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ABSTRACT. Initial-boundary value problems for bend-
ing of a thermoelastic plate with transverse shear deforma-
tion are studied under the assumption that different parts of
the boundary are subjected to different types of physical con-
ditions. The solutions of these problems are represented as
single-layer and double-layer thermoelastic potentials, which
leads to time-dependent systems of boundary integral equa-
tions. The unique solvability of these systems is proved in
spaces of distributions.

1. Introduction. Mathematical models of elastic plates aim to re-
place the study of full three-dimensional problems with that of simpler
theories in only two dimensions, concentrating the computation on the
phenomenon of bending and disregarding other, less significant, effects.
Kirchhoff’s classical theory reduces to the solution of a fourth-order
equation with two boundary conditions. Later models (see, for exam-
ple, [1]) yield more information by including the action of transverse
shear forces into a system of three second-order equations accompanied
by three boundary conditions. The model considered in [1] was later ex-
tended to bending motions and, more recently, to thermoelastic plates,
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where deformation caused by temperature variations is also taken into
account [2]. In this paper we study the bending of a thin thermoelas-
tic plate subject to mixed boundary conditions and homogenous initial
conditions. The variational formulation of this problem and a state-
ment on its unique solvability may be found in [3]. The corresponding
results in the absence of thermal effects are detailed in [4-7].

2. Formulation of the Problem. We consider a thin elastic
plate of thickness h0 = const > 0, which occupies a region S̄ ×
[−h0/2, h0/2] in R3, where S is a domain in R2. The displacement
vector at a point x′ in this region at t ≥ 0 is denoted by v(x′, t) =
(v1(x′, t), v2(x′, t), v3(x′, t))T, where the superscript T signifies matrix
transposition. The temperature in the plate is denoted by θ(x′, t). Let
x′ = (x, x3), x = (x1, x2) ∈ S̄. In plate models with transverse shear
deformation it is assumed [1] that

v(x′, t) = (x3u1(x, t), x3u2(x, t), u3(x, t))T.

If thermal effects are taken into account, we also consider the “averaged
weighted temperature” across thickness defined by [2]

u4(x, t) =
1

h2h0

h0/2∫
−h0/2

x3θ(x, x3, t) dx3, h2 =
h2

0

12
.

The factor 1/h2 has been introduced for reasons of convenience. Then
the vector function U(x, t) = (u(x, t)T, u4(x, t))T, where u(x, t) =
(u1(x, t), u2(x, t), u3(x, t))T, satisfies the equation

(1) LU(x, t)=B0∂
2
t U(x, t)+B1∂tU(x, t)+AU(x, t)=Q(x, t), (x, t)∈G,

where G = S × (0,∞), B0 = diag{ρh2, ρh2, ρ, 0}, ∂t = ∂/∂t, ρ > 0 is
the constant density of the material,
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B1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

η∂1 η∂2 0 κ
−1

⎞
⎟⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎝

A

h2γ∂1

h2γ∂2

0

0 0 0 −Δ

⎞
⎟⎟⎟⎠ ,

A =

⎛
⎜⎝

−h2μΔ−h2(λ+μ)∂2
1 + μ −h2(λ + μ)∂1∂2 μ∂1

−h2(λ + μ)∂1∂2 −h2μΔ−h2(λ+μ)∂2
2 +μ μ∂2

−μ∂1 −μ∂2 −μΔ

⎞
⎟⎠ ,

∂α = ∂/∂xα, α = 1, 2, η, κ, and γ are positive physical constants,
λ and μ are the Lamé coefficients of the material satisfying λ +
μ > 0, μ > 0, and Q(x, t) = (q(x, t)T, q4(x, t))T, where q(x, t) =
(q1(x, t), q2(x, t), q3(x, t))T is a combination of the forces and moments
acting on the plate and its faces and q4(x, t) is a combination of the
averaged heat source density and the temperature and heat flux on
the faces. Without loss of generality, in what follows we consider only
the case of the homogeneous equation (1), that is, Q(x, t) ≡ 0, and
homogeneous initial conditions

(2) U(x, 0) = 0, ∂tu(x, 0) = 0, x ∈ S,

since, as shown in [8] and [9], the nonhomogeneity in both can easily
be transferred to the boundary conditions.

We assume that the boundary ∂S consists of four open arcs ∂Si,
i = 1, . . . , 4, counted counterclockwise, such that

∂S =
4⋃

i=1

∂S̄i, ∂Si ∩ ∂Sj = ∅, i �= j, i, j = 1, . . . , 4.

We write

Γ= ∂S × (0,∞), Γi = ∂Si × (0,∞), ∂Sij = ∂Si ∪ ∂Sj ∪ (∂Si ∩ ∂Sj),
Γij = ∂Sij × (0,∞), i, j = 1, . . . , 4.

We further assume that the displacements and temperature are pre-
scribed on Γ1 by
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(3) u(x, t) = f(x, t), u4(x, t) = f4(x, t), (x, t) ∈ Γ1,

or U(x, t) = F (x, t), where

F (x, t) = (f(x, t)T, f4(x, t))T, f(x, t) = (f1(x, t), f2(x, t), f3(x, t))T,

and the displacements and heat flux on Γ2 by

(4) u(x, t) = f(x, t), ∂nu4(x, t) = g4(x, t), (x, t) ∈ Γ2.

In (4), n = n(x) = (n1(x), n2(x))T is outward unit normal to ∂S and
∂n = ∂/∂n.

Let T be the boundary moment-force operator defined by

(5)

⎛
⎜⎝

h2
[
(λ+2μ)n1∂1+μn2∂2

]
, h2(λn1∂2 + μn2∂1) 0

h2(μn1∂2 + λn2∂1) h2
[
(λ + 2μ)n2∂2 + μn1∂1

]
0

μn1 μn2 μ∂n

⎞
⎟⎠ .

Tu is the vector of the averaged moments and shear force acting on
the lateral part of the plate boundary. We assume that the boundary
moments and force and the heat flux are prescribed on Γ3 by

Tu(x, t) − h2γn(x)u4(x, t) = g(x, t),(6)
∂nu4(x, t) = g4(x, t), (x, t) ∈ Γ3,

or

(T U)(x, t) = G(x, t) = (g(x, t)T, g4(x, t))T,

where

g(x, t) = (g1(x, t), g2(x, t), g3(x, t)T

and

(T U)(x, t) =
(

(Tu)(x, t) − h2γn(x)u4(x, t)
∂nu4(x, t)

)
=
(

(TeU)(x, t)
(TθU)(x, t)

)
.
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To keep the notation simple, in (6) and below we also denote by n(x)
the three-component vector (n1(x), n2(x), 0)T.

Finally, on Γ4 we prescribe the boundary force and moments and the
temperature:

(7) Tu(x, t)−h2γn(x)u4(x, t) = g(x, t), u4(x, t) = f4(x, t), (x, t) ∈ Γ4.

The functions f(x, t), f4(x, t), g(x, t), and g4(x, t) in (3)–(6) are known.

Let S+ and S− be, respectively, the interior and exterior domains
bounded by ∂S, and let G± = S±×(0,∞). We consider simultaneously
the interior and exterior initial-boundary value problems (TM±), which
consist in finding U ∈ C2(G±)∩C1(Ḡ±) that satisfy the homogeneous
equation (1) in G±, (2) in S±, and (3)–(7).

The solutions of (TM±) will be represented in terms of thermoelastic
single-layer and double-layer potentials. These representations lead
to systems of time-dependent boundary integral equations for the
unknown densities. The aim of the paper is to prove the unique
solvability of these equations and to show that the potentials with
densities obtained in this way are the solutions of (TM±).

3. The Laplace-transformed Boundary Value Problems.
First, we apply the Laplace transformation in (TM±) and study the
unique solvability of the transformed problems (TM±

p ). In what follows,
we denote Laplace transforms of (vector-valued or scalar) functions by
a “hat” above their symbols; thus,

Û(x, p) = (LU)(x, p) =

∞∫
0

e−ptU(x, t)dt.

The transformed problems (TM±
p ) depend on the complex parameter

p and consist in finding Û(x, p) ∈ C2(S±) ∩ C1(S̄±) that satisfy,
respectively, the equations

(8) p2B0Û(x, p) + p B1Û(x, p) + AÛ(x, p) = 0, x ∈ S±,

and the boundary conditions
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û(x, p) = f̂(x, p),

û(x, p) = f̂(x, p),
T û(x, p) − h2γn(x)û4(x, p) = ĝ(x, p),
T û(x, p) − h2γn(x)û4(x, p) = ĝ(x, p),

û4(x, p) = f̂4(x, p),
∂nû4(x, p) = ĝ4(x, p),
∂nû4(x, p) = ĝ4(x, p),

û4(x, p) = f̂4(x, p),

x ∈ ∂S1,

x ∈ ∂S2,

x ∈ ∂S3,

x ∈ ∂S4.

Let Hm(R2), m ∈ R, be the standard Sobolev space of functions v̂4(x)
with norm

‖v̂4‖m =
{∫

R2

(1 + |ξ|2)m|ṽ4(ξ)|2dξ

}1/2

,

where ṽ4(ξ) is the Fourier transform of v̂4(x).

For every m ∈ R and p ∈ C, Hm,p(R2) is the space of three-
component vector functions v̂(x) that coincides with [Hm(R2)]3 as a
set but is endowed with the norm

‖v̂‖m,p =
{∫

R2

(1 + |ξ|2 + |p|2)m|ṽ(ξ)|2dξ

}1/2

.

The spaces Hm(S±) and Hm,p(S±) consist of the restrictions to S±

of the elements v̂4 ∈ Hm(R2) and v̂ ∈ Hm,p(R2), respectively. Their
norms are defined by

‖û4‖m;S± = inf
v̂4∈Hm(R2):v̂4|S±=û4

‖v̂4‖m,

‖û‖m,p;S± = inf
v̂∈Hm,p(R2):v̂|S±=û

‖v̂‖m,p.

Let H1/2(∂S) and H1/2,p(∂S) be the spaces of the traces on ∂S of all
û4 ∈ H1(S+) and û ∈ H1,p(S+), with norms

‖f̂4‖1/2;∂S = inf
û4∈H1(S+):û4|∂S=f̂4

‖û4‖1;S+ ,

‖f̂‖1/2,p;∂S = inf
û∈H1,p(S+):û|∂S=f̂

‖û‖1,p;S+ ,

respectively. The continuous (uniformly with respect to p ∈ C) trace
operators from H1(S±) to H1/2(∂S) and from H1,p(S±) to H1/2,p(∂S)
are denoted by the same symbols γ±.
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H−1/2(∂S) and H−1/2,p(∂S) are the duals of H1/2(∂S) and H1/2,p(∂S)
with respect to the duality generated by the inner products in L2(∂S)
and [L2(∂S)]3. Their norms are denoted by ‖ĝ4‖−1/2;∂S and ‖ĝ‖−1/2,p;∂S .

Let ∂S̃ ⊂ ∂S be any open part of ∂S with mes ∂S̃ > 0 (in particular,
∂S̃ may coincide with ∂S), and let π̃ be the operator of restriction
of functions from ∂S to ∂S̃. The spaces H±1/2(∂S̃) and H±1/2,p(∂S̃)
consist of the restrictions to ∂S̃ of all the elements of H±1/2(∂S) and
H±1/2,p(∂S), respectively. Their norms are defined by

‖ê4‖±1/2;∂S̃ = inf
r̂4∈H±1/2(∂S): π̃r̂4=ê4

‖r̂4‖±1/2;∂S,

‖ê‖±1/2,p;∂S̃ = inf
r̂∈H±1/2,p(∂S): π̂r̂=ê

‖r̂‖±1/2,p;∂S.

H̊±1/2(∂S̃) and H̊±1/2,p(∂S̃) are the subspaces of H±1/2(∂S) and

H±1/2,p(∂S) consisting of all the elements with support in ∂S̃. The
norms of ê4 ∈ H̊±1/2(∂S̃) and ê ∈ H̊±1/2(∂S̃) are denoted by
‖ê4‖±1/2;∂S and ‖ê‖±1/2,p;∂S . We remark that H±1/2(∂S̃) are the duals
of H̊∓1/2(∂S̃) and H±1/2,p(∂S̃) the duals of H̊∓1/2,p(∂S̃) with respect
to the duality generated by the inner products in L2(∂S̃) and [L2(∂S̃)]3.

Let πi and πij , i, j = 1, . . . , 4, be the operators of restriction from
∂S to ∂Si and to ∂Sij , respectively. H1(S±; ∂S23) and H1,p(S±; ∂S34)
are the subspaces of H1(S±) and H1,p(S±) of all û4 ∈ H1(S±) and
û ∈ H1,p(S±) such that π41γ

±û4 = 0 and π12γ
±û = 0.

We consider the spaces H1,p(S±) = H1,p(S±) × H1(S±) of elements
Û = (ûT, û4)T with norm

‖|Û‖|1,p;S± = ‖û‖1,p;S± + ‖û4‖1;S± ,

and their subspaces

H1,p(S±; ∂S34, ∂S23) = H1,p(S±; ∂S34) × H1(S±; ∂S23).

Finally, the spaces H±1/2,p(∂S̃) = H±1/2,p(∂S̃) × H±1/2(∂S̃) are
endowed with the norms

‖|Ê‖|±1/2,p;∂S̃ = ‖ê‖±1/2,p;∂S̃ + ‖ê4‖±1/2;∂S̃ ,

where Ê = (êT, ê4)T. H̊±1/2,p(∂S̃) = H̊±1/2,p(∂S̃)× H̊±1/2(∂S̃) are the

subspaces of H±1/2,p(∂S) consisting of all Ê with supp Ê ⊂ ∂S̃.
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We now turn to the variational formulation of (TM±
p ). Let κ > 0,

and let Cκ = {p = σ + iτ ∈ C : σ > κ}. In what follows we denote by c
all positive constants occurring in estimates, which are independent of
the functions in those estimates and of p ∈ Cκ, but may depend on κ.
Also, (·, ·)0;S± and (·, ·)0;∂S̃ are the inner products in [L2(S±)]m and
[L2(∂S̃)]m for all m ∈ N. The norms on these spaces are ‖ · ‖0;S± and
‖ · ‖0;∂S̃ .

Let Û = (ûT, û4)T ∈ C2(S±) ∩ C1(S̄±) be the classical solution of
(TM±

p ), and let Ŵ = (ŵT, ŵ4)T ∈ C∞
0 (S̄±) be any function (with

compact support in S− in the case of S−) such that ŵ(x, p) = 0,
x ∈ ∂S12, and ŵ4(x, p) = 0, x ∈ ∂S41. We multiply (8) by Ŵ in
[L2(S±)]4 and arrive at

(9) Υ±,p(Û , Ŵ ) = ±L(Ŵ ),

where

Υ±,p(Û , Ŵ ) = a±(û, ŵ)+ (∇û4,∇ŵ4)0;S± +p2(B1/2
0 û, B

1/2
0 ŵ)0;S±

+ κ
−1p(û4, ŵ4)0;S± − h2γ(û4, div ŵ)0;S± + ηp(div û, ŵ4)0;S± ,

a±(û, ŵ) = 2
∫

S±

E(û, ŵ)dx,

2E(û, ŵ) = h2E0(û, ŵ) + h2μ(∂2û1 + ∂1û2)(∂2
¯̂w1 + ∂1

¯̂w2)

+ μ[(û1 + ∂1û3)( ¯̂w1 + ∂1
¯̂w3) + (û2 + ∂2û3)( ¯̂w2 + ∂2

¯̂w3)],

E0(û, ŵ) = (λ + 2μ)[(∂1û1)(∂1
¯̂w1) + (∂2û2)(∂2

¯̂w2)]

+λ[(∂1û1)(∂2
¯̂w2) + (∂2û2)(∂1

¯̂w1)],

B0 = diag{ρh2, ρh2, ρ}, L(Ŵ ) = (ĝ4, ŵ4)0;∂S23 + (ĝ, ŵ)0;∂S34 .

In view of (9), the variational problems (TM±
p ) consist in finding

Û ∈ H1,p(S±) that satisfy

π12γ
±û = f̂ , π41γ

±û4 = f̂4

and (9) for any Ŵ ∈ H1,p(S±; ∂S34, ∂S23).

The following assertion is proved in [3].
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Lemma 1. For all f̂ ∈ H1/2,p(∂S12), f̂4 ∈ H1/2(∂S41), ĝ ∈
H−1/2,p(∂S34), and ĝ4 ∈ H−1/2(∂S23), p ∈ Cκ, κ > 0, problems (TM±

p )
have unique solutions Û ∈ H1,p(S±), which satisfy the estimates

(10) ‖|Û‖|1,p;S± ≤ c
{
|p|(‖f̂‖1/2,p;∂S12 + ‖f̂4‖1/2;∂S41)

+ |p| ‖ĝ‖−1/2,p;∂S34 + ‖ĝ4‖−1/2;∂S23

}
.

For ∂S̃ ⊆ ∂S, we write H±1/2(∂S̃) = H±1/2,0(∂S̃) and H1(S±) =
H1,0(S±), and denote the norms on these spaces by ‖ · ‖±1/2;∂S̃ and
‖ · ‖1;S± , respectively.

For any κ > 0 and k ∈ R, we introduce the spaces HL
±1/2,k,κ(∂S̃)

and HL
1,k,κ(S±), which consist of all three-component vector-valued

functions ê(x, p) and û(x, p) that

(i) define holomorphic mappings

ê(x, p) : Cκ → H±1/2(∂S̃), û(x, p) : Cκ → H1(S±);

(ii) have norms

‖ê‖2
±1/2,k,κ;∂S̃

= sup
σ>κ

∞∫
−∞

(1 + |p|2)k‖ê(x, p)‖2
±1/2,p;∂S̃

dτ < ∞,

‖û‖2
1,k,κ;S± = sup

σ>κ

∞∫
−∞

(1 + |p|2)k‖û(x, p)‖2
1,p;S± dτ < ∞.

HL
±1/2,k,κ(∂S̃) and HL

1,k,κ(S±) consist of all functions ê4(x, p) and
û4(x, p) that

(i) define holomorphic mappings

ê4(x, p) : Cκ → H±1/2(∂S̃), û4(x, p) : Cκ → H1(S±);

(ii) have norms
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‖ê4‖2
±1/2,k,κ;∂S̃

= sup
σ>κ

∞∫
−∞

(1 + |p|2)k‖ê4(x, p)‖2
±1/2;∂S̃

dτ < ∞,

‖û4‖2
1,k,κ;S± = sup

σ>κ

∞∫
−∞

(1 + |p|2)k‖û4(x, p)‖2
1;S± dτ < ∞.

The norms on the spaces HL
1,k,l,κ(S±) = HL

1,k,κ(S±) × HL
1,l,κ(S±) and

HL
±1/2,k,l,κ(∂S̃) = HL

±1/2,k,κ(∂S̃) × HL
±1/2,l,κ(∂S̃) are

‖|Û‖|1,k,l,κ;S± = ‖û‖1,k,κ;S± + ‖û4‖1,l,κ;S± ,

‖|Ê‖|±1/2,k,l,κ;∂S̃ = ‖ê‖±1/2,k,κ;∂S̃ + ‖ê4‖±1/2,l,κ;∂S̃.

H̊L
±1/2,k,l,κ(∂S̃) = H̊L

±1/2,k,κ(∂S̃) × H̊L
±1/2,l,κ(∂S̃) are the subspaces

of HL
±1/2,k,l,κ(∂S) consisting of all Ê with supp Ê ⊂ ∂S̃.

Let Γ̃ = ∂S̃ × (0,∞). For κ > 0 and k, l ∈ R, the spaces

HL−1

1,k,κ(G±), HL−1

1,l,κ(G±), HL−1

1,k,l,κ(G±),

HL−1

±1/2,k,κ(Γ̃), HL−1

±1/2,l,κ(Γ̃), HL−1

±1/2,k,l,κ(Γ̃),

H̊L−1

±1/2,k,κ(Γ̃), H̊L−1

±1/2,l,κ(Γ̃), H̊L−1

±1/2,k,l,κ(Γ̃)

consist, respectively, of the inverse Laplace transforms of all the func-
tions in

HL
1,k,κ(S±), HL

1,l,κ(S±), HL
1,k,l,κ(S±),

HL
±1/2,k,κ(∂S̃), HL

±1/2,l,κ(∂S̃), HL
±1/2,k,l,κ(∂S̃),

H̊L
±1/2,k,κ(∂S̃), H̊L

±1/2,l,κ(∂S̃), H̊L
±1/2,k,l,κ(∂S̃).

The norms on these spaces are

‖u‖1,k,κ;G± = ‖û‖1,k,κ;S± , ‖u4‖1,l,κ;G± = ‖û4‖1,l,κ;S± ,

‖|U‖|1,k,l,κ;G± = ‖|Û‖|1,k,l,κ;S± ,

‖e‖±1/2,k,κ;Γ̃ = ‖ê‖±1/2,k,κ;∂S̃ , ‖e4‖±1/2,l,κ;Γ̃ = ‖ê4‖±1/2,l,κ;∂S̃,

‖|E‖|±1/2,k,l,κ;Γ̃ = ‖|Ê‖|±1/2,k,l,κ;∂S̃ .
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The trace operators from G± to Γ and the operators of restriction
from Γ to its parts Γij , i, j = 1, . . . , 4, are again denoted by γ± and
πij . We say that U = (uT, u4)T ∈ HL−1

1,0,0,κ(G±) is a weak solution of
(TM±) if

(i) γ0u = 0, where γ0 is the trace operator on S± × {t = 0};
(ii) π12γ

±u = f and π41γ
±u4 = f4;

(iii) for all W = (wT, w4)T ∈ C∞
0 (Ḡ±) such that w(x, t) = 0,

(x, t) ∈ Γ12, and w4(x, t) = 0, (x, t) ∈ Γ41,

Υ±(U, W ) = ±L(W ),

where

Υ±(U, W ) =

∞∫
0

{
a±(u, w)+(∇u4,∇w4)0;S±−(B1/2

0 ∂tu, B
1/2
0 ∂tw)0;S±

− κ
−1(u4, ∂tw4)0;S± − h2γ(u4, div w)0;S± − η(div u, ∂tw4)0;S±

}
dt,

L(W ) =

∞∫
0

{
(g, w)0;∂S34 + (g4, w4)0;∂S23

}
dt.

The next assertion was also proved in [3].

Theorem 1. Let U(x, t) = L−1Û(x, p) be the inverse Laplace
transform of the weak solution Û(x, p) of problem (TM±

p ). If

f ∈ HL−1

1/2,l+1,κ(Γ12), f4 ∈ HL−1

1/2,l+1,κ(Γ41),

g ∈ HL−1

−1/2,l+1,κ(Γ34), g4 ∈ HL−1

−1/2,l,κ(Γ23),

κ > 0, and l ∈ R, then U ∈ HL−1

1,l,l,κ(G±) and

‖|U‖|1,l,l,κ;G± ≤ c
{
‖f‖1/2,l+1,κ;Γ12 + ‖f4‖1/2,l+1,κ;Γ41

+ ‖g‖−1/2,l+1,κ;Γ34 + ‖g4‖−1/2,l,κ;Γ23

}
.

If l ≥ 0, then U is the unique weak solution of (TM±).
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We now consider three particular cases: problems (TD±) with Dirich-
let boundary conditions, where ∂S1 = ∂S and ∂Si = ∅, i = 2, 3, 4,
therefore, Γ1 = Γ; problems (TN±) with Neumann boundary condi-
tions, where ∂S3 = ∂S and ∂Si = ∅, i = 1, 2, 4, therefore, Γ3 = Γ;
and the “reduced” problems (T′M±) with mixed boundary conditions,
where ∂S2 = ∅ and ∂S4 = ∅. The corresponding Laplace-transformed
boundary value problems are (TD±

p ), (TN±
p ), and (T′M±

p ), respectively.

Strictly speaking, the next assertions do not follow directly from
Lemma 1 and Theorem 1, but their proofs are almost identical to those
of the others.

Corollary 1. (i) For any F̂ ∈ H1/2,p(∂S), p ∈ Cκ, and κ > 0,
problems (TD±

p ) have unique solutions Û ∈ H1,p(S±), which satisfy
the estimates

‖|Û‖|1,p;S± ≤ c|p|‖|F̂‖|1/2,p;∂S.

(ii) For any Ĝ = (ĝT, ĝ4)T ∈ H−1/2,p(∂S), p ∈ Cκ, and κ > 0,
problems (TN±

p ) have unique solutions Û ∈ H1,p(S±), which satisfy
the estimates

‖|Û‖|1,p;S± ≤ c(|p|‖ĝ‖−1/2,p;∂S + ‖ĝ4‖−1/2;∂S).

(iii) For any F̂ ∈ H1/2,p;∂S1 , Ĝ = (ĝT, ĝ4)T ∈ H−1/2,p(∂S3), p ∈ Cκ,
and κ > 0, problems (T′M±

p ) have unique solutions Û ∈ H1,p(S±),
which satisfy the estimates

‖|Û‖|1,p;S± ≤ c(|p|‖|F̂‖|1/2,p;∂S1 + |p|‖ĝ‖−1/2,p;∂S3 + ‖ĝ4‖−1/2;∂S3).

Corollary 2. (i) Let U(x, t) = L−1Û(x, p) be the inverse Laplace
transform of the weak solution Û(x, p) of problem (TD±

p ). If F ∈
HL−1

1/2,l+1,l+1,κ(Γ), κ > 0, and l ∈ R, then U ∈ HL−1

1,l,l,κ(G±) and

‖|U‖|1,l,l,κ;G± ≤ c‖|F‖|1/2,l+1,l+1,κ;Γ.

If l ≥ 0, then U(x, t) is the unique weak solution of (TD±).

(ii) Let U(x, t) = L−1Û(x, p) be the inverse Laplace transform of
the weak solution Û(x, p) of problem (TN±

p ). If G ∈ HL−1

−1/2,l+1,l,κ(Γ),

κ > 0, and l ∈ R, then U ∈ HL−1

1,l,l,κ(G±) and
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‖|U‖|1,l,l,κ;G± ≤ c‖|G‖|−1/2,l+1,l,κ;Γ.

If l ≥ 0, then U(x, t) is the unique weak solution of (TN±).

(iii) Let U(x, t) = L−1Û(x, p) be the inverse Laplace transform of the
weak solution Û(x, p) of problem (T′M±

p ). If F ∈ HL−1

1/2,l+1,l+1,κ(Γ1),

G ∈ HL−1

−1/2,l+1,l,κ(Γ3), κ > 0, and l ∈ R, then U ∈ HL−1

1,l,l,κ(G±) and

‖|U‖|1,l,l,κ;G± ≤ c(‖|F‖|1/2,l+1,l+1,κ;Γ1 + ‖|G‖|−1/2,l+1,l,κ;Γ3).

If l ≥ 0, then U(x, t) is the unique weak solution of (T′M±).

4. Properties of the Boundary Operators. We introduce the
Poincaré-Steklov operators T ±

p acting on elements F̂ ∈ H1/2,p(∂S) by

(T ±
p F̂ , Φ̂)0;∂S = ±Υ±,p(Û , Ŵ ),

where Û ∈ H1,p(S±) is the solution of (TD±
p ) with boundary data F̂ ,

Φ̂ is an arbitrary element of H1/2,p(∂S), and Ŵ ∈ H1,p(S±) is any
extension of F̂ to S̄±. Also, we write

T ±
p F̂ =

(
T ±

p,eF̂

T ±
p,θF̂

)

and remark that for sufficiently smooth vector-valued functions Û(x, p)
(and, respectively, F̂ (x, p)), (T ±

p F̂ )(x, p) coincide with the Laplace
transforms of (T U)(x, t) introduced in Section 2.

Later on we use another norm on H−1/2,p(∂S̃), namely,

〈Ĝ〉−1/2,p;∂S̃ = |p|‖ĝ‖−1/2,p;∂S̃ + ‖g4‖−1/2;∂S̃.

The next assertions were proved in [10].

Lemma 2. For any p ∈ C0, the operators T ±
p are homeomorphisms

from H1/2,p(∂S) to H−1/2,p(∂S). If Û ∈ H1,p(S±) are the solutions
of (TD±

p ) with boundary data F̂ ∈ H1/2,p(∂S), then for any p ∈ Cκ,
κ > 0,
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〈T ±
p F̂ 〉−1/2,p;∂S ≤ c|p|2‖|F̂‖|1/2,p;∂S,(11)

‖|F̂‖|1/2,p;∂S ≤ c〈T ±
p F̂ 〉−1/2,p;∂S ,(12)

‖T ±
p,eF̂‖−1/2,p;∂S ≤ c‖|Û‖|1,p;S± ,(13)

‖T ±
p,θF̂‖−1/2,p;∂S ≤ c|p| ‖|Û‖|1,p;S± .

Let operators T ±
L on HL

1/2,l,l,κ(∂S) and (T ±
L )−1 on HL

1/2,l+1,l,κ(∂S)

be defined by (T ±
L F̂ )(x, p) = (T ±

p F̂ )(x, p) and ((T ±
L )−1Ĝ)(x, p) =

((T ±
p )−1Ĝ)(x, p), x ∈ ∂S, p ∈ C0. Operators T ± on HL−1

1/2,l,l,κ(Γ)

and (T ±)−1 on HL−1

1/2,l+1,l,κ(Γ) are defined by T ± = L−1T ±
L L and

(T ±)−1 = L−1(T ±
L )−1L.

Lemma 3. For any λ > 0 and k ∈ R, the operators

T ± : HL−1

1/2,l,l,κ(Γ) → HL−1

−1/2,l−1,l−2,κ(Γ)

are continuous and injective, and their ranges are dense in
HL−1

−1/2,l−1,l−2,κ(Γ). Their inverses, extended by continuity from their
ranges, define continuous and injective mappings

(T ±)−1 : HL−1

−1/2,l−1,l−2,κ(Γ) → HL−1

1/2,l−2,l−2,κ(Γ),

whose ranges are dense in the spaces HL−1

1/2,l−2,l−2,κ(Γ).

Proof. The continuity of T ± and (T ±)−1 follows from (11) and
(12), respectively. The statement about the ranges of T ± being dense
in HL−1

−1/2,l−1,l−2,κ(Γ) follows from the fact that HL−1

−1/2,l+1,l,κ(Γ) is dense

in HL−1

−1/2,l−1,l−2,κ(Γ), and that about the ranges of (T ±)−1 from the

fact that HL−1

1/2,l,l,κ(Γ) is dense in HL−1

1/2,l−2,l−2,κ(Γ).

Suppose that ∂S̃i ⊂ ∂S, i = 1, 2, are two open arcs such that
∂S̃1∩∂S̃2 = ∅ and ∂S̃1∪∂S̃2 = ∂S, and let π̃i, i = 1, 2, be the operators
of restriction from Γ to Γ̃i = ∂S̃i × (0,∞). Also, let F ∈ H1/2,l,l,κ(Γ).
We define boundary operators πij , i, j = 1, 2, i �= j, by
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π±
ijF = {π̃iF̂ , π̃jT ±F} = {F̂i, Ĝj}.

Lemma 4. For any κ > 0 and l ∈ R, the operators

π±
ij : HL−1

1/2,l,l,κ(Γ) → HL−1

1/2,l,l,κ(Γ̃i) ×HL−1

−1/2,l−1,l−2,κ(Γ̃j)

are continuous and injective, and their ranges are dense in the spaces
HL−1

1/2,l,l,κ(Γ̃i) ×HL−1

−1/2,l−1,l−2,κ(Γ̃j). Their inverses, extended by conti-
nuity from their ranges, define continuous and injective mappings

(π±
ij)

−1 : HL−1

1/2,l,l,κ(Γ̃i) ×HL−1

−1/2,l,l−1,κ(Γ̃j) → HL−1

1/2,l−1,l−1,κ(Γ),

whose ranges are dense in HL−1

1/2,l−1,l−1,κ(Γ).

Proof. The continuity of π±
ij follows from the statement in

Lemma 3 about the continuity of T ±. Let {Fi, Gj} ∈ HL−1

1/2,l,l,κ(Γ̃i) ×
HL−1

−1/2,l,l−1,κ(Γ̃j), and let U ∈ HL−1

1,l−1,l−1,κ(G±) be the solutions of
(T′M±) with boundary data {Fi, Gj}. Since (π±

ij)
−1{Fi, Gj} = γ±U ,

the continuity of (π±
ij)

−1 follows from the trace theorem. The assertion
about the ranges of π±

ij and (π±
ij)

−1 being dense in the corresponding
spaces can be verified by the method used in the proof of Lemma 3.

Let G ∈ H−1/2,l+1,l,κ(Γ). We define boundary operators εij , i, j =
1, 2, i �= j, by

ε±ijG = {π̃i(T ±)−1G, π̃jG} = {F̂i, Ĝj}.

Lemma 5. For any κ > 0 and l ∈ R, the operators

ε±ij : HL−1

−1/2,l+1,l,κ(Γ) → HL−1

1/2,l,l,κ(Γ̃i) ×HL−1

−1/2,l+1,l,κ(Γ̃j)

are continuous and injective, and their ranges are dense in the spaces
HL−1

1/2,l,l,κ(Γ̃i)×HL−1

−1/2,l+1,l,κ(Γ̃j). Their inverses, extended by continuity
from their ranges, define continuous and injective mappings

(ε±ij)
−1 : HL−1

1/2,l+1,l+1,κ(Γ̃i) ×HL−1

−1/2,l+1,l,κ(Γ̃j) → HL−1

−1/2,l,l−1,κ(Γ),
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whose ranges are dense in HL−1

−1/2,l,l−1,κ(Γ).

Proof. The continuity of ε±ij follows from the statement in Lemma
3 about the continuity of (T ±)−1. Let {Fi, Gj} ∈ HL−1

1/2,l+1,l+1,κ(Γ̃i) ×
HL−1

−1/2,l+1,l,κ(Γ̃j), and let U ∈ HL−1

1,l,l,κ(G±) be the solutions of (T′M±)
with boundary data {Fi, Gj}. The continuity of (ε±ij)

−1 now follows
from (13), while the assertion about the ranges of ε±ij and (ε±ij)

−1

being dense in the corresponding spaces is established as in the proof
of Lemma 3.

For any κ > 0 and l ∈ R, we introduce the space

HL−1

mixed,l,κ(Γ) = HL−1

1/2,l+1,κ(Γ12) × HL−1

1/2,l+1,κ(Γ41)

× HL−1

−1/2,l+1,κ(Γ34) × HL−1

−1/2,l,κ(Γ23).

Naturally, the norm of

Φ(x, t) = {f12(x, t), f4,41(x, t), g34(x, t), g4,23(x, t)} ∈ HL−1

mixed,l,κ(Γ)

is

‖|Φ‖|mixed,l,κ;Γ = ‖f12‖1/2,l+1,κ;Γ12 + ‖f4,41‖1/2,l+1,κ;Γ41

+ ‖g34‖−1/2,l+1,κ;Γ34 + ‖g4,23‖−1/2,l,κ;Γ23 .

Let Φ ∈ HL−1

mixed,l,κ(Γ). By Theorem 1, problems (TM±) have unique
solutions U ∈ HL−1

1,l,l,κ(G±), which satisfy the estimates

(14) ‖|U‖|1,l,l,κ;G± ≤ c‖|Φ‖|mixed,l,κ;Γ.

Let F = γ±U ∈ HL−1

1/2,l,l,κ(Γ), and let G = T ±F . We define boundary
operators ρ± and η± by ρ±F = Φ and η±G = Φ.

Lemma 6. For any κ > 0 and l ∈ R, the operators
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ρ± : HL−1

1/2,l+2,l+2,κ(Γ) → HL−1

mixed,l,κ(Γ),

η± : HL−1

−1/2,l+2,l+1,κ(Γ) → HL−1

mixed,l,κ(Γ)

are continuous and injective, and their ranges are dense in HL−1

mixed,l,κ(Γ).
Their inverses, extended by continuity from their ranges, define contin-
uous and injective mappings

(ρ±)−1 : HL−1

mixed,l,κ(Γ̃) → HL−1

1/2,l,l,κ(Γ),

(η±)−1 : HL−1

mixed,l,κ(Γ̃) → HL−1

−1/2,l,l−1,κ(Γ),

whose ranges are dense,respectively, in HL−1

1/2,l,l,κ(Γ) and HL−1

−1/2,l,l−1,κ(Γ).

Proof. Let F = (fT, f4)T ∈ HL−1

1/2,l+2,l+2,κ(Γ). By Lemma 3,

G = (gT, g4)T = T ±F ∈ HL−1

−1/2,l+1,l,κ(Γ). We write

Φ = ρ±F = {π12f, π41f4, π34g, π23g4}.
Obviously, ρ± define continuous mappings

ρ± : HL−1

1/2,l+2,l+2,κ(Γ) → HL−1

1/2,l+2,κ(Γ12) × HL−1

1/2,l+2,κ(Γ41)

× HL−1

−1/2,l+1,κ(Γ34) × HL−1

−1/2,l,κ(Γ23) ⊂ HL−1

mixed,l,κ(Γ).

Since the norm on HL−1

mixed,l,κ(Γ) is weaker than that on

HL−1

1/2,l+2,κ(Γ12) × HL−1

1/2,l+2,κ(Γ41) × HL−1

−1/2,l+1,κ(Γ34) × HL−1

−1/2,l,κ(Γ23),

we deduce the continuity of ρ±.

If G = (gT, g4)T ∈ HL−1

−1/2,l+2,l+1,κ(Γ), then

F = (fT, f4)T = (T ±)−1G ∈ HL−1

1/2,l+1,l+1,κ(Γ).

It is evident that

Φ = η±G ∈ HL−1

1/2,l+1,κ(Γ12) × HL−1

1/2,l+1,κ(Γ41)

× HL−1

−1/2,l+2,κ(Γ34) × HL−1

−1/2,l+1,κ(Γ23) ⊂ HL−1

mixed,l,κ(Γ).
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The continuity of η± now follows from the fact that the norm on

HL−1

1/2,l+1,κ(Γ12)×HL−1

1/2,l+1,κ(Γ41)×HL−1

−1/2,l+2,κ(Γ34)×HL−1

−1/2,l+1,κ(Γ23)

is stronger than that on HL−1

mixed,l,κ(Γ). Suppose that ρ±F = Φ = 0.
Then the solutions of (TM±) with boundary data Φ are U(x, t) = 0,
(x, t) ∈ G±. This means that F = 0. The injectivity of η± is proved
similarly.

Let Φ ∈ HL−1

mixed,l,κ(Γ), and let U ∈ HL−1

1,l,l,κ(G±) be the solutions of
(TM±) with boundary data Φ. The continuity of (ρ±)−1 and (η±)−1

follows from (14), the trace theorem, and (13).

The fact that HL−1

mixed,l+1,κ(Γ) is dense in HL−1

mixed,l,κ(Γ) implies that the
ranges of ρ± are dense in HL−1

mixed,l,κ(Γ). The corresponding statement
about the ranges of η± is proved analogously.

5. Properties of the Layer Potentials. The single-layer
and double-layer potentials were introduced and studied in [10]. For
convenience, here we list their basic properties and the properties of
the boundary operators generated by them.

Let D(x, t) be a matrix of fundamental solutions for (1), which
vanishes for t < 0. This means that the (4×4)-matrix D(x, t) satisfies

B0(∂2
t D)(x, t) + (B1∂tD)(x, t) + (AD)(x, t) = δ(x, t)I, (x, t) ∈ R

3,

D(x, t) = 0, t < 0,

where δ(x, t) is the Dirac delta and I is the identity (4×4)-matrix.
Obviously, the Laplace transform D̂(x, p) of D(x, t) satisfies the trans-
formed equation

p2B0D̂(x, p) + p (B1D̂)(x, p) + (AD̂)(x, p) = δ(x)I, x ∈ R
2.

The explicit form of D̂(x, p) and its asymptotic behavior as |x| → 0
and as |x| → ∞ can be found in [11].

Let A = (αT, α4)T, where α = (α1, α2, α3)T, be a smooth function
with compact support in ∂S × R, which is equal to zero for t < 0. We
define the single-layer thermoelastic potential VA of density A by
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VA(x, t) =
∫
Γ

D(x − y, t − τ)A(y, τ) dsy dτ, (x, t) ∈ R
3.

In [10] it was proved that for any κ > 0 and l ∈ R, the single-layer po-
tential can be extended by continuity to densities A ∈ HL−1

−1/2,l+1,l,κ(Γ)

and the vector-valued function U = VA ∈ HL−1

1,l,l,κ(G±) satisfies

(LU)(x, t) = 0, (x, t) ∈ G±.

The limiting values (traces) of (VA)(x, t), as (x, t) → Γ from inside
G±, coincide, and we write

(15) (VA)+(x, t) = (VA)−(x, t) = (VA)(x, t), (x, t) ∈ Γ;

therefore, we may define a boundary operator V for densities A ∈
HL−1

−1/2,l+1,l,κ(Γ) by means of (15).

Lemma 7. (i) For any κ > 0 and l ∈ R, the operator

V : HL−1

−1/2,l+1,l,κ(Γ) → HL−1

−1/2,l,l,κ(Γ)

is continuous and injective, its range is dense in HL−1

−1/2,l,l,κ(Γ), and
its inverse, extended by continuity from its range, defines a continuous
and injective mapping

V−1 : HL−1

1/2,l,l,κ(Γ) → HL−1

−1/2,l−1,l−2,κ(Γ)

whose range is dense in HL−1

1/2,l−1,l−2,κ(Γ).

(ii) If A ∈ HL−1

−1/2,l+1,l,κ(Γ) and U = VA ∈ HL−1

1,l,l,κ(G±), then there
hold the jump formulas

γ+U = γ−U = VA, T +VA − T −VA = A.

Let

T ′ =

⎛
⎜⎝ Ty

ηn1(y)∂t

ηn2(y)∂t

0
0 0 0 ∂/∂n(y)

⎞
⎟⎠ ,
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where Ty is the boundary operator defined by (5) with n = (n1, n2)T

and ∂α = ∂/∂yα, α = 1, 2. We construct the (4×4)-matrix kernel

P(x, y, t) =
[
T ′DT(x − y, t)

]T
and define the double-layer potential of density B = (βT, β4)T, β =
(β1, β2, β3)T, which is smooth, has compact support in ∂S × R, and is
equal to zero for t < 0, by

(WB)(x, t) =
∫
Γ

P(x, y, t − τ)B(y, τ) dsy dτ, (x, t) ∈ R
3.

In [10] it was proved that for any κ > 0 and l ∈ R, the double-layer
potential can be extended by continuity to densities B ∈ HL−1

1/2,l,l,κ(Γ),

and that the vector-valued function U = WB ∈ HL−1

1,l−3,l−3,κ(G±)
satisfies

(LU)(x, t) = 0, (x, t) ∈ G±.

We introduce the operators W± generated by the limiting values
(traces) of the double-layer potential by

(W±B)(x, t) = (γ±U)(x, t), (x, t) ∈ Γ.

Since, as shown in [10], T +W+B = T −W−B, we can define a boundary
operator F for densities B ∈ HL−1

1/2,l,l,κ(Γ) by

FB = T +W+B = T −W−B.

Also [10], W± = VT ∓.

Lemma 8. (i) For any κ > 0 and l ∈ R, the operators

W± : HL−1

1/2,l+2,l+2,κ(Γ) → HL−1

1/2,l,l,κ(Γ),

F : HL−1

1/2,l+2,l+2,κ(Γ) → HL−1

−1/2,l−1,l−2,κ(Γ)

are continuous and injective, their ranges are dense, respectively, in
HL−1

1/2,l,l,κ(Γ) and HL−1

−1/2,l−1,l−2,κ(Γ), and their inverses, extended by
continuity from their ranges, define continuous and injective mappings

(W±)−1 : HL−1

1/2,l,l,κ(Γ) → HL−1

1/2,l−2,l−2,κ(Γ),

F−1 : HL−1

−1/2,l−1,l−2,κ(Γ) → HL−1

1/2,l−2,l−2,κ(Γ),
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whose ranges are dense in HL−1

1/2,l−2,l−2,κ(Γ).

(ii) If B ∈ HL−1

1/2,l+2,l+2,κ(Γ) and U = WB ∈ HL−1

1,l−1,l−1,κ(G±), then
there hold the jump formulas

γ+U − γ−U = −B, T +W+B = T −W−B = FB.

6. Boundary Integral Equations and Existence Theorems.
Let U ∈ HL−1

1,l,l,κ(G±) be the (unique) solutions of (TM±) with boundary
data

Φ = {f12, f4,41, g34, g4,23} ∈ HL−1

mixed,l,κ(Γ),

F = γ±U = (ρ±)−1Φ, and G = T ±F = (η±)−1Φ. We consider three
representations for U(x, t) in terms of layer potentials. First, we seek
U(x, t) in the form

(16) U(x, t) = (VA)(x, t), (x, t) ∈ G±.

This leads to the systems of boundary integral equations

(17) ρ±VA = Φ.

Theorem 2. (i) For any κ > 0 and l ∈ R, systems (17) have unique
solutions

A = V−1(ρ±)−1F̂ ,

and the resolving operators define continuous mappings

(18) V−1(ρ±)−1 : HL−1

mixed,l,κ(Γ) → HL−1

−1/2,l−1,l−2,κ(Γ).

(ii) If A ∈ HL−1

−1/2,l−1,l−2,κ(Γ) are the solutions of (17), then U given

by (16) belong to HL−1

1,l,l,κ(G±) and are the solutions of (TM±) for l ≥ 0.

Proof. The continuity of the mappings (18) follows from the
properties of the operators V−1 and (ρ±)−1 listed in Lemmas 7 and 6,
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respectively. From (10) it follows that U = VA ∈ HL−1

1,l,l,κ(G±). Finally,
by Theorem 1, U(x, t) is the solution of (TM±) for l ≥ 0.

Representing the solutions of (TM±) in the form

(19) U(x, t) = (WB)(x, t), (x, t) ∈ G±,

we arrive at the systems of boundary integral equations

(20) η±FB = Φ.

Theorem 3. (i) For any κ > 0 and l ∈ R, systems (20) have unique
solutions

B = F−1(η±)−1Φ,

and the resolving operators define continuous mappings

F−1(η±)−1 : HL−1

mixed,l,κ(Γ) → HL−1

1/2,l−1,l−1,κ(Γ).

(ii) If B ∈ HL−1

1/2,l−1,l−1,κ(Γ) are the solutions of (20), then U given by

(19) belong to HL−1

1,l,l,κ(G±) and are the solutions of (TM±) for l ≥ 0.

The proof of this assertion follows from Lemmas 6 and 8, (10), and
Theorem 1.

Let ∂S̃1 and ∂S̃2 be two open arcs of ∂S such that ∂S̃1 ∩ ∂S̃2 = ∅

and ∂S̃1 ∪ ∂S̃2 = ∂S. Once again, we write Γ̃i = ∂Si × (0,∞), i = 1, 2.
The last representation for U is

(21) U(x, t) = (VA)(x, t) + (WB)(x, t), (x, t) ∈ G±,

with densities A and B such that suppA ⊂ ¯̃Γ1 and suppB ⊂ ¯̃Γ2. This
yields the systems

(22) ρ±(VA + W±B) = Φ,

or, equivalently,
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(23) η±(T ±VA + FB) = Φ.

Let F̂ ∈ HL−1

mixed,l,κ(Γ). From Lemma 6 it follows that F = (ρ±)−1Φ ∈
HL−1

1/2,l,l,κ(Γ) and G = T ±F = (η±)−1Φ ∈ HL−1

−1/2,l,l−1,κ(Γ). We

make the notation F1 = π̃1F ∈ HL−1

1/2,l,l,κ(Γ̃1) and G2 = π̃2G ∈
HL−1

−1/2,l,l−1,κ(Γ̃2), and introduce the pair {F1, G2} ∈ HL−1

1/2,l,l,κ(Γ̃1) ×
HL−1

−1/2,l,l−1,κ(Γ̃2).

Theorem 4. (i) For any κ > 0 and l ∈ R, systems (22) and (23)
have unique solutions

A = [(ε±12)
−1 − (ε∓12)

−1]{F1, G2} ∈ H̊L−1

−1/2,l−1,l−2,κ(Γ),(24)

B = [(π∓
12)

−1 − (π±
12)

−1]{F1, G2} ∈ H̊L−1

1/2,l−1,l−1,κ(Γ),(25)

which satisfy the estimate

(26) ‖|A‖|−1/2,l−1,l−2,κ;Γ + ‖|B‖|1/2,l−1,l−1,κ;Γ ≤ c‖|Φ‖|mixed,l,κ,Γ.

(ii) If A ∈ H̊L−1

−1/2,l−1,l−2,κ(Γ̃1) and B ∈ H̊L−1

1/2,l−1,l−1,κ(Γ̃2) are the

solutions of (22) and (23), then U given by (21) belong to HL−1

1,l,l,κ(G±)
and are the solutions of (TM±) for l ≥ 0.

Proof. Consider the case of (TM+); the exterior problem (TM−) is
treated analogously.

It is clear that

π̃2(ε+
12)

−1{F1, G2} = π̃2(ε−12)
−1{F1, G2} = G2;

therefore, suppA ⊂ ¯̃Γ1. For a similar reason, suppB ⊂ ¯̃Γ2. From (24),
(5), Lemmas 4 and 5, and the inclusion {F1, G2} ∈ HL−1

1/2,l,l,κ(Γ̃1) ×
HL−1

−1/2,l,l−1,κ(Γ̃2) it follows that A ∈ H̊L−1

−1/2,l−1,l−2,κ(Γ̃1) and B ∈
H̊L−1

1/2,l−1,l−1,κ(Γ̃1), and that (26) holds. We now prove (22), which in
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the case of the interior problem (TM+) may be written in the equivalent
form

(27) VA + W+B = F.

Replacing (24) and (25) in (27) and recalling that W+ = VT −,
V−1 = T + − T −, and π−

12(T −)−1 = ε−12, we obtain the sequence of
equalities

VA + W+B = V
(
[I − (ε−12)

−1ε+
12]G + T −[(π−

12)
−1π+

12 − I]F
)

= V(T + − T −)F + V
(
T −(π−

12)
−1π+

12F − (ε−12)
−1ε+

12G
)

= F + V
(
T −(π−

12)
−1 − (ε−12)

−1
)
{F1, G2} = F.

To prove uniqueness, let the densities A ∈ H̊L−1

−1/2,l−1,l−2,κ(Γ̃1) and

B ∈ H̊L−1

1/2,l−1,l−1,κ(Γ̃2) be the solutions of VA + W+B = 0, and
consider the function V (x, t) = (VA)(x, t) + (WB)(x, t), (x, t) ∈ G−.
Obviously, V is the solution of (T′M−) with boundary data π̃1γ

−V =
π̃1(VA + W+B) = 0 and π̃2T −γ−V = π̃2T +(VA + W+B) = 0. From
Corollary 2 it follows that V (x, t) = 0, (x, t) ∈ G−, and the jump
formulas for the layer potentials now yield A = 0 and B = 0.

Statement (ii) follows from Lemmas 7 and 8 and Theorem 1.

REFERENCES

1. C. Constanda, A Mathematical Analysis of Bending of Plates with Transverse
Shear Deformation, Longman/Wiley, Harlow-New York, (1990).

2. P. Schiavone and R.J. Tait, Thermal effects in Mindlin-type plates, Quart. J.
Mech. Appl. Math. 46 (1993), 27–39.

3. I. Chudinovich, C. Constanda, and J. Coĺın Venegas, Solvability of initial-
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