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DIFFERENTIAL APPROXIMATION
FOR VISCOELASTICITY

D.A. BURKETT AND R.C. MACCAMY

1. Introduction. This paper is a continuation of work begun in [4].
The general area is that of evolution equations containing a hereditary
(time nonlocal) effect which produces dissipation. The goal is to devise
approximate equations which are easier to handle but which accurately
reproduce dissipation.

The equation studied in [4] was “parabolic” in nature. Here we deal
with the “hyperbolic” situation. We take as a model the displacement
problem for linear, isotropic viscoelasticity. Let us describe the problem
in order to motivate the ideas.

We let Ω be a bounded region in space representing a reference
configuration for a body, and we let u(x, t) denote displacement. For
ease of exposition, we assume the body is homogeneous. Let μ and λ
be functions of t on [0,∞). We write:

(1.1)
E[u] = (∇u + ∇uT )/2

L(μ, λ)[u] = 2μE[u] + λtrE[u]I.

Then linear, isotropic viscoelasticity (for a solid) is described by giving
the stress

∑
(x, t) by the formula, [7, 8],

(1.2)
∑

(x, t) =
∂

∂t

∫ t

−∞
L(μ(t − τ ), λ(t − τ ))[u(x, τ)] dτ.

Remark. For an inhomogeneous material μ and λ are functions of x
and t.
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We study the displacement problem. We assume that u is zero up
to time t = 0 and we take the density to be identically equal to one.
Then if b is the body force, the problem is:

ü(x, t) =
∂

∂t

∫ t

0

div L(μ(t − τ ), λ(t − τ ))[u(x, τ)] dτ + b(x, t) in Ω,

u(x, t) = 0 on ∂Ω, P (μ, λ)[b,u0,u1]
u(·, 0) = u0, u̇(·, 0) = u1,

where the dot indicates time derivative and div denotes divergence.

When μ(t) and λ(t) are constants (1.2) reduces to linear isotropic
elasticity. In that case there are two distinguishing features. There is
finite propagation speed and there is no dissipation. The virtue of the
memory models is that they preserve the finite propagation speed while
introducing dissipation. They have two defects. First, they require a
knowledge of the moduli μ and λ for all t. The second is that the time
non-locality produces serious numerical problems.

We assume that μ and λ have the form

(1.3) μ(t) = μE + μm(t), λ(t) = λE + λm(t)

μE and λE are constants (functions of x in the inhomogeneous case),
termed equilibrium moduli. μm andλm represent the memory effect
and tend to zero as t tends to infinity. We say we have dissipation if in
P (μ, λ)[b,u0,u1]

(1.4) b(x, t) → bE(x) ⇒ u(x, t) → uE(x)

for any choice of u0 and u1.

We follow the procedure of [4]. We replace μ and λ in (1.2) with
approximate moduli M and ∧ and solve the corresponding approximate
problems with the same b,u0 and u1. The goal is to retain as much
as possible of the qualitative theory. We want to be able to determine
M and ∧ from relatively little information about μ and λ, information
that could be obtained from simple experiment. We also want the
approximate problems to be numerically simple.
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It is clear the short time behavior of solutions of P (μ, λ)[b,u0,u1]
is controlled by μ(0), μ̇(0), λ(0) and λ̇(0) up to terms of order t4. The
hyperbolic nature of the problem is reflected in the fact that one has
finite propagation speed. The speed of propagation is determined by
μ(0) and λ(0) (the instantaneous moduli). The dissipative nature
is reflected in the fact that waves decay in strength exponentially.
The rate of decay is determined by μ̇(0) and λ̇(0). (See [8]). Thus,
μ(0), μ̇(0), λ(0), and λ̇(0) are important and are capable of experimental
determination and should be reproduced in our approximation. These
ideas are discussed in the appendix.

It is known from the general Volterra integral equation theory that
the crucial condition for dissipation is the strong positivity of μ and λ
(see [2]). Thus, we will also impose this condition on M and ∧. If one
has strong positivity, then it is known, and will be verified later, that
uE in (1.4) is determined by the equilibrium moduli μE , λE . Thus,
these two are important and measurable and we retain them, that is,
we take

(1.5) M(t) = μE + Mm(t), ∧(t) = λE + ∧m(t).

Following the ideas of [4] we can achieve all the above requirements
with rather simple approximate kernels. These are obtained by making
low order rational approximations to the Laplace transforms μ̂ and
λ̂ of μ and λ. Such a scheme, translated back to the time domain,
yields fairly low order differential equations which are easier to treat
numerically.

We note that our proposed matching so far has had nothing to do with
the memory moduli μm and λm for t > 0. Clearly, these control the
difference u(x, t)−uE(x) (1.4). In our approximation procedure we still
have a little freedom left. This can conveniently be used to match the
integrals

∫ ∞
0

μm(t) dt and
∫ ∞
0

λm(t) dt. We will see that these control
the corresponding integral

∫ ∞
0

(u(x, t)−uE(x)) dt, a quantity which can
again be measured.

In Section two we describe the kernels and their approximation.
Sections three and four contain a careful discussion of the stability
results. This is fairly straightforward but we want to show precisely
what the various aspects of the kernels control and we have not found
these results elsewhere. We also use these results to establish some
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error estimates. In the Appendix we briefly describe how one might
obtain the desired information about the kernels experimentally.

Remark. The error estimates depend on L1 norms of the differences
μ − M , λ − ∧ and their time derivatives. One way to approach the
approximative problem would be to minimize these norms. We observe,
however, that this would be contrary to the spirit of the paper since
we want to deal with situations in which we do not know μm or λm.

We present a few numerical results in Section 5. These indicate that,
despite the very crude approximations of the kernels, the approximate
solutions are not too bad over the entire time interval.

2. Approximation of kernels. We denote by P the class of
functions a ∈ C(2)[0,∞) which satisfy:

a(0) > 0, ȧ(0) < 0, a(j) ∈ L1(0,∞) ∩ L2(0,∞),
(2.1)

j = 0, 1, 2, Re â(iη) > 0 ∀ η,

where â is the Laplace transform of a. The basic hypotheses on the
moduli μ and λ which we need are as follows; with κ = 2μ/3 + λ, we
require

(H)
μ(t) = μE + μm(t), μE > 0, μm ∈ P
κ(t) = κE + κm(t), κE > 0, κm ∈ P.

Remark. The fact that μE > 0 and λE > 0 means we are dealing
with a solid.

Functions satisfying (2.1) are called strongly positive in Volterra
equation theory [2, 5]. We list some facts concerning them.

1. The conditions in (2.1) imply that

â(s) = a(0)s−1 + ȧ(0)s−2 + o(s−2) as s → ∞.

2. Given (2.1)1, a sufficient condition for (2.1)2 is (−1)ka(k)(t) > 0,
k = 0, 1, 2. This condition is not necessary. For instance, the function
e−αt cos βt, α, β > 0 is in P.
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3. A special class of strongly positive (completely monotone) kernels
is given by the formula

(2.2) a(t) =
∫ ∞

0

ϕ(λ)e−λt dλ,

where ϕ(λ) > 0, λjϕ(λ) ∈ L1(0,∞), j = −1, 0, 1, 2, and its extension
to Stieltjes integrals (Bernstein’s theorem).

We want to give a procedure which approximates kernels a ∈ P with
other kernels A ∈ P. We will always require A(0) = a(0) and focus on
the two additional conditions:

(I) Ȧ(0) = ȧ(0),

(II)
∫ ∞

0

A(t) dt =
∫ ∞

0

a(t) dt

Our approximation scheme is to take a Padé approximation, Â(s) of
the transform â(s) then transform back to get A(t). That is,

(2.3) Â(s) = p̂(s)/q̂(s)

where p̂ and q̂ are polynomials with deg p̂ < deg q̂. For the moduli μ
and κ we will approximate with

(2.4)
μ ≈ M = ME + Mm,

λ ≈ Λ = ΛE + Λm,

κ ≈ K = KE + Km

with Mm and Km to be determined by the recipe in (2.3).

Before we proceed with the details of our approximation we make two
elementary observations.

1. Short time behavior. Suppose the solutions u and v of the
exact problem P (μ, λ)[b,u0,u1] and the approximate problem P (M, Λ)
[b,u0,u1] are smooth in t ≥ 0. Then one checks easily that the
following relations hold for small t,

M(0) = μ(0) and Λ(0) = λ(0)
⇒ ü(0) = v̈(0) and u(t) − v(t) = O(t3).
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If, in addition, Ṁ(0) = μ̇(0) and Λ̇(0) = λ̇(0), then u(3)(0) = v(3)(0)
and

u(t) − v(t) = O(t4).

2. Numerical simplification. Let us formally transform the equation
in P (M, Λ)[b,u0,u1], with solution v. We obtain

(2.5) s2v̂ = s div L(M̂(s), Λ̂(s))[û] + b̂ + su0 + u1.

Now both M̂(s) and Λ̂(s) will be a ratio of polynomials as in (2.3). If
one clears fractions in (2.5), then one has an equation with each term
multiplied by a polynomial in s. Assuming enough smoothness for v
one can then translate back to the time domain and have a differential
equation for v. The required initial conditions can be obtained by
repeatedly differentiating the equation and setting t = 0. (See [4] for a
detailed example of this process).

We turn now to the question of how to do the approximations. We
consider only first and second order approximation. For first order, we
take

(2.6) Â(s) =
a(0)

s + D
.

That is, A(t) = a(0)e−Dt. For any positive D, A(t) is in P and
A(0) = a(0). We can use the parameter D to satisfy either (I) or
(II), but not both.

Remark. Recall that this means we can reproduce the decay rate for
waves or the integral of uE − u, but not both.

The second order approximation is more interesting. We take

(2.7) Â(s) =
a(0)s + Dâ(0)
s2 + Cs + D

with C =
Dâ(0) − ȧ(0)

a(0)
.

One readily checks that for any positive D the inverse transform A(t)
of Â(s) is in P and satisfies a(0) = A(0) as well as both (I) and (II).

It is of interest to consider what the approximate functions A will
be for (2.7). Observe that A can be oscillatory. One needs to consider
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Γ(D) = C2−4D. If Γ(D) ≥ 0, then A is a sum of negative exponentials.
If, however, Γ(D) < 0, then A will be oscillatory. One readily checks
that Γ(D) is always positive for D small or large. Further, one has

(2.8) Γ(D) ≥ −4
(

ȧ(0)
â(0)

+
a(0)2

â(0)2

)
.

Thus, if

(2.9) a(0)2 + ȧ(0)â(0) ≤ 0,

then Γ(D) is always nonnegative. On the other hand, if the quantity
in (2.9) is positive, there will be a range of D’s which will produce
oscillatory approximations. It is easy to check that if a has the form
(2.2) with ϕ, λϕ and λ−1ϕ all in L1(0,∞), then (2.9) is satisfied and
no oscillations can occur.

The question remains as to how to choose the free parameter D.
Three possibilities suggest themselves. A first choice is to make
Ä(0) = ä(0) (M̈(0) = μ̈(0) and K̈(0) = κ̈(0)). This should presumably
improve the short time behavior to u(t) − v(t) = O(t5). The choice of
D here is

(2.10) D =
ȧ(0)2 − ä(0)a(0)
a(0)2 + ȧ(0)â(0)

.

A second choice is to make A′(0) = a′(0). This requires

(2.11) D =
a(0)2 + â(0)ȧ(0)
â′(0)a(0) + â(0)2

.

The effect of this on the viscoelastic problem would be to add to (1.5)
the condition that μm and λm have the same first moments.

We note that either (2.10) or (2.11) could yield a negative D which
would be unacceptable. We have, however, the following result when a
has the form (2.2).

Proposition. (i). If ϕ, λϕ, λ2ϕ, λ−1ϕ ∈ L1(0,∞), then D defined
by (2.10) is positive.



172 D.A. BURKETT AND R.C. MACCAMY

(ii) If ϕ, λϕ, λ−1ϕ, λ−2ϕ ∈ L1(0,∞), then D defined by (2.11) is
positive.

Proof. From (2.2), we have

â(s) =
∫ ∞

0

ϕ(λ)
s + λ

dλ, â(0) =
∫ ∞

0

ϕ(λ)
λ

dλ,

â′(0) = −
∫ ∞

0

ϕ(λ)
λ2

dλ, a(0) =
∫ ∞

0

ϕ(λ) dλ,

ȧ(0) = −
∫ ∞

0

λϕ(λ) dλ, ä(0) =
∫ ∞

0

λ2ϕ(λ) dλ.

Hence

a(0)2 =
( ∫ ∞

0

ϕ(λ) dλ

)2

≤
( ∫ ∞

0

λϕ(λ) dλ

)( ∫ ∞

0

ϕ(λ)
λ

dλ

)
= −ȧ(0)â(0)

ȧ(0)2 =
( ∫ ∞

0

λϕ(λ) dλ

)2

≤
( ∫ ∞

0

λ2ϕ(λ) dλ

)∫ ∞

0

ϕ(λ) dλ = ä(0)a(0)

â(0)2 =
∫ ∞

0

ϕ(λ)
λ

dλ

≤
( ∫ ∞

0

ϕ(λ)
λ2

dλ

) ∫ ∞

0

ϕ(λ) dλ = −â′(0)a(0).

Thus, the numerators and denominators in (2.10) and (2.11) are all
negative.

A third choice appeared to be effective in [4]. Suppose it is known
that A(t) = O(e−αt) as t → ∞. Then one can choose D so that
A(t) = O(e−αt) as well. (Again D is not always guaranteed to be
positive.) Various choices appear in the example in Section 4.

Remark. Any of the three choices for D would require additional in-
formation about the moduli μ and λ and thus more subtle experiments
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than those in the Appendix. Numerical evidence seems to indicate that
the results are not too sensitive to the choice of D.

3. Stability. In this section we want to make relation (1.4) precise.
We begin by giving a weak formulation. We introduce the spaces

(3.1) V1 = (H0
1 (Ω))3, V0 = (L2(Ω))3, V−1 = (H−1(Ω))3,

H0
1 (Ω) denoting the standard Sobolev space, H1(Ω), with zero bound-

ary values and H−1(Ω) its dual.

In the usual way we can imbed V0 in V−1 by 〈h,v〉 = (h,v)V0 for any
h ∈ V0, v ∈ V1. We then have V1 ⊂ V0 ⊂ V−1. We put κ = 2μ/3 + λ,
and we introduce the following notation:

E0[u] = E[u] − trE[u]I/3

(2.2)
A(μ, κ)[u,v] =

∫
Ω

(2μE0[u] · E0[v] + κ tr E[u]trE[v]) dx

A(μ, κ)[u,v] =
∫ t

0

A(μ(t − τ ), κ(t − τ ))[u(·, τ ),v] dτ.

The weak form of P (μ, λ)[b,u0,u1] is obtained by multiplying by a
test function and integrating by parts. The result will be meaningful
on a time interval (0, T ) if

(3.3) u(j) ∈ L2(0, T : V1−j), j = 0, 1, 2; b ∈ L2(0, T : V−1).

If we write

(3.4) L(μ, κ)[u,v] = 〈ü,v〉 +
∂

∂t
A(μ, κ)[u,v]

then the weak form problem is, V P (μ, κ)[b,u0,u1]

(3.5)
L(μ, κ)[u,v] = 〈b,v〉 ∀v ∈ L2(0, T : V1)

u(·, 0) = u0, u̇(·, 0) = u1.

Existence and uniqueness of solutions of V P (μ, κ)[b,u0,u1] are given
in [1] with no restrictions on μ and κ other than smoothness require-
ments. The question of asymptotic stability is considered there for the
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homogeneous case b = 0 and μ and κ satisfying monotonicity convexity
conditions of the form (−1)kμk(t) > 0, (−1)kλ(k)(t) > 0, k = 0, 1, 2.
We want to study the inhomogeneous case under the more general hy-
potheses (H) on μ and κ. Thus we assume from now on that μ and κ
satisfy (H).

We introduce spaces B and M:

B = H1(0,∞ : V−1)

M =
2⋂

j=0

Hj(0,∞ : V1−j)(3.6)

with

||u||2M =
2∑

j=0

||u||Hj(0,∞:V1−j).

It is easy to verify the following

(3.7)
b ∈ B ⇒ b(t) → 0 in V−1 as t → ∞

u ∈ M ⇒ u(t) → 0 in V0 and u̇(t) → 0 in V−1 as t → ∞.

Our basic stability result is the following:

Theorem 3.1. If b ∈ B, u0 ∈ V1, u1 ∈ V0, then V P (μ, κ)[b,u0,u1]
has a unique solution u ∈ M. There exists a constant C, depending
only on Ω, μ and κ such that

(3.8)
||u||M ≤ C Γ(b,u0,u1)

Γ(b,u0,u1) := ||b||B + ||u0||V1 + ||u1||V0 .

The proof of this result is a little technical, and we delay it until the
next section. In this section we indicate some consequences.

Remark. The estimate in (3.8) reflects the fact that the map u0,u1 →
u, the solution is bounded and linear and can be described as the a
solution operator S. The estimate (3.8) is a combination of pointwise
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estimates for S applied to the initial data and an estimate from
variation of parameters which involves an L1 estimate for S. This
procedure is done in great generality in [7]. We have treated the
problem without a general solution operator because it seems to us
that it reveals more clearly the roles played by the various conditions
on the kernels.

3.1. Approach to steady state. We begin with two well-known
results from static elasticity theory. The first follows from the form of
A(μ, κ) and the Korn and Poincaré inequalities. The second follows
from the first and the Lax-Milgram lemma (see [6]).

Lemma 3.1. For any μ > 0 and κ > 0 there is a constant C
depending only on Ω, μ and κ such that

(3.9) A(μ, κ)[u,u] ≥ C ||u||2V1
∀u ∈ V1.

Lemma 3.2. Suppose μ > 0 and κ > 0. Then for any b ∈ V−1,
there is a unique u ∈ V1 such that A(μ, κ)[u,v] = 〈b,v〉 for all v ∈ V1.
The map b → u : V−1 → V1 is linear and bounded.

We define UE : V−1 → V1 by UE(bE) = uE where

(3.10) A(μE , κE)[uE ,v] = 〈bE ,v〉 ∀v ∈ V1.

We want to study the case where

(3.11) b(x, t) = bE(x) + bm(x, t) with bE ∈ V−1,bm ∈ B.

In this case, we set

(3.12) Γ(bE,bm,u0,u1) = ||bE ||V−1 + ||bm||B + ||u0||V1 + ||u1||V0 .

Theorem 3.2. If b satisfies (3.11), V P (μ, κ)[bE +bm,u0,u1] has a
unique solution u = uE +um with uE = UE(bE) and um ∈ M . There
is a constant C depending only on Ω, μ and κ such that

(3.13) ||um||M ≤ CΓ(bE,bm,u0,u1).
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Proof. Suppose u = uE + um is a solution with UE = UE(bE). Then
an elementary calculation yields

L(μ, κ)[um,v] = 〈B,v〉

(3.14) um(·, 0) = u0 − uE , u̇m(·, 0) = u1

〈B,v〉 = 〈bm,v〉 − A(μm, κm)[uE ,v].

Recall that μm, κm ∈ P implies that μm, μ̇m, κm, κ̇m are in L1(0,∞).
Also, there is a C1 such that ||uE ||V1 = ||uE(bE)||V1 ≤ C1||bE ||V−1 .
Thus B ∈ B and ||B||B ≤ C(||bE||V−1 + ||bm||B and (3.13) follows from
(3.8).

Remark. By (3.7) we see that u → uE in V0 as t → ∞. Note that the
steady state limit is independent of initial conditions. It is determined
solely by bE and the equilibrium moduli μE , κE .

3.2 Integrals of solutions. We continue under assumption (3.11)
so that u = uE + um. Put

(3.15) w(x, t) =
∫ t

0

um(x, τ) dτ.

We want to show that w behaves like u, that is,

(3.16) w(x, t) = wE(x) + wm(x, t), wE ∈ V1, wm ∈ M.

We will need some additional technical hypotheses but let us proceed
formally to see what they are. We note that (∂/∂t)A(μ, κ)[um,v] =
(∂2/∂t2)A(μ, κ)[w,v]. Hence we can integrate in (3.14) to obtain

(3.17) L(μ, κ)[w,v] = 〈G,v〉

where

〈G(t),v〉 =
〈 ∫ t

0

B dτ,v
〉

+ 〈u1,v〉.
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We want to reduce (3.17) to the situation in Theorem (3.2). We write
formally

(3.18)

〈G,v〉 = 〈GE ,v〉 + 〈Gm,v〉,
〈GE,v〉 =

〈∫ ∞

0

B dτ,v
〉

+ 〈u1,v〉

〈Gm(t),v〉 =
〈
−

∫ ∞

t

B dτ,v
〉

.

To apply Theorem 3.2 we need GE ∈ V−1 and Gm ∈ B. If these are
so, we will have (3.16) with wE = UE(GE). If we require that

(3.19) bm ∈ L1(0,∞ : V−1),

then we see from (3.14) that

(3.20)
〈GE ,v〉 =

〈 ∫ ∞

t

bm dτ,v
〉

+ 〈u,v〉
− A(μ̂m(0), κ̂m(0))[uE,v]

exists. In order to have Gm ∈ B we see from (3.14) that we need the
extra conditions:

The maps t → ∫ ∞
t

μm(τ ) dτ , and

(3.21) t →
∫ ∞

t

κm(τ ) dτ are in H1(0,∞).

The map t → ∫ ∞
t

bm dτ is in H1(0,∞ : V−1).

Theorem 3.3. Suppose b satisfies (3.11) and (3.21) holds. Then
the solution of V P (μ, κ)[bE + bm,u0,u1] satisfies u = uE + um,
uE = UE(bE),

∫ t

0
um dτ = wE + wm, wE = UE(GE), GE given

by (3.20) and wm ∈ M, hence wm → 0 in V0 as t → ∞.

Remark. Note that wE depends on u̇(·, 0) but not on u(·, 0). It
requires a knowledge of μ̂m(0) and κ̂m(0) only.
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3.3. Error estimates. Suppose we approximate the kernels μ and
κ as indicated in Section 2, that is,

(3.22)
μ = μE + μm ≈ μE + Mm = M ;
κ = κE + κm ≈ KE + KM = K.

We make the requirements that M(0) = μ(0) and K(0) = κ(0). Let
u and U be solutions of V P (μ, κ)[b,u0,u1] and V P (M, K)[b,u0,u1].
Then we want an estimate for the error

(3.23) ε(x, t) = U(x, t) − u(x, t).

We write

(3.24)
m(t) = μ(t) − M(t) = μm(t) − Mm(t)
n(t) = κ(t) − K(t) = κm(t) − Km(t).

Also, we write for a function ϕ,

[ϕ] = ||ϕ||H1(0,∞) + ||ϕ̇||L1(0,∞) + ||ϕ̈||L1(0,∞).

Theorem 3.4. There is a constant c depending only on Ω, M and
K such that

(3.25) ||ε||m ≤ c{[m] + [n]}Γ(bE ,bm,u0,u1).

Proof. We observe that u = uE + um and U = uE + Um so
ε = Um − um. We consider the problems (3.14) for Um and um and
subtract the equations. The result is

(3.26)

L(M, K)[e,v] = 〈E ,v〉
ε(·, 0) = 0, ε̇(·, 0) = 0

〈E ,v〉 = A(m, n)[uE,v] +
∂

∂t
A(m, n)[um,v].

We want to apply Theorem (3.1) to (3.26). We have ε̇(·, 0) = ε(·, 0) =
0 and we have to estimate ||E||B. We denote the two terms in (3.26)
for E by 〈E1,v〉 and 〈E2,v〉. We then have, for some constants C ′, C ′′,

||E1||B ≤ C ′(||m||H1(0,∞) + ||n||H1(0,∞))||UE||V−1

≤ C ′{[m] + [n]}||bE ||V−1 .
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We have, since m(0) = n(0) = 0,

〈E2(t),v〉 = A(ṁ, ṅ)[um,v]

〈E2(t),v〉 = A(ṁ(0), ṅ(0))[um,v] + A(m̈, ṅ)[um,v].

Hence, by Theorem (3.2), we have for some C ′′, C ′′′

||E2||B = {||E2||2L2(0,∞:V1)} + {||E2||2L2(0,∞:V1)}
≤ C ′′{[m] + [n]}{||um||L2(0,∞:V1)}
≤ C ′′′{[m] + [n]}Γ(bE ,bm,u0,u1).

The estimate (3.26) now follows from Theorem (3.1).

If one uses Theorem (3.3) one can obtain estimates for the integral
of the error ε.

4. Proof of Theorem 3.1. We are considering the problem

(4.1) L(μ, κ)[u,v] = 〈b,v〉

u(·, 0) = u0, u̇(·, 0) = u1

with u0 ∈ V1, u1 ∈ V0 and

(4.2) b, ḃ ∈ L2(0,∞ : V−1).

We first reduce to a simpler problem. Let U(x, t) be the solution of

(4.3) 〈Ü,v〉 + A(μ(0), κ(0))[U,v] = 〈b,v〉

(4.4) U(·, 0) = u0, U̇(·, 0) = U1.

This is the weak form of the displacement problem for linear isotropic
elasticity and it is known to have a unique solution (see [6]). (The use
of the function U was suggested by Professor William Hrusa.) An
elementary energy argument, using the symmetry of A(μ(0), κ(0))[·, ·]
and Lemma 3.1 yields the following result.
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Lemma 4.1. For any T > 0 there is a constant K, depending on
Ω, μ(0), κ(0) and T such that

(4.5)
2∑

j=0

||U(j)||L∞(0,T :V1−j) ≤ K||b||L2(0,T :V−1).

Now let φ be a smooth function of t on [0,∞] which is identically one
near t = 0 and identically zero for t ≥ T1. Put w = u − φU. Then

(4.6)

L(μ, κ)[w,v] = 〈b,v〉
w(·, 0) = u(·, 0) = 0

〈b,v〉 = 〈φb − b,v〉 + 2〈φ̇u̇,v〉
+ 〈φ̈U,v〉 + A(μ̇, κ̇)[φu,v].

We note that B(0) = 0, and it follows from (4.5) that ||B||B ≤ K||b||B
for some constant K. Thus we have reduced Theorem (3.1) to the
case where b(0) = 0 and u0 = u1 = 0. This case can be treated by
transform techniques and we outline the main ideas. This work has
contact with [3] and [7].

We sketch the idea first. If we Laplace transform (4.1) with u0 =
u1 = 0 we obtain, formally,

(4.7) s2〈û, v̂〉 + sA(μ̂(s)κ̂(s))[û, v̂] = 〈b̂, v̂〉.
Then we want to show that (4.7) has a solution û(x, s) and that we
can obtain a solution from the inversion integral,

(4.8) u(x, t) =
1
2π

∫ +∞

−∞
eeηtû(x, iη) dη.

Some preliminary observations are to be made. We let Ṽj be the
complexification of Vj , j = 1, 0,−1. Then û(x, s) ∈ Ṽ1 and we can
replace 〈u,v〉 by the complex inner product (û,v)Ṽ0

; b̂, on the other
hand, is in Ṽ−1. We want (4.7) to hold for all v̂ ∈ Ṽ1 and accordingly,

(4.9) A(μ̂(s), κ̂(s))[û, v̂]

=
∫

Ω

(2μ̂(s)E0[û] · E0[v̂] + κ̂(s)trE[û]trE[v̂]) dx.
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We need some consequences of the Paley-Wiener theorem. We state
these without proof, but they can be obtained from ideas in [9]. Let
s = ξ + iη, and let Π+ = {s : ξ > 0}. Let H be any Hilbert space, and
let Hk(H), k = 0, 1, . . . , denote the set of all f̂ : Π+ → H which are
analytic in Π+ and for each of which there is an M > 0 such that

(4.10)
∫ +∞

−∞
(1 + η2k)||f̂(ξ + iη)||2

H̃
dη ≤ M ∀ ξ > 0.

Functions in Hk(H) have limits f(iη) on ξ = 0 with (4.10) holding
on ξ = 0. Note that f̂ ∈ H0(H) if and only if there is a function
f ∈ L2(0,∞ : H) such that f̂ is the Laplace transform of f . Moreover,

||f ||L2(0,∞:H) = ||f̂(i·)||L2(−∞,∞:H̃).

More generally, f ∈ Hk(H), k ≥ 1, if and only if there is an
f ∈ Hk(0,∞ : H), with f(0) = ḟ(0) = · · · = f (k−1)(0) = 0 such that f̂
is the transform of f . Moreover, the norm ||f ||2Hk(0,∞:H) is equivalent
to the integral on the left of (4.10).

Lemma 4.2. Equation (4.7) has a unique solution û(x, s) ∈ Ṽ1 and
û is analytic in Π+.

Proof. Since b ∈ H1(0,∞ : V−1) with b(0) = 0 we have b ∈ H1(V−1).
If we put û = ûR + ûI , then (4.8) yields

Re A(μ̂, κ̂)[û, û] = A(Re μ̂(s), Re κ̂(s))[ûR, ûR]
+ A(Re μ̂(s), Re κ̂(s))[ûI , ûI ].

From (H) we have μ̂(s) = μEs−1 + μ̂m(s). Re μ̂m(iη) > 0 implies
Re μ̂m(s) > 0 for any s ∈ Π+. A similar result holds for κ. Hence, for
any s in Π+ there is a C > 0 such that for any û ∈ Ṽ1

(4.11) Re {s2||û||2
Ṽ0

+ sA(μ̂, κ̂)[û, û]} ≥ C||û||2V1
.

The existence of a unique solution of (4.7) then follows from the Lax-
Milgram lemma.
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Lemma 4.3. There is a constant M > 0 such that if û is the solution
of (4.7),

(4.12)
2∑

j=0

(1 + |s|2j)||û(·, s)||Ṽ1−j
≤ M(1 + |s|2)||b̂(·, s)||2

Ṽ−1
.

Proof. We first establish the estimate (4.12) when |s| is large.

From item 1 of Section 2 we have, for large s,

(4.13)
μ̂(s) =

μ(0)
s

+
μ̇(0)
s2

+ o

(
1
s2

)
;

κ̂(s) =
κ(0)

s
+

κ̇(0)
s2

+ o

(
1
s2

)
.

These yield an expansion of A of the form

(4.14)
sA(μ̂, κ̂)[[û, v̂] = A(μ(0), κ(0))[û, v̂]

+ A(μ̇(0), κ̇(0))[û, v̂]/s + R(s, û, v̂)

where,

(4.15)
sR(s, û, v̂)

||û||V−1 ||v̂||Ṽ−1

→ 0 as s → ∞
(

R = o

(
1
s

))
.

From (H) there are constants α0, α1 such that

(4.16)
A(μ(0), κ(0))[û, û] ≥ α0||û||2Ṽ1

,

−A(μ̇(0), κ̇(0))[û, û] ≥ α1||û||2V1
.

From (4.14) and (4.15), one has

(4.17) Im {s2(û, û)Ṽ0
+ A(μ̂(s), κ̂(s))[û, û]}

= 2ξη||u0||2Ṽ0
− η

ξ2 + η2
A(μ̇(0), κ̇(0))[û, û] + o

(
1
s

)
.
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We conclude that there is an r1 sufficiently large so that there is a
C1 > 0 such that for all |s| ≥ r1,

1
|s| ||û||

2
Ṽ1

≤ |Im {s2(û, û)Ṽ0
+ A(μ̂(s), κ̂(s))[û, û]}|

≤ C1||b̂||Ṽ−1
||û||V1 ;

hence,

(4.18) ||û||Ṽ1
≤ C1|s| ||κ̂||Ṽ−1

.

Now (4.7) with v̂ = û yields

(4.19) ||û||Ṽ0
≤ C2||κ̂||Ṽ−1

.

Finally, we observe that ||û||Ṽ−1
is equivalent to supv∈V̂ |(û, v̂)Ṽ0

|/||Ṽ ||Ṽ1
.

Then (4.14) and (4.18) yields a C3, so that

(4.20) ||û||Ṽ−1
≤ C3

|s| ||b||Ṽ−1
.

We consider now the region in Π+ where |s| ≤ r1. From (H) we have
Re μ̂(iη) = Re μ̂m(iη) > 0 and Re κ̂(iη) = Re κ̂m(iη), and we see that
Re μ̂(s) > 0 and Re κ̂(s) > 0 in Π+. Hence, there is an α > 0 such
that Re μ̂(s) ≥ α, Re κ̂(s) ≥ α in Π+ ∩ {|s| ≤ r1}. It follows that the
estimate (4.11) holds in Π+ ∩ {|s| ≤ r1} with a C that is independent
of s. Hence (4.7) yields C||û||2

Ṽ−1
≤ |Re 〈b̂, û〉|

(4.21) ||û||Ṽ−1
≤ C4||b̂||Ṽ−1

for |s| ≤ r1.

Since b̂ ∈ H1(V−1), (4.12) implies that û ∈ H0(V1) ∩ H1(V0) ∩
H2(V−1). This means that the inverse transform u, defined by (4.8) is
in M with u(·, 0) = 0 and u̇(·, 0) = 0. Moreover, û is the transform of
u and the fact that û satisfies (4.7) implies that u satisfies the problem
(4.1). Finally u satisfies (3.8), with u0 = u1 = 0, and the proof is
complete.
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5. Numerical results. In this section we report on some very
simple numerical experiments. We studied the problem

(5.1) utt(x, t) =
∂

∂t

∫ t

0

μ(t−τ )uxx(x, τ) dτ, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0
u(0, t) = u0(x), ut(x, 0) = 0.

(We indicate in the Appendix that this can be interpreted as one-
dimensional shearing motions.)

We approximated the spatial dependence with piecewise linear finite
elements. This reduces (5.1) to a system of integro-differential equa-
tions. These we solved approximately by discretizing time and using
trapezoidal quadrature on the integral. We then tried various approxi-
mations for the kernel μ. We were primarily interested in the accuracy
of the kernel approximation. Thus, we simply replaced μ by the ap-
proximate kernel and treated the resulting problem the same way as
the exact problem.

The case we report on here is that in which

(5.3) μ(t) = 1 + e−t + e−t cos 3t.

We tried various first and second order approximations corresponding
to various choices of the parameter D of Section 2. It turns out that for
(5.2) the choice (2.11) in which one matches μ̂′(0) leads to a negative
D. The other choices all lead to positive D’s.

In Figures 1A and B we show the approximate kernels for the first,
(2.7), and second, (2.8), orders. (The unstable second order choice is
omitted.) One sees that the approximation of the kernels is not very
good. Figures 2 and 3 show the approximation of the solution at two
time intervals and for five choices of approximation. For first order
large s means matching μ̂(0) and small s matching μ̂m(0). For second
order large s means matching μ̈(0) and small s matching μ̂′(0) (which
is unstable). We see that overall the approximations for the solution
are fairly good, in the stable cases, even if the kernel approximation is
poor. Figure 3(D) illustrates the effect of instability (D < 0).
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FIGURE 1.

Remarks. It is not too hard to show that if one discretizes space with
piecewise linear elements of mesh h the error in semi-discrete approx-
imation will be 0(h) in the H0

1 (0, 1) norm. Each of these produces a
finite dimensional Volterra system. For these one can show that the
use of the trapezoid rule for the time integration yields a method which
is 0((Δt)2) accurate in the time step. In our numerical computations
we reduced h and Δt until we felt confident that the errors reflected
in our graphs were essentially due to kernel approximation. A precise
estimate of how the truncation errors depend on the kernel wold be of
great interest, but it also seems very difficult.

Appendix

Measurements. We want to indicate some possible experiments to
determine the quantities

(A1)

μE , μ(0), μ̇(0),∫ ∞

0

μm(t) dt, λE, λ(0), λ̇(0),
∫ ∞

0

λm(t) dt

which are needed for our approximation procedure.

We consider first one-dimensional shear. This means that u has the
special form

(A2) u = u(x2, t)e1.
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FIGURE 2.

(This can be achieved approximately in a slab of large extent in the x1

and x3 directions.) We have, in this case,

(A3) E(u) =

⎛
⎝ 0 (1/2)ux2 0

(1/2)ux2 0 0
0 0 0

⎞
⎠ trE[u] = 0
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FIGURE 3.

(A4) L(u) =

⎛
⎝ 0 μux2 0

μux2 0 0
0 0 0

⎞
⎠

The stress then has only two nonzero components Σ12, Σ21 with

(A5) Σ12(x2, t) = μ(0)ux2(x2, t) +
∫ t

−∞
μ̇(t − τ )ux2(x2, τ ) dτ.
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One can now perform a relaxation experiment in which one makes
ux2(x2, t) = 0 for t < 0 and ux2(x2, t) = ε0 for t ≥ 0. Then
Σ12(x2, t) = μ(t)ε0. This yields Σ12(x2, 0+) = μ(0)ε0 and determines
μ(0). Also Σ12(x2, t) = μEε0 + μm(t)ε0, so that

(A6)
μE =

1
ε0

lim
t→∞Σ12(x2, t),

∫ ∞

0

μm(t) dt

=
1
ε0

∫ ∞

0

(Σ12(x2, t) − μEε0) dt.

The determination of μ̇(0) requires a more subtle experiment, and this
also demonstrates the central role of μ(0) and μ̇(0) in the dynamics of
viscoelasticity. Suppose we imagine a slab which fills the region x2 > 0.
Suppose it is unstretched until t = 0 after which we subject the face
x2 = 0 to a constant displacement u(x, t) = u0e1. If the density is ρ,
then one has the boundary-value problem

(A7)
ρutt(x2, t) =

∂

∂t

∫ t

0

μ(t − τ )ux2x2(x2, τ ) dτ, x2 > 0, t > 0,

u(x2, 0) = ut(x2, 0) = 0
u(0, t) = u0, t > 0.

If we Laplace transform (A7), we have

(A8)
ρs2û(x2, s) = sμ̂(s)ûx2x2(x2, s), x2 > 0

û(0, s) = u0/s.

One solves this problem with the requirement that û remains bounded
as x2 → ∞ and obtains

(A9) û(x2, s) = (u0/s)e−γ(s)x, γ(s) =
√

ρs/μ̂(s).

One can then recover u by the inversion integral,

(A10) u(x2, t) =
1

2πi

∫ γ+i∞

γ−i∞
estû(x2, s) ds for any γ > 0.

We have, as s → ∞,

(A11)
√

ρs

μ̂(s)
= cs + β + O

(
1
s

)
; c =

√
ρ

μ(0)
, β = −1

2
c
μ̇(0)
μ(0)

.
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From (A10) and (A11) one deduces the following facts. u is identically
zero for x > ct (finite propagation speed c). Along the line x = ct the
solution has a discontinuity with u((ct)+, t) = 0 and u((ct)−, t) = u0e

βt.
Thus, one can measure μ(0) from the wave speed and then μ̇(0) from
the decay rate in the wave strength. (This idea is presented in [8].)

In order to obtain information about λ one can perform one-
dimensional elongations. Here one has only a one-dimensional stretch,
that is,

(A12)
∑

(x, t) =

⎛
⎝ σ(x, t) 0 0

0 0 0
0 0 0

⎞
⎠ .

(These can be achieved in a rod.) If we transform (1.3), we have

(4.13)
∑

(x, s) = 2sμ̂(s)E[μ̂] + sλ̂(s)trE[û]I.

Now imagine a creep experiment in which one takes σ(x, t) = 0 for
t < 0 and σ(x, t) = σ for t ≥ 0. Then one will have E[û] = EEs−1+Em.
If one enters this into (A13) and expands about s = 0, one finds

σ = (2μE + 3λE)trEE

0 = (2μE + 3λE)trEm(0) + (2μ̂m(0) + 3λ̂m(0))trEE .

This measurement of limt→∞ tr E[u] = EE and
∫ ∞
0

(trE[u] − EE) dt

will determine λE and
∫ ∞
0

λm(t) dt given the results of the shear
experiment.

To determine λ̇(0) one can consider motions of the form u =
u(x1, t)e1. (These can be achieved in a rod if normal tractions are
applied to the lateral sides.) In this case it can be verified that the
equation of motion is one dimensional and, for zero initial history and
body force, has the form

ρutt(x, t) =
∂

∂t

∫ t

0

(2μ(t − τ ) + λ(t − τ ))ux1x1(x1, τ ) dτ.

Thus, one can repeat the decay experiment to determine 2μ̇(0)+λ̇(0).
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