) �= 0 a.e. ω ∈ R and

∫
A

|ρ(ω)ĝ(λ)f̂ (ω − λ)|dωdλ < ∞,

where A := (R− × R+) ∪ (R+ × R−). Then H(fg) = fHg if and only
if

(2.2)
∫

R

dω

∫ 1

0

ρ
(ω

t
− ω

) ω

t2
ei( 1

t −1)ωxĝ(−ω)f̂
(ω

t

)
dt = 0 a.e. x ∈ R,

Proof. By the result (c) in Section 1, it is sufficient to prove the
equivalence between (2.2) and (1.9). Denote
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(2.3)

{
ξρ :=

∫∞
0 ρ(u)eiuxdu

∫ 0

−∞ ĝ(λ)f̂ (u − λ)dλ,

ηρ :=
∫ 0

−∞ ρ(u)eiuxdu
∫∞
0 ĝ(λ)f̂ (u − λ)dλ.

With (2.1) and Fubini’s theorem, it can be seen that

ξρ =
∫ 0

−∞
dλ

∫ ∞

−λ

ρ(λ + ν)ĝ(λ)f̂ (ν)ei(ν+λ)xdν.

Replacing ν by −λ
t and then λ by −ω in the above equality, we conclude

that

ξρ =
∫ ∞

0

dω

∫ 1

0

ρ
(ω

t
− ω

) ω

t2
ei( 1

t −1)ωxĝ(−ω)f̂
(ω

t

)
dt.

Similarly, we have

ηρ = −
∫ 0

−∞
dω

∫ 1

0

ρ
(ω

t
− ω

) ω

t2
ei( 1

t −1)ωxĝ(−ω)f̂
(ω

t

)
dt.

It is easy to learn that (1.9) is equivalent to ξρ = ηρ = 0 a.e. x ∈ R.
Therefore (1.9) implies ξρ = ηρ a.e. x ∈ R, that is, (2.2) holds.

Conversely, suppose (2.2) holds. By (2.3) we conclude that

∫
R

ρ(u)eiux

[
χ

R+(u)
∫ 0

−∞
ĝ(λ)f̂ (u − λ)dλ − χ

R−(u)∫ ∞

0

ĝ(λ)f̂ (u − λ)dλ

]
du = 0.

Hence

χ
R+(u)

∫ 0

−∞
ĝ(λ)f̂(u−λ)dλ−χ

R−(u)
∫ ∞

0

ĝ(λ)f̂(u−λ)dλ=0 a.e. u ∈ R,

which implies (1.9) immediately.

The function ρ in Theorem 2.4 is introduced to ensure the validity
of Fubini’s theorem. There are many such functions. For example, if
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ρ ∈ L1(R), it is easy to verify by the Hölder inequality that (2.1) holds
for any f, g ∈ L2(R).

As a special case, if ĝ(λ)f̂ (ω − λ) ∈ L1(R2), we get the following
corollary by choosing ρ ≡ 1 in Theorem 2.4.

Corollary 2.5. Let f, g ∈ L2(R). If

(2.4)
∫

A

|ĝ(λ)f̂ (ω − λ)|dωdλ < ∞,

where A := [R− × R+] ∪ [R+ × R−], then H(fg) = fHg if and only if
(1.10) holds.

Corollary 2.6. Let f, g ∈ L2(R). If there exists α > 1
2 such that

|x|αf̂(x), |x|1−αĝ(x) ∈ L2(R), Then H(fg) = fHg if and only if (1.10)
holds.

Proof. Denote

I :=
∫ ∞

0

dλ

∫ 0

−∞
|ĝ(λ)f̂(ω − λ)|dω.

Then we have

I =
∫ ∞

0

|ĝ(λ)|dλ

∫ −λ

−∞
|f̂(ν)|dν =

∫ 0

−∞
|f̂(ν)|dν

∫ −ν

0

|ĝ(λ)|dλ.

Substituting λ by −νt, we get

I =
∫ 0

−∞
|f̂(ν)|dν

∫ 1

0

|ĝ(−νt)||ν|dt =
∫ 1

0

dt

∫ 0

−∞
|f̂(ν)ĝ(−νt)ν|dν.

The Hölder inequality gives that∫ 0

−∞
|f̂(ν)ĝ(−νt)ν|dν ≤ tα− 3

2 ‖|ν|αf̂(ν)‖2 · ‖|ν|1−αĝ(ν)‖2

for all t > 0, which yields

I ≤ ‖|ν|αf̂(ν)‖2 · ‖|ν|1−αĝ(ν)‖2

∫ 1

0

tα− 3
2 dt < ∞.
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Similarly, we have

∫ 0

−∞
dλ

∫ ∞

0

|ĝ(λ)f̂(ω − λ)|dω < ∞.

Hence (2.4) is satisfied. By Corollary 2.5, H(fg) = fHg if and only if
(1.10) holds.

The above corollary shows that the result (b) of Section 1 established
by Xu and Yan in [16] can be obtained by Corollary 2.6. In fact, if
f ′ ∈ L2(R) we have |ωf̂(ω)| = |(f ′)̂ (ω)| ∈ L2(R), the condition of
Corollary 2.6 is satisfied with α = 1. It is easily seen that Corollary 2.6
includes many other cases such as those corresponding to 1

2 < α < 1.
Besides, (2.4) is also satisfied if f̂ , ĝ ∈ L1(R).

3. The Bedrosian Identity for Periodic Functions. In
practice, people consider not only signals with finite energy signals but
also periodic ones such as amplitude modulation signals with linear
frequencies. We shall discuss in this section necessary and sufficient
conditions for the Bedrosian identity (1.7) to be valid when g or both
f and g are periodic.

In order to consider the Bedrosian identity for periodic signals, we
need to deal with the Hilbert transform of periodic functions. A
Lebesgue measurable function f with T -period (T > 0) is said to be in
Lp

T if ‖f‖Lp
T

< ∞, where the Lp
T -norm is defined by

‖f‖Lp
T

:=

⎧⎨
⎩
(∫ T

0 |f(t)|pdt
)1/p

1 ≤ p < ∞,

essupt∈R|f(t)| p = ∞.

For f ∈ L2
2π the Hilbert transform Hf is defined independently of that

for functions in Lp(R) and called the circular Hilbert transform in many
literatures, for example [2, p. 15]. The definition is as follows:

H

(∑
k∈Z

ckeikt

)
:= −i

∑
k∈Z

sgn(k)ckeikt
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for all {ck}k∈Z ∈ l2, where

l2 :=

{
{ck}k∈Z|

∑
k∈Z

|ck|2 < ∞
}

.

For any f ∈ L1
T we call

cT
k (f) :=

1
T

∫ T

0

f(t)e−i 2π
T ktdt

the k-th Fourier coefficient of f . It is also denoted as ck(f) for simplicity
if no confusions occur. It is well-known that if f ∈ L2

T then it has the
following Fourier expansion:

f(t) =
∑
k∈Z

ck(f)ei 2π
T kt,

in L2
T . With this expansion, the Hilbert transform of f ∈ L2

T is defined
as

H

(∑
k∈Z

ckei 2π
T kt

)
:= −i

∑
k∈Z

sgn(k)ckei 2π
T kt (∀{ck}k∈Z ∈ l2).

A T -periodic function is obviously nT -periodic for n ∈ N. It can be
verified that

cnT
k (f) = cT

k/n(f)

with cT
k/n(f) := 0 for k/n �∈ Z, and consequently the Hilbert transform

obtained from viewing it as a nT -periodic function is the same as
that from viewing it as a T -periodic function. This note will help
us avoid possible confusions when a common multiple T = nT1 = mT2

of different periods T1 and T2 is considered in Section 3.2.

3.1. The Bedrosian Identity for f ∈ L2(R) and g ∈ L2
T .

Lemma 3.1. Let f ∈ L2(R), g ∈ L2
T , and

∑
k∈Z

|ck(g)| < ∞. Then
fg, fHg ∈ L2(R) and

(fg)̂ (ω) =
∑
k∈Z

ck(g)f̂
(

ω − 2π

T
k

)
,(3.1)

(fHg)̂ (ω) =
∑
k∈Z

ck(g)(−isgn(k))f̂
(

ω − 2π

T
k

)
,

where the series converge in L2(R).
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Proof. The condition
∑

k∈Z
|ck(g)| < ∞ implies that

∑
k∈Z

ck(g)ei 2π
T kt

converges uniformly to g and g is bounded on R. It follows that
fg ∈ L2(R). By the Lebesgue dominated convergence theorem, there
holds∥∥∥∥∥(fg)̂ −

m∑
k=−n

ck(g)f̂
(
· − 2π

T
k

)∥∥∥∥∥
2

2

=
∫

R

∣∣∣∣∣f(t)

[
g(t) −

m∑
k=−n

ck(g)ei 2π
T kt

]∣∣∣∣∣
2

dt → 0 (n, m → ∞).

The first equality of (3.1) is proved.

By the definition of the Hilbert transform of periodic functions, we
have

(Hg)(t) =
∑
k∈Z

ck(g)(−isgn(k))ei 2π
T kt,

which shows that Hg ∈ L2
T and

∑
k∈Z

|ck(Hg)| < ∞. Similar argu-
ments as those used in the proof of the first equality in (3.1) show that
fHg ∈ L2(R) and the second equality of (3.1) holds.

Theorem 3.2. Let f ∈ L2(R), g ∈ L2
T , and

∑
k∈Z

|ck(g)| < ∞.
Then H(fg) = fHg if and only if

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

c0(g)f̂(ω) + 2
−1∑

k=−∞
ck(g)f̂

(
ω − 2π

T k
)

= 0 a.e. ω ∈ (0,∞),

c0(g)f̂(ω) + 2
∞∑

k=1

ck(g)f̂
(
ω − 2π

T k
)

= 0 a.e. ω ∈ (−∞, 0) .

Proof. By Lemma 3.1 we have

(H(fg) − fHg)̂ (ω) = −i
∑
k∈Z

ck(g)[sgn(ω) − sgn(k)]ei 2π
T ktf(t)̂ (ω)

= −i
∑
k∈Z

ck(g)[sgn(ω) − sgn(k)]f̂
(

ω − 2π

T
k

)
,

from which the theorem follows immediately.
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Equation (3.2) is essentially the counterpart of (1.9) as the continuous
Fourier transform ĝ is replaced by discrete Fourier spectrum ck(g) for
periodic function g. Based on it, we immediately have the following
sufficient condition for the Bedrosian identity to hold.

Corollary 3.3. Let f ∈ L2(R), g ∈ L2
T and

∑
k∈Z

|ck(g)| < ∞. If
there exists an N ∈ N such that

(3.3) supp f̂ ⊂
[
−2π

T
N,

2π

T
N

]
, ck(g) = 0 (∀|k| < N),

then H(fg) = fHg.

Below is a special case of Theorem 3.2 from signal processing, in
which a signal f(t) is usually modulated with a carrier wave eiω0t of
high carrier frequency for transmission.

Corollary 3.4. Let f ∈ L2(R) and ω0 �= 0. Then H(f(t)eiω0t) =
f(t)Heiω0t if and only if

(3.4)

{
f̂(ω) = 0 a.e. ω ∈ (−∞,−ω0) if ω0 > 0,

f̂(ω) = 0 a.e. ω ∈ (−ω0,∞, ) if ω0 < 0.

Proof. If ω0 > 0, then the period of eiω0t is T = 2π/ω0. By
Theorem 3.2, H(f(t)eiω0t) = f(t)Heiω0t holds if and only if f̂(ω− 2π

T ) =
0 a.e. ω ∈ (−∞, 0), that is, f̂(ω) = 0 a.e. ω ∈ (−∞,−ω0).

If ω0 < 0, the result can be proved similarly.

The condition “
∑

k∈Z
|ck(g)| < ∞” in Lemma 3.1 and Theorem 3.2

is a constraint on g in the Fourier transform domain. The analogical
condition ĝ ∈ L1(R) is not necessary for the case that f, g ∈ L2(R)
(see Section 2). Thus it is natural to ask if the condition can be
removed. We note that, in the case that f, g ∈ L2(R), there holds
fg, fHg ∈ L1(R) and consequently the Fourier transforms of fg and
fHg are well-defined. However, the assumption that f ∈ L2(R) and
g ∈ L2

T does not imply fg, fHg ∈ L2(R) or L1(R), which makes the
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Fourier transforms of fg and fHg undefined. Therefore, if we want
to remove the condition “

∑
k∈Z

|ck(g)| < ∞” we need to supplement
other conditions such that fg, fHg ∈ L2(R) or L1(R). To do this, let
us first introduce an important space L2

T (R) for T > 0, which is defined
as the space of all the Lebesgue integrable functions on R satisfying

|f |T :=

∥∥∥∥∥
∑
k∈Z

|f(· + kT )|
∥∥∥∥∥

L2
T

< ∞.

The space corresponding to T = 1 was first introduced and used in
wavelet construction by Jia and Micchelli in [10]. With the space L2

T (R)
we have the following lemma.

Lemma 3.5. Let f ∈ L2
T (R) and g ∈ L2

T . Then fg, fHg ∈ L1(R)
and there holds (3.1) in which the series converge in L∞(R).

Proof. By the Hölder inequality, we have

∫
R

|f(t)g(t)|dt=
∫ T

0

|g(t)|
∑
k∈Z

|f(t+kT )|dt ≤ |f |T
(∫ T

0

|g(t)|2dt

) 1
2

<∞,

which implies that fg ∈ L1(R). Similarly, there holds fHg ∈ L1(R).

Using the convergence property for g ∈ L2
T and the Hölder inequality,

we also deduce that∥∥∥∥∥(fg)̂ −
m∑

k=−n

ck(g)f̂
(
· − 2π

T
k

)
]

∥∥∥∥∥
∞
≤
∫

R

|f(t)[g(t) − gn,m(t)]|dt

≤ |f |T ‖g−gn,m‖L2
T
→ 0 (n, m→∞),

where gn,m(t) :=
∑m

k=−n ck(g)ei 2π
T kt. The first equality of (3.1) is

proved. The second one can be shown similarly.

With Lemma 3.5 a parallel result of Theorem 3.2 is established as
follows.

Theorem 3.6. Let f ∈ L2
T (R), g ∈ L2

T . Then H(fg) = fHg if and
only if (3.2) holds.
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Proof. Since fg, fHg ∈ L1(R), by Lemma 2.1, H(fg) = fHg if and
only if −isgn(ω)(fg)̂ (ω) = (fHg)̂ (ω), that is,

(3.5) − isgn(ω)
∑
k∈Z

ck(g)f̂
(

ω − 2π

T
k

)

= −i
∑
k∈Z

ck(g)sgn(k)f̂
(

ω − 2π

T
k

)
ω ∈ R

which, by Lemma 3.5, implies (3.2) immediately.

Below is a counterpart of Corollary 3.3.

Corollary 3.7. Let f ∈ L2
T (R), g ∈ L2

T . If there exists an N ∈ N

such that (3.3) holds, then H(fg) = fHg.

It should be pointed out that the condition f ∈ L2
T (R), g ∈ L2

T in
Theorem 3.6 cannot be replaced by f ∈ L2(R), g ∈ L2

T generally. It
is because that for f ∈ L2(R) and g ∈ L2

T the fact fg ∈ Lp(R) (1 ≤
p < ∞) is not guaranteed and consequently H(fg) is not well-defined
according to (1.1). To understand it, let us consider the following
example. Put

f(t) :=
2j/2

(1+|k|)(j+1)
t ∈
(

k+
1

2j+1
, k+

1
2j

]
(k ∈Z; j=0, 1, 2, · · · )

and

g(t) :=
2j/2

j + 1
t ∈
(

k +
1

2j+1
, k +

1
2j

]
(k ∈ Z, j = 0, 1, 2, · · · ).

One can see that g is a periodic function with period T = 1. A simple
calculation gives that

‖f‖2
2=

1
2

∑
k∈Z

∞∑
j=0

1
(1 + |k|)2(j + 1)2

<∞, ‖g‖2
L2

T
=

1
2

∞∑
j=0

1
(j + 1)2

<∞
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and ∫
R

|f(t)g(t)|pdt =
1
2

∑
k∈Z

∞∑
j=0

∣∣∣∣ 2j

(1 + |k|)(j + 1)2

∣∣∣∣
p 1

2j

=
1
2

∑
k∈Z

1
(1 + |k|)p

∞∑
j=0

2j(p−1)

(j + 1)2p
= ∞

for any 1 ≤ p < ∞, which shows that f ∈ L2(R) and g ∈ L2
T , but

fg /∈ Lp(R) for any 1 ≤ p < ∞.

Because of the importance of the space L2
T (R), let us give some

discussion on it at the end of this subsection. It is easy to verify that
L2

T (R) ⊂ L2(R). Below are some characterizations of the space.

Proposition 3.8. Let f ∈ L1(R). Then f ∈ L2
T (R) if and only

if
∑

k∈Z
|f̂(k 2π

T )|2 < ∞ and f(x) ≤ g(x) a.e. x ∈ R for some non-
negative function g ∈ L2

T (R).

Proof. For f ∈ L1(R), it is easily seen that f ∈ L2
T (R) if and only

if F (t) :=
∑

k∈Z
|f(t + kT )| ∈ L2

T . The Fourier coefficients of F (t) is
easily calculated as:

ck(F ) =
1
T

(|f |)̂
(

k
2π

T

)
(∀k ∈ Z).

By the Riesz-Fischer theorem [15] it is concluded that f ∈ L2
T (R) if

and only if ∑
k∈Z

∣∣∣∣(|f |)̂
(

k
2π

T

)∣∣∣∣
2

< ∞.

Necessity: Suppose f ∈ L2
T (R), then both |f | and |f | − f are in

L2
T (R), which implies that

∑
k∈Z

∣∣∣∣(|f |)̂
(

k
2π

T

)∣∣∣∣
2

< ∞,
∑
k∈Z

∣∣∣∣(|f | − f )̂
(

k
2π

T

)∣∣∣∣
2

< ∞

and consequently
∑

k∈Z
|f̂(k 2π

T )|2 < ∞. The function g := |f | is a
nonnegative function in L2

T (R) satisfying f(x) ≤ g(x) a.e. x ∈ R.
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Sufficiency: Suppose f ∈ L1(R) satisfies
∑

k∈Z
|f̂(k 2π

T )|2 < ∞ and
f(x) ≤ g(x) a.e. x ∈ R for some non-negative function g ∈ L2

T (R).
It follows that

∑
k∈Z

|ĝ(k 2π
T )|2 < ∞ and consequently

∑
k∈Z

|(g −
f )̂ (k 2π

T )|2 < ∞, which concludes that g − f ∈ L2
T (R). Hence

f ∈ L2
T (R).

Proposition 3.9. Let f be a Lebesgue measurable function on R

satisfying ∑
k∈Z

(∫ (k+1)T

kT

|f(t)|2dt

)1/2

< ∞.

Then f ∈ L2
T (R). Consequently, if (1+ | · |)sf ∈ L2(R) for some s > 1

2 ,
then f ∈ L2

T (R).

Proof. By

|f |T =

∥∥∥∥∥
∑
k∈Z

|f(· + kT )|
∥∥∥∥∥

L2
T

≤
∑
k∈Z

‖f(· + kT )‖L2
T

=
∑
k∈Z

(∫ (k+1)T

kT

|f(t)|2dt

)1/2

< ∞,

we conclude f ∈ L2
T (R).

Suppose that g := (1 + | · |)sf ∈ L2(R) for some s > 1
2 . We have

∫ (k+1)T

kT

|f(t)|2dt =
∫ (k+1)T

kT

∣∣∣∣ g(t)
(1 + |t|)s

∣∣∣∣
2

dt

≤ 1
(1 + |kT |)2s

∫ (k+1)T

kT

|g(t)|2dt.

It follows that

∑
k∈Z

(∫ (k+1)T

kT

|f(t)|2dt

)1/2

≤
(∑

k∈Z

1
(1 + |kT |)2s

)1/2

‖g‖2 < ∞.

Hence f ∈ L2
T (R).
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3.2. The Bedrosian Identity for f ∈ L2
T1

and g ∈ L2
T2

. Another
important case is that both f and g are periodic signals. Some
researches, for example [14, 17], have been done to the circular
Bedrosian identity H(fg) = fHg for f, g ∈ L2

2π. However, the case
that f and g are periodic signals but with different periods T1 and T2

is more often encountered in engineering applications, such as the beat
waves in signal processing [11]. In this subsection, we consider a special
case that f ∈ L2

T1
, g ∈ L2

T2
and T1, T2 have a common multiple T , that

is, T = nT1 = mT2 for some n, m ∈ N. Before this, let us give some
preliminaries. The following lemma is from [17].

Lemma 3.10. Let f, g ∈ L1
T . Then Hf = g if and only if

ck(g) = −isgn(k)ck(f) for all k ∈ Z.

Based on Lemma 3.10, we have the following result similar to Lemma
3.1.

Lemma 3.11. Let f, g ∈ L2
T . Then fg, fHg ∈ L1

T and

cn(fg) =
∑
k∈Z

ck(g)cn−k(f),

cn(fHg) = −i
∑
k∈Z

sgn(k)ck(g)cn−k(f)
(for all n ∈ Z).

The main result of this subsection is the following theorem.

Theorem 3.12. Let T1, T2 > 0 have a common multiple T = nT1 =
mT2 and f ∈ L2

T1
, g ∈ L2

T2
. Then H(fg) = fHg if and only if

(3.6)
∑
k∈Z

[sgn(l) − sgn(k)]cT2
k (g)cT1

l−km
n

(f) = 0 for all l ∈ Z.

Proof. Since fg, fHg ∈ L1
T , we learn from Lemma 3.10 that

H(fg) = fHg if and only if

cT
l (fHg) = −isgn(l)cT

l (fg) for all l ∈ Z.
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By Lemma 3.11 it follows that

∑
k∈Z

[sgn(l) − sgn(k)]cmT2
k (g)cnT1

l−k(f) = 0 for all l ∈ Z,

which can further be rewritten as (3.6).

Similar to Corollary 3.4, a special case of Theorem 3.12 is given below.

Corollary 3.13. Let T1, T2 > 0 have a common multiple T =
nT1 = mT2 and f ∈ L2

T1
. Then H

(
f(t)ei 2π

T2
t
)

= fHe
i 2π

T2
t if and only

if cT1
j (f) = 0 for all j ∈ Z, j ≤ −m/n; H

(
f(t)e−i 2π

T2
t
)

= fHe−i 2π
T2

t if

and only if cT1
j (f) = 0 for all j ∈ Z, j ≥ −m/n.

Proof. For g(t) = e
i 2π

T2
t we have cT2

1 (g) = 1 and cT2
k (g) = 0 for all

k �= 1. By Theorem 3.12 it is concluded that H
(
f(t)ei 2π

T2
t
)

= fHe
i 2π

T2
t

holds if and only if cT1
l−m

n

(f) for all l ≤ 0, that is, cj(f) = 0 for all j ∈ Z

satisfying j ≤ −m/n. The second claim can be proved similarly.
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