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ON PANTOGRAPH
INTEGRO-DIFFERENTIAL EQUATIONS

ARIEH ISERLES AND YUNKANG LIU

ABSTRACT. The paper discusses the initial-value prob-
lem for the pantograph integro-differential equation, including
as special cases the retarded functional-differential equation
studied by Ockendon and Tayler [17], Kato and MacLeod
[11] and the neutral differential equation studied by Kuang
and Feldstein [12]. The main subjects of this paper are well-
posedness of the initial-value problem, monotonicity and os-
cillation of the solution, unboundedness of the solution, and
asymptotic stability of the solution, subject to different con-
ditions.

1. Introduction. Let a be a complex constant and μ(q) and
ν(q) complex-valued functions of bounded variation on [0, 1]. The
initial-value problem for pantograph integro-differential equations to
be studied in this paper is of the form

(1.1)
y′(t) = ay(t) +

∫ 1

0

y(qt) dμ(q)

+
∫ 1

0

y′(qt) dν(q), t > 0, y(0) = y0

where the integrals being considered are of Riemann-Stieltjes type,
although most results of this paper still hold if μ(q) and ν(q) are
replaced by complex-valued measures on [0, 1]. The term pantograph
comes from Ockendon and Tayler [17] and Iserles [7].

The pantograph integro-differential equation includes many inter-
esting equations studied before. In the case dμ(q) = bδ(q − p) dq,
dν(q) ≡ 0, where p ∈ (0, 1) and δ(·) is a Dirac function, problem (1.1)
can be written as

(1.2) y′(t) = ay(t) + by(pt), t > 0, y(0) = y0,
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which has been studied by Ockendon and Tayler [17], Kato and McLeod
[11], etc. In the case dμ(q) =

∑M
i=1 biδ(q−qi) dq, dν(q) =

∑K
i=1 ciδ(q−

pi) dq, where qi, pi ∈ (0, 1), (1.1) can be written as

(1.3)
y′(t) = ay(t) +

M∑
i=1

biy(qit) +
K∑

i=1

ciy
′(pit),

t > 0, y(0) = y0

formerly studied by Feldstein and Jackiewicz [3], Kuang and Feldstein
[12], and in more general form, by Derfel [2] and Iserles and Liu [8].

The aim of this paper is not only to generalize some results of Kato
and MacLeod [11] and of Kuang and Feldstein [12] to problem (1.1),
but also in some cases to improve their results by using different
approaches. In Section 2 we study the well-posedness of the initial-value
problem (1.1). In Section 3 we study the monotonicity and oscillation
of the solution in the real case. In Section 4 we study as a preliminary to
the next two sections an integral equation and an integro-differential
equation. In Section 5 we study the unboundedness of the solution
in the case Re a ≥ 0 by using the Ahlfors theorem and some other
methods. In Section 6 we study the asymptotic stability of the zero
solution in the case Re a < 0.

2. Uniqueness and existence of the solution. Let

μk =
∫ 1

0

qk dμ(q), νk =
∫ 1

0

qk dν(q),

μ∗
k =

∫ 1

0

qk|dμ(q)|, ν∗
k =

∫ 1

0

qk|dν(q)|.

In particular, μ∗ := μ∗
0 and ν∗ := ν∗

0 are the variations of μ(q) and ν(q)
on [0, 1], respectively, whereas μ∗

k and ν∗
k are the variation of∫ q

0

τk dμ(τ ) and
∫ q

0

τk dν(τ ),

respectively. Throughout the paper, we use the uniform-norm, i.e.,

||f ||[a,b] = max
t∈[a,b]

|f(t)|

for a function f(t) ∈ C[a, b].
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Theorem 1. If ν∗
N < 1 for some N ∈ Z+, then, in function space

CN+1[0,∞),

(1) the solution of problem (1.1) exists if and only if the algebraic
linear system

(2.1) (1 − νn)yn+1 − (a + μn)yn = 0, n = 0, . . . , N − 1

is solvable;

(2) all solutions of problem (1.1) are analytic and can be expressed
in the form

(2.2) y(t) =
∞∑

n=0

yn

n!
tn,

where {yn}N
n=1 are solutions of the algebraic linear system (2.1) and

yn = yN

n−1∏
k=N

a + μk

1 − νk
, n > N ;

and

(3) the solution of problem (1.1) is unique if and only if νn �= 1 for
all 0 ≤ n ≤ N − 1. Furthermore, the uniqueness of solution implies
that

(2.3) y(t) = y0

{
1 +

∞∑
n=1

( n−1∏
k=0

a + μk

1 − νk

)
tn

n!

}
.

Proof. We commence by proving the theorem in the case N = 0.
Since ν∗ < 1 implies |νk| < 1 for all k ≥ 0, it is easy to verify that
the function on the right-hand side of (2.3) is a C1[0,∞) solution of
problem (1.1). To prove the uniqueness of this solution, it is enough to
prove that the homogeneous problem of (1.1), i.e., y0 = 0, has only the
trivial solution. Suppose that y(t) is a solution of this homogeneous
problem. It follows from equation (1.1) that, for any fixed T > 0

||y′||[0,T ] ≤ (|a| + μ∗)||y||[0,T ] + ν∗||y′||[0,T ].
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Hence

||y′||[0,T ] ≤ |a| + μ∗

1 − ν∗ ||y||[0,T ].

Noting that y(0) = 0, we derive from the preceding inequality and the
equation

y(t) = y(0) +
∫ t

0

y′(τ ) dτ

that

||y||[0,T ] ≤ |a| + μ∗

1 − ν∗ T ||y||[0,T ].

Hence, ||y||[0,T0] = 0 for 0 < T0 < (1 − ν∗)/(|a| + μ∗), which implies
that y ≡ 0 for t ∈ [0, T0]. By simple inductive argument, we see that
y(t) ≡ 0 for t ∈ [nT0, (n + 1)T0] and all n ≥ 0. Hence, y(t) ≡ 0 for
all t ≥ 0. In the case N ≥ 1, it is easy to see that a function y(t) is a
solution of problem (1.1) if and only if yn = y(n)(0), n = 1, 2, . . . , N ,
satisfy the algebraic linear system (2.1) and yN (t) = yN (t) ∈ C1[0,∞)
obeys the equation

y′
N (t) = ayN (t) +

∫ 1

0

yN (qt)qN dμ(q) +
∫ 1

0

y′
N (qt)qN dν(q),

yN (0) = yN .

Invoking the result of N = 0, we see that the theorem holds for N ≥ 1.

Remark 1. The condition
∑K

i=1 |cip
−1
i | < 1 for the existence and

uniqueness of a C1[0,∞) solution of problem (1.3), given originally by
Kuang and Feldstein [12], can be modified into

∑K
i=1 |ci| < 1.

Now we give examples to show the necessity of the condition ν∗
N < 1.

Example 1. Suppose that a = 0, dμ(q) ≡ 0, dν(q) = cδ(q − p) dq,
where c is constant satisfying |c|pN > 1, p ∈ (0, 1). Then there is a
one-to-one correspondence between the solutions y(t) ∈ CN+1[0,∞) of
problem (1.1) and the functions in the space {f(t) ∈ C[p, 1] : f(1) =
cpNf(p)}. For details, see Nussbaum [16] or Iserles and Liu [8].
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Example 2. Assume that a = 0, dμ(q) ≡ 0 and ν(q) satisfies

∫ 1

0

qN dν(q) > 1

and

(2.4) lim sup
n→∞

∫ 1

0

qn dν(q) < 1.

According to the intermediate value theorem, there exists a λ > N
such that ∫ 1

0

qλ dν(q) = 1.

Hence, the homogeneous problem

y′(t) =
∫ 1

0

y′(qt) dν(q), y(0) = 0

has a nontrivial solution y(t) = tλ+1 ∈ CN+1[0,∞). Furthermore, if λ
is not an integer, then this solution is not analytic. Consider the case
ν(q) = bqβ , where β > 0, (b − 1)β > N . If (b − q)β is not an integer,
then there exists a nonanalytic solution y(t) = t(b−1)β+1 ∈ CN+1[0,∞).

It is also easy to see that, subject to the existence condition in
Theorem 1, the solution y(t) is an entire function which satisfies

|y(t)| ≤
N−1∑
n=0

1
n!
|yn|tn +

1
N !

|yN |tN exp
{ |a| + μ∗

N

1 − ν∗
N

t

}
, t ∈ C.

In the remainder of this paper, we only discuss analytic solutions of
the form (2.2) and assume that μ(q) and ν(q) are continuous at q = 1
and that the system (2.1) is solvable. We denote by N a nonnegative
integer such that ν∗

N < 1. The continuity of μ(q) and ν(q) at q = 1
implies that

(2.5) lim
n→∞ μ∗

n = lim
n→∞ ν∗

n = 0,

which plays an important role in the subsequent discussion. It also
guarantees the existence of the integer N and the inequality (2.4). For
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simplicity, we exclude the trivial case of the solution being a polynomial
of t, which happens if there exists an integer n such that a + μn = 0,
1 − νn �= 0, or a + μn = 0, 1 − νn = 0, yn+1 = 0.

Remark 2. There is but a slight loss of generality in assuming that
ν(q) is continuous at q = 1. This is because (1.1) can be rewritten as

y′(t) =
1

1−ν(1)+ν(1−)

{
(a+μ(1)−μ(1−))y(t)

+
∫ 1

0

y(qt) dμ1(q) +
∫ 1

0

y′(qt) dν1(q)
}

,

t > 0, y(0) = y0

provided that ν(1) − ν(1−) �= 1, where

μ1(q) =
{

μ(q), 0 ≤ q < 1
μ(1−), q = 1

and ν1(q) =
{

ν(q), 0 ≤ q < 1
ν(1−), q = 1

are continuous at q = 1.

3. Monotonicity and oscillation of the solution. In this section
we restrict our attention to the case of a being a real constant and μ(q)
and ν(q) being real functions of bounded variation. We assume that
νk �= 1 for k ≥ 0. This implies that the solution of the initial-value
problem (1.1) is unique and is of the form (2.3).

Since μ(q) and ν(q) are real functions of bounded variation, they can
be decomposed into the sums

μ(q) = μ+(q) + μ−(q), ν(q) = ν+(q) + ν−(q),

where μ+(q) and ν+(q) are monotonic increasing functions and μ−(q)
and ν−(q) are monotonic decreasing functions. Recall from Widder [19]
that the function f(t) is said to be absolutely monotonically increasing
(decreasing) if dkf(t)/dtk ≥ 0 (≤ 0) for all integers k ≥ 0 and all
t > 0, and eventually absolutely monotonically increasing (decreasing)
if there exists T > 0 such that dkf(t)/dtk ≥ 0 (≤ 0) for all integers
k ≥ 0 and all t > T . The following theorem is easy to derive directly
from (2.3).
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Theorem 2. Suppose that y0 �= 0.

(1) If a > 0, then the solution of problem (1.1) is eventually absolutely
monotone; and

(2) If
∫ 1

0
dμ−(q) ≥ −a,

∫ 1

0
dν+(q) < 1¡ then the solution of problem

(1.1) is absolutely monotone.

In part 2 of the above theorem, if the condition
∫ 1

0
dμ−(q) ≥ −a is

replaced by
∫ 1

0
dμ−(q) > −a, then the solution satisfies dkf(t)/dtk > 0

(< 0) for all integers k ≥ 0 and all t > 0, a property stronger than
absolute monotonicity. Moreover, it is easy to derive directly from
(2.3) the estimate

|y0| exp
(

a +
∫ 1

0
dμ−(q)

1 − ∫ 1

0
dν−(q)

t

)
≤ |y(t)| ≤ |y0| exp

(
a +

∫ 1

0
dμ+(q)

1 − ∫ 1

0
dν+(q)

t

)
,

t ≥ 0.

Theorem 3. Suppose that μ(q) is monotonic decreasing and that
there exists q0, q1 ∈ (0, 1) such that dμ(q) = 0 for q /∈ [q0, q1],
ν+ :=

∫ 1

0
q−1 dν+(q) < 1 and ν∗

−1 :=
∫ 1

0
q−1|dν(q)| < ∞. If a = 0, then

every nontrivial solution of the problem (1.1) oscillates unboundedly.

Proof. Suppose that a nontrivial solution y(t) is nonoscillatory. Thus,
y(t) has at most finite number of zeros for t ≥ 0. By the linearity of
the problem, we can assume without loss of generality that the solution
is eventually positive, i.e., there exists t0 > 0 such that y(t) > 0 for
t > t0. Let t∗ = t0/q0. We deduce from

d

dt

{
y(t) −

∫ 1

0

y(qt)q−1 dν(q)
}

=
∫ q1

q0

y(qt) dμ(q) ≤ 0, t ≥ t∗,

that

y(t) −
∫ 1

0

y(qt)q−1 dν(q) ≤ y(t∗) −
∫ 1

0

y(qt∗)q−1 dν(q), t ≥ t∗.

Hence

y(t) −
∫ 1

0

y(qt)q−1 dν+(q) ≤ y(t∗) −
∫ 1

0

y(qt∗)q−1 dν(q), t ≥ t∗;
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consequently,

y(t) −
∫ 1

t∗/t

y(qt)q−1 dν+(q) ≤ y(t∗) −
∫ 1

0

y(qt∗)q−1 dν(q)

+
∫ t∗/t

0

y(qt)q−1 dν+(q), t ≥ t∗.

We derive from the preceding inequality that

y(t) ≤ (1 + ν∗
−1 + ν+) max

0≤τ≤t∗
|y(τ )| + ν+ max

t∗≤τ≤t
y(τ ), t ≥ t∗.

Therefore

y(t) ≤ 1 + ν∗
−1 + ν+

1 − ν+
max

0≤τ≤t∗
|y(τ )|, t ≥ t∗,

which leads to a contradiction, since, according to Theorem 4 of Section
5, the solution is unbounded. Hence, every nontrivial solution oscillates
unboundedly.

Kuang and Feldstein [12] proved this theorem in the special case
(1.3). Here we used a slightly different but more intuitive approach.

4. Related integral and integro-differential equations. Let
T, T0 and T1 be linear operators of the form

Ty(t) =
∫ 1

0

y(qt)K(q) dν(q),

Tiy(t) =
∫ 1

0

y(qt)Ki(q) dνi(q), i = 0, 1,

where K(q), K0(q) and K1(q) are continuous fucntions on [0, 1] and
ν(q), ν0(q) and ν1(q) are functions of bounded variation on [0, 1]. Let

χ =
∫ 1

0

|K(q) dν(q)|,

χi =
∫ 1

0

|Ki(q) dν(q)|, i = 0, 1.
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Consider the integral equation

(4.1) y(t) − Ty(t) = f(t), t ≥ 0,

where f(t) ∈ C[0,∞).

Lemma 1. If χ < 1, then equation (4.1) has a unique solution in
C[0,∞), which is of the form

(4.2) y(t) =
∞∑

n=0

Tnf(t).

The proof of this lemma is straightforward.

Lemma 2. If χ < 1, limh→0

∫ h

0
|K(q) dν(q)| = 0 and limt→∞ f(t) =

0, then the solution y(t) of equation (4.1) satisfies limt→∞ y(t) = 0.

Proof. Note that ||T ||[0,t] ≤ χ; therefore, it follows from (4.2) that

|y(t)| ≤ 1
1 − χ

||f ||[0,t] for all t ≥ 0.

Hence the solution y(t) is uniformly bounded. Let

M = sup
0≤x<∞

|y(t)|, φ = lim sup
t→∞

|y(t)|.

We shall prove that φ > 0 leads to a contradiction. Let δ = (1−χ)/(2+
χ + M) > 0. By our assumption, there exist t∗ > 0 and h ∈ (0, 1) such
that |f(t)| < δ, |y(t)| < φ + δ for all t > t∗, and

∫ h

0
|K(q) dν(q)| < δ.

For all t > t∗/h, we deduce from equation (4.1) that

|y(t)| < |f(t)| + M

∫ h

0

|K(q) dν(q)| + (φ + δ)
∫ 1

h

|K(q) dν(q)|
≤ δ + Mδ + (φ + δ)χ = φ − δ

which contradicts the definition of φ. Hence, φ = 0.
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Consider the initial-value problem for an integro-differential equation
of the form

(4.3) y′(t) = ay(t) +
∞∑

n=0

Tn(T0 + T1)y(t), t > 0, y(0) = y0.

Lemma 3. If χ < 1, then the problem (4.3) has a unique solution
y(t) ∈ C[0,∞).

Proof. It is trivial to verify that the function

y(t) = y0

{
1 +

∞∑
n=1

[ n−1∏
k=0

(
a +

ν0,k + ν1,k

1 − νk

)]
tn

n!

}

is a solution of (4.3), where

νk =
∫ 1

0

qkK(q) dν(q),

νi,k =
∫ 1

0

qkKi(q) dνi(q), i = 0, 1.

The uniqueness of solution can be proved in a similar way as we did in
the case N = 0 of Theorem 1.

Lemma 4. If Re a > 0 and χ + γ/Re a < 1, where

γ =
∫ 1

0

1
1 − q

|K0(q) dν0(q) + K1(q) dν1(q)| < ∞,

then the solution y(t) of problem (4.3) satisfies

lim
t→∞ y(t)e−at = y∗

for some (possibly zero) constant y∗.

Proof. From the variation of constants formula, we have

(4.4) y(t) = eaty(0) +
∫ t

0

ea(t−τ)
∞∑

n=0

Tn(T0 + T1)y(τ ) dτ.
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Noting that
∣∣∣∣
∫ t

0

e−ατy(q1 · · · qnqτ ) dτ

∣∣∣∣ ≤ 1
Re a(1 − q)

max
τ∈[0,t]

|y(τ )e−aτ |,

where q ∈ [0, 1), q1, . . . , qn ∈ [0, 1], we obtain
∣∣∣∣
∫ 1

0

∫ t

0

e−aτy(q1 · · · qnqτ )(K0(q) dν0(q) + K1(q) dν1(q)) dτ

∣∣∣∣
≤ γ

Re a
max

τ∈[0,t]
|y(τ )e−aτ |.

Hence,
∣∣∣∣
∫ t

0

e−aτ
∞∑

n=0

Tn(T0 + T1)y(τ ) dτ

∣∣∣∣
≤

∞∑
n=0

∫ t

0

∫
[0,1]n+1

|e−aτy(q1 · · · qnqτ )(K0(q) dν0(q)

+ K1(q) dν1(q)) dν(q1) · · · dν(qn) dτ |

≤
∞∑

n=0

γ

Re a

∫
[0,1]n

|K(q1) · · ·K(qn) dν(q1) · · ·

dν(qn)| max
τ∈[0,t]

|y(τ )e−aτ |

≤ γ

Re a(1 − χ)
max

τ∈[0,t]
|y(τ )e−aτ |.

From (4.4) and the preceding estimate, we obtain

|y(t)e−at| ≤ |y0| + γ

Re a(1 − χ)
max

τ∈[0,t]
|y(τ )e−aτ |.

Hence,

|y(t)e−at| ≤ Re a(1 − χ)
Re a(1 − χ) − γ

|y0|, t ≥ 0,

which means that y(t)e−at is uniformly bounded. Denote this bound
by M . Again, from (4.4), we obtain for t2 > t1 > 0 that

y(t2)e−at2 − y(t1)e−at1 =
∫ t2

t1

e−aτ
∞∑

n=0

Tn(T0 + T1)y(τ ) dτ.
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Noting that ∫ t2

t1

|e−aτy(q1 · · · qnqτ )| dτ ≤ Me−Re a(1−q)t1

Re a(1 − q)
,

where q ∈ [0, 1), q1, . . . , qn ∈ [0, 1], we obtain similarly that

|y(t2)e−at2 − y(t1)e−at1 |

≤ M

Re a(1 − χ)

∫ 1

0

e−Re a(1−q)t1

1 − q
|K0(q) dν0(q) + K1(q) dν1(q)|.

For any given ε > 0, it is evident that there exist h ∈ (0, 1) and T > 0
such that∫ 1

h

1
1 − q

|K0(q) dν0(q) + K1(q) dν1(q)| <
Re a(1 − χ)

2M
ε,

and
e−Re a(1−h)T <

Re a(1 − χ)
2Mγ

ε.

Hence we have for t2 > t1 > T that

|y(t2)e−at2 − y(t1)e−at1 |

≤ 1
1−χ

{
Me−Re a(1−h)T

Re a

∫ h

0

1
1−q

|K0(q) dν0(q)+K1(q) dν1(q)|

+
M

Re a

∫ 1

h

1
1−q

|K0(q) dν0(q)+K1(q) dν1(q)|
}

≤ ε,

which means that limt→∞ y(t)e−at exists.

Lemma 5. If χ < 1 and Re a + (χ0 + χ1)/(1 − χ) ≤ 0, then the
solution y(t) of problem (4.3) is uniformly bounded by |y0|.

Proof. The case Re a = 0 is trivial. Consider the case Re a < 0. For
any fixed positive constant L, we derive from formula (4.4) that

|y(t)| ≤ |eaty0| +
χ0 + χ1

1 − χ
||y||[0,L]

∫ t

0

eRe a(t−τ) dτ

≤ (|y0| − ||y||[0,L])eRe at + ||y||[0,L], t ∈ [0, L].
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Hence, ||y||[0,L] ≤ |y0|. The arbitrariness of L implies that the solution
is uniformly bounded by |y0|.

Lemma 6. If χ < 1, Re a + (χ0 + χ1)/(1 − χ) < 0, and

lim
h→0

∫ h

0

|Ki(q) dνi(q)| = 0, i = 0, 1,

then the solution y(t) of problem (4.3) satisfies limt→∞ y(t) = 0.

Proof. It follows from Lemma 5 that the solution y(t) of problem
(4.3) is uniformly bounded by |y(0)|. Hence, φ = lim supt→+∞ |f(t)|
exists. We shall prove that φ > 0 leads to a contradiction. Let

δ =
{

1 + |y(0)| + 2|y(0)|(χ0 + χ1 + 1) + χ0 + χ1

|Re a|(1 − χ)

}−1

{
1 − χ0 + χ1

|Re a|(1 − χ)

}
φ > 0.

By our assumption, there exists t0 > 0 such that

|y(t)| < φ + δ, t > t0,

h ∈ (0, 1) such that
∫ h

0

|Ki(q) dνi(q)| < δ, i = 0, 1,

integer m > 0 such that χm < δ and t1 > t0/hm+1 such that

eRe a(t−t0/hm+1) < δ, t > t1.

From ∣∣∣∣
m−1∑
n=0

Tn(T0 + T1)y(τ )
∣∣∣∣ ≤ |y(0)|(χ0 + χ1)

1 − χ
, τ > 0,

we obtain∣∣∣∣
∫ t0/hm+1

0

ea(t−τ)
m−1∑
n=0

Tn(T + T1)y(τ ) dτ

∣∣∣∣
≤ |y(0)|(χ0 + χ1)

|Re a|(1 − χ)
δ, t > t1.
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From
m−1∑
n=0

∫
[0,h]n+1

|y(q1 · · · qnqτ )K(q1) · · ·K(qn)

(K0(q) dν0(q) + K1(q) dν1(q)) dν(q1) · · ·dν(qn)|

≤
m−1∑
n=0

|y(0)|
( ∫

[0,h]

|K(q) dν(q)|)n|
∫ h

0

|K0(q) dν0(q) + K1(q) dν1(q)
)

<
2|y(0)|
1 − χ

δ, τ ≥ 0

and
m−1∑
n=0

∫
[0,1]n=1−[0,h]n+1

|y(q1 · · · qnqτ )K(q1) · · ·K(qn)

(K0(q) dν0(q) + K1(q) dν1(q)) dν(q1) · · ·dν(qn)|

<
χ0 + χ1

1 − χ
(φ + δ), τ ≥ t0/hm+1

we obtain
∣∣∣∣
∫ t

t0/hm+1
ea(t−τ)

m−1∑
n=0

Tn(T0 + T1)y(τ ) dτ

∣∣∣∣
<

2|y(0)|δ + (χ0 + χ1)(φ + δ)
|Re a|(1 − χ)

, t > t1.

Hence,
∣∣∣∣
∫ t

0

ea(t−τ)
m−1∑
n=0

Tn(T0 + T1)y(τ ) dτ

∣∣∣∣
<

|y(0)|(χ0 + χ1 + 2)δ + (χ0 + χ1)(φ + δ)
|Re a|(1 − χ)

, t > t1.

Moreover,
∣∣∣∣

∞∑
n=m

Tn(T0 + T1)y(τ )
∣∣∣∣ ≤ |y(0)|(χ0 + χ1)

1 − χ
χm, τ ≥ 0,
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implies
∣∣∣∣
∫ t

0

ea(t−τ)
∞∑

n=m

Tn(T0 + T1)y(τ ) dτ

∣∣∣∣ <
|y(0)|(χ0+χ1)
|Re a|(1−χ)

δ, t > 0.

Exploiting the above bounds, we obtain from formula (4.4) that

|y(t)| < |y(0)|δ +
2|y(0)|(χ0 + χ1 + 1)δ + (χ0 + χ1)(φ + δ)

|Re a|(1 − χ)
= φ − δ, t > t1,

which contradicts the definition of φ. Hence, φ = 0.

5. Unboundedness of solutions in the case Re a ≥ 0. In
this section we first use a very old result from the theory of complex
functions to derive the unboundedness of solutions in some particular
cases.

The order of an entire function

f(z) =
∞∑

n=0

an

n!
zn,

plays an important part in the first half of this section. Recall that
the order ρf can be evaluated through the following formula (see
Titchmarch [18])

ρf = lim sup
n→∞

n lnn

n ln n − ln |an| .

According to Ahlfors theorem [5], an entire function f of order ρf has
at most [2ρf ] finite asymptotes at ∞. Thus, ρf < 1/2 means that f
has no finite asymptotes at all. In other words, given any continuous
curve γ(s), s ∈ [0, 1), in the complex plane such that γ(s) → ∞ as
s → 1, it is true that lim sups→1− |f(γ(s))| = ∞. It should be noted
that the same result holds for all the derivatives f (k) since they have
the same order as f .

Theorem 4. If a = 0 and dμ(q) = 0 for q > q0, where q0 ∈ (0, 1),
then the solutions of problem (1.1) and all of their derivatives are
unbounded.
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Proof. From |μk| ≤ qk
0μ∗, we obtain

n−1∑
k=N

ln |μk| ≤ 1
2
(n − N)(n − 1 + N) ln q0 + (n − N) ln μ∗.

From |νk| ≤ ν∗
N < 1, k ≥ N , we obtain

(5.1)
∣∣∣∣

n−1∑
k=N

ln |1 − νk|
∣∣∣∣ ≤ −(n − N) ln(1 − ν∗

N ).

Hence, the order of the solution y(t) is zero. It follows from Ahlfors
theorem that the solution is unbounded.

Theorem 5. If a = 0 and μ(q) =
∑∞

j=1 ajq
αj , where Re αj > 0 for

all j ≥ 1, the series
∑∞

j=1 aj and
∑∞

j=1 ajα
2
j converge absolutely, and∑∞

j=1 ajαj = 0, then the solutions of the initial-value problem (1.1) and
all of their derivatives are unbounded.

Proof. Noting that

μk =
∞∑

j=1

ajαj

k + αj
= −

∞∑
j=1

ajα
2
j

k(k + αj)
, k ≥ 1,

we have for k ≥ 1,

|μk| ≤ k−2
∞∑

j=1

|ajα
2
j |,

n−1∑
k=N

ln |μk| ≤ (n−N) ln
∞∑

j=1

|ajα
2
j | − 2 ln(n−1)! + 2 ln(N−1)!, n > N.

Together with (5.1), we see that the order of the solution is ρy ≤ 1/3.
It follows from Ahlfors theorem that the solution is unbounded.

Example 3. If μ(q) = q − q2/2, then ρy = 1/3.

Suppose next that
∑∞

j=1 ajαj �= 0. From

μk =
1
k

μ′(1) −
∞∑

j=1

ajα
2
j

k(k + αj)
, k > 0,
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we obtain
n−1∑
k=N

ln |μk| = − ln(n − 1)! + O(n).

Hence, ρy = 1/2. The Ahlfors theorem is no longer of use in this case.

Example 4. Consider the case that a = 0, μ(τ ) = a0τ
γ/γ, ν(τ ) ≡ 0,

where Re γ > 0, a0 �= 0. The corresponding solution of problem (1.1)
with y0 = 1 is

(5.2) y(t) = 0F1(−; γ; a0t),

where 0F1 is the hypergeometric function. From the following formulas
(see Abramowitz and Stegun [1, pp. 362, 364])

Jν(z) =
(z/2)ν

Γ(ν + 1)0F1(−; ν + 1;−z2/4),

and

Jν(z) =
(

2
πz

)1/2{
cos

(
z − 1

2
νπ − 1

4
π

)
+ e|Im z|O(|z|−1)

}
,

| arg(z)| < π,

where Jν(z) is a Bessel function, we obtain

0F1(−; β, z)

= Γ(β)π−1/2(−z)(1/2−β)/2{cos(2(−z)1/2−((β−1)/2)π−π/4)

+ e2|Im (−z)1/2|O(|z|−1/2)}, | arg((−z)1/2)| < π.

If a0 < 0, then the solution (5.2) oscillates unboundedly if γ < 1/2,
oscillates boundedly if γ = 1/2, and tends to zero as t → ∞ if
γ > 1/2. This implies that the solution (5.2) displays entirely different
asymptotic properties as the parameter γ changes, though its order
remains constant.

Theorem 6. If a > 0 and

(5.3)
∫ 1

0

1
1 − q

|d(μ(q) + aν(q))| < ∞,
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then the solution y(t) of problem (1.1) satisfies

(5.4) lim
t→∞ y(m)(t)e−at = am−Ny∗

N ,

for all m ∈ Z+, where

y∗
N = yN

∞∏
k=N

1 + μk/a

1 − νk
< ∞.

Proof. The convergence of the product
∏∞

k=N (1 + μk/a)/(1 − νk)
follows from the inequality

∞∑
k=N

∣∣∣∣1 + μk/a

1 − νk
− 1

∣∣∣∣ ≤ 1
a(1 − ν∗

N )

∫ 1

0

1
1 − q

|d(μ(q) + aν(q))|.

For any given ε > 0, there exist an integer M > N and a real number
T > 0 such that

∣∣∣∣yN

n+m−1∏
k=N

1 + μk/a

1 − νk
− y∗

N

∣∣∣∣ <
aN−mε

2
, n ≥ M,

∣∣∣∣e−at
M−1∑
n=0

(yn+m − am−Ny∗
N )

tn

n!

∣∣∣∣ <
ε

2
, t > T.

From the preceding estimates and the expression

y(m)(t)−am−Ny∗
Neat =

M−1∑
n=0

(yn+m−am−Ny∗
N )

tn

n!

+ am−N
∞∑

n=M

(
yN

n+m−1∏
k=N

1+μk/a

1−νk
− y∗

N

)
(at)n

n!
,
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obtain
|y(m)(t)e−at − am−Ny∗

N | < ε, t > T,

which implies (5.4).

It is easy to see from (5.4) that the solution y(t) of problem (1.1)
increases (in modulus) exponentially if and only if y∗

N �= 0 and μk �= −a
for all k ≥ N . If y∗

N = 0 or μk = −a for some k ≥ N , then the solution
is a polynomial, as we can see from Theorem 1.

Example 5. Fox, Mayers, Ockendon and Tayler [4] presented
some interesting numerical results obtained by the method of deferred
correction for the problem (1.2) with a = 0.95, b = −1, p = 0.99 and
y0 = 1. Their results show that the numerical solution seemingly tends
to zero (less than 5 × 10−5 in modulus) for t ∈ (85, 125), but increases
rapidly to positive infinity soon after tn > 145. This is in conformity
with the estimate (5.4), since y∗

0 	 2.1× 10−81, which is a surprisingly
small number compared with e−125a 	 2.68 × 10−52.

Theorem 7. If Re a > 0 and (5.3) holds, then there exists a (possibly
zero) constant y∗ such that the solution y(t) of problem (1.1) satisfies

(5.5) lim
t→∞ y(m)(t)e−at = amy∗

for all m ∈ Z+.

Proof. Let y(t) be a solution of problem (1.1), and denote yn(t) =
y(n)(t), n ≥ 0. We have

(5.6)
y′

n(t) = ayn(t) +
∫ 1

0

yn(qt)qn dμ(q) +
∫ 1

0

y′
n(qt)qn dν(q),

t > 0, n ≥ 0.

According to our assumption and because of the identity

lim
n→∞ μ∗

n = lim
n→∞ ν∗

n = lim
n→∞

∫ 1

0

qn

1 − q
|d(μ(q) + aν(q))| = 0,



232 A. ISERLES AND Y. LIU

there exists an integer M ≥ 0 such that ν∗
m < 1 and

ν∗
m +

1
Re a

∫ 1

0

qm

1 − q
|d(μ(q) + aν(q))| < 1

for all m ≥ M . Applying Lemma 1 to equation (5.6) in the case
n = m ≥ M , we see that ym(t) satisfies

(5.7) y′
m(t) = aym(t) +

∞∑
n=0

Tn(aT + T1)ym(t),

where

Ty(t) =
∫ 1

0

y(qt)qm dν(q), T1y(t) =
∫ 1

0

y(qt)qm dμ(q).

Applying Lemma 4 to equation (5.7), we see that there exists a (possibly
zero) constant xm, such that

lim
t→∞ y(m)(t)e−at = xm.

For 0 ≤ n < m, we obtain from

y(n)(t) =
m−n−1∑

k=0

1
k!

y(k+n)(0)tk

+
1

(m−n−1)!

∫ t

0

(t − τ )m−n−1y(m)(τ ) dτ

that
(5.8)

lim
t→∞ y(n)(t)e−at = lim

t→∞
1

(m−n−1)!

∫ t

0

(t−τ )m−n−1e−a(t−τ)y(m)
(τ )e−aτ dτ

=
xm

(m−n−1)!

∫ ∞

0

τm−n−1e−aτ dτ

= an−mxm.
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The integer m ≥ M being arbitrary, we deduce that limt→∞ y(n)(t)e−at

exists for all n ≥ 0. Let y∗ = x0. It is easy to see from (5.8) that (5.5)
holds for all m ∈ Z+.

Comparing (5.5) with (5.4), we conjecture that the identity

y∗ = a−NyN

∞∏
k=N

1 + μk/a

1 − νk

can be extended from a > 0 to Re a > 0. A special case of this
conjecture will be published in the “problems and solutions” section
of SIAM Review [13].

Example 6. Consider the case where a �= 0, μ(τ ) = a0τ
γ/γ,

ν(τ ) ≡ 0, where Re γ > 0, a0 �= 0. The corresponding solution of
problem (1.1) with y0 = 1 is

(5.9) y(t) = 1F1(γ + a0/a; γ; at),

where 1F1 is the confluent hypergeometric function. From Abramowitz
and Stegun [1, p. 508], we have

(5.10) 1F1(α; β; z) = Γ(β)
{

e±iπαz−α

Γ(β − a)
+

ezzα−β

Γ(α)

}
(1 + O(|z|−1)),

where the upper sign being taken if −π/2 < arg(zx) < 3π/2, the lower
sign if −3π/2 < arg(z) ≤ −π/2. If Re a > 0, we obtain from (5.10)
that the solution (5.9) satisfies

y(t)e−at =
Γ(γ)

Γ(γ + a0/a)
(at)a0/a(1 + O(t−1)).

Hence, y(t)e−at → ∞ as t → ∞ if Re (a0/a) > 0, y(t)e−at →
Γ(γ)/Γ(γ + a0/a) as t → ∞ if Re (a0/a) = 0, and y(t)e−at → 0 as
t → ∞ if Re (a0/a) < 0. This shows that condition (5.3) in Theorem 6
and Theorem 7 cannot be removed.
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6. Asymptotic stability in the case Re a < 0.

Theorem 8. If Re a < 0, μ∗ < |a|, and

(6.1) lim
h→0

∫ h

0

|dμ(q)| = lim
h→0

∫ h

0

|dν(q)| = 0,

then the zero solution of the initial-value problem (1.1) is asymptotically
stable.

Proof. Let y(t) be a solution of the initial-value problem (1.1) and
denote yn(t) = y(n)(t), n ≥ 0. We observe that yn(t) satisfies equation
(5.6). According to our assumption and because of the identity (2.5),
there exists an integer M ≥ 0 such that ν∗

M < 1 and

Re a +
|a|ν∗

M + μ∗
M

1 − ν∗
M

< 0.

Applying Lemma 1 to equation (5.6) in the case n = M , we see that
yM (t) satisfies (5.7) with m = M . Applying Lemma 6 to this equation,
we see that limt→∞ yM (t) = 0. From equation (5.6), we have

(6.2)
yn(t) = −1

a

∫ 1

0

yn(qt)qn dμ(q) + fn(t),

t > 0, n = 0, 1, . . . , M − 1,

where

fn(t) = −1
a

(
yn+1(t) −

∫ 1

0

yn+1(qt)qn dν(q)
)

.

For n = M − 1, observing that

∣∣∣∣ − 1
a

∫ 1

0

qM−1 dμ(q)
∣∣∣∣ < 1

and that limt→∞ fM−1(t) = 0, we derive from Lemma 2 that limt→∞
yM−1(t) = 0. Continuing the above procedure for descending n, we
finally obtain limt→∞ y(t) = 0. Hence, the zero solution is asymptoti-
cally stable.
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Next we discuss the necessity of the condition (6.1) made in Theorem
8. The purpose of this condition is to exclude the case where the
functions μ(q) or ν(q) have a jump at q = 0. If this is the case, we
can replace dμ(q) and dν(q) by dμ∗(q)+ bδ(0) dq and dν∗(q)+ cδ(0) dq,
respectively, where μ∗(q) and ν∗(q) are continuous at q = 0. Then (1.1)
can be written as
(6.3)

y′(t) = ay(t) +
∫ 1

0

y(qt) dμ∗(q) +
∫ 1

0

y′(qt), dν∗(q) + by(0) + cy′(0),

t > 0, y(0) = y0.

Assume that y0 �= 0, c + β �= 1, a + α �= 0 and b(1− β) + c(a + α) �= 0,
where α =

∫ 1

0
dμ∗(q), β =

∫ 1

0
dν∗(q). Substituting t = 0 into the

preceding equation yields

y′(0) =
a + α + b

1 − β − c
y0.

Let
z(t) = y(t) +

b(1 − β) + c(a + α)
(a + α)(1 − β − c)

y0,

we see that z(t) satisfies

z′(t) = az(t) +
∫ 1

0

z(qt) dμ(q) +
∫ 1

0

z′(qt) dν(q), t > 0,

z(0) =
(

1 +
b(1 − β) + c(a + α)
(a + α)(1 − β − c)

)
y0.

Note that limt→∞ z(t) = 0 implies

lim
t→∞ y(t) = −b(1 − β) + c(a + α)

(a + α)(1 − β − c)
y0 �= 0.

Hence, the zero solution is stable but not asymptotically stable.

Example 7. Consider the case where a �= 0, μ(τ ) = a0τ
γ/γ,

ν(τ ) ≡ 0, where Re γ > 0, a0 �= 0. The corresponding solution of
problem (1.1) with y0 = 1 is given by (5.9). Applying Theorem 8
to this case, we see that the zero solution is asymptotically stable if
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Re a < 0 and Re γ > |a0/a|. However, we can obtain a better result
from (5.10), namely, that the zero solution is asymptotically stable if
Re a < 0 and Re γ > Re (−a0/a).
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