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ON AN INVERSE PROBLEM FOR A MODEL
OF LINEAR VISCOELASTIC KIRCHHOFF PLATE

CECILIA CAVATERRA AND MAURIZIO GRASSELLI

ABSTRACT. A linear viscoelastic Kirchhoff plate model
with a rotational inertia term is considered. In this model,
the vertical deflection u of a viscoelastic plate is governed by
a linear integrodifferential evolution equation which contains
a time convolution term. The convolution kernel, D, named
viscoelastic flexural rigidity, is supposed to depend on time
only. Provided that u is a solution to a suitable initial and
boundary value problem for the motion equation, the inverse
problem of determining D from supplementary information
is analyzed. Three possible additional measurements and
the corresponding inverse problems are examined. The main
theorems are concerned with existence of solutions on a given
bounded time interval. Continuous dependence on data is
also discussed. These results extend the ones contained in a
previous authors’ paper.

1. Introduction. Consider a homogeneous and isotropic plate of
uniform thickness h > 0 which occupies, for any ¢t € [0,7], T > 0, a
domain Q x (—h/2,h/2) C R3, where Q is an open, connected, and
bounded subset of R? with a smooth boundary I'. Denote by u(z,t)
the vertical deflection of the plate from its equilibrium position v = 0,
at point z € Q, at time ¢ € [0,7]. Assume that the plate is made
from a viscoelastic material and lies free of stresses and strains up to
the initial time ¢t = 0. Besides, suppose that the mass density is equal
to 1, just for the sake of simplicity. Then, neglecting thermal effects,
using the stress-strain relationship characterizing the three-dimensional
linear viscoelasticity of Boltzmann type (see, e.g., [5, 8] and references
therein) and imposing the Kirchhoff hypothesis, it can be shown that
the evolution of u is ruled by (cf. [9, Chapter I, Section 7], [10] and [11,
Chapter 2, Section 1.4 and Chapter 6], see also [15] and its references
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for the elastic case)

3
(1.1)  hu” - %Au” + D(0)A*u+ D' x A?u=f in Qx (0,T)

where prime denotes the time derivative, A is the Laplace operator,
A? indicates the biharmonic operator, and * stands for the usual time
convolution product over (0,¢). Here D : (0,400) — R is the so-called
viscoelastic flexural rigidity and D(0) > 0, while f: Q x (0,7) - R is
an external force acting along the vertical direction, i.e., orthogonal to
Q.

Let us associate with (1.1) a set of initial and boundary conditions.
We first suppose I' = I'g U I';, where I'y and I'; are relatively open
and disjoint subsets of I'. Also, we assume from now on that [T'y| > 0,
IT'y| being the one-dimensional Lebesgue measure of Iy, while it may
be |I';| = 0. In addition, we indicate by v = (v1,1») and 7 = (—va, 1)
the unit normal vector to I' pointing outward and the unit positively
oriented tangent vector to I', respectively. Then we introduce

(1.2) u(+,0) = uo, w'(-,0)=u; inQ
(1.3) u=wu,=0 onTyx][0,T]
(1.4) D(0)Biu+ D'« Biu=0 onT; x[0,T)
B3
(1.5) D(0)Bsu + D' x Bou — EUI"I =0 onT; x[0,T)

up, u1 :  — R being given initial conditions. Here (), represents the
derivative in the v-direction and By, By are linear operators defined by

Biz:i=Az+ (1 — pu)Byz,

1.6

(1.6) Baz := (Az)y + (1 — p)(Bzz2),
where

(1.7) Bz := 21011924y — szyy — 1/22;:”,

Boz i= (V] — V3)2ey + v1v2(2yy — Zuw).
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Here pu € (0,1/2) is the viscoelastic Poisson ratio and (-), stands for he
derivative in the 7-direction. From a mechanical viewpoint, boundary
conditions (1.3)—(1.5) say that the plate is clamped on I'g and free of
bending and twisting on I';.

The direct problem of finding u satisfying (1.1)—(1.5) has already
been studied both from the well-posedness and controllability view-
points (see [2, 9, 10, 11, 13]). Concerning applications, a further
interesting problem consists in identifying the kernel D via some ad-
ditional information. This kind of inverse problem has been analyzed
in [2] (see also [3, 7] for similar problems for three-dimensional bod-
ies). There, two possible supplementary measurements are considered,
i.e., the bending or the twisting moment exerted on a given subset
I' C T’y with positive measure. This corresponds to assuming that, cf.,
[2, Equation (1.9)],

(1.8) ®'[D,u] := /ﬁ{D(O)Blu + D' % Byu}dl = g' in [0,T]

for the bending moment, and, cf., [2, Equation (7.29)],

3
(1.9) ®*[D,u] := /N{D(O)Bgu + D' % Bau — %u'l,'}df =g*> in[0,7]
T

for the twisting moment. Here dI' denotes the Lebesgue measure on I'
and g¢¢ : [0,7] — R are known functions, i = 1,2. To be more precise,
we remark that g2 may also depend on a shear force which acts along
the vertical direction. Also, it is worth noting that, owing to (1.3), the
term —(h3/12)u!! in (1.9) disappears.

The inverse problem of finding (u, D) satisfying (1.1)—(1.5) and (1.8)
(or (1.9)) is investigated in [2]. In particular, local (in time) existence,
uniqueness, and continuous dependence estimates are obtained. Here
we mainly prove a global existence and uniqueness result, i.e., on the
whole [0, 7], taking advantage of the technique devised in [1]. Also,
we consider further possible additional information which consists in
measuring the vertical deflection at a fixed point zy € QUT, for any
t €1[0,7], ie.,

(1.10) ®3[D,u(t) == u(xo,t) = g*(t), Vte[0,T],

where g® : [0,7] — R is given.
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To sum up, this paper is concerned with the study of

Problem (IP;). Find u and D satisfying (1.1)—(1.5) and

(1.11) ®'[D,u] =g¢° n[0,T], ic{l,2,3}.

Our main result ensures that, for any ¢ = 1,2, 3, (IP;) has a unique
solution on the whole [0,T], provided that ', ug, u;, f and ¢* are
smooth enough.

More precisely, the plan goes as follows. In Section 2 we recall some
results about the well-posedness of the so-called direct problem, i.e.,
finding u satisfying (1.1)—(1.5) provided that D is given. Section 3
contains our main results. In Sections 4 and 5, we show that rigorous
formulations of (IP;) are equivalent to a system of nonlinear integral
equations in fixed-point form. This system is solved in Section 6.
Section 7 is devoted to discussing continuous dependence on data, while
in Section 8 a basic technical lemma used in Section 6 is proved.

2. The direct problem. Here we recall some results concerning the
well-posedness of what we call the direct problem, i.e., the initial and
boundary value problem (1.1)—(1.5) where D is given. These results
turn out to be useful in Section 4 for a better understanding of the
inverse problem formulations (see Remark 4.1 below).

Let us introduce first some notation. The space of all functions
z : [0,T] — X, X being a real Banach space, which are strongly
continuous along with their first m time derivatives is denoted by
C™([0,T]; X). Endowing it with the norm

m
2llm,x ==Y ess sup [2V(t)]x
" ; tefo,1]

we obtain a Banach space. Besides, if X = R, then we set || - ||m :=
[l x-



LINEAR VISCOELASTIC KIRCHHOFF PLATE 183

Consider now H := L?(Q2) and define

(2.1) Vi={veH(Q)|v=0 onTy}

(2.2) Vo i={we€ H*(Q)|v=1v,=0 onTy}
(2.3) Vi = H3(Q)N Vs

(2.4) Vy = HYQ)N Vs,

We endow V; and V5 with the inner products

(2.5) e(v,?) :=h/m~;+7/Vv-Vf;, Vv, 0eVy
Q Q

(2.6) a(w,w):= /{wzwﬁ’m + Wyy Wyy + (WaeWyy + WyyWas)
Q
+2(1 — p)Wyy Wyt dedy, YVw, W € V.

Here 7y := h®/12 and the dot stands for the usual scalar product in R?2.
Also, we recall that

(2.7) Vo Vi > H<=V] <>V,
with dense and compact injections, V] and Vj being the dual spaces of

V1 and V5.

The bilinear form ¢(+, -) is obviously coercive and the same holds for
a(+,-) by virtue of Korn’s lemma, as || > 0 (see, e.g., [4, Chapter III,
Section 3.3]). On account of that, we introduce the linear operators
C:Vy — V] and A: Va2 — Vj by setting

(2.8) (Cv,?) :=¢(v,0), Vv, 0eV;

c
(Aw, ) := a(w,w), VYw,w € Va,

and we remark that C and A are nothing but the canonical isomor-
phisms of V; onto V] and of V5 onto V3.

Assume now

(2.10) D € C*([0,T))
(2.11) D(0) > 0.
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Suppose, moreover,

(2.12) TonT, =2

(2.13) rect

(2.14) F' e (0, T]; V)
(2.15) C'F? € C°([0,T); Va)
(2.16) wo € V3, Biwg=0 onI}
(2.17) wy € Vo

and consider

Problem (DP). Find u: [0,T] — V3 satisfying

(2.18) u € C°([0,T1; V5) N C([0, T1; Vo) N C2([0, TT; V1)

Cu"(t) + A(D(0)u + D' xu)(t) = (F* + F?)(t)
(2.19) inVy, Vte(0,T)

(2.20) u(0) = wo, U (0) = w;.

Hence we have, cf., [2, Theorem 3.1],

Theorem 2.1. Let assumptions (2.12)—(2.17) hold. Then, for any
D fulfilling (2.10)—(2.11), Problem (DP) admits a unique solution.

Remark 2.1. Problem (DP) is a variational formulation of the initial
and boundary value problem (1.1)—(1.5). Existence and uniqueness of
weaker solutions can be proved under less stringent hypotheses on the
data and, in particular, on TI', see [10], [11, Chapter 6, Sections 1,
2]. Nevertheless, in our approach, u has to be sufficiently smooth (see
next sections). Thus, in the presence of mixed boundary conditions,
i.e., [T'1| > 0, condition (2.12) imposes some restrictions on €, which
hold, e.g., for annular plates.



LINEAR VISCOELASTIC KIRCHHOFF PLATE 185

Strengthening a bit the assumptions (2.13)—(2.17), one can prove that
the solution u given by Theorem 2.1 is in fact a strong solution, i.e., it
fulfills equations (1.1)—(1.5) almost everywhere. Let

(2.21) rece

(2.22) C™'F' € CH([0,T); Va)
(2.23) C'F? e C°([0,T); V)
(2.24) wo € Va,

Biwg = Bawg = [071(—D(0)A’U}0 + f(O))]l, =0 only

(225) wy € Vs, Biw; =0 on Y.

It is worth remarking that the compatibility relation on I'; deriving
from (1.5) reads

D(O)ngo = ?—;[Cil(*D(O)A’wo + f(O))],, on Fl.

To obtain that, one has to use equation (2.19). Clearly, this relationship
holds because of the boundary conditions written in (2.24). Our choice
has been made just for sake of simplicity. Moreover, observe that in
[2] the compatibility relations coming from (1.4)—(1.5) were completely
forgotten.

The regularity result reads, cf. [2, Theorem 7.2], see also [11, Chapter
6, Section 2],

Theorem 2.2. Let assumptions (2.12) and (2.21)—(2.25) hold. Then,
for any D fulfilling (2.10)—(2.11), the unique solution u to Problem
(DP) satisfies

(2.26) u € C°([0,T]; V4) n C*([0,T]; V3) N C*([0, T); Vz).
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Remark 2.2. Standard arguments based on Green formulas, see, e.g.,
[2] or [10], allow us to check that if u solves Problem (DP) and fulfills
(2.26), then wu(t) satisfies (1.1) almost everywhere in 2, (1.3) almost
everywhere on I'g and (1.4)—(1.5) almost everywhere on I'y, for any
te0,T].

3. Main results. Before stating the main theorems, we give a
rigorous formulation of Problem (F;) for i = 1,2, 3.

Consider first Problem (P;). Assume

(3.1) f=r+ e (0,11 V) + C*(0, T); H)
(3-2) CTlf? e C*([0,T); Va)

(3.3) up € Vi, wy €Va

(3.4) C~'Aug € Vy

C'(=DgAug + £(0)) € V3,

(35) 81071(—D3AU0 + f(O)) =0 on Fl
(3.6) C Y (~D}Au; + f'(0)) € Vs
(3.7) g € C*(0,T))
Bl’LLO = Blul = 0,
(38) BQ’U,() = [071(—D(1)A’u,0 + f(O))]l, =0 on Fl
. 01:= [ Biugd
(3.9) 1 /f 1ugdl #0
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(3.10) D :=g'(0)d; " >0

and set

(3.11) Di = 51_1<(gl)'(0) fD})/Jslul dF).
r

Then we introduce

Problem (P;). Find w:[0,T] = Vo and D : [0,T] — R satisfying

(3.12) u € C2([0,T]; V3) N C3([0,T]; Vo) N C*([0, T); V1)

(3.13) D e C*([0,T))

Cu”(t) + A(D(0)u + D" u)(t) = f(t)

(8.14) in Vy, Vte(0,T)
(3.15) w(0) =y,  w(0)=u
(3.16) D(0) = D§, D'(0) = D}
(3.17) ®D,ul =g* in[0,T].

Remark 3.1. Initial conditions (3.16) are derived from conditions
(3.9)-(3.10) and position (3.11). More precisely, they come out by set-
ting t = 0 in equation (3.17) and in the one obtained by differentiating
(3.17) in time, cf. (3.10)—(3.11). A similar remark holds for Problems
(P,) and (Ps), see below (3.27)—(3.28), (3.33) and (3.40)—(3.41), (3.46),
respectively.

Concerning Problem (P;), we show
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Theorem 3.1. Let (2.12)—(2.13) and (3.1)—(3.10) hold. Then
Problem (Py) has one and only one solution.

Problems (P2) and (Ps) require stronger regularity hypotheses on the
data. Indeed, regarding Problem (P;), we suppose

(3.18) f=f+ e (0,11 Vi) + C*([0,T]; H)
(3.19) C7ift e C3([0,T); V)

(3.20) Clf? e C*([0,T); V3)

(21 W@ €Va Buo=Bui=0 onl

C_IA’U,() e Vs, C_IA’U,l e Vs, Blo_lA’U,() =0 only

Baug = [Cil(—D(z)A’u,o + f(O))]l, =0 only

3.22
( ) BQUl = [0_1(—D3AU1 — D%AUO + f,(O))]V =0 on Fl

(3.23)
C™(—=DjAug + £(0)) € Vi,
B,.C Y (~D2Aup + f(0)) =0 onT
[C7!Aug, = [CY(=D?Auy + f"(0))], =0 on Ty

C Y (—=DjAus + f'(0)) € V3,

(324) Blc_l(—DgAul + fI(O)) =0 only
(3.25) 9% € C*(0,T))
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(3.27) D2 := g*(0)65 > 0

where r = 1,2, and set
(3.28) D} = 521<(92)’(0) - D§/~32u1 dF).
T
Then Problem (P,) can be formulated as

Problem (P,). Find u:[0,T] = V2 and D : [0,T] — R satisfying

(3.29) u e C2([0,T); Va) 0 C3([0, T; Va) N C4([0, T]; Va)
(3.30) D e C*([0, 1))

Cu"(t) + A(D(0)u + D" u)(t) = f(t)

(8:31) inVy, Vte(0,T)
(3.32) w(0) =ug,  w(0) =1u
(3.33) D'(0) = D?, D(0) = D}
(3.34) ®*[D,u] = g* in [0,T].

Our result reads

Theorem 3.2. Let (2.12), (2.21) and (3.18)—(3.27) hold. Then

Problem (P2) has one and only one solution.

Consider now Problem (Ps). Let
(3.35)
C Y (=D} Auy + £(0)) €
B,C (- DiAuy + £(0))

Vi,
0 OIlFl
[C™ Aug), = [C

“Y(=D3Auy + f7(0))], =0 onTy
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C™!(=DgAus + f'(0)) € Vs,

(3.36) B.C™'(=D3Au; + f'(0)) =0 onT,
(3.37) g° € C*([0,77)

(3.38) g°(0) = uo(zo),  (9°)'(0) = ua(xo)
(3.39) 63 := (C™  Aug) (o) # 0

(3.40) Dj = 05 ((C7"f)(w0,0) = (¢°)"(0)) > 0

where r = 1,2, and set

(341) D} =651 ((C™f")(wo, 0) — DY(C™" Auy) (o) — (9°)®(0)).
We have

Problem (P;). Find w:[0,T] = Vo and D : [0,T] — R satisfying

(3.42) u € C2([0,T]; Va) N C3([0,T7]; V3) N C*(]0,TY); V=)
(3.43) D e C*([0, 1))
(3.44) Cu"(t) + A(D(0)u+ D" * u)(t) = f(t)

inVy, Vte(0,T)
(3.45) u(0) = ug, u'(0) = uy
(3.46) D(0) = Dg, D'(0) = D}

(3.47) ®3[D,u] =g¢* in[0,T].
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Existence and uniqueness is given by

Theorem 3.3. Let (2.12), (2.21), (3.18)~(3.21) and (3.35)—(3.40)
hold. Moreover, let (3.22) hold with D? in place of D?, i = 0,1. Then
Problem (P3) has one and only one solution.

Remark 3.2. If, for example, ug identically vanishes so that (3.9)
fails, then Theorem 3.1 still holds provided that smoother data are
considered and u; (or f) plays the role of ug in (3.9) (see [2, Section 7,
Remark 7.1]). Similar remarks can be made for (3.26) and Theorem 3.2
or (3.39) and Theorem 3.3.

Remark 3.3. Note that, owing to the regularity of u and f, from
equation (3.14) (or (3.31) or (3.44)) we can deduce that equation (1.1)
is satisfied almost everywhere in © x (0,7) and the same holds for the
boundary conditions (1.3)—(1.5), cf. Remark 2.2.

Remark 3.4. Analogous results can be formulated for the viscoelastic
beam model considered in [2, Section 7, Remark 7.4]. However, it is
worth noting that in Problem (P3) for the beam we can look for solu-
tions u satisfying (3.12) instead of (3.42); consequently, the regularity
assumptions (3.18)—(3.22) and (3.35)—(3.36) can be substituted with
(3.1)=(3.5). In fact, referring to Section 4, as we are in dimension one,
to compute the trace of equation (4.6) at z¢ we just need the injection
HY(Q) — C°(Q).

Remark 3.5. Some hypotheses which ensure the validity of compat-
ibility relationships deriving from (1.5) are quite involved, cf., (3.23)
and (3.35). Anyway, they can be avoided looking for weaker solutions
in time (see Remark 6.2). Moreover, it is worth noting that if the plate
is clamped along T, i.e., I'y = &, then the assumption turns out to be
simpler.

4. Equivalent problems. Here we show that Problems (F;),
1t = 1,2,3, are equivalent to suitable Cauchy problems which can be
further reduced to systems of nonlinear Volterra integral equations (see
Section 5). All the equivalence results contained in this section and in
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the next one bear upon the nonvanishing conditions (3.9), (3.26) and
(3.39).

Consider first Problem (P;) and suppose it admits a solution (u, D).
To find an equation for D, we differentiate (3.17) twice in time. We
have, cf. (1.8) and (3.15),

(4.1) </;81“0 dF>D" =(g")" - (/fBlul dF>D’ —3'[D,u"]
in [0, 7.

Then, taking (3.9) into account, equation (4.1) yields
(4.2) D" =9'[D,D' u"]

= 511{(91)”— (/fBlul dF>D’—<b1[D,u”]} in [0, 7.

Regarding Problem (P2), starting from (3.34) and arguing as before,
we obtain, cf. also (1.9) and (3.32),

(4.3) </FBzu0 dF)D” =(¢)" - (/%Bwl dF)D’ _ °[D, '
in [0, 7).

Using now (3.26), from equation (4.3) we infer

(4.4) D" =9?’D,D',u"]

= 551{(92)”— (/%Bgul dr)p'—<1>2[D,u"]} in [0, 7.

In Problem (Ps), additional information (3.47) does not contain the
delay kernel D explicitly (see (1.10)). Therefore, we have to derive an
equation for D" from (3.44). More precisely, we rewrite (3.44) as
u'(t) + CT AD(0)u+ D' xu)(t) = C~'f(t)

(4.5) .
inV,, Vte(0,T).

Differentiating both sides of (4.5) twice in time, we obtain, cf. also
(3.45),

(4.6) u(t) + CTTAD0)u" + D' % u")(t)
= —(C~YAug) D" (t) — (C™* Auy) D' (t) + C~1 " (t)
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in V3, for any t € (0,7).

Recalling that, in dimension two, we have H?(Q) — C°(Q), the
regularity of u and the assumptions on ug,u;, f allow us to compute
the pointwise trace of equation (4.6) at 9. Then, on account of (3.47),
we deduce, for any t € [0, 7],

(4.7) (C™" Aug) (o) D" (1) = () (1)
— (CTTA(D(0)u" +D" * u"))(zo, t)
— (C71 Aug) (20) D' () +(C 7 ") (o, 1)
Hence, owing to (3.39) and (3.46), equation (4.7) becomes
(4.8)
D"(t)=¥*[D, D', u"]
=63 H(g> )W (t) — (C~HADEW" + D' % u")) (o, t)
— (C™ Aug) (o) D' (1) + (C™ ") (w0, 1)}
Vtel[0,T].

Observe that in the obtained equations for D", cf. (4.2), (4.4) and
(4.8), the acceleration field w := u" appears. It is not difficult to check
that w satisfies a direct problem which is quite similar to (3.14)—(3.15),
or (3.31)—(3.32) or (3.44)—(3.45). In fact, differentiating twice in time
the evolution equation for u and taking advantage of (3.8) and of
the initial conditions for u and D, cf. (3.15)—(3.16), (3.32)—(3.33) and
(3.45)—(3.46), we obtain, for any i € {1,2, 3},

Cw" (t) + A(Dyw + D' x w)(t) = F(D',D")(t)

(4.9) o
inVy, Vte(0,7)

(4.10) w(0) = wo, w'(0) = wy
where, cf. also [2, Equations (4.5)—(4.7)],

(4.11)
F(D',D") := —AugD" — Au, D' + f"

(4.12) wp := C~ (=D} Aug + £(0))

(4.13) wy == C~ (=D Auy — D} Aug + f'(0)).
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Consider now Problem (P;). We have just shown that the pair (w, D)
solves, cf. (4.2), (4.9)—(4.10),

Problem (P}). Find w: [0,T] = V2 and D : [0,T] — R satisfying

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

w € C°([0, T1; V5) N C1([0, T); Va) N C2([0, T); Vi)
D € C%([0,T))

Cw" (t) + A(Djw + D' x w)(t) = F(D', D")(t)
inVy, Vte (0,T)

D" =¥'[D,D' w] in[0,T]
w(0) = wy, w'(0) = wy

D(0) = Dy, D'(0) = Dj.

Analogously, taking (4.4), (4.9)—(4.10) and (4.8)—(4.10) into account,
respectively, we introduce

Problem (P}). Find w: [0,7] = V2 and D : [0,T] — R satisfying

(4.20)

(4.21)

(4.22)

(4.23)

w € C°([0,T]; Va) N CH([0,TT; Vs) N C3([0, TY; Va)
D € C*([0,T))

Cw" (t) + A(D3w + D' x w)(t) = F(D',D")(t)
inVy, Vte (0,T)

D" =92[D,D',w] in[0,T]
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(4.24) w(0) = wy, w'(0) = wy

(4.25) D(0) = DZ, D'(0) = D2.

Problem (P}). Find w: [0,7] = V2 and D : [0,T] — R satisfying

(4.26) w e C°([0,T1; Va) N CH([0,T1; V3) N C*([0, T); Va)
(4.27) D € C?(]0,T))

Cw" (t) + A(Djw + D' x w)(t) = F(D', D")(t)

(4.28) inVy, Yte (0,T)
(4.29) D" =¥*D,D',w| inl0,T)
(4.30) w(0) =wo,  w'(0) =w,
(4.31) D(0) = Dg, D'(0) = D3.

Conversely, if for any i € {1,2,3}, Problem (P}) admits a unique
solution, then setting

t
(4.32) u(t) = up + tuy +/ (t—s)w(s)ds Ytel0,T)

0
one can realize that the pair (u, D) solves Problem (F;), cf. (3.10)—(3.11),
(3.27)~(3.28), (3.40)—(3.41).

To sum up, we have

Proposition 4.1. For any i € {1,2,3}, let the assumptions of
Theorem 3.1 hold. Then Problem (P;) has a unique solution (u,D)
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if and only if Problem (P}) has a unique solution (w, D). Moreover, u
and w are related by (4.32).

Remark 4.1. Theorems 2.1-2.2 tell us what kind of regularity hy-
potheses on wg, wy and F (D', D'') we have to assume. In fact, consider
for instance Problem (P;). Then, on account of (4.11)—(4.13), it suf-
fices to compare (2.14)—(2.17) with (3.1)-(3.5). Regarding (P2) and
(P;), strong solutions to the Cauchy problem (4.9)—(4.10) are needed,
so that we have to use Theorem 2.2.

5. Reduction to systems of integral equations. Our formula-
tion of the equivalent Problems (P!) as systems of integral equations
requires a representation formula of the solution to the Cauchy problem
(4.9)-(4.10). To obtain that, we further transform equation (4.9) and
conditions (4.10), see [2, Section 3].

For any 7 € {1, 2,3}, let us set, cf. (3.16), (3.33) and (3.46),
(5.1) z=Diw+D xw inQx (0,T)
and observe that
(5.2) Diw=z+Rx*z inQx (0,T)

where R is the resolvent kernel of (Dj) D', cf. (3.9)-(3.10),
(3.26)—(3.27) and (3.39)—(3.40). We recall that R solves

(5.3) DiR+R*D' =-D' in [0,T].

Therefore, setting ¢ = 0 in (5.3) we obtain, cf. (3.16), (3.33) and (3.46),
(5.4) R(0) = R) = —(D}) ' Di.

Moreover, on account of (5.4), differentiating (5.3) in time we have

(5.5) R = (D))" (D" +R{,D' + R'+D') in [0,T].

By using (5.1)—(5.2) and (5.4), Cauchy problem (4.9)—(4.10) turns
out to be
(5.6) C2"(t)+ DiAz(t) = FL(R',2')(t)
+ FX(D',D",R)(t) inVy Vte(0,T)
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(5.7) 2(0) =20,  2'(0) =2

where, cf. (4.11)—(4.13),

(5.8) FYR,Z) = ~C(R\? + R *2')
(5.9) F3(D',D",R) := —R'Cz + D{F(D',D")
(5.10) 20 := Diwy

(5.11) 21 := Diw; + Diwyg

for any ¢ € {1,2,3}.
Consider the linear operators C, A defined by

o D{A 0 o 0 —-DiA
s o= (P 0), as(0, D),

One can easily check that C and A are isomorphisms of V2 x V7 onto
V3 x V{ and of V2 x V; onto V3 x V4, respectively. On account of (5.12),
introduce the linear operator B := C™ A : D(B) — V, x V; with

DB):={z=(:22) cVex Vi |Azc Vi xV/} = Vo x V]
the superscript * denoting the transposition. It is worth observing that,
thanks to (2.12)—(2.13), we can characterize D(B) as, cf. [12, Remark
2.4],
(5.13) DB)={zcVoxVa|2' €V3, Biz2! =0 onT,}.

Then we can endow D(B) with the norm ||z|pg) := ||2'[lv; + [|2°]|vs,
which is equivalent to the graph norm.

Moreover, we remark that B is invertible, namely, there exists B :
Va2 x Vi — D(B), and one has

(5.14) (B, (B™'v)’) = (D) A Cv?, o)
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for any v = (v!,v?)* € Vo x V1.

Taking advantage of (5.12), we now transform the second order
equation (5.6) into a first order system by setting

(5.15) z:= (2,2)".
More precisely, Cauchy problem (5.6)—(5.7) can be rewritten as

(5.16) 7z + Bz =F'(R,z) + F*(D',D",R) inQx(0,7)

(5.17) z(0) = zg

where, cf. (5.8)-(5.11),

(5.18) FY(R,z):= (0,C7'FY(R, "))
(5.19) F?(D',D",R) := (0,Cc*F*(D',D",R"))*
(520) Zy = (Z07Z1)*-

On the other hand, we know that —B generates a strongly continuous
semigroup of contractions, say {S(t)}+>0, on V2 x Vi, cf. [12, Theorem
2.1). Therefore, we have

z(t) = S(t)zo + (S [F(R',z) + F*(D', D", R")])(1)

5.21
(5.21) Vte[0,T].
Let us set
(5.22) G:=D", P:=R inl0,T)

and observe that, cf. (3.16), (3.33), (3.46),
. - t
(5.23) D(t) = Dy +tD] + / (t—s)G(s)ds
0

(5.24) R(t) = R} + / t P(s)ds
0
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for any t € [0,7] and ¢ € {1,2,3}. Then, on account of (4.2), (5.1),
(5.5), (5.15) and (5.21)—(5.24), we can say that if (w, D) is a solution
to Problem (P}), then (z,G, P) is a solution to

Problem (P?). Find z : [0,T] - Vo x V4, G : [0,T] - R and
P:[0,T] — R satisfying

(5.25) z € C°([0,T); D(B)) N C*([0, T]; Va x V1)
(5.26) G,P € C°(]0,1))
(5.27) z = Szg + S * [F}(P,z) + F*(D} + 1% G, G, P)]

(5.28) G =V'[zG,P]

1= 51_1{(91)”(/1:811&1 dF> (D}+1*G)/F31z1}

in [0,T]

(5.20) P =—(D}) G+ (R} +P)(D}+1+G)] in[0,T].

Clearly, if (z, G, P) solves Problem (PZ), then (w, D) solves Problem
(P}), where, cf. (5.2),

(5.30) w:= (DY) P+ (R +1%P)x2') inQx(0,T)

and D is given by (5.23) with ¢ = 1.

Observe that ¥' is well defined owing to the regularity of z, cf. (1.8),
(4.2), (5.13), (5.25) and (5.28). In comparison with Problem (P} ), both
Problems (P3) and (Pj) require a higher smoothness for w because of
U, and Vs, cf. (1.9)—(1.10), (4.4), (4.8), see also [2, Section 7, Remark
7.2]. Hence, to formulate equivalent Problems (P%) and (P2), it is
convenient to set

(5.31) v := Bz
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and to consider the Cauchy problem derived by (5.16)—(5.17), cf. [2,
Equations (7.23)—(7.24)],

v + Bv = B[F}(R,B 'v) + F*(D',D",R')|

(5.32) in Q x (0,7)

(533) V(O) = Vp = BOZ0.
Therefore, we have, cf. (5.21),
(5.34)  v(t) = S(t)vo + (S * B[FY(R',B 'v) + F2(D', D", R)])(t)

for any t € [0, T7.

Hence, recalling (4.4), (4.8), (4.23), (4.29), (5.1), (5.5), (5.14),
(5.22)—(5.24), and taking (5.31)—(5.34) into account, if (w, D) solves
Problem (P;), i = 2,3, then (v, G, P) solves, respectively,

Problem (P). Find v : [0,T] — Vo x Vi, G : [0,T] = R, and
P :[0,7T] — R satisfying
(5.35) v € C°([0,7] : D(B)) N C*([0,T]; Va x V1)
(5.36) G, P € C°([0,T))
(5.37) v =08vo+S*B[F(P,B™'v)+F*D] +1%G,G,P)]
(5.38) G =V2%v,G,P|:= 551{(92)” - </~Bgu1 dF) (D? +1xG)
r

- /F BlDS(A_IC’)VZ} in [0,T]

(5.39) P=—(D})7'G+ (RE+P+)(D}+1%G)] in[0,T).
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Problem (PZ). Find v : [0,T] — Vo x V4, G : [0,T] - R and
P :[0,7] — R satisfying

(5.40) v € C°([0,T]; D(B)) N CH([0,T); Va x VA)
(5.41) G,P € C°([0,T])
(5.42) v =08vo+S*B[F(P,B™'v)+F*D] +1%G,G,P)]

(5.43)
G = ¥%v,G, P
=65 {(g*)¥ — D§v* (w0, -)
— (C7 Y Auy ) (o) (D3 4+1%G) + (C L") (2o, -)}  in [0,T)

(5.44) P=—(D})7'G+ (R34 P+)(D3+1%G)] in[0,T).

Conversely, if (v,G,P) is a solution to Problem (P?), i = 2,3,

recalling [2, Section 7, Remark 7.2], one can also prove that (w, D)

is a solution to Problem (P}), where, cf. (5.14) and (5.30)—(5.31),
(5.45) wi=A"1C(W? + (Ry+ 1% P)xv?) inQx(0,7T)
and D is given by (5.23) with i € {2, 3}.

On account of Proposition 4.1, we can summarize our equivalence
results as

Proposition 5.1. Let the assumptions of Theorem 3.1 hold. Then
Problem (P)) has a unique solution (u, D) if and only if Problem (P?)
has a unique solution (z,G,P). Let the assumptions of Theorem 3.,
i = 2,3, hold. Then Problem (P;) has a unique solution (u, D) if and
only if Problem (P?) has a unique solution (v,G, P).

We are now in a position to formulate problems (P?), i =1,2,3,in a
fixed-point form. Indicate, for the sake of simplicity, by U the possible
solution to Problem (P?), that is,

(5.46) U:= (U, U, U3 UY"
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where, for Problem (P?),
(5.47) Ul =21, U? =22, U3 =G, U*:= P,
while, for Problem (PZ) or (P$),
(5.48) Ut =t U?:=v? U =G, Ut:=P,
and set, cf. (5.14), (5.27), (5.37),
5.49) (JL(U),J2(U))* := % (0, —(RE + Utx)U? — Uz

1 1 0

— Dj(CH AuoU? + C M Auy (1 + UP))*

(5.50) (K}, K})* := Szg+ S % (0,07 (f" — D} Auy))*

(5.51) (JH(U),J2(U))* := S * (RS + U%)U + Uz

+ D{(C 1 AugU? + C M Auy (1 U?),0)*
(5.52) (K}, K2)* := SBzo + S * (=C~(f" — D} Auy),0)*
where ¢ = 2,3. Using the assumptions of Theorem 3.i and standard
properties of S, cf., e.g., [6, Chapter 1], one can check that (see also

(8.1)—(8.5) below)

(5.53) (J; (U), 7} (0))* € C°((0,T]; D(B))

(5.54) (K}, K})" € C°([0,T];D(B))

for any U € C°([0,T];D(B)), i = 1,2,3.

On account of (5.49), (5.51), (5.53)—(5.54), relationships (5.28), (5.38)
and (5.43) lead us to introduce

(5.55) (J2(U):= —51_1{</FBlu1 dI‘)(l*U3)+/FBlJ11(U) dF}



LINEAR VISCOELASTIC KIRCHHOFF PLATE 203

(5.56) J3(U):= —621{(/5821“ dr>(1*U3)

2 —1 2
+/fBzDO(A C)J2(U) dF}

(557)  J3(U) i= —05 {DRJZ(U) (o, ) + (€~ Auy)(zo) (1 + U)}

and

(5.58) K3 := 5;1{(g1)"D}/~Blu1 de/~BlK11 dF}
r r

(5.59) K3 := 551{(92)”—Df/~32u1 dF—D%/NBl(Alc)KQZdF}
r r

(5.60) K3 =85 {(¢°) - DiKZ (0, )
— Di(C™" Auy) (o) + (CT ") (w0, ) }-

Also, taking advantage of (5.29), (5.39) and (5.44), we define, for
i=1,2,3,

(5.61)

JH(U) := —(Dg) '[P (U) + (R + Ut) (1 U) + D = U]
(5.62)
K} = —(Dy) '[RyDi + K7).

(2

Summing up, recalling Problem (P?) and Proposition 5.1, positions

(5.46)—(5.52) and (5.55)—(5.62) allow us to state

Proposition 5.2. For any i € {1,2,3}, let the assumptions of
Theorem 3.1 hold. Then Problem (P;) has a unique solution (u,D)
if and only if there exists a unique U; € C°([0,T]; D(B) x R?) solution
to the fized-point equation

(5.63) U=J,(U)+K; inl0,T]

where J; == (J}, J2,J3,J)* and K; = (K}, K2, K2, K})* are defined

[ [ 17%

by (5.49)~(5.52) and (5.55)—(5.62).
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6. Proof of Theorems 3.1-3.3. Our proof is based on the fixed-
point formulation given in Proposition 5.2. We begin by stating a basic
technical lemma about the local Lipschitz continuity of the mapping
J;,i€{1,2,3}. Set

Y := D(B) x R?

and endow Y with the norm
1Zlly = (2, Z*)lpm) +12° + 127

for any Z := (Z', 2%, 73, Z*)* € Y. The result we need is (see Section 8
for its proof)

Lemma 6.1. For any i € {1,2,3}, let the assumptions of Theo-
rem 3.i hold. Then, for any U,U € C°([0,T);Y), we have, for any
t € 0,17,

61 1@0) -3l < [ AU, 0)i-5)|(U-0)()ly ds
where
62)  A(UD)) = [H [0+ 10l ds

for any t € [0,T], ¢} being a positive constant depending on suitable
norms of ug,u1, f,g¢* and on T (ifi = 1,2), T,Q, h, i, 6;.

To apply our fixed-point argument, let us rewrite equation (5.63)
in a more appropriate form. First, observe that, recalling (5.54),
(5.58)—(5.60), (5.62) and the assumptions of Theorem 3.i, one has

(6.3) K; € C°([0,T);Y) i=1,2,3.
Then, set
(6.4) V:=U-K;

jZ(V) =J;(V+K;) - J;(K;)
K; = J(K;)
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for any 7 € {1,2,3}. Consequently, equation (5.63) becomes

(6.7) V=J,(V)+K; inl0,T].

Therefore, taking advantage of Proposition 5.2 and (6.7), our proof
consists in showing that the mappings

(6.8) Li(V):=J;(V)+K;, i=1,2,3,

have a fixed-point in Yz, where Y, := C°([0,7];Y), 7 € (0,T]. Note
that, on account of (6.1), (6.3) and (6.5)—(6.6), one can check that
L; : Yr — Y7 is well defined.

Following [1, Theorem 2.2 (ii)], we introduce in Y, the weighted norm

(6.9) [VII7 :=ess sup e “'[[V(t)lly, o € [0,+00)

T€[0,T

for any V € Y;, 7 € (0,T]. Of course, Y, turns out to be a Banach
space for any fixed o € [0,4+00). In particular, if 7 = T, and o = 0,
we have, cf. Section 2, ||U||% = ||U]||o,y. Besides, one can easily realize
that the norms defined by (6.9) are all equivalent in Y, for any fixed
7€ (0,17

Consider now the closed and bounded subset of Y
Broi={V €Yr: V| <1}

for some (r,0) € (0,400)? and let V € E,.,.
From (6.1) and (6.5), we derive, for any ¢ € [0, 7],

(6.10) e T (V)(®)lly

t

< / e TNV 4+ Ko K (- s)e [ V(s)ly ds.
0

An easy computation shows that, cf. (6.2),

T
(6.11) /0 e 7'Ai(Z,Z)(t) dt < X(|Z||7, |Z]%, o)
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where

(6.12)  A(IZ)1%, 1Z]1%, o) := ci{(1 —e "T)o ]
+[To + (e =)0 ?](|Z)17+]1Z]17)}-

Hence, a combination of (6.10) and (6.11) yields

(6.13) [ X(V)O)F < A+ Kl 7, [1KillF,0)r, ¥V € By

Taking (6.13) into account, from (6.8) one infers
(6.14) (V)T < A+ 1K1 1Kl|7, 0)r + [ Kl |7

for any V € E,,. Therefore, recalling (6.12) and picking (7,5) €
(0,+00)? such that (see Remark 7.1 below)

(6.15) ci{(1—e™)e™" +[T67" + (77" — 1)a~ | (7 + 2I|K:[17)}
+ K7 <7

we deduce from (6.14)

(6.16) Li(E: ) C Er ;.

) )

On the other hand, thanks to (6.1) and (6.5), we obtain
(6.17) e T|Fi(V) — Ji(V))(#)lly
< /t e TNV + K, VA K)(t— s)e 7 |[(V = V)(s)|ly ds
0
which implies
(6.18) e 7T (V)(t) = Ja(V)(®)lly

t
< AV + Ko, V + K2 / IV = V| ds
0

for any V,V € Es 5 and any ¢ € [0, 7).
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Recalling (6.2), one can find a positive constant ci, which depends
on ¢, ||K;||%, 7, & and T', such that

(6.19) AV +K;, V+K,)|F < ch

for any i € {1,2,3}, whenever V,V € E; . Hence, owing to (6.8),
inequalities (6.18) and (6.19) give

t
Li(V)-Li(V)[f < [ IV=-V]Id
620 V) =LVl < ¢ [ IV = V2 ds

Vte[0,T]

for any V,V € Ei ;.

On account of (6.8) and (6.16), inequality (6.20) entails that some
power (L;)!, I € N, is a contraction from E;; into itself. Then,
using the Picard-Banach fixed-point theorem, see, e.g., [6, Chapter
2, Theorem 2.2], we deduce that L; has a unique fixed-point in E; ;5.

Remark 6.1. Note that there is no need for L; to be a contraction
itself (compare with [1, Theorem 2.1 (i), Equation (2.24)]).

Remark 6.2. In Theorem 3., ¢ = 1,2,3, the spaces of type
C™([0,T]; X), m € N U {0}, (see the assumptions regarding f and
g') can be replaced by spaces of type W™P(0,T; X), p € [1,+00],
where W%P = LP. In this case the functional spaces in which we are
looking for u and D must be modified accordingly, cf. [2, Section 2, Re-
mark 2.4]. In particular, we have to find D € W%?(0,T) and equation
(5.63) has to be solved in LP(0,T;Y), cf. also [1, Theorem 2.1(i)].

7. Continuous dependence on data. A Lipschitz continuous
dependence result is proved for problem (P;) in [2], see [2, Theorem
2.2]. There, the Lipschitz constant depends both on known quantities
(data, T, €, and the like) and on some norm of D. We can get rid of
the latter dependence, taking advantage of our global existence results.
Indeed, the solution U to the fixed-point equation (5.63) satisfies the
bound, cf. (6.4), (6.9) and (6.16),

(7.1) [Ulo,y <7 + |IKi|lF




208 C. CAVATERRA AND M. GRASSELLI

where (5,7) € (0,+00)? only depends on known quantities, cf. Re-
mark 7.1 below. Therefore, thanks to Proposition 5.2, one can deduce
that the corresponding solution (u;, D;) to Problem (P;) is bounded in
the appropriate norm.

To illustrate this improvement, we state and prove an analog of [2,
Theorem 2.2] for Problem (P;). Of course, similar results hold for
Problems (P;) and (P,).

Theorem 7.1. Let (2.12) and (2.21) hold, and let (fj,uoj,ulj,g;’),
j = 1,2, be two sets of data satisfying hypotheses (3.18)—(3.22) and
(3.35)—(3.40). Assume that D3, = D3, where DS’]- is defined by (3.40)

with g, 035, fj,gg-’ in place of ug, 93, f, g2, respectively.

Denote by (uj, Dj), 7 = 1,2, the corresponding solutions to Prob-
lem (P3), and let K be a positive constant such that

(7:2) (1fi s, + 17 ll2smr ) + 1F5 (O 20y + 1 £5(0) 2202y
+ [lwoj | o) + lluasllms ) + g3 lla + (65;) ' < K
for j =1,2. Then there ezists a function My € C°((0,4+00)?; (0, +00))
such that
(7.3)  lur — wall2,v, + llur — u2lls,vs + [Jur — uzllay, + [D1 — D2l
< MUK, TS — Fallsm + 11— f3llami o
+ [|uor — wozl|ge () + |lutr — w2 ms ()
+[1(f1 = £2) Oz (o) + 1(f1 = f2)O) |2 ()
+ |97 — g3ll3-

Moreover, the function M is nondecreasing in each of its arguments
and also depends on Q, h, p.

Proof. Observe first that, thanks to Proposition 5.2, for any j €
{1,2}, there exists a unique solution U; to

(74) Uj = Jgj (U]) + ng in [O,T]

which corresponds to (u;, D;). Here J3; and K3; are associated with
the set of data (f;,uoj, ulj,gg’). Therefore, from (7.4) we deduce

Ul - U2 = J31(U1) - JBI(U2)

7.5
(7.5) +J31(Uz) — J32(Uz) + K31 — K32 in [0,T].
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From now on, M,,(-,-), m € N, stands for a positive and continuous
function which depends on 2, h, u, at most.

Indicating by cz{’j the constant appearing in (6.2) and associated with
J3; and using (7.2), one can obtain

(7.6) cl; < My(K,T), j=1,2

On the other hand, recalling (5.52), (5.60), (5.62) and using again (7.2),
we get

(7.7) IKs; 17 + | Ks;l|7 < M3(K,T), j=1,2,

for any o € [0, +00).

On account of (7.6)—(7.7), looking at (6.15) one realizes that the
pair (5,7) € (0,+00)? fulfilling (6.15) can be chosen in a way that
it only depends on K,T and Q, h,u at most, see Remark 7.1 below.
Consequently, we have, cf. (6.16) and (7.1),

(7.8) 1Ujllo,y < My(K,T).

Then, thanks to (6.1)—(6.2), (7.6) and (7.8), we can obtain

t
(7.9) 1J31(U1) — I51(U2)||f < Ms(K, T)/ Uy — Ua|g ds
0

for any t € [0,T].

Recalling now (5.51)—(5.52), (5.57), (5.60)—(5.62) for ¢ = 3 and taking
advantage of (7.2) and (7.8), computations similar to the ones done in
[2, Section 6] (see also [2, Remark 2.2]) lead to

(7.10)  [|J31(Uz) = I32(Us) o,y + [[Ks1 — Kaallo,y
< Mo(K, T){|If{ = falls,m + /2 = fll2,mr @)
+ [|uor — uozl| e (@) + |luir — w2 Fs ()
+1(fr = £2)0) [ 2@y + 1(f1 — f2)(O)[l a1 ()
+ g7 — g5 la}-
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Hence, considering (7.5), owing to (7.9) and (7.10), the Gronwall
lemma yields

(7.11) |[U;, = Usloy
< My(E, T fi = folls.z + 17 = Fllz o

+ lluor — woz|| go() + [Jlurr — wizl|ms ()

+ (A = £2)0) a2
(= £) )|z + [lg? — g31la}-

Finally, on account of (4.32), (5.23)—(5.24), (5.45) and (5.48), it is
straightforward to infer (7.3) from (7.11).

Remark 7.1. A possible explicit choice of (&,7) € (0, +00)? satisfying
(6.15), can be made as follows. Observe that, thanks to (7.6)—(7.7), we
have

(7.12) c{(1—e"T)57"

< Ma(K,T)6 (1 +T(F +2M3(K,T)) + M3(K,T)

for j = 1,2. Then, choosing, e.g.,

il

= 2M3(K,T)
= My (K, T)(Ms (K, T)) ™" (1 + 4T My (K, T)),

Qv

from (7.12) we deduce (6.15).

8. Proof of Lemma 6.1. We begin to state a preliminary estimate
which turns out to be useful in the sequel.

Let us consider a function u : [0,7] — V5 x V; defined by

(8.1) wu(t) :=S(t)wo + S *[(6] + Q*)w + Ny + No|(t), te€ (0,T)
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where S is the strongly continuous semigroup generated by —B, see
(5.21), 6 € R and

(8.2) wo € D(B), w e C°[0,T];D(B))

(8.3) Q € C°([0, 1))

(8.4) Ny eCH[0,T];Va x V), Ny C°%0,T);D(B)).

Then, reasoning as in [2, Section 3], it is possible to prove the estimate

85) [u(®)lom) < A{||wO||D<B>+||N1<o>||v2xv1
+ / [ / Qs )| W)l dr+ W (s) o

+ I 6 v, + N2 6 oy s}
for any ¢ € [0, 7], where A is a positive constant depending on T',Q, h, i
and 6.

Consider first the case ¢ = 1. Recalling (5.49), (5.55) and (5.61),
observe that

(8.6) (J1(U)—Ji(0),JF(U) - J}(0))*
=8 (0, —(RY + U'%)(U? — U?)
—(U*=TUY+U? — (U* = U%2
— DO Aug(U? — U3) + O~ Ay (1 % (U2 — U?))])*

(8.7) Ji(U) - J}(0)

_ _511{ </;Blu1 dF> (1% (U® - U?))

+/F31[J11(U)—J11(ﬁ)] dF}

(8:8) Ji(U)-Ji(U)
= —(Dy) M(JF(U) - J}(0))
+ (R} + U*)(1 % (U — U®))
+ (U= U %1% U3+ D} (U* = UY)).
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On account of assumptions (3.1), (3.4) and positions (4.12) and (5.10),
since U, U € C°([0,T);Y), one easily checks that

(8.9) C~ Auy (1% (U2 = U?)) e C1([0,T7; V1)

(8.10) (U-U*") U HU*U*)2+DEC 1 Aug (UP-T3) € C°([0, T7; Va)

then assumptions (8.2)—(8.4) are satisfied. Thus, applying estimate
(8.5) to (8.6), we deduce, for any t € [0,T],

(8.11) [[(J1(U) = JA(0), J2(U) - J2(0) Ollo
sé{A[ﬂfv%&wwmvhJTJﬂ—U%vmmde

+ [t = 0 = DT dr

+I(U =0 U2 = T*)($) o)
+|C Al |(UP — T°)(s)]

+ 20l l(U* = T%)(s)]

+ D5 [0 Auo|lv, |(U? = T?)(s)] dS}a

where c} is a positive constant depending on 7',Q, h, and R}. In

the sequel of the proof, ci,, m € N, i € {1,2,3}, will stand for a

positive constant depending on suitable norms of ug, u1, f, ¢* and on r
(if i =1,2), T,Q, h, u, §;, at most.
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From (8.11), one infers

(8.12) [|(J1(U) = 71(0), J7(U) ~ I(U))()HD(B)

1(U
cal [ [ -0

+ [t =0 = T @)l dr
+(U =T U? = U?)(s)llps)

+ (U3 = T3)(s)| + [(U* - [}4)(5)@ ds}

<al [ [aoes -y

+[10(s =) [V)I(U = 0)(7)lly dr
+ (U =0)(s)]ly] ds}, vt e [0,T].

Recall now that, cf. (1.6)—(1.7), and see, e.g., [14, Chapter 1, Section
8, Theorem 8.3],

(8.13)

< AF el V2 € Vi

Then, on account of (8.13), from (8.7) we get

(8.14) |(JP(U) -~ (O)(1)] < cg{(1|U*~T°|)(t)
+ (I U) =T (O) O}, Ve e[0,T],

and, combining (8.14) and (8.12), one obtains
(8.15) |(J}(U) — J3(0)

C{ ; [ OS [U(s=7)lly +10(s=)I)[(U=0)(7)||y dr

+ [|(U - U)(s)||y] ds}, Vtel[0,T].
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On the other hand, from (8.8), it is not difficult to deduce
(8.16) |(Ji(U) = JH0))(#)| < ex{I(JF(U) = JF (1)) (t)]
H(A+ Ut [U* = T))(0)
+ (L Ut = U« 0)(2)
+(Lx U =T (1)},
Vit e[0,T].
Hence, (8.15) and (8.16) yield

(8.17) |(J(U)—THD) ()] < { / [ / (UG = )l
O ) ) [(U—0) )y dr

+ ||(UI"J)(S)||Y] ds}, vt e [0,T].

Therefore, owing to (8.12), (8.15) and (8.17), inequality (6.1) is proved
for i = 1.

Consider now the cases i = 2,3. From (5.51), (5.56)—(5.57) and
(5.61), one easily derives
(8.18) (Ji(U) - J}(0), JF(U) - JF(0))*
= Sx ((Ry+U*)(U" - U")
+ (U= UYH U+ (U* =Tz
+ DY[C™ " Aug(UP — U?)
+ O Auy (1 (U* = U%))],0)", i=2,3

(8.19) J3(U)— J3(U) = 551{ </F62u1 dr) (1% (U®—0?))

+/FBQA’1C[J22(U)—J22(I~J)] dF}

(8.20) J3(U) — J§(U) = —65 {D§(J3(U) — J3(0))(o,-)
+ (C7H Aun ) (o) (1 = (U® — U?))}
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(8.21) JH(U) - JHU)
= —(D§) (X (U) - JH(0) +(R+U*s) (1 = (U~ T?))

+ (U4704) * (1 % 03)+D§ * (U4704)],
i=2,3.

Reasoning as in the case ¢ = 1, one gets, cf. (3.22), (4.12) and (5.10),

(8.22) C~ Auy (1% (U2 = U?)) e CH([0,T7]; Va)

(8.23) (U U*)*UMH(U*-U*)20+D{C L Aug (U3-U?) € C([0,T7; Va)

where © = 2, 3.

Thanks to (8.22)—(8.23), assumptions (8.2)—(8.4) are satisfied and we
can apply (8.5) to (8.18). Thus we have, for any ¢ € [0, T,

(8:24) [[(J2(U) - JA(D), J2(U) — J2(0) Dlloia)
S%{A{Amﬂwﬁﬂmﬂ4ﬂU“ﬁWﬂ%wwf

+AmwwmﬂWMmmm

+I(U =T U? = U?)(s)l|lps)
+ 107 Aun ||y |(UP = TP) ()]
+ ll20llva | (U* = T*)(s)]

+ |D}| ||C_1Au0||v3|(U3—l73)(s)] ds}, i=2,3.



216 C. CAVATERRA AND M. GRASSELLI

From (8.24) we infer, for any ¢ € [0, T,
(8:25) [I(J}(U) — JH(U), JZ(U) — JF(0)(®)lln(s)
< [ [1ots-niiwt =040~ 0o ar
+ [Nt =0 = 1T Ol dr
T = 54,0 - 7)(5) o)

+ (0% = 0%)(s)| + |(U* ~ 04)(8)] ds}

< { / t [ 0=l + 10l 0= 0)0) - dr
" |<U—ﬁ><s>||y} ds}, =23

Let, for instance, 7 = 2 and recall that, cf. (1.6)—(1.7) and see, e.g., [14,
Chapter 1, Section 8, Theorem 8.3,

(8.26) ‘/FBgAlCzdF < DY) 2wy, V2 € Vo

Then, using (8.26), from (8.19) we deduce
(8:27) |(J3(U)=J3(0)(t)] < (1 +|U°~T?))(t)
+I(J2(0) = JZ(0) (D) Iv.}, Ve [0,T).

Similarly, if i = 3, taking advantage of the injection H?(Q) < C°(9),
one has

(8.28) |2(0)| < clsll2llves V2 € Vo
Hence, from (8.20) we obtain, for any ¢ € [0, T7,

(8.29) |(F3(U)=J(U)(1)] < e {ll(J3(0) = (1)) (#) lva
+ 107 Aunly, (1 [UP = T2 )) (1)}

Combining (8.25) and (8.27), if i = 2 (or (8.29), if ¢ = 3), one infers
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(8.30) (P (U) =T (U)(1)
(

)
<ded | t [ U0G=nly+[8=)n |00y a7

+||(UU)(5)|y} ds}, Vtel0,T], i=2,3.

Taking now (8.16) into account, from (8.21) and (8.29) we get

(8:31) [(JA(U)—JAD)) ()
Scig{ / [ LU0l 4180 V- B0y dr
+||(U—I~J)(s)|y} ds}, Vte[0,T], i=2,3.

Finally, inequality (6.1) for ¢ = 2, 3 follows from (8.25) and (8.30)—(8.31).
The proof is thus complete. O
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