JOURNAL OF INTEGRAL EQUATIONS Volume 6, Number 2, Spring 1994

ON PANTOGRAPH INTEGRO-DIFFERENTIAL EQUATIONS

ARIEH ISERLES AND YUNKANG LIU

ABSTRACT. The paper discusses the initial-value problem for the pantograph integro-differential equation, including as special cases the retarded functional-differential equation studied by Ockendon and Tayler [**17**], Kato and MacLeod [**11**] and the neutral differential equation studied by Kuang and Feldstein [**12**]. The main subjects of this paper are wellposedness of the initial-value problem, monotonicity and oscillation of the solution, unboundedness of the solution, and asymptotic stability of the solution, subject to different conditions.

1. Introduction. Let a be a complex constant and $\mu(q)$ and $\nu(q)$ complex-valued functions of bounded variation on [0,1]. The initial-value problem for pantograph integro-differential equations to be studied in this paper is of the form

(1.1)
$$
y'(t) = ay(t) + \int_0^1 y(qt) d\mu(q)
$$

$$
+ \int_0^1 y'(qt) d\nu(q), \quad t > 0, \quad y(0) = y_0
$$

where the integrals being considered are of Riemann-Stieltjes type, although most results of this paper still hold if $\mu(q)$ and $\nu(q)$ are replaced by complex-valued measures on [0, 1]. The term *pantograph* comes from Ockendon and Tayler [**17**] and Iserles [**7**].

The pantograph integro-differential equation includes many interesting equations studied before. In the case $d\mu(q) = b\delta(q - p) dq$, $d\nu(q) \equiv 0$, where $p \in (0,1)$ and $\delta(\cdot)$ is a Dirac function, problem (1.1) can be written as

(1.2)
$$
y'(t) = ay(t) + by(pt), \quad t > 0, \quad y(0) = y_0,
$$

Copyright -c 1994 Rocky Mountain Mathematics Consortium

Received by the editors on July 7, 1993, and in revised form on March 25, 1994.

which has been studied by Ockendon and Tayler [**17**], Kato and McLeod [**11**], etc. In the case $d\mu(q) = \sum_{i=1}^{M} b_i \delta(q - q_i) dq$, $d\nu(q) = \sum_{i=1}^{K} c_i \delta(q - q_i)$ p_i) dq, where $q_i, p_i \in (0, 1), (1, 1)$ can be written as

(1.3)
$$
y'(t) = ay(t) + \sum_{i=1}^{M} b_i y(q_i t) + \sum_{i=1}^{K} c_i y'(p_i t),
$$

$$
t > 0, \quad y(0) = y_0
$$

formerly studied by Feldstein and Jackiewicz [**3**], Kuang and Feldstein [**12**], and in more general form, by Derfel [**2**] and Iserles and Liu [**8**].

The aim of this paper is not only to generalize some results of Kato and MacLeod [**11**] and of Kuang and Feldstein [**12**] to problem (1.1), but also in some cases to improve their results by using different approaches. In Section 2 we study the well-posedness of the initial-value problem (1.1). In Section 3 we study the monotonicity and oscillation of the solution in the real case. In Section 4 we study as a preliminary to the next two sections an integral equation and an integro-differential equation. In Section 5 we study the unboundedness of the solution in the case $\text{Re } a \geq 0$ by using the Ahlfors theorem and some other methods. In Section 6 we study the asymptotic stability of the zero solution in the case $\text{Re } a < 0$.

2. Uniqueness and existence of the solution. Let

$$
\mu_k = \int_0^1 q^k \, d\mu(q), \qquad \nu_k = \int_0^1 q^k \, d\nu(q),
$$

$$
\mu_k^* = \int_0^1 q^k |d\mu(q)|, \qquad \nu_k^* = \int_0^1 q^k |d\nu(q)|.
$$

In particular, $\mu^* := \mu_0^*$ and $\nu^* := \nu_0^*$ are the variations of $\mu(q)$ and $\nu(q)$ on [0, 1], respectively, whereas μ_k^* and ν_k^* are the variation of

$$
\int_0^q \tau^k d\mu(\tau) \quad \text{and} \quad \int_0^q \tau^k d\nu(\tau),
$$

respectively. Throughout the paper, we use the uniform-norm, i.e.,

$$
||f||_{[a,b]} = \max_{t \in [a,b]} |f(t)|
$$

for a function $f(t) \in C[a, b]$.

Theorem 1. *If* $\nu_N^* < 1$ *for some* $N \in \mathbb{Z}^+$ *, then, in function space* $C^{N+1}[0,\infty)$,

(1) *the solution of problem* (1.1) *exists if and only if the algebraic linear system*

(2.1)
$$
(1 - \nu_n)y_{n+1} - (a + \mu_n)y_n = 0, \quad n = 0, ..., N-1
$$

is solvable;

(2) *all solutions of problem* (1.1) *are analytic and can be expressed in the form*

(2.2)
$$
y(t) = \sum_{n=0}^{\infty} \frac{y_n}{n!} t^n,
$$

where $\{y_n\}_{n=1}^N$ are solutions of the algebraic linear system (2.1) and

$$
y_n = y_N \prod_{k=N}^{n-1} \frac{a + \mu_k}{1 - \nu_k}, \quad n > N;
$$

and

(3) *the solution of problem* (1.1) *is unique if and only if* $\nu_n \neq 1$ *for all* $0 \leq n \leq N - 1$ *. Furthermore, the uniqueness of solution implies that*

(2.3)
$$
y(t) = y_0 \left\{ 1 + \sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-1} \frac{a + \mu_k}{1 - \nu_k} \right) \frac{t^n}{n!} \right\}.
$$

Proof. We commence by proving the theorem in the case $N = 0$. Since ν^* < 1 implies $|\nu_k|$ < 1 for all $k \geq 0$, it is easy to verify that the function on the right-hand side of (2.3) is a $C^1[0,\infty)$ solution of problem (1.1). To prove the uniqueness of this solution, it is enough to prove that the homogeneous problem of (1.1) , i.e., $y_0 = 0$, has only the trivial solution. Suppose that $y(t)$ is a solution of this homogeneous problem. It follows from equation (1.1) that, for any fixed $T > 0$

$$
||y'||_{[0,T]} \leq (|a| + \mu^*)||y||_{[0,T]} + \nu^*||y'||_{[0,T]}.
$$

Hence

$$
||y'||_{[0,T]} \leq \frac{|a| + \mu^*}{1 - \nu^*} ||y||_{[0,T]}.
$$

Noting that $y(0) = 0$, we derive from the preceding inequality and the equation

$$
y(t) = y(0) + \int_0^t y'(\tau) d\tau
$$

that

$$
||y||_{[0,T]}\leq \frac{|a|+\mu^*}{1-\nu^*}T||y||_{[0,T]}.
$$

Hence, $||y||_{[0,T_0]} = 0$ for $0 < T_0 < (1 - \nu^*)/(|a| + \mu^*)$, which implies that $y \equiv 0$ for $t \in [0, T_0]$. By simple inductive argument, we see that $y(t) \equiv 0$ for $t \in [nT_0, (n+1)T_0]$ and all $n \geq 0$. Hence, $y(t) \equiv 0$ for all $t \geq 0$. In the case $N \geq 1$, it is easy to see that a function $y(t)$ is a solution of problem (1.1) if and only if $y_n = y^{(n)}(0)$, $n = 1, 2, \ldots, N$, satisfy the algebraic linear system (2.1) and $y_N(t) = y^N(t) \in C^1[0, \infty)$ obeys the equation

$$
y_N'(t) = ay_N(t) + \int_0^1 y_N(qt)q^N d\mu(q) + \int_0^1 y_N'(qt)q^N d\nu(q),
$$

$$
y_N(0) = y_N.
$$

Invoking the result of $N = 0$, we see that the theorem holds for $N \geq 1$. \Box

Remark 1. The condition $\sum_{i=1}^{K} |c_i p_i^{-1}| < 1$ for the existence and uniqueness of a $C^1[0,\infty)$ solution of problem (1.3), given originally by Kuang and Feldstein [12], can be modified into $\sum_{i=1}^{K} |c_i| < 1$.

Now we give examples to show the necessity of the condition $\nu_N^* < 1$.

Example 1. Suppose that $a = 0$, $d\mu(q) \equiv 0$, $d\nu(q) = c\delta(q - p) dq$, where c is constant satisfying $|c|p^N > 1, p \in (0,1)$. Then there is a one-to-one correspondence between the solutions $y(t) \in C^{N+1}[0,\infty)$ of problem (1.1) and the functions in the space $\{f(t) \in C[p, 1] : f(1) =$ $cp^N f(p)$. For details, see Nussbaum [16] or Iserles and Liu [8].

Example 2. Assume that $a = 0$, $d\mu(q) \equiv 0$ and $\nu(q)$ satisfies

$$
\int_0^1 q^N \, d\nu(q) > 1
$$

and

(2.4)
$$
\limsup_{n \to \infty} \int_0^1 q^n d\nu(q) < 1.
$$

According to the intermediate value theorem, there exists a $\lambda > N$ such that

$$
\int_0^1 q^{\lambda} d\nu(q) = 1.
$$

Hence, the homogeneous problem

$$
y'(t) = \int_0^1 y'(qt) \, d\nu(q), \quad y(0) = 0
$$

has a nontrivial solution $y(t) = t^{\lambda+1} \in C^{N+1}[0,\infty)$. Furthermore, if λ is not an integer, then this solution is not analytic. Consider the case $\nu(q) = bq^{\beta}$, where $\beta > 0$, $(b-1)\beta > N$. If $(b-q)\beta$ is not an integer, then there exists a nonanalytic solution $y(t) = t^{(b-1)\beta+1} \in C^{N+1}[0,\infty)$.

It is also easy to see that, subject to the existence condition in Theorem 1, the solution $y(t)$ is an entire function which satisfies

$$
|y(t)| \leq \sum_{n=0}^{N-1} \frac{1}{n!} |y_n| t^n + \frac{1}{N!} |y_N| t^N \exp\left\{ \frac{|a| + \mu_N^*}{1 - \nu_N^*} t \right\}, \quad t \in \mathcal{C}.
$$

In the remainder of this paper, we only discuss analytic solutions of the form (2.2) and assume that $\mu(q)$ and $\nu(q)$ are continuous at $q = 1$ and that the system (2.1) is solvable. We denote by N a nonnegative integer such that $\nu_N^* < 1$. The continuity of $\mu(q)$ and $\nu(q)$ at $q = 1$ implies that

(2.5)
$$
\lim_{n \to \infty} \mu_n^* = \lim_{n \to \infty} \nu_n^* = 0,
$$

which plays an important role in the subsequent discussion. It also guarantees the existence of the integer N and the inequality (2.4). For

simplicity, we exclude the trivial case of the solution being a polynomial of t, which happens if there exists an integer n such that $a + \mu_n = 0$, $1 - \nu_n \neq 0$, or $a + \mu_n = 0$, $1 - \nu_n = 0$, $y_{n+1} = 0$.

Remark 2. There is but a slight loss of generality in assuming that $\nu(q)$ is continuous at $q = 1$. This is because (1.1) can be rewritten as

$$
y'(t) = \frac{1}{1 - \nu(1) + \nu(1-)} \left\{ (a + \mu(1) - \mu(1-))y(t) + \int_0^1 y(qt) \, d\mu_1(q) + \int_0^1 y'(qt) \, d\nu_1(q) \right\},
$$

$$
t > 0, \quad y(0) = y_0
$$

provided that $\nu(1) - \nu(1-) \neq 1$, where

$$
\mu_1(q) = \begin{cases} \mu(q), & 0 \le q < 1 \\ \mu(1-), & q = 1 \end{cases} \quad \text{and} \quad \nu_1(q) = \begin{cases} \nu(q), & 0 \le q < 1 \\ \nu(1-), & q = 1 \end{cases}
$$

are continuous at $q = 1$.

3. Monotonicity and oscillation of the solution. In this section we restrict our attention to the case of a being a real constant and $\mu(q)$ and $\nu(q)$ being real functions of bounded variation. We assume that $\nu_k \neq 1$ for $k \geq 0$. This implies that the solution of the initial-value problem (1.1) is unique and is of the form (2.3).

Since $\mu(q)$ and $\nu(q)$ are real functions of bounded variation, they can be decomposed into the sums

$$
\mu(q) = \mu_+(q) + \mu_-(q), \qquad \nu(q) = \nu_+(q) + \nu_-(q),
$$

where $\mu_{+}(q)$ and $\nu_{+}(q)$ are monotonic increasing functions and $\mu_{-}(q)$ and $\nu_-(q)$ are monotonic decreasing functions. Recall from Widder [**19**] that the function $f(t)$ is said to be absolutely monotonically increasing (decreasing) if $d^k f(t)/dt^k \geq 0$ (≤ 0) for all integers $k \geq 0$ and all $t > 0$, and eventually absolutely monotonically increasing (decreasing) if there exists $T > 0$ such that $d^k f(t)/dt^k \geq 0 \leq 0$ for all integers $k \geq 0$ and all $t > T$. The following theorem is easy to derive directly from (2.3).

Theorem 2. *Suppose that* $y_0 \neq 0$ *.*

(1) If $a > 0$, then the solution of problem (1.1) is eventually absolutely *monotone*; *and*

(2) If $\int_0^1 d\mu_-(q) \geq -a$, $\int_0^1 d\nu_+(q) < 1$ *_i* then the solution of problem (1.1) *is absolutely monotone.*

In part 2 of the above theorem, if the condition $\int_0^1 d\mu_-(q) \geq -a$ is replaced by $\int_0^1 d\mu_-(q) > -a$, then the solution satisfies $d^k f(t)/dt^k > 0$ (< 0) for all integers $k \geq 0$ and all $t > 0$, a property stronger than absolute monotonicity. Moreover, it is easy to derive directly from (2.3) the estimate

$$
|y_0| \exp\left(\frac{a + \int_0^1 d\mu_-(q)}{1 - \int_0^1 d\nu_-(q)}t\right) \le |y(t)| \le |y_0| \exp\left(\frac{a + \int_0^1 d\mu_+(q)}{1 - \int_0^1 d\nu_+(q)}t\right),
$$

 $t \ge 0.$

Theorem 3. *Suppose that* $\mu(q)$ *is monotonic decreasing and that there exists* $q_0, q_1 \in (0, 1)$ *such that* $d\mu(q) = 0$ *for* $q \notin [q_0, q_1]$ *,* $\nu_+ := \int_0^1 q^{-1} d\nu_+(q) < 1$ and $\nu_{-1}^* := \int_0^1 q^{-1} |d\nu(q)| < \infty$. If $a = 0$, then *every nontrivial solution of the problem* (1.1) *oscillates unboundedly.*

Proof. Suppose that a nontrivial solution $y(t)$ is nonoscillatory. Thus, $y(t)$ has at most finite number of zeros for $t \geq 0$. By the linearity of the problem, we can assume without loss of generality that the solution is eventually positive, i.e., there exists $t_0 > 0$ such that $y(t) > 0$ for $t > t_0$. Let $t^* = t_0/q_0$. We deduce from

$$
\frac{d}{dt}\left\{y(t) - \int_0^1 y(qt)q^{-1} d\nu(q)\right\} = \int_{q_0}^{q_1} y(qt) d\mu(q) \le 0, \quad t \ge t^*,
$$

that

$$
y(t) - \int_0^1 y(qt)q^{-1} d\nu(q) \le y(t^*) - \int_0^1 y(qt^*)q^{-1} d\nu(q), \quad t \ge t^*.
$$

Hence

$$
y(t) - \int_0^1 y(qt)q^{-1} d\nu_+(q) \le y(t^*) - \int_0^1 y(qt^*)q^{-1} d\nu(q), \quad t \ge t^*;
$$

consequently,

$$
\begin{aligned} y(t) - \int_{t^*/t}^1 y(qt) q^{-1} \, d\nu_+(q) &\le y(t^*) - \int_0^1 y(qt^*) q^{-1} \, d\nu(q) \\ &+ \int_0^{t^*/t} y(qt) q^{-1} \, d\nu_+(q), \quad t \ge t^*. \end{aligned}
$$

We derive from the preceding inequality that

$$
y(t) \le (1 + \nu_{-1}^* + \nu_+) \max_{0 \le \tau \le t^*} |y(\tau)| + \nu_+ \max_{t^* \le \tau \le t} y(\tau), \quad t \ge t^*.
$$

Therefore

$$
y(t) \le \frac{1 + \nu_{-1}^* + \nu_{+}}{1 - \nu_{+}} \max_{0 \le \tau \le t^*} |y(\tau)|, \quad t \ge t^*,
$$

which leads to a contradiction, since, according to Theorem 4 of Section 5, the solution is unbounded. Hence, every nontrivial solution oscillates unboundedly. \Box

Kuang and Feldstein [**12**] proved this theorem in the special case (1.3). Here we used a slightly different but more intuitive approach.

4. Related integral and integro-differential equations. Let T, T_0 and T_1 be linear operators of the form

$$
Ty(t) = \int_0^1 y(qt)K(q) d\nu(q),
$$

\n
$$
T_iy(t) = \int_0^1 y(qt)K_i(q) d\nu_i(q), \quad i = 0, 1,
$$

where $K(q)$, $K_0(q)$ and $K_1(q)$ are continuous fucntions on [0, 1] and $\nu(q)$, $\nu_0(q)$ and $\nu_1(q)$ are functions of bounded variation on [0, 1]. Let

$$
\chi = \int_0^1 |K(q) d\nu(q)|,
$$

$$
\chi_i = \int_0^1 |K_i(q) d\nu(q)|, \quad i = 0, 1.
$$

 \mathbf{L}

Consider the integral equation

(4.1)
$$
y(t) - Ty(t) = f(t), \quad t \ge 0,
$$

where $f(t) \in C[0,\infty)$.

Lemma 1. *If* χ < 1*, then equation* (4.1) *has a unique solution in* $C[0,\infty)$ *, which is of the form*

(4.2)
$$
y(t) = \sum_{n=0}^{\infty} T^n f(t).
$$

The proof of this lemma is straightforward.

Lemma 2. *If* χ < 1, $\lim_{h\to 0} \int_0^h |K(q) d\nu(q)| = 0$ *and* $\lim_{t\to \infty} f(t) =$ 0*, then the solution* $y(t)$ *of equation* (4.1) *satisfies* $\lim_{t\to\infty} y(t) = 0$ *.*

Proof. Note that $||T||_{[0,t]} \leq \chi$; therefore, it follows from (4.2) that

$$
|y(t)| \le \frac{1}{1-\chi} ||f||_{[0,t]}
$$
 for all $t \ge 0$.

Hence the solution $y(t)$ is uniformly bounded. Let

$$
M = \sup_{0 \le x < \infty} |y(t)|, \qquad \phi = \limsup_{t \to \infty} |y(t)|.
$$

We shall prove that $\phi > 0$ leads to a contradiction. Let $\delta = (1-\chi)/(2+\chi)$ $\chi + M$) > 0. By our assumption, there exist $t^* > 0$ and $h \in (0,1)$ such that $|f(t)| < \delta$, $|y(t)| < \phi + \delta$ for all $t > t^*$, and $\int_0^h |K(q) d\nu(q)| < \delta$. For all $t>t^*/h$, we deduce from equation (4.1) that

$$
|y(t)| < |f(t)| + M \int_0^h |K(q) d\nu(q)| + (\phi + \delta) \int_h^1 |K(q) d\nu(q)|
$$

$$
\leq \delta + M\delta + (\phi + \delta) \chi = \phi - \delta
$$

which contradicts the definition of ϕ . Hence, $\phi = 0$. \Box

Consider the initial-value problem for an integro-differential equation of the form

(4.3)
$$
y'(t) = ay(t) + \sum_{n=0}^{\infty} T^n (T_0 + T_1) y(t), \quad t > 0, \quad y(0) = y_0.
$$

Lemma 3. *If* χ < 1*, then the problem* (4.3) *has a unique solution* $y(t) \in C[0,\infty)$.

Proof. It is trivial to verify that the function

$$
y(t) = y_0 \left\{ 1 + \sum_{n=1}^{\infty} \left[\prod_{k=0}^{n-1} \left(a + \frac{\nu_{0,k} + \nu_{1,k}}{1 - \nu_k} \right) \right] \frac{t^n}{n!} \right\}
$$

is a solution of (4.3), where

$$
\nu_k = \int_0^1 q^k K(q) d\nu(q),
$$

$$
\nu_{i,k} = \int_0^1 q^k K_i(q) d\nu_i(q), \quad i = 0, 1.
$$

The uniqueness of solution can be proved in a similar way as we did in the case ${\cal N}=0$ of Theorem 1. \Box

Lemma 4. *If* $\text{Re } a > 0$ *and* $\chi + \gamma / \text{Re } a < 1$ *, where*

$$
\gamma = \int_0^1 \frac{1}{1-q} |K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)| < \infty,
$$

then the solution y(t) *of problem* (4.3) *satisfies*

$$
\lim_{t \to \infty} y(t)e^{-at} = y^*
$$

for some (*possibly zero*) *constant* y∗*.*

Proof. From the variation of constants formula, we have

(4.4)
$$
y(t) = e^{at}y(0) + \int_0^t e^{a(t-\tau)} \sum_{n=0}^\infty T^n (T_0 + T_1) y(\tau) d\tau.
$$

 \mathbb{R}^n

 $\overline{}$

 $\overline{}$

Noting that

 \Box

$$
\left| \int_0^t e^{-\alpha \tau} y(q_1 \cdots q_n q \tau) d\tau \right| \leq \frac{1}{\text{Re } a(1-q)} \max_{\tau \in [0,t]} |y(\tau) e^{-a\tau}|,
$$

where $q \in [0, 1), q_1, \ldots, q_n \in [0, 1]$, we obtain

$$
\left| \int_0^1 \int_0^t e^{-a\tau} y(q_1 \cdots q_n q\tau) (K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)) d\tau \right|
$$

$$
\leq \frac{\gamma}{\text{Re } a} \max_{\tau \in [0,t]} |y(\tau) e^{-a\tau}|.
$$

Hence,

$$
\left| \int_{0}^{t} e^{-a\tau} \sum_{n=0}^{\infty} T^{n} (T_{0} + T_{1}) y(\tau) d\tau \right|
$$

\n
$$
\leq \sum_{n=0}^{\infty} \int_{0}^{t} \int_{[0,1]^{n+1}} |e^{-a\tau} y(q_{1} \cdots q_{n} q \tau) (K_{0}(q) d\nu_{0}(q) + K_{1}(q) d\nu_{1}(q)) d\nu(q_{1}) \cdots d\nu(q_{n}) d\tau|
$$

\n
$$
\leq \sum_{n=0}^{\infty} \frac{\gamma}{\text{Re } a} \int_{[0,1]^{n}} |K(q_{1}) \cdots K(q_{n}) d\nu(q_{1}) \cdots
$$

\n
$$
d\nu(q_{n}) \Big| \max_{\tau \in [0,t]} |y(\tau)e^{-a\tau}|
$$

\n
$$
\leq \frac{\gamma}{\text{Re } a(1-\chi)} \max_{\tau \in [0,t]} |y(\tau)e^{-a\tau}|.
$$

From (4.4) and the preceding estimate, we obtain

$$
|y(t)e^{-at}| \le |y_0| + \frac{\gamma}{\text{Re }a(1-\chi)} \max_{\tau \in [0,t]} |y(\tau)e^{-a\tau}|.
$$

Hence,

$$
|y(t)e^{-at}| \le \frac{\operatorname{Re}a(1-\chi)}{\operatorname{Re}a(1-\chi)-\gamma}|y_0|, \quad t \ge 0,
$$

which means that $y(t)e^{-at}$ is uniformly bounded. Denote this bound by M. Again, from (4.4), we obtain for $t_2 > t_1 > 0$ that

$$
y(t_2)e^{-at_2} - y(t_1)e^{-at_1} = \int_{t_1}^{t_2} e^{-a\tau} \sum_{n=0}^{\infty} T^n(T_0 + T_1)y(\tau) d\tau.
$$

Noting that

$$
\int_{t_1}^{t_2} |e^{-a\tau} y(q_1 \cdots q_n q\tau)| d\tau \leq \frac{Me^{-\text{Re }a(1-q)t_1}}{\text{Re }a(1-q)},
$$

where $q \in [0, 1), q_1, \ldots, q_n \in [0, 1]$, we obtain similarly that

$$
|y(t_2)e^{-at_2} - y(t_1)e^{-at_1}|
$$

\n
$$
\leq \frac{M}{\text{Re }a(1-\chi)} \int_0^1 \frac{e^{-\text{Re }a(1-q)t_1}}{1-q} |K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)|.
$$

For any given $\varepsilon > 0$, it is evident that there exist $h \in (0, 1)$ and $T > 0$ such that

$$
\int_{h}^{1} \frac{1}{1-q} |K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)| < \frac{\text{Re } a(1-\chi)}{2M} \varepsilon,
$$

and

$$
e^{-\operatorname{Re}a(1-h)T} < \frac{\operatorname{Re}a(1-\chi)}{2M\gamma}\varepsilon.
$$

Hence we have for $t_2 > t_1 > T$ that

$$
|y(t_2)e^{-at_2} - y(t_1)e^{-at_1}|
$$

\n
$$
\leq \frac{1}{1-\chi} \left\{ \frac{Me^{-\text{Re }a(1-h)T}}{\text{Re }a} \int_0^h \frac{1}{1-q} |K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)| + \frac{M}{\text{Re }a} \int_h^1 \frac{1}{1-q} |K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)| \right\}
$$

\n
$$
\leq \varepsilon,
$$

which means that $\lim_{t\to\infty} y(t)e^{-at}$ exists. \Box

Lemma 5. *If* χ < 1 *and* Re $a + (\chi_0 + \chi_1)/(1 - \chi) \leq 0$ *, then the solution* $y(t)$ *of problem* (4.3) *is uniformly bounded by* $|y_0|$ *.*

Proof. The case $\text{Re } a = 0$ is trivial. Consider the case $\text{Re } a < 0$. For any fixed positive constant L , we derive from formula (4.4) that

$$
|y(t)| \le |e^{at}y_0| + \frac{\chi_0 + \chi_1}{1 - \chi}||y||_{[0,L]} \int_0^t e^{\operatorname{Re} a(t-\tau)} d\tau
$$

$$
\le (|y_0| - ||y||_{[0,L]})e^{\operatorname{Re} at} + ||y||_{[0,L]}, \quad t \in [0,L].
$$

 \mathbb{R}^n

Hence, $||y||_{[0,L]} \leq |y_0|$. The arbitrariness of L implies that the solution is uniformly bounded by $|y_0|$. \Box

Lemma 6. *If* χ < 1*,* Re $a + (\chi_0 + \chi_1)/(1 - \chi)$ < 0*, and* lim $h\rightarrow 0$ \int_0^h \int_0 $|K_i(q) d\nu_i(q)| = 0, \quad i = 0, 1,$

then the solution $y(t)$ *of problem* (4.3) *satisfies* $\lim_{t\to\infty} y(t) = 0$ *.*

Proof. It follows from Lemma 5 that the solution $y(t)$ of problem (4.3) is uniformly bounded by $|y(0)|$. Hence, $\phi = \limsup_{t \to +\infty} |f(t)|$ exists. We shall prove that $\phi > 0$ leads to a contradiction. Let

$$
\delta = \left\{ 1 + |y(0)| + \frac{2|y(0)|(\chi_0 + \chi_1 + 1) + \chi_0 + \chi_1}{|\text{Re } a|(1 - \chi)} \right\}^{-1}
$$

$$
\left\{ 1 - \frac{\chi_0 + \chi_1}{|\text{Re } a|(1 - \chi)} \right\} \phi > 0.
$$

By our assumption, there exists $t_0 > 0$ such that

$$
|y(t)| < \phi + \delta, \quad t > t_0,
$$

 $h \in (0,1)$ such that

$$
\int_0^h |K_i(q) d\nu_i(q)| < \delta, \quad i = 0, 1,
$$

integer $m>0$ such that $\chi^m<\delta$ and $t_1>t_0/h^{m+1}$ such that

$$
e^{\operatorname{Re} a(t-t_0/h^{m+1})} < \delta, \quad t > t_1.
$$

From

 \mathbf{I}

$$
\left|\sum_{n=0}^{m-1} T^n(T_0+T_1)y(\tau)\right| \le \frac{|y(0)|(\chi_0+\chi_1)}{1-\chi}, \quad \tau > 0,
$$

we obtain

$$
\left| \int_0^{t_0/h^{m+1}} e^{a(t-\tau)} \sum_{n=0}^{m-1} T^n (T+T_1) y(\tau) d\tau \right|
$$

\$\leq \frac{|y(0)|(\chi_0 + \chi_1)}{|\text{Re }a|(1-\chi)}\delta\$, \quad t > t_1\$.

⅂

 \Box

From

$$
\sum_{n=0}^{m-1} \int_{[0,h]^{n+1}} |y(q_1 \cdots q_n q \tau) K(q_1) \cdots K(q_n)
$$

$$
(K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)) d\nu(q_1) \cdots d\nu(q_n)|
$$

$$
\leq \sum_{n=0}^{m-1} |y(0)| \left(\int_{[0,h]} |K(q) d\nu(q)| \right)^n | \int_0^h |K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q) \right)
$$

$$
< \frac{2|y(0)|}{1-\chi} \delta, \quad \tau \geq 0
$$

and

$$
\sum_{n=0}^{m-1} \int_{[0,1]^{n=1} - [0,h]^{n+1}} |y(q_1 \cdots q_n q \tau) K(q_1) \cdots K(q_n)
$$

$$
(K_0(q) d\nu_0(q) + K_1(q) d\nu_1(q)) d\nu(q_1) \cdots d\nu(q_n)|
$$

$$
< \frac{\chi_0 + \chi_1}{1 - \chi} (\phi + \delta), \quad \tau \ge t_0 / h^{m+1}
$$

we obtain

$$
\left| \int_{t_0/h^{m+1}}^t e^{a(t-\tau)} \sum_{n=0}^{m-1} T^n (T_0 + T_1) y(\tau) d\tau \right|
$$

$$
< \frac{2|y(0)|\delta + (x_0 + x_1)(\phi + \delta)}{|\text{Re }a|(1 - x)}, \quad t > t_1.
$$

Hence,

$$
\left| \int_0^t e^{a(t-\tau)} \sum_{n=0}^{m-1} T^n (T_0 + T_1) y(\tau) d\tau \right|
$$

<
$$
< \frac{|y(0)|(\chi_0 + \chi_1 + 2)\delta + (\chi_0 + \chi_1)(\phi + \delta)}{|\text{Re } a|(1 - \chi)}, \quad t > t_1.
$$

Moreover,

 \Box

$$
\bigg|\sum_{n=m}^{\infty} T^n(T_0+T_1)y(\tau)\bigg|\leq \frac{|y(0)|(\chi_0+\chi_1)}{1-\chi}\chi^m,\quad \tau\geq 0,
$$

 $\sqrt{ }$

implies

$$
\left| \int_0^t e^{a(t-\tau)} \sum_{n=m}^\infty T^n(T_0+T_1)y(\tau) d\tau \right| < \frac{|y(0)|(\chi_0+\chi_1)}{|\text{Re }a|(1-\chi)} \delta, \quad t > 0.
$$

Exploiting the above bounds, we obtain from formula (4.4) that

$$
|y(t)| < |y(0)|\delta + \frac{2|y(0)|(\chi_0 + \chi_1 + 1)\delta + (\chi_0 + \chi_1)(\phi + \delta)}{|\text{Re } a|(1 - \chi)}
$$

= $\phi - \delta, \quad t > t_1,$

which contradicts the definition of ϕ . Hence, $\phi = 0$. \Box

5. Unboundedness of solutions in the case $\text{Re } a \geq 0$. In this section we first use a very old result from the theory of complex functions to derive the unboundedness of solutions in some particular cases.

The order of an entire function

$$
f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n,
$$

plays an important part in the first half of this section. Recall that the order ρ_f can be evaluated through the following formula (see Titchmarch [**18**])

$$
\rho_f = \limsup_{n \to \infty} \frac{n \ln n}{n \ln n - \ln |a_n|}.
$$

According to Ahlfors theorem [5], an entire function f of order ρ_f has at most $[2\rho_f]$ finite asymptotes at ∞ . Thus, $\rho_f < 1/2$ means that f has no finite asymptotes at all. In other words, given any continuous curve $\gamma(s)$, $s \in [0,1)$, in the complex plane such that $\gamma(s) \to \infty$ as $s \to 1$, it is true that $\limsup_{s \to 1^-} |f(\gamma(s))| = \infty$. It should be noted that the same result holds for all the derivatives $f^{(k)}$ since they have the same order as f .

Theorem 4. *If* $a = 0$ *and* $d\mu(q) = 0$ *for* $q > q_0$ *, where* $q_0 \in (0, 1)$ *, then the solutions of problem* (1.1) *and all of their derivatives are unbounded.*

Proof. From $|\mu_k| \leq q_0^k \mu^*$, we obtain

$$
\sum_{k=N}^{n-1} \ln |\mu_k| \le \frac{1}{2}(n-N)(n-1+N)\ln q_0 + (n-N)\ln \mu^*.
$$

From $|\nu_k| \leq \nu_N^* < 1, k \geq N$, we obtain

(5.1)
$$
\left| \sum_{k=N}^{n-1} \ln |1 - \nu_k| \right| \leq -(n-N) \ln(1 - \nu_N^*).
$$

Hence, the order of the solution $y(t)$ is zero. It follows from Ahlfors theorem that the solution is unbounded. \Box

Theorem 5. *If* $a = 0$ *and* $\mu(q) = \sum_{j=1}^{\infty} a_j q^{\alpha_j}$, where $\text{Re}\,\alpha_j > 0$ for all $j \geq 1$, the series $\sum_{j=1}^{\infty} a_j$ and $\sum_{j=1}^{\infty} a_j \alpha_j^2$ converge absolutely, and $\sum_{j=1}^{\infty} a_j \alpha_j = 0$, then the solutions of the initial-value problem (1.1) and *all of their derivatives are unbounded.*

Proof. Noting that

$$
\mu_k = \sum_{j=1}^{\infty} \frac{a_j \alpha_j}{k + \alpha_j} = -\sum_{j=1}^{\infty} \frac{a_j \alpha_j^2}{k(k + \alpha_j)}, \quad k \ge 1,
$$

we have for $k \geq 1$,

$$
|\mu_k| \le k^{-2} \sum_{j=1}^{\infty} |a_j \alpha_j^2|,
$$

$$
\sum_{k=N}^{n-1} \ln |\mu_k| \le (n-N) \ln \sum_{j=1}^{\infty} |a_j \alpha_j^2| - 2 \ln(n-1)! + 2 \ln(N-1)!, \quad n > N.
$$

Together with (5.1), we see that the order of the solution is $\rho_y \leq 1/3$. It follows from Ahlfors theorem that the solution is unbounded. \Box

Example 3. If $\mu(q) = q - q^2/2$, then $\rho_y = 1/3$. Suppose next that $\sum_{j=1}^{\infty} a_j \alpha_j \neq 0$. From

$$
\mu_k = \frac{1}{k} \mu'(1) - \sum_{j=1}^{\infty} \frac{a_j \alpha_j^2}{k(k + \alpha_j)}, \quad k > 0,
$$

we obtain

 \mathbb{R}^n

$$
\sum_{k=N}^{n-1} \ln |\mu_k| = -\ln(n-1)! + O(n).
$$

Hence, $\rho_y = 1/2$. The Ahlfors theorem is no longer of use in this case.

Example 4. Consider the case that $a = 0$, $\mu(\tau) = a_0 \tau^{\gamma}/\gamma$, $\nu(\tau) \equiv 0$, where $\text{Re } \gamma > 0$, $a_0 \neq 0$. The corresponding solution of problem (1.1) with $y_0 = 1$ is

(5.2)
$$
y(t) = {}_0F_1(-; \gamma; a_0t),
$$

where $_0F_1$ is the hypergeometric function. From the following formulas (see Abramowitz and Stegun [**1**, pp. 362, 364])

$$
J_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} {}_{0}F_{1}(-;\nu+1;-z^{2}/4),
$$

and

$$
J_{\nu}(z) = \left(\frac{2}{\pi z}\right)^{1/2} \left\{ \cos\left(z - \frac{1}{2}\nu\pi - \frac{1}{4}\pi\right) + e^{|\text{Im }z|}O(|z|^{-1}) \right\},\newline |\arg(z)| < \pi,
$$

where $J_{\nu}(z)$ is a Bessel function, we obtain

$$
{}_{0}F_{1}(-;\beta,z)
$$

= $\Gamma(\beta)\pi^{-1/2}(-z)^{(1/2-\beta)/2}\left\{\cos(2(-z)^{1/2}-((\beta-1)/2)\pi-\pi/4)+e^{2|\text{Im}(-z)^{1/2}|}O(|z|^{-1/2})\right\}, \qquad |\arg((-z)^{1/2})| < \pi.$

If $a_0 < 0$, then the solution (5.2) oscillates unboundedly if $\gamma < 1/2$, oscillates boundedly if $\gamma = 1/2$, and tends to zero as $t \to \infty$ if $\gamma > 1/2$. This implies that the solution (5.2) displays entirely different asymptotic properties as the parameter γ changes, though its order remains constant.

Theorem 6. *If* $a > 0$ *and*

(5.3)
$$
\int_0^1 \frac{1}{1-q} |d(\mu(q) + a\nu(q))| < \infty,
$$

 $\overline{}$

then the solution y(t) *of problem* (1.1) *satisfies*

(5.4)
$$
\lim_{t \to \infty} y^{(m)}(t) e^{-at} = a^{m-N} y_N^*,
$$

for all $m \in \mathbb{Z}^+$ *, where*

$$
y_N^* = y_N \prod_{k=N}^\infty \frac{1+\mu_k/a}{1-\nu_k} < \infty.
$$

Proof. The convergence of the product $\prod_{k=N}^{\infty} (1 + \mu_k/a)/(1 - \nu_k)$ follows from the inequality

$$
\sum_{k=N}^{\infty} \left| \frac{1+\mu_k/a}{1-\nu_k} - 1 \right| \le \frac{1}{a(1-\nu_N^*)} \int_0^1 \frac{1}{1-q} |d(\mu(q) + a\nu(q))|.
$$

For any given $\varepsilon > 0$, there exist an integer $M > N$ and a real number $T>0$ such that

$$
\left| y_N \prod_{k=N}^{n+m-1} \frac{1 + \mu_k/a}{1 - \nu_k} - y_N^* \right| < \frac{a^{N-m} \varepsilon}{2}, \quad n \ge M,
$$
\n
$$
\left| e^{-at} \sum_{n=0}^{M-1} (y_{n+m} - a^{m-N} y_N^*) \frac{t^n}{n!} \right| < \frac{\varepsilon}{2}, \quad t > T.
$$

From the preceding estimates and the expression

$$
y^{(m)}(t) - a^{m-N} y_N^* e^{at} = \sum_{n=0}^{M-1} (y_{n+m} - a^{m-N} y_N^*) \frac{t^n}{n!}
$$

+
$$
a^{m-N} \sum_{n=M}^{\infty} \left(y_N \prod_{k=N}^{n+m-1} \frac{1 + \mu_k/a}{1 - \nu_k} - y_N^* \right) \frac{(at)^n}{n!},
$$

 \Box

obtain

$$
|y^{(m)}(t)e^{-at} - a^{m-N}y_N^*| < \varepsilon, \quad t > T,
$$

 \Box

which implies (5.4) .

It is easy to see from (5.4) that the solution $y(t)$ of problem (1.1) increases (in modulus) exponentially if and only if $y_N^* \neq 0$ and $\mu_k \neq -a$ for all $k \geq N$. If $y_N^* = 0$ or $\mu_k = -a$ for some $k \geq N$, then the solution is a polynomial, as we can see from Theorem 1.

Example 5. Fox, Mayers, Ockendon and Tayler [**4**] presented some interesting numerical results obtained by the method of deferred correction for the problem (1.2) with $a = 0.95$, $b = -1$, $p = 0.99$ and $y_0 = 1$. Their results show that the numerical solution seemingly tends to zero (less than 5×10^{-5} in modulus) for $t \in (85, 125)$, but increases rapidly to positive infinity soon after $t_n > 145$. This is in conformity with the estimate (5.4), since $y_0^* \simeq 2.1 \times 10^{-81}$, which is a surprisingly small number compared with $e^{-125a} \simeq 2.68 \times 10^{-52}$.

Theorem 7. *If* $\text{Re } a > 0$ *and* (5.3) *holds, then there exists a* (*possibly zero*) *constant* y[∗] *such that the solution* y(t) *of problem* (1.1) *satisfies*

(5.5)
$$
\lim_{t \to \infty} y^{(m)}(t)e^{-at} = a^m y^*
$$

for all $m \in \mathbb{Z}^+$ *.*

Proof. Let $y(t)$ be a solution of problem (1.1), and denote $y_n(t)$ = $y^{(n)}(t)$, $n \geq 0$. We have

(5.6)
$$
y'_n(t) = ay_n(t) + \int_0^1 y_n(qt)q^n d\mu(q) + \int_0^1 y'_n(qt)q^n d\nu(q),
$$

$$
t > 0, \quad n \ge 0.
$$

According to our assumption and because of the identity

$$
\lim_{n \to \infty} \mu_n^* = \lim_{n \to \infty} \nu_n^* = \lim_{n \to \infty} \int_0^1 \frac{q^n}{1 - q} |d(\mu(q) + a\nu(q))| = 0,
$$

there exists an integer $M \geq 0$ such that $\nu_m^* < 1$ and

$$
\nu_m^* + \frac{1}{\text{Re }a} \int_0^1 \frac{q^m}{1-q} |d(\mu(q) + a\nu(q))| < 1
$$

for all $m \geq M$. Applying Lemma 1 to equation (5.6) in the case $n = m \geq M$, we see that $y_m(t)$ satisfies

(5.7)
$$
y'_m(t) = ay_m(t) + \sum_{n=0}^{\infty} T^n(aT + T_1)y_m(t),
$$

where

$$
Ty(t) = \int_0^1 y(qt)q^m \, d\nu(q), \qquad T_1y(t) = \int_0^1 y(qt)q^m \, d\mu(q).
$$

Applying Lemma 4 to equation (5.7), we see that there exists a (possibly zero) constant x_m , such that

$$
\lim_{t \to \infty} y^{(m)}(t) e^{-at} = x_m.
$$

For $0\leq n < m,$ we obtain from

$$
y^{(n)}(t) = \sum_{k=0}^{m-n-1} \frac{1}{k!} y^{(k+n)}(0) t^k
$$

+
$$
\frac{1}{(m-n-1)!} \int_0^t (t-\tau)^{m-n-1} y^{(m)}(\tau) d\tau
$$

that

(5.8)

$$
\lim_{t \to \infty} y^{(n)}(t)e^{-at} = \lim_{t \to \infty} \frac{1}{(m-n-1)!} \int_0^t (t-\tau)^{m-n-1} e^{-a(t-\tau)y^{(m)}}(\tau) e^{-a\tau} d\tau
$$

$$
= \frac{x_m}{(m-n-1)!} \int_0^\infty \tau^{m-n-1} e^{-a\tau} d\tau
$$

$$
= a^{n-m} x_m.
$$

 \Box

The integer $m \geq M$ being arbitrary, we deduce that $\lim_{t \to \infty} y^{(n)}(t) e^{-at}$ exists for all $n \geq 0$. Let $y^* = x_0$. It is easy to see from (5.8) that (5.5) holds for all $m \in \mathbb{Z}^+$. \Box

Comparing (5.5) with (5.4), we conjecture that the identity

$$
y^* = a^{-N} y_N \prod_{k=N}^{\infty} \frac{1 + \mu_k/a}{1 - \nu_k}
$$

can be extended from $a > 0$ to Re $a > 0$. A special case of this conjecture will be published in the "problems and solutions" section of SIAM Review [**13**].

Example 6. Consider the case where $a \neq 0$, $\mu(\tau) = a_0 \tau^{\gamma}/\gamma$, $\nu(\tau) \equiv 0$, where $\text{Re}\,\gamma > 0$, $a_0 \neq 0$. The corresponding solution of problem (1.1) with $y_0 = 1$ is

(5.9)
$$
y(t) = {}_1F_1(\gamma + a_0/a; \gamma; at),
$$

where $_1F_1$ is the confluent hypergeometric function. From Abramowitz and Stegun [**1**, p. 508], we have

(5.10)
$$
{}_{1}F_{1}(\alpha;\beta;z) = \Gamma(\beta)\left\{\frac{e^{\pm i\pi\alpha}z^{-\alpha}}{\Gamma(\beta-a)} + \frac{e^{z}z^{\alpha-\beta}}{\Gamma(\alpha)}\right\}(1+\mathcal{O}(|z|^{-1})),
$$

where the upper sign being taken if $-\pi/2 < \arg(zx) < 3\pi/2$, the lower sign if $-3\pi/2 < \arg(z) \leq -\pi/2$. If Re $a > 0$, we obtain from (5.10) that the solution (5.9) satisfies

$$
y(t)e^{-at} = \frac{\Gamma(\gamma)}{\Gamma(\gamma + a_0/a)} (at)^{a_0/a} (1 + \mathcal{O}(t^{-1})).
$$

Hence, $y(t)e^{-at} \rightarrow \infty$ as $t \rightarrow \infty$ if Re $(a_0/a) > 0$, $y(t)e^{-at} \rightarrow$ $\Gamma(\gamma)/\Gamma(\gamma + a_0/a)$ as $t \to \infty$ if Re $(a_0/a) = 0$, and $y(t)e^{-at} \to 0$ as $t \to \infty$ if Re $(a_0/a) < 0$. This shows that condition (5.3) in Theorem 6 and Theorem 7 cannot be removed.

6. Asymptotic stability in the case $\text{Re } a < 0$.

Theorem 8. *If* $\text{Re } a < 0$ *,* $\mu^* < |a|$ *, and*

(6.1)
$$
\lim_{h \to 0} \int_0^h |d\mu(q)| = \lim_{h \to 0} \int_0^h |d\nu(q)| = 0,
$$

then the zero solution of the initial-value problem (1.1) *is asymptotically stable.*

Proof. Let $y(t)$ be a solution of the initial-value problem (1.1) and denote $y_n(t) = y^{(n)}(t), n \ge 0$. We observe that $y_n(t)$ satisfies equation (5.6). According to our assumption and because of the identity (2.5), there exists an integer $M \geq 0$ such that $\nu_M^* < 1$ and

$$
\operatorname{Re} a + \frac{|a|\nu_M^* + \mu_M^*}{1 - \nu_M^*} < 0.
$$

Applying Lemma 1 to equation (5.6) in the case $n = M$, we see that $y_M(t)$ satisfies (5.7) with $m = M$. Applying Lemma 6 to this equation, we see that $\lim_{t\to\infty} y_M(t) = 0$. From equation (5.6), we have

(6.2)
$$
y_n(t) = -\frac{1}{a} \int_0^1 y_n(qt) q^n d\mu(q) + f_n(t),
$$

$$
t > 0, \quad n = 0, 1, ..., M - 1,
$$

where

$$
f_n(t) = -\frac{1}{a} \left(y_{n+1}(t) - \int_0^1 y_{n+1}(qt) q^n d\nu(q) \right).
$$

For $n = M - 1$, observing that

$$
\left| -\frac{1}{a} \int_0^1 q^{M-1} d\mu(q) \right| < 1
$$

and that $\lim_{t\to\infty} f_{M-1}(t) = 0$, we derive from Lemma 2 that $\lim_{t\to\infty}$ $y_{M-1}(t) = 0$. Continuing the above procedure for descending n, we finally obtain $\lim_{t\to\infty} y(t) = 0$. Hence, the zero solution is asymptotically stable. \Box cally stable.

Next we discuss the necessity of the condition (6.1) made in Theorem 8. The purpose of this condition is to exclude the case where the functions $\mu(q)$ or $\nu(q)$ have a jump at $q = 0$. If this is the case, we can replace $d\mu(q)$ and $d\nu(q)$ by $d\mu^*(q) + b\delta(0) dq$ and $d\nu^*(q) + c\delta(0) dq$, respectively, where $\mu^*(q)$ and $\nu^*(q)$ are continuous at $q = 0$. Then (1.1) can be written as

(6.3)

$$
y'(t) = ay(t) + \int_0^1 y(qt) d\mu^*(q) + \int_0^1 y'(qt), d\nu^*(q) + by(0) + cy'(0),
$$

$$
t > 0, \quad y(0) = y_0.
$$

Assume that $y_0 \neq 0$, $c + \beta \neq 1$, $a + \alpha \neq 0$ and $b(1 - \beta) + c(a + \alpha) \neq 0$, where $\alpha = \int_0^1 d\mu^*(q)$, $\beta = \int_0^1 d\nu^*(q)$. Substituting $t = 0$ into the preceding equation yields

$$
y'(0) = \frac{a+\alpha+b}{1-\beta-c}y_0.
$$

Let

$$
z(t) = y(t) + \frac{b(1-\beta) + c(a+\alpha)}{(a+\alpha)(1-\beta-c)}y_0,
$$

we see that $z(t)$ satisfies

$$
z'(t) = az(t) + \int_0^1 z(qt) d\mu(q) + \int_0^1 z'(qt) d\nu(q), \quad t > 0,
$$

$$
z(0) = \left(1 + \frac{b(1-\beta) + c(a+\alpha)}{(a+\alpha)(1-\beta-c)}\right) y_0.
$$

Note that $\lim_{t\to\infty} z(t) = 0$ implies

$$
\lim_{t \to \infty} y(t) = -\frac{b(1 - \beta) + c(a + \alpha)}{(a + \alpha)(1 - \beta - c)} y_0 \neq 0.
$$

Hence, the zero solution is stable but not asymptotically stable.

Example 7. Consider the case where $a \neq 0$, $\mu(\tau) = a_0 \tau^{\gamma}/\gamma$, $\nu(\tau) \equiv 0$, where $\text{Re}\,\gamma > 0$, $a_0 \neq 0$. The corresponding solution of problem (1.1) with $y_0 = 1$ is given by (5.9). Applying Theorem 8 to this case, we see that the zero solution is asymptotically stable if

 $\text{Re } a < 0$ and $\text{Re } \gamma > |a_0/a|$. However, we can obtain a better result from (5.10), namely, that the zero solution is asymptotically stable if $\text{Re } a < 0 \text{ and } \text{Re } \gamma > \text{Re } (-a_0/a).$

Acknowledgments. The second author wishes to thank Cambridge Overseas Trust, CVCP, C.T. Taylor Fund and Fitzwilliam College for their financial support.

REFERENCES

1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, John Wiley & Sons, 1964.

2. G.A. Derfel, On the asymptotic behaviour of solutions of a class of differentialdifference equations, in The asymptotic behaviour of solutions of differentialfunctional equations, Inst. Mat. Akad. Nauk Ukr. SSR. Kiev (1978), 58–65.

3. A. Feldstein and Z. Jackiewicz, Unstable neutral functional differential equations, Canad. Math. Bull. **33** (1990), 428-433.

4. L. Fox, D.F. Mayers, J.R. Ockendon and A.B. Tayler, On a functionaldifferential equation, J. Inst. Math. Appl. **8** (1971), 271-307.

5. G.M. Goluzin, Geometric theory of functions of complex variables, AMS Trans. Math. Monographs **29**, 1969.

6. J.K. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977.

7. A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math. 4 (1992), 1-38.

8. A. Iserles and Y. Liu, On functional-differential equations with proportional delays, Cambridge University Tech. Rep. DAMTP, 1993/NA3 (1993).

9. A. Iserles and J. Terjéki, Stability and asymptotic stability of functionaldifferential equations, J. London Math. Soc., to appear.

10. T. Kato, Asymptotic behaviour of solutions of the functional-differential equations $y'(x) = ay(\lambda x) + by(x)$, in Delay and functional differential equations and their applications (K. Schmitt, ed.), Academic Press, New York.

11. T. Kato and J.B. McLeod, The functional-differential equation $y'(x) =$ $ay(\lambda x) + by(x)$, Bull. Amer. Math. Soc. **77** (1971), 891–937.

12. Y. Kuang and A. Feldstein, Monotonic and oscillatory solution of a linear neutral delay equation with infinite lag, SIAM J. Math. Anal. 21 (1990), 1633-1641.

13. Y. Liu, A limit problem from the theory of delay equations, SIAM Review **36** No. 3 (1994), to appear.

14. Y. Liu and Z. Wu, The Fredholm and non-Fredholm theorems for a class of integro-functional equations, Acta Sci. Natur. Univ. Sunyatseni **29** (1990), 25 30.

15. K. Mahler, On a special functional equation, J. London Math. Soc. **15** (1940), 115 - 123.

16. R. Nussbaum, Existence and uniqueness theorems for some functional differential equations of neutral type, J. Differential Equations 11 (1972), 607-623.

17. J.R. Ockendon and A.B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. Lond. Ser. A **322** (1971), 447 468.

18. E.C. Titchmarch, The theory of functions, Second edition, Oxford University Press, 1939.

19. D.V. Widder, The Laplace transform, Princeton University Press, 1946.

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England, CB2 3PY

Fitzwilliam College, University of Cambridge, Cambridge, England, CB2 3PY