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THE JACOBI METHOD IN WEIGHTED
BANACH SPACES FOR INTEGRAL EQUATIONS,

WITH EMPHASIS ON GREEN’S-
FUNCTION-LIKE KERNELS

L. KOHAUPT

ABSTRACT. The theoretical foundations for the iterative
solution of integral equations in weighted function spaces are
derived which allow a unified treatment of the following two
cases. Case 1: the kernel is nonzero on its whole domain of
definition. Case 2: the kernel is nonzero in the interior of its
domain of definition and zero or partly zero on the boundary,
which often occurs with Green’s functions. The method pre-
sented is new, particularly the theory of condensing operators
according to [10, pp. 102 109] can be avoided, which sim-
plifies the treatment of the corresponding integral equations
considerably. Further, strong and weak convergence criteria
are given. The results are used to sharpen error estimates
in the Jacobi method (i.e., in the method of successive ap-
proximations) and are applied to a boundary value problem.
Numerical tests show good agreement with the theoretical re-
sults.

0. Introduction. There are important relationships between the
dynamic analysis of elastic structures in engineering science and the
iterative methods of positive completely continuous operators in nu-
merical mathematics. In dynamics, eigenfrequencies and eigenfunc-
tions play a fundamental role. For many problems the first eigenfre-
quency and corresponding eigenfunction are most important. Often, it
is not sufficient to know merely the first eigenfrequency. Also, for iter-
ation methods for positive completely continuous operators, the great-
est eigenvalue (i.e., the spectral radius) and the corresponding positive
eigenfunction are of similar importance.

The significance of the spectral radius is widely known: Under appro-
priate conditions, an iteration process for general operator equations
converges, if the spectral radius of the iteration operator is less than
one. It is less known (or at least, it is less made use of) that the (pos-
itive) eigenfunction corresponding to the spectral radius of an integral
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operator can be used to sharpen error estimates. Namely, by means of
weighted norms one succeeds in establishing optimal estimates, since
the sup-norm of the iteration operator equals the spectral radius if the
corresponding eigenfunction is taken as a weight function.

The spectral properties (more precisely the greatest eigenvalue and
corresponding eigenvector) of positive operators are investigated thor-
oughly in [10, Chapter 1], but the (positive) eigenvector corresponding
to the spectral radius isn’t used so as to sharpen estimates. This may
be demonstrated by the following example. In case of an integral oper-
ator whose kernel is positive throughout its domain of definition, under
appropriate conditions the best rate of convergence is obtained in the
weighted norm maxx∈Ω |u(x)|/κ(x) where κ(x) is the positive eigen-
function corresponding to the spectral radius. But when the kernel
equals zero on the boundary of the domain of definition, the eigen-
function also equals zero on the boundary ∂Ω of Ω so that the norm
maxx∈Ω |u(x)|/κ(x) is now undefined. In this case in [10, pp. 102 109]
the theory of condensing operators is applied, which is rather compli-
cated even for simple Green’s functions. For instance, in the example
given, only B2 is condensing, not B itself. It seems that a unified
treatment of both cases has not yet been developed.

Therefore, the main objective of this paper consists in treating both
cases for linear Fredholm integral equations in a unified manner. When
the operator B with kernel K(x, s) is not positive, the operator |B|
with kernel |K(x, s)| is positive, and the corresponding eigenfunction
can be used to sharpen error estimates. In Section 2 it is shown that
the real weighted function spaces Cσ−1(Ω) are complete, and that the
considered integral operators in these spaces are completely continuous.
Further, the eigenvalues are estimated, an inclusion for the spectral
radius as well as strong and weak convergence criteria are stated.

In Section 3 the corresponding statements for the real weighted
function spaces Lσ(Ω) are obtained. In Section 4 specific examples
illustrate the general theorems of Sections 2 and 3. Finally, as an
application of the general results, in Section 5 the numerical solution of
a boundary value problem (problem of a loaded elastic string) is carried
out by means of the Jacobi method. For this, the ordinary differential
equation describing the problem is cast into a linear Fredholm equation
of the second kind.
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1. Preliminaries and notation. For some theorems in a Banach
space V , e.g., in the spectral theory of completely continuous operators
B, the space V has to be complex. In case of real spaces (which is
assumed in the next sections) the corresponding theorems are valid for
the complexifications Ṽ and B̃ of V and B. As to the complexifications,
cf., e.g., [11, Section 4] and [8, especially Section 2]. In real Banach
spaces, for instance, Σ(B∗) = Σ(B) holds where Σ(B) is the spectrum
of B (cf. [11, Section 4]). When the space is real, the adjoint operator
B∗ is also denoted by BT so that Σ(BT ) = Σ(B). In the following
sections, BT denotes an integral operator with the adjoint kernel of
B, where BT is not always the adjoint operator of B. Nevertheless,
Σ′(BT ) = Σ′(B) with Σ′(B) := Σ(B)\{0} will remain valid. For a
Banach space V , by B (V ) the Banach space of continuous operators
in V is denoted. If B ∈ B (V ) is completely continuous, we write
B : V ↪→ V . By Ω = [a, b], we denote a bounded closed interval of the
real line, C(Ω) is the space of continuous functions on Ω with norm
||u||∞ = maxx∈Ω |u(x)|, u ∈ C(Ω), L(Ω) is the space of integrable
functions on Ω with norm ||u||1 =

∫
Ω
|u(x)| dx, u ∈ L(Ω), and L2(Ω)

is the space of measurable square summable functions on Ω with norm

||u||2 = (
∫
Ω
|u(x)|2 dx)1/2, u ∈ L2(Ω). Let

◦
Ω = int (Ω). By H1(

◦
Ω)

we denote the Sobolev space of functions on
◦
Ω which are, along with

their first derivative in the sense of distributions, elements of L2(
◦
Ω);

the norm in H1(
◦
Ω) is defined by ||u|| = (||u||22 + ||u′||22)1/2, u ∈ H1(

◦
Ω).

Further, H1
0 (

◦
Ω) means the space of functions u ∈ H1(

◦
Ω) with the

property u|∂Ω = 0, where ∂Ω = {a, b} is the boundary of Ω.

In order to prove the existence of positive eigenvectors κ, respectively
χ, corresponding to the spectral radius ρ(B), respectively ρ(B∗) =
ρ(B), one can use [11, Theorem 6.1, respectively Theorem 6.2] or [10,
Theorem 9.9]. In case of the adjoint integral operator B∗ = BT , one
has to first consider the mapping BT : L2(Ω) ↪→ L2(Ω); then one uses
BT : L2(Ω) → C(Ω).

In the Jacobi method for the solution of the matrix equation
u − Bu = f with positive matrix B, error estimates can be de-
rived using the spectral radius of the iteration matrix instead of a
norm of B provided an appropriate weighted norm is chosen. For
the application of the row-sum criterion, e.g., one needs the norm
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||u||∞,σ−1 := maxi=1,... ,n |ui|/σi, u = (u1, . . . , un) ∈ Kn with a weight
vector σ = (σ1, . . . , σn) > 0; likewise, for the application of the column-
sum criterion, the norm ||u||1,σ :=

∑n
i=1 σi|ui|, u ∈ Kn is needed.

For linear Fredholm integral equations of the second kind, one corre-
spondingly applies the weighted norm

||u||∞,σ−1 := max
x∈Ω

|u(x)|
σ(x)

, u ∈ C(Ω),

respectively

||u||1,σ :=
∫

Ω

σ(x)|u(x)| dx, u ∈ L(Ω),

where it is assumed for the moment that σ ∈ C(Ω), σ(x) > 0,
x ∈ Ω. Choosing as σ the eigenfunction κ corresponding to the
greatest eigenvalue ρ∞(|B|) of (|B|u)(x) =

∫
Ω
|K(x, s)|u(s) ds, x ∈ Ω,

u ∈ C(Ω), respectively choosing as σ the eigenfunction χ corresponding
to the greatest eigenvalue ρ∞(|B|T ) (= ρ∞(|B|)) of the operator
(|B|T u)(x) =

∫
Ω
|K(s, x)|u(s) ds, x ∈ Ω, u ∈ C(Ω), the norm || · ||∞,σ−1

has to be redefined if σ(x) = 0, x ∈ N = Nσ ⊂ ∂Ω, e.g., for the integral
operator with kernel

(1) K(x, s) = G(x, s) =
{

s, 0 ≤ s ≤ x ≤ l

x, 0 ≤ x ≤ s ≤ l

(i.e., K(x, s) = min{s, x}) one has according to [5], respectively [7],
the relations

(2) ρ∞(|B|) = ρ∞(B) = ρ∞(BT ) = ρ1(B) = ρ1(BT ) =
(

2l

π

)2

and

(3) κ(x) = χ(x) = sin
(

π

2l
x

)
, x ∈ Ω := [0, l],

where N = {0} ⊂ ∂Ω = {0, l}.
For the operator B whose Green’s-function kernel is

(4) K(x, s) = G(x, s) =
{

(1 − x
l )s, 0 ≤ s ≤ x ≤ l,

(1 − s
l )x, 0 ≤ x ≤ s ≤ l,
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one has the relations

(5) ρ∞(|B|) = ρ∞(B) = ρ∞(BT ) = ρ1(B) = ρ1(BT ) =
(

l

π

)2

and

(6) κ(x) = χ(x) = sin
(

π

l
x

)
, x ∈ Ω = [0, l],

where N = {0, l} = ∂Ω.

It should be noted that the operator |B|T : C(Ω) → C(Ω) is not the
adjoint operator of |B| : C(Ω) → C(Ω). Finally, it is remarked that
the error estimates in Section 5 are based on the contraction-mapping
theorem.

2. Theory in space Cσ−1(Ω). In this section the space Cσ−1(Ω) is
defined which is a generalization of the space C(Ω). It can be shown
that Cσ−1(Ω) is complete. Further, it is proven that the integral
operator B in Cσ−1(Ω) is completely continuous, extensions of the
integral kernel Kσ−1(·, ·) from ΩN × ΩN to Ω × Ω are considered, an
estimate of the eigenvalues as well as an inclusion of the spectral radius
are derived, and convergence criteria are stated.

2.1. The space Cσ−1(Ω). Let Ω = [a, b] and σ ∈ C(Ω). Further, let
N = Nσ ⊂ ∂Ω, ΩN = ΩNσ

:= Ω\N and σ(x) > 0, x ∈ ΩN , σ(x) = 0,
x ∈ N = Nσ. Then the set

Cσ−1(Ω) : =
{

u ∈ C(Ω) | lim
y→x

y∈ΩN

u(y)
σ(y)

exists for all x ∈ N

}

=
{

u ∈ C(Ω) | ∃q ∈ C(Ω) with q(x) =
u(x)
σ(x)

, x ∈ ΩN

}

forms a vector space with the property u(x) = 0, x ∈ N . A norm is
defined on Cσ−1(Ω) by

(2) ||u||∞,σ−1 := sup
x∈ΩN

|u(x)|
σ(x)

= sup
x∈ΩN

|q(x)| = ||q||∞.



80 L. KOHAUPT

In case N = Nσ = ∅, one has Cσ−1(Ω) = C(Ω), and the norms
||·||∞,σ−1 and ||·||∞ are equivalent; for N �= ∅, one has Cσ−1(Ω) ⊂ C(Ω)
and ||u||∞ ≤ σmax||u||∞,σ−1 , u ∈ Cσ−1(Ω), i.e., the embedding is
continuous, and convergence in the norm || · ||∞,σ−1 implies convergence
in the norm || · ||∞.

Theorem 2.1.1. The space Cσ−1(Ω) in (1) endowed with the norm
(2) is complete, i.e., Cσ−1(Ω) is a Banach space.

Proof. Let (un)n∈N be a Cauchy sequence in Cσ−1(Ω), and let qn be
the continuous extension of un(x)/σ(x), x ∈ ΩN , to the entire interval
Ω for n ∈ N. Let ε > 0. Then there exists a number n0 ∈ N such that

(3) ||qn − qm||∞ = ||un − um||∞,σ−1 ≤ ε for all n, m ≥ n0.

Therefore, (qn)n∈N is a Cauchy sequence in C(Ω). Since C(Ω) is
complete, there exists a function q ∈ C(Ω) with

(4) ||qn − q||∞ → 0, n → ∞.

Let

(5) u(x) := q(x)σ(x), x ∈ Ω.

Then u ∈ Cσ−1(Ω), and one has

(6) ||un − u||∞,σ−1 = ||qn − q||∞ ≤ ε, n ≥ n0.

Hence, Cσ−1(Ω) is complete.

2.2. Complete continuity of integral operators in Cσ−1(Ω).
The next question is under what conditions the integral operator

(1) (Bu)(x) =
∫

Ω

K(x, s)u(s) ds, x ∈ Ω

with kernel

(2) K(·, ·) ∈ C(Ω × Ω)
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defines a bounded mapping in Cσ−1(Ω). After this, it is investigated
when this operator is completely continuous. Sometimes, the kernel
has to satisfy stronger conditions. For this, let N = NK ⊂ ∂Ω,
Ω = ΩNK

= Ω\NK and

(3)

K(·, ·) ∈ C(Ω × Ω)
K(x, s) �= 0, x, s ∈ ΩN

K(x, s) = 0

⎧⎪⎨
⎪⎩

x ∈ N, s ∈ ΩN

s ∈ N, x ∈ ΩN

x ∈ N, s ∈ N .

Remark 1. Usually one has NK = Nσ; but also the case Nσ = ∅ ⊂
NK occurs, e.g., when σ(x) ≡ 1. The condition (3) is assumed when
σ = κ, respectively σ = χ, is the eigenfunction of |B| : C(Ω) → C(Ω),
respectively, of |B|T : C(Ω) → C(Ω) corresponding to the spectral
radius ρ∞(|B|); then σ(x) > 0 for x ∈ ΩN and σ(x) = 0 for x ∈ N .
Under condition (3), according to [10, Theorem 9.9, p. 95] there exists
a nonnegative eigenfunction κ, respectively χ, of |B|, respectively
|B|T , corresponding to the eigenvalue ρ∞(|B|) = ρ∞(|B|T ). Kernels
having property (3) are denoted as Green’s-function-like kernels. The
symmetry of the kernels is not assumed even though Green’s functions
are symmetric, as a rule. Besides, condition (3) is needed for the weak
convergence criteria in Section 2.5.

Remark 2. Under condition (3), the operator in (1) is reducible
according to [10, p. 119] if N �= ∅. But choosing V = CN (Ω) := {u ∈
C(Ω)|u(x) = 0, x ∈ N} with N = NK , the operator B is irreducible
according to [10, p. 110].

Subsequently, we shall see in Section 4, Example 3, that the kernel
K(·, ·) may also have a finite number of logarithmic discontinuities.
Generally, the kernel must be such that B : C(Ω) ↪→ C(Ω), its
eigenfunction κ, respectively, χ, has the property κ(x) > 0, x ∈ ΩN ,
κ(x) = 0, x ∈ N , respectively χ(x) > 0, x ∈ ΩN , χ(x) = 0, x ∈ N ,
and B is irreducible in an appropriate subspace of C(Ω). This is also
required in case of the space Lσ(Ω).

Necessary and sufficient conditions on the kernel to guarantee all
these properties seem to be unknown.
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After these remarks, we continue the investigation of the integral
operator. The operator (1) with kernel (2) can be written in the form

(4) (Bu)(x) =
∫

Ω

K(x, s)σ(s)
σ(x)

σ(x)
u(s)
σ(s)

ds.

Let q(x) be the continuous extension of u(x)/σ(x), x ∈ ΩN , to Ω, and

(5) Kσ−1(s, x) :=
K(x, s)σ(s)

σ(x)
, x, s ∈ ΩN .

Further, let there exist a function K̂σ−1(·, ·) on Ω×Ω with the property

(6)
K̂σ−1(·, ·) ∈ C(Ω × Ω)

K̂σ−1(x, s) = Kσ−1(x, s), x, s ∈ ΩN ,

i.e., it is assumed that Kσ−1(·, ·) ∈ C(ΩN ×ΩN ) possesses a continuous
extension to Ω × Ω (which is then uniquely determined). In case
Nσ = ∅, condition (6) is trivially satisfied so that (6) is only of interest
for ∅ �= Nσ = NK . Under condition (6), it follows that
(7)

(Bu)(x)=
∫

Ω

K̂σ−1(x, s)σ(x)q(s) ds, x∈Ω, q(x)=
u(x)
σ(x)

, x∈ΩN ,

u ∈ Cσ−1(Ω), whence

(8) B : Cσ−1(Ω) → Cσ−1(Ω).

Then the following holds.

Theorem 2.2.1. Assume (2) and (6). Then the operator

B : Cσ−1(Ω) → Cσ−1(Ω)

is completely continuous.

Proof. Let (un)n∈N be a bounded sequence in Cσ−1(Ω), and let qn be
a continuous extension of un(x)/σ(x), x ∈ ΩN , to Ω for n ∈ N. Then
there exists a constant γ > 0 satisfying

(9) ||qn||∞ = ||un||∞,σ−1 ≤ γ, n ∈ N.
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Let

(10) (B̂σ−1u)(x) :=
∫

Ω

K̂σ−1(x, s)q(s) ds, x ∈ Ω,

u ∈ Cσ−1(Ω), where q denotes the continuous extension of u/σ to Ω.
Because of

(11) B̂σ−1 : Cσ−1(Ω) ↪→ C(Ω)

and (9), there is a subsequence N′ ⊂ N and an element w ∈ C(Ω) with
the property

(12) ||B̂σ−1un − w||∞ → 0, n ∈ N′.

Let

(13) v(x) := w(x)σ(x), x ∈ Ω.

Then one has

(14) ||Bun − v||∞,σ−1 = ||B̂σ−1un − w||∞ → 0, n ∈ N′.

As v ∈ Cσ−1(Ω), the proof is complete.

Remark 3. The norm of the operator (8) satisfies
(15)

||B||∞,σ−1 : = sup
0�=u∈Cσ−1 (Ω)

||Bu||∞,σ−1

||u||∞,σ−1
= max

x∈Ω

∫
Ω

|K̂σ−1(x, s)| ds

= sup
x∈ΩN

∫
Ω

|Kσ−1(x, s)| ds

= sup
x∈ΩN

1
σ(x)

∫
Ω

|K(x, s)|σ(s) ds.

Remark 4. If, besides (3), condition (6) is also satisfied for σ = κ,
then

(16) ρ∞(|B|) = ||B||∞,κ−1 = sup
x∈ΩN

1
κ(x)

∫
Ω

|K(x, s)|κ(s) ds.
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2.3. Extension of the integral kernel Kσ−1(·, ·). In this
subsection, for a weight function σ, sufficient conditions are specified
ensuring that the integral kernel Kσ−1(·, ·) ∈ C(ΩN × ΩN ) has an
extension K̂σ−1(·, ·) ∈ C(Ω × Ω). For this, we consider the set P∗,κ,
where κ is the nonnegative eigenfunction corresponding to the spectral
radius ρ(|B| : C(Ω) → C(Ω)). Then P∗,κ contains the functions σ
allowing an extension of Kσ−1(·, ·).

Let condition 2.2 (3) be satisfied. From [10, Theorem 9.9] or [11,
Theorem 6.1], one infers that the integral operator

(1) |B| : C(Ω) → C(Ω)

has an eigenfunction σ = κ such that κ(x) > 0, x ∈ N = NK and
κ(x) = 0, x ∈ N = Nk where κ is the eigenfunction corresponding to
the spectral radius ρ∞(|B|) := ρ(|B| : C(Ω) → C(Ω)) > 0, which is
also an eigenvalue of (1). It is supposed that the extension K̂κ−1(·, ·)
of Kκ−1(·, ·) exists, i.e., it is assumed that

(2)
K̂κ−1(·, ·) ∈ C(Ω × Ω)

K̂κ−1(x, 1) = Kκ−1(x, s), x, s ∈ ΩN .

Under condition (2), let

(3) P∗,κ := {σ ∈ C(Ω)|σ(x) > 0, x ∈ ΩN ; σ(x) = 0, x ∈ N ;

the extensions q̂σ−1 ∈ C(Ω) of qσ−1(x) :=
κ(x)
σ(x)

, x ∈ ΩN ,

and q̂σ ∈ C(Ω) of qσ(x) :=
σ(x)
κ(x)

, x ∈ ΩN , exist}.

As κ ∈ P∗,κ, one has P∗,κ �= ∅. Then the following theorem holds.

Theorem 2.3.1. Let the conditions 2.2(3) and (2) be satisfied;
further, let σ be a function from P∗,κ. Then the kernel Kσ−1(·, ·) ∈
C(ΩN × ΩN ) has an extension K̂σ−1(·, ·) ∈ C(Ω × Ω), i.e.,

(4)
K̂σ−1(·, ·) ∈ C(Ω × Ω)

K̂σ−1(x, s) = Kσ−1(x, s), x, s ∈ ΩN

for all σ ∈ P∗,κ.
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The proof is simple and therefore omitted. Further, the following
theorem holds.

Theorem 2.3.1. Assume the conditions 2.2(3) and (2). Then

(5) Cσ−1(Ω) = Cκ−1(Ω), σ ∈ P∗,κ

as well as
(6)

γ0||u||∞,σ−1 ≤ ||u||∞,κ−1 ≤ γ1||u||∞,σ−1 , u ∈ Cσ−1(Ω) = Cκ−1(Ω)

with

(7) γ0 =
1

supx∈ΩN

κ(x)
σ(x)

=
1

||q̂σ−1 ||∞
, γ1 = sup

x∈ΩN

σ(x)
κ(x)

= ||q̂σ||∞.

Thus, Cσ−1(Ω) and Cκ−1(Ω) are equal considered as vector spaces, and
the associated norms are equivalent.

Proof. (i) Let u ∈ Cσ−1(Ω). This entails ||u||∞,σ−1 < ∞ and hence

sup
x∈ΩN

|u(x)|
κ(x)

≤ sup
x∈ΩN

|u(x)|
σ(x)

sup
x∈ΩN

σ(x)
κ(x)

= γ1||u||∞,σ−1

with γ1 = supx∈ΩN
σ(x)/κ(x) < ∞. Therefore u ∈ Cκ−1(Ω), and

consequently the right-hand part in (6) is proven.

(ii) Let u ∈ Cκ−1(Ω). Then ||u||∞,κ−1 < ∞ and therefore

sup
x∈ΩN

|u(x)|
σ(x)

≤ sup
x∈ΩN

|u(x)|
κ(x)

sup
x∈ΩN

κ(x)
σ(x)

=
1
γ0

||u||∞,κ−1

with γ0 = 1/ supx∈ΩN
κ(x)/σ(x). Hence u ∈ Cσ−1(Ω), and conse-

quently the left-hand part in (6) is shown.

2.4. Estimation of the eigenvalues and inclusion of the
spectral radius for Cσ−1(Ω). The results of this subsection are
used in 2.5 in order to establish strong and weak convergence criteria.
Instead of assuming the integral operator to be irreducible in case of
the weak criteria, condition 2.2(3) is considered. One has
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Theorem 2.4.1. Let the conditions 2.2(3) and 2.2(6) be satisfied;
further, let νσ−1 > 0 be any number and

(1)
∫

Ω

|K̂σ−1(x, s)| ds ≤ νσ−1 , x ∈ Ω

as well as

(2)
∫

Ω

|K̂σ−1(x0, s)| ds < νσ−1 for at least one x0 ∈ Ω.

Then,

(3) |λ| < νσ−1 , for all λ ∈ Σ∞,σ−1 := Σ(B : Cσ−1(Ω) ↪→ Cσ−1(Ω)).

Remark 1. In case NK �= ∅ and σ ≡ 1, i.e., Nσ = ∅, condition (2) is
satisfied for all x0 ∈ NK ⊂ ∂Ω.

Proof of Theorem 1. (i) σ ≡ 1.

Assumption 1. Let

(4) |λ| ≥ νσ−1 for a λ ∈ Σ∞,σ−1 .

Then

(5) |λ| ≥
∫

Ω

|K(x, s)| ds, x ∈ Ω,

and

(6) |λ| >

∫
Ω

|K(x0, s)| ds.

Assumption 2. Let

(7) |w(x0)| = |w(xm) := max
x∈Ω

|w(x)|
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where w is an eigenfunction corresponding to λ. Then one has

(8) |w(xm)| > 0

and hence

(9)

|λ| |w(x0| >

∫
Ω

|K(x0, s)| ds|w(x0)|

=
∫

Ω

|K(x0, s)| |w(xm)| ds

≥
∫

Ω

|K(x0, s)| |w(s)| ds.

On the other hand, one has

(10) |λ| |w(x)| ≤
∫

Ω

|K(x, s)| |w(s)| ds, x ∈ Ω,

i.e., (9) contradicts (10). If Assumption 1 were false, there would be
nothing to prove. So, Assumption 2 must be false. Therefore,

(11) |w(x0)| < |w(xm)|

and, consequently,

(12) |w(x)| < |w(xm)|, x ∈ S = S(x0)

for an open ball S(x0) with center x0. Let

(13) T := Ω\S.

Taking into account (4), one has

(14)

|λ| |w(xm)| ≥
∫

Ω

|K(xm, s)| |w(xm)| ds

>

∫
S

|K(xm, s)| |w(s)| ds +
∫

T

|K(xm, s)| |w(s)| ds

=
∫

Ω

|K(xm, s)| |w(s)| ds.
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This contradicts (10). Therefore, Assumption 1 is also false, and hence
relation (3) must be true.

(ii) General case. Let

(15) (B̂σ−1u)(x) :=
∫

Ω

K̂σ−1(x, s)u(s) ds, x ∈ Ω,

u ∈ C(Ω). Then

(16) B̂σ−1 : C(Ω) ↪→ C(Ω),

and one has

(17) Σ̂′
∞,σ−1 := Σ′(B̂σ−1 : C(Ω) ↪→ C(Ω)) = Σ′

∞,σ−1 .

From this and (i), the assertion follows.

For the proof of the next theorem we need

Lemma 1. Let the condition 2.2(3) be satisfied, and additionally let
K(x, s) ≥ 0, x, s ∈ Ω. Then either

(18)
∫

Ω

K(x, s) ds = ρ∞(B), x ∈ Ω

or

(19) min
x∈Ω

∫
Ω

K(x, s) ds < ρ∞(B) < max
x∈Ω

∫
Ω

K(x, s) ds

Proof. Let Equation (18) be false. Subsequently, only the left hand
part of (19) is proven. In case N �= ∅, one has 0 =

∫
Ω

K(x0, s) ds for
an x0 ∈ N . Further, ρ∞(B) > 0 so that the assertion follows. In case
N = ∅, i.e., K(x, s) > 0, x, s ∈ Ω, according to [10, Lemma 9.1] the
relation ρ∞(B) ≥ α := minx∈Ω

∫
Ω

K(x, s) ds holds.

Now it is assumed that minx∈Ω

∫
Ω

K(x, s) ds = ρ∞(B). Let xi ∈
Ω be a point with

∫
Ω

K(xi, s) ds = minx∈Ω

∫
Ω

K(x, s) ds. Then∫
Ω

K(xi, s) ds = ρ∞(B). When (18) is false (as assumed), one
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has
∫
Ω

K(xi, s) ds <
∫
Ω

K(x, s) ds, x ∈ S(xa), where S(xa) is a
ball with center xa and where xa is such that

∫
Ω

K(xa, s) ds =
maxx∈Ω

∫
Ω

K(x, s) ds. Let κ be a positive eigenfunction correspond-
ing to the eigenvalue ρ∞(B). Then

(20) ρ∞(B)[κ(x)−κ(xi)] =
∫

Ω

[K(x, s)−K(xi, s)]κ(s) ds, x ∈ S(xa),

and therefore

(21) κ(x) > κ(xi) > 0, x ∈ S(xa),

i.e.,

(22)
κ(s)
κ(xi)

> 1, s ∈ S(xa).

Hence,

(23) ρ∞(B) =
∫

Ω

K(xi, s)κ(s)
κ(xi)

ds >

∫
Ω

K(xi, s) ds,

which is a contradiction to ρ∞(B) =
∫
Ω

K(xi, s) ds. Therefore, the
above assumption must be false. Consequently, there exists a point
x0 ∈ Ω with the property

∫
Ω

K(x0, s) ds < ρ∞(B). The proof of the
right-hand inequality is similar to that of the left-hand one.

Theorem 2. Assume 2.2(3) and K(x, s) ≥ 0, x, s ∈ Ω. Additionally
let 2.3(2) be satisfied. Then, for all σ ∈ P∗,κ either

(24)
∫

Ω

K̂σ−1(x, s) ds = ρ∞(B), x ∈ Ω

or

(25) min
x∈Ω

∫
Ω

K̂σ−1(x, s) ds < ρ∞(B) < max
x∈Ω

∫
Ω

K̂σ−1(x, s) ds.

Furthermore,

(26) sup
σ∈P∗,κ

min
x∈Ω

∫
Ω

K̂σ−1(x, s) ds

= ρ∞(B) = inf
σ∈P∗,κ

max
x∈Ω

∫
Ω

K̂σ−1(x, s) ds.
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Proof. Let B̂σ−1 : C(Ω) ↪→ C(Ω) be defined by

(27) (B̂σ−1u)(x) :=
∫

Ω

K̂σ−1(x, s)u(s) ds, x ∈ Ω.

According to Lemma 1, either

(28)
∫

Ω

K̂σ−1(x, s) ds = ρ∞(B̂σ−1), x ∈ Ω

or

(29) min
x∈Ω

∫
Ω

K̂σ−1(x, s) ds < ρ∞(B̂σ−1) < max
x∈Ω

∫
Ω

K̂σ−1(x, s) ds.

Now

(30)
∫

Ω

K(x, s)κ(s) ds = ρ∞(B)κ(x), x ∈ Ω,

whence

(31) ρ∞(B) =
∫

Ω

K̂κ−1(x, s) ds, x ∈ Ω.

This implies

(32)
ρ∞(B) = ρ∞(B̂κ−1) = ρ∞,κ−1(B)

= ρ(B : Cκ−1(Ω) ↪→ Cκ−1(Ω))

= ρ∞,σ−1(B) = ρ∞(B̂σ−1), σ ∈ P∗,κ,

so that (24) and (25) are proven. Moreover, from (24) and (25) one
infers

(33) sup
σ∈P∗,κ

min
x∈Ω

∫
Ω

K̂σ−1(x, s) ds

≤ ρ∞(B) ≤ inf
σ∈P∗,κ

max
x∈Ω

∫
Ω

K̂σ−1(x, s) ds.
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The equality sign follows, in each case, because on the left hand side,
respectively right hand side, the supremum, respectively infimum, is
taken on for σ = κ. Hence, Theorem 2 is proven.

Finally we remark that

(34) ρ∞,σ−1(B) ≤ ρ∞,σ−1(|B|).

2.5. The convergence criteria in Cσ−1(Ω). As a first application
of the estimates for the eigenvalues, strong and weak convergence
criteria are derived; they correspond to the strong and weak row-sum
criteria for matrices. In case of the strong criteria, it is assumed that
K(·, ·) ∈ C(Ω×Ω), and in case of the weak criteria, condition 2.2(3) is
supposed additionally, which will not be mentioned subsequently.

(i) Let N = Nσ = φ and σ ≡ 1, i.e., Cσ−1(Ω) = C(Ω) and
|| · ||∞,σ−1 = || · ||∞; let

(1) q := max
x∈Ω

∫
Ω

|K(x, s)| ds < 1.

Then we say that the strong “row-integral criterion” (for short: the
strong RIC) is fulfilled. In this case ||B||∞ = q < 1 holds. For the weak
RIC, let

(1)

∫
Ω

|K(x, s)| ds ≤ 1, x ∈ Ω∫
Ω

|K(x0, s)| ds < 1 for at least one x0 ∈ Ω, if NK = ∅.

Then, according to subsection 2.4, the relation ρ∞(|B|) < 1 holds.

(ii) Let additionally the condition 2.2(6) be satisfied and

(2) q := max
x∈Ω

∫
Ω

|K̂σ−1(x, s)| ds < 1.

Then we say that the strong σ−1-RIC is fulfilled. In this case
||B||∞,σ−1 = q < 1.
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For the weak σ−1-RIC, let

(2′)

∫
Ω

|K̂σ−1(x, s)| ds ≤ 1, x ∈ Ω∫
Ω

|K̂σ−1(x0, s)| ds < 1 for at least one x0 ∈ Ω.

Then ρ∞,σ−1(|B|) < 1.

(iii) Let additionally condition 2.3(2) be satisfied and

(3)
∫

Ω

|K̂κ−1(x0, s)| ds < 1 for at least one x0 ∈ Ω.

Condition (3) is called κ−1-RIC; here the strong and weak criterion are
equivalent. Under this condition, ρ∞,κ−1(|B|) = ||B||∞,κ−1 < 1.

3. Theory in space Lσ(Ω). In this section the space Lσ(Ω)
is defined, which is a generalization of the space L(Ω). For Lσ(Ω),
theorems corresponding to the case Cσ−1(Ω) are proven.

3.1. The space Lσ(Ω). Let
(1)

Lσ(Ω) := {u | u is measurable on Ω, and
∫

Ω

|u(x)|σ(x) dx < ∞}.

Then Lσ(Ω) is a vector space. A norm is defined on Lσ(Ω) by

(2) ||u||1,σ :=
∫

Ω

|u(x)|σ(x) dx, u ∈ Lσ(Ω).

In case N = ∅, one has Lσ(Ω) = L(Ω), and the norms || · ||1,σ and
|| · ||1 are equivalent. In case N �= ∅ one only has L(Ω) ⊂ Lσ(Ω) and
||u||1,σ ≤ σmax||u||1, u ∈ L(Ω), i.e., the embedding is continuous, and
the convergence in the norm || · ||1 entails the convergence in the norm
|| · ||1,σ. One has

Theorem 3.1.1. The space Lσ(Ω) endowed with the norm (2) is
complete, i.e., Lσ(Ω) is a Banach space.
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Proof. Let (un)n∈N be a Cauchy sequence with un ∈ Lσ(Ω), n ∈ N.
Then un is measurable, and ||un||1,σ < ∞, n ∈ N, holds. Further,
let ε > 0 be arbitrarily chosen, but fixed. Then there exists a number
n0 ∈ N such that

(3)
∫

Ω

σ(x)|un(x) − um(x)| dx ≤ ε, n, m ≥ n0.

The functions σun are measurable for n ∈ N, and because of (3),
(σun)n∈N is a Cauchy sequence in L(Ω). As L(Ω) is complete, there is
an element v ∈ L(Ω) such that

(4)
∫

Ω

|σ(x)um(x) − v(x)| dx → 0, m → ∞

holds. Hence, one also has

(5) σum
meas→ v, m → ∞.

Fatou’s theorem (cf. [13, p. 155]) applied to the sequence σ(x)|um(x)−
un(x)| = |σ(x)um(x)−σ(x)un(x)| along with (3) (5) yields the relation

(6)
∫

Ω

|σ(x)un(x)−v(x)| dx

≤ sup
m≥n

∫
Ω

|σ(x)un(x)−σ(x)um(x)| dx ≤ ε, n, m≥n0,

Let

(7) u(x) :=
u(x)
σ(x)

, x ∈ ΩN .

Then u is measurable (cf. [13, Section 1 and IV, Section 2]). Conse-
quently, one has

(8)
∫

Ω

σ(x)|un(x)−u(x)| dx =
∫

Ω

|σ(x)un(x)−v(x)| dx ≤ ε, n≥n0.

Hence,

(9) u ∈ Lσ(Ω)
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and

(10) un → u, n → ∞ in Lσ(Ω).

Altogether, it has been shown that Lσ(Ω) is complete.

3.2. Complete continuity of integral operators in Lσ(Ω). The
operator 2.2(1) with kernel 2.2(2) can be cast into the form

(1) (Bu)(x)σ(x) =
∫

Ω

σ(x)K(x, s)
σ(s)

u(s)σ(s) ds.

Let

(2) Kσ(x, s) :=
σ(x)K(x, s)

σ(s)
, x, s ∈ ΩN ,

and let there exist a function K̂σ(·, ·) on Ω × Ω such that

(3)
K̂σ(·, ·) ∈ C(Ω × Ω)

K̂σ(x, s) = Kσ(x, s), x, s ∈ ΩN ,

i.e., it is assumed that there exists a continuous extension of Kσ(·, ·) ∈
C(ΩN ×ΩN ) to Ω×Ω (which is then uniquely determined). Hence (1)
has the representation

(4) (Bu)(x)σ(x) =
∫

Ω

K̂σ(x, s)u(s)σ(s) ds, x ∈ Ω,

u ∈ Lσ(Ω). From this, one concludes that

(5) σB : Lσ(Ω) ↪→ C(Ω)

holds, where σB is defined by (σBu)(x) = σ(x)(Bu)(x), x ∈ Ω.
Consequently, the following theorem holds.

Theorem 3.2.1. Let the condition 2.2(2) and the condition (3) be
fulfilled. Then the operator

(6) B : Lσ(Ω) → Lσ(Ω)

is completely continuous.
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Remark 1. The norm of the operator (6) is given by
(7)

||B||1,σ : = sup
0�=u∈Lσ(Ω)

||Bu||1,σ

||u||1,σ
= max

s∈Ω

∫
Ω

|K̂σ(x, s)| dx

= sup
s∈ΩN

∫
Ω

|Kσ(x, s)| dx = sup
s∈ΩN

1
σ(s)

∫
Ω

σ(x)|K(x, s)| dx.

Remark 2. If K(·, ·) satisfies condition 2.2(3), then the operator
|B|T : C(Ω) ↪→ C(Ω) has eigenvalues different from zero. Hence, the
conditions of [11, Theorem 6.1] are fulfilled. Consequently, ρT

∞ :=
ρ(|B|T ) is an eigenvalue of |B|T and has an eigenfunction χ ∈ C(Ω),
χ(x) ≥ 0, x ∈ Ω. Because of 2.2(3), it follows immediately that
χ(x) > 0, x ∈ ΩN , and χ(x) = 0, x ∈ N . If condition (3) is also
fulfilled for σ = χ, then

(8) ρ∞(|B|T ) = ||B||1,χ = sup
s∈ΩN

1
χ(s)

∫
Ω

χ(x)|K(x, s)| dx.

3.3. Extension of the integral kernel Kσ(·, ·). Let the condition
2.2(3) be satisfied. According to 3.2, Remark 2, the operator

(1) |B|T : C(Ω) ↪→ C(Ω)

has an eigenfunction σ = χ ∈ C(Ω) with χ(x) > 0, x ∈ ΩNK
, and

χ(x) = 0, x ∈ N = NK , corresponding to the eigenvalue

ρT
∞ : = ρ(|B|T : C(Ω) ↪→ C(Ω))

= ρ∞ := ρ(|B| : C(Ω) ↪→ C(Ω))
= ρ1 := ρ(|B| : L(Ω) ↪→ L(Ω))
= ρT

1 := ρ(|B|T : L(Ω) ↪→ (Ω)) > 0.

We suppose that the extension K̂χ(·, ·) of Kχ(·, ·) exists, i.e., that

(2)
K̂χ(·, ·) ∈ C(Ω × Ω)

K̂χ(x, s) = Kχ(x, s), x, s ∈ ΩN
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holds. Under condition (2), let P∗,χ be defined in the same way as P∗,κ.
Because of χ ∈ P∗,χ, P∗,χ �= ∅ holds. Hence, one has

Theorem 3.3.1. Assume the conditions 2.2(3) and (2), and let σ be
any function from P∗,χ. Then the kernel Kσ(·, ·) ∈ C(ΩN × ΩN ) has
an extension K̂σ(·, ·) ∈ C(Ω × Ω), i.e.,

(3)
K̂σ(·, ·) ∈ C(Ω × Ω)

K̂σ(x, s) = Kσ(x, s), x, s ∈ ΩN .

Moreover, the following theorem holds.

Theorem 3.3.2. Let the conditions 2.2(3) and (2) be satisfied. Then

(4) Lσ(Ω) = Lχ(Ω), σ ∈ P∗,χ

and

(5)
γ0||u||1,σ ≤ ||u||1,χ ≤ γ1||u||1,σ,

u ∈ Lσ(Ω) = Lχ(Ω)

with

(6)

γ0 =
1

sups∈Ω
σ(s)
χ(s)

=
1

||q̂σ||∞
,

γ1 = sup
s∈ΩN

χ(s)
σ(s)

= ||q̂σ−1 ||∞.

Thus, Lσ(Ω) and Lχ(Ω) are equal as vector spaces, and the associated
norms are equivalent.

3.4. Estimates of the eigenvalues and inclusion of the spec-
tral radius for Lσ(Ω). In this subsection the proofs are merely outline
or even omitted, because they are similar to those of 2.4. First, one
has
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Theorem 3.4.1. Let the conditions 2.2(3) and 3.2(3) be satisfied;
further, let νσ > 0 be any number and

(1)
∫

Ω

|K̂σ(x, s)| dx ≤ νσ, s ∈ Ω

as well as

(2)
∫

Ω

|K̂σ(x, s0)| dx < νσ for at least one s0 ∈ Ω.

Then

(3) |λ| < νσ for all λ ∈ Σ1,σ := Σ(B : Lσ(Ω) ↪→ Lσ(Ω)).

Remark 1. Here, as well, the condition (2) is satisfied for all
s0 ∈ NK ⊂ ∂Ω if NK �= ∅ and σ ≡ 1.

Proof of Theorem 1. (i) σ ≡ 1. The proof is similar to that of
the corresponding part of Theorem 1, Section 2.4; one has to use, in
addition, that Σ′

1 := Σ′(B : L(Ω) ↪→ L(Ω)) = (ΣT
∞)′ := Σ′(BT :

C(Ω) ↪→ C(Ω)).

(ii) General case. Let

(4) (B̂σu)(x) :=
∫

Ω

K̂σ(x, s)u(s) ds, x ∈ Ω,

u ∈ L(Ω). Then one uses additionally the relation

(5)
Σ′

1,σ = Σ′(B̂σ : L(Ω) ↪→ L(Ω))

= Σ′((B̂σ)T : C(Ω) ↪→ C(Ω)).

For the proof of the following Theorem 2, one needs

Lemma 1. Let the condition 2.2(3) be fulfilled, and let additionally
K(x, s) ≥ 0, x, s ∈ Ω, be satisfied. Then one has the alternative: either

(6)
∫

Ω

K(s, x) ds=ρ1(B)(=ρ∞(BT )=ρ1(BT )=ρ∞(B)), x ∈ Ω
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holds or

(7) min
x∈Ω

∫
Ω

K(s, x) ds < ρ1(B) < max
x∈Ω

∫
Ω

K(s, x) ds.

Theorem 3.4.2. Assume 3.2(2) and K(x, s) ≥ 0, x, s ∈ Ω.
Additionally let 2.2(3) be satisfied. Then, for all σ ∈ P∗,χ either

(8)
∫

Ω

K̂σ(s, x) ds = ρ1(B), x ∈ Ω

or

(9) min
x∈Ω

∫
Ω

K̂σ(s, x) ds < ρ1(B) < max
x∈Ω

∫
Ω

K̂σ(s, x) ds.

Moreover, one has the relations

(10) sup
σ∈P∗,χ

min
x∈Ω

∫
Ω

K̂σ(s, x) ds = ρ1(B) = inf
σ∈P∗,χ

max
x∈Ω

∫
Ω

K̂σ(s, x) ds.

Proof. Let

(11) (B̂σu)(x) :=
∫

Ω

K̂σ(x, s)u(s) ds, x ∈ Ω,

u ∈ C(Ω). Then Lemma 1 implies that either

(12)
∫

Ω

K̂σ(s, x) ds = ρ1(B̂σ), x ∈ Ω

or

(13) min
x∈Ω

∫
Ω

K̂σ(s, x) ds < ρ1(B̂σ) < max
x∈Ω

∫
Ω

K̂σ(s, x) ds.

Now

(14)
∫

Ω

K(s, x)χ(s) ds = ρ1(B)χ(x), x ∈ Ω
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and, hence,

(15) ρ1(B) =
∫

Ω

K̂χ(s, x) ds, x ∈ Ω.

This entails

(16) ρ1(B) = ρ∞((B̂χ)T ) = ρ1(B̂χ) = ρ1(B̂σ), σ ∈ P∗,χ.

So the proof is complete.

Finally, it is stated that

(17) ρ1,σ(B) ≤ ρ1,σ(|B|).

3.5. The convergence criterion in Lσ(Ω). As a first application
of the estimates for the eigenvalues, one obtains strong and weak
convergence criteria as well, which correspond to the strong and weak
column-sum criteria for matrices, in this case. In case of the strong
criteria, it is again assumed that K(·, ·) ∈ C(Ω × Ω); in case of the
weak criterion, condition 2.2(3) is required to be satisfied additionally.
Subsequently, this is not mentioned.

(i) Let N = Nσ = ∅ and σ ≡ 1, i.e., Lσ(Ω) = L(Ω) and
|| · ||1,σ = || · ||1; let

(1) q := max
s∈Ω

∫
Ω

|K(x, s)| dx < 1.

Then we say the strong “column-integral criterion” (for short, the
strong CIC) is fulfilled. In this case, ||B||1 = q < 1. For the weak
CIC, let

(1)

∫
Ω

|K(x, s)| dx ≤ 1, s ∈ Ω∫
Ω

|K(x, s0)| dx < 1 for at least one s0 ∈ Ω, if NK = ∅.

According to 3.4, then the estimate ρ1(|B|) < 1 holds.



100 L. KOHAUPT

(ii) Let additionally 3.2(3) be satisfied and

(2) q := max
s∈Ω

∫
Ω

|K̂σ(x, s)| dx < 1.

Then we say that the strong σ-CIC is fulfilled. In this case, ||B||1,σ =
q < 1. For the weak σ-CIC, let

(2′)

∫
Ω

|K̂σ(x, s) dx ≤ 1, s ∈ Ω∫
Ω

|K̂σ(x, s0)| dx < 1 for at least one s0 ∈ Ω.

Then ρ1,σ(|B|) < 1.

(iii) Let additionally condition 3.3(2) be satisfied and

(3)
∫

Ω

|K̂χ(x, s0)| dx < 1 for at least one s0 ∈ Ω.

Condition (3) is called χ-CIC; here, the strong and weak criteria are
equivalent. Under these conditions,

ρ1,χ(|B|) = ||B||1,χ < 1

holds.

4. Examples. This section illustrates the general theorems by
examples stemming from boundary value problems of ordinary differ-
ential equations. In Example 3, we give a Green’s function possessing
a logarithmic discontinuity.

Example 1. Let K(x, s) = G(x, s), x, s ∈ Ω = [0, l] where

(1) G(x, s) =
{

s, 0 ≤ s ≤ x ≤ l

x, 0 ≤ x ≤ s ≤ l

is the Green’s function arising in the BVP

−u′′(x) = λu(x), 0 < x < l, u(0) = u′(l) = 0,
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FIGURE 1a. G(·, ·) in (1). Illustrated by contour lines.

s

x
l
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ss =
 x

FIGURE 1b. G(·, ·) in (1). Illustrated in three dimensions on the boundary
and diagonal.
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and which is the eigenvalue problem for a free vibrating string with left-
hand end fixed and right-hand end free and horizontal. In this case,
K(·, ·) = G(·, ·) is symmetric. This Green’s function is illustrated in
Figure 1a by contour lines (cf. [5]) and in Figure 1b in three dimensions
on the boundary and on the diagonal. Here N = NK = {0} ⊂ ∂Ω =
{0, l}.

For σ(x) = (2x/l)(1 − x/(2l)), x ∈ Ω, the conditions 2.2(6) and
3.2(3) are fulfilled. Further, here κ(x) = χ(x) = sin((πx)/(2l)) and
the conditions 2.3(2) and 3.3(2) are satisfied. Moreover, σ ∈ P∗,κ,
respectively, σ ∈ P∗,χ. The extensions K̂σ−1 (·, ·) and K̂κ−1(·, ·) of
Kσ−1(·, ·) and Kκ−1(·, ·) are given and illustrated qualitatively in Figure
2 on the boundary and on the diagonal. The extensions K̂σ(·, ·) and
K̂χ(·, ·) are the reflected images of K̂σ−1(·, ·) and K̂κ−1(·, ·) with respect
to the plane orthogonal to the x−s-plane and through the diagonal D.
One has

(2) Kσ−1(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s2(1 − s
2l )

x(1 − x
2l )

, 0 < s ≤ x ≤ l

s(1 − s
2l )

1 − x
2l

, 0 < x ≤ s ≤ l

,

respectively,

(3) Kκ−1(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

s sin π
2ls

sin π
2lx

, 0 < s ≤ x ≤ l

x sin π
2ls

sin π
2lx

, 0 < x ≤ s ≤ l.

In Theorem 2.3.2, the constants are given by γ0 = 1 and γ1 = 4/π,
and in Theorem 3.3.2, by γ0 = π/4 and γ1 = 1.

In the spaces C(Ω) and L(Ω), the strong RIC and the strong CIC in
Section 6 are fulfilled, if

(4)
l2

2
< 1, i.e., l <

√
2 .= 1.414,

and the weak RIC and the weak CIC are satisfied, if

(4′)
l2

2
≤ 1, i.e., l ≤

√
2 .= 1.414.
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FIGURE 2a. K̂σ−1 (·, ·), respectively K̂κ−1 (·, ·) on ∂(Ω × Ω) and on D.
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In the spaces Cσ−1(Ω) and Lσ(Ω), the strong σ−1-RIC and the strong
σ-CIC are satisfied for

(5)
5
6

l2

2
< 1, i.e., l <

√
6
5

√
2 .= 1.549,

and the weak σ−1-RIC and the weak σ-CIC when

(5′)
5
6

l2

2
≤ 1, i.e., l ≤

√
6
5

√
2 .= 1.549.

Finally, in the spaces Cκ−1(Ω) and Lχ(Ω), the κ−1-RIC and the χ-CIC
are satisfied, if

(6) ρ(B) = ||B||∞,κ−1 = ||B||1,χ =
(

2l

π

)2

< 1

respectively l <
π

2
.= 1.571.

Further, the relations 2.4(25), respectively 3.4(9), are fulfilled, which
are for σ ≡ 1, respectively σ(x) = (2l/x)(1 − x/(2l)) equivalent to

(7) 0 <
4
π2

l2 <
l2

2
, i.e., 0 < 0.405 · · · l2 < 0.5l2,

respectively,

(8)
2
3

l2

2
<

4
π2

l2 <
5
6

l2

2
, i.e., 0.333 · · · l2 < 0.405 · · · l2 < 0.416 · · · l2.

Example 2. We take K(x, s) = G(x, s), x, s ∈ Ω = [0, l] where

(9) G(x, s) =
{

(1 − x/l)s, 0 ≤ s ≤ x ≤ l

(1 − s/l)x, 0 ≤ x ≤ s ≤ l

is the Green’s function arising in the BVP

−u′′(x) = λu(x), 0 < x < l, u(0) = u(l) = 0.

Hence, the string has fixed ends in this case. The Green’s function
is illustrated in Figure 3a by contour lines (cf. [5]) and in Figure 3b
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FIGURE 3a. G(·, ·) in (g). Illustrated by contour lines.
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FIGURE 3b. G(·, ·) in (g). Illustrated in three dimensions on the boundary
and diagonal.
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in three dimensions on the boundary and on the diagonal. Here
N = NK = {0, l} = ∂Ω.

For σ(x) = (x/l)(1−x/l), x ∈ Ω, the conditions 2.2(6) and 3.2(3) are
fulfilled. Further, here κ(x) = χ(x) = sin(πx/l), and the conditions
2.3(2) and 3.3(2) are satisfied. Moreover, σ ∈ P∗,κ, respectively
σ ∈ P∗,χ. The extensions K̂σ−1(·, ·) and K̂κ−1(·, ·) of Kσ−1(·, ·) and
Kκ−1(·, ·) are given and illustrated qualitatively in Figure 4 on the
boundary and on the diagonal. The extensions K̂σ(·, ·) and K̂χ(·, ·) are
again the reflected images of K̂σ−1(·, ·) and K̂κ−1(·, ·) with respect to
the plane orthogonal to the x − s plane and through the diagonal D.
One has

(10) Kσ−1(x, s) =

⎧⎪⎨
⎪⎩

s2(1 − s/l)
x , 0 < s ≤ x < l

s(1 − s/l)2

1 − x/l
, 0 < x ≤ s < l

and

(11) Kκ−1(x, s) =

⎧⎪⎨
⎪⎩

(1 − x/l)s sin(πs/l)
sin(πx/l) , 0 < s ≤ x < l

(1 − s/l)x sin(πs/l)
sin(πx/l) , 0 < x ≤ s < l.

0

0

s

x
l

l

s
s

1
2

−⎛ ⎝
⎞ ⎠

l s

s
1−⎛
⎝

⎞
⎠l

s
s

2
1

−
⎛ ⎝

⎞ ⎠
l

l

FIGURE 4a. K̂σ−1 (·, ·), respectively K̂κ−1 (·, ·) on ∂(Ω × Ω) and on D.
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In Theorem 2.3.2, one has γ0 = 1/4 and γ1 = 1/π, and in Theorem
3.3.2 the constants γ0 = π and γ1 = 4.

The convergence criteria are omitted here because they are given in
a different setting in Section 5.

Further, the relations 2.4(25), respectively, 3.4(9) are fulfilled, which
are for σ ≡ 1, respectively σ(x) = (x/l)(1 − x/l) equivalent to

(12) 0 <
l2

π2
<

l2

8
, i.e., 0 < 0.101 · · · l2 < 0.125l2,

respectively,
(13)

2
3

l2

8
<

l2

π2
<

5
6

l2

8
, i.e., 0.08333 · · · l2 < 0.101 · · · l2 < 0.104 · · · l2.

Example 3. So far, the kernel K(·, ·) was supposed to be continuous
on Ω × Ω. But the Green’s function corresponding to an ordinary
differential operator can also have a logarithmic discontinuity. For
example, the Green’s function for the differential expression

(14) xu′′(x) + u′(x), 0 < x < 1,



108 L. KOHAUPT

and the boundary conditions

(15) u(1) = 0, u(0) finite

is given by

(16) K(x, s) = G(x, s) =
{− ln x, 0 < s ≤ x ≤ 1
− ln s, 0 < x ≤ s ≤ 1;

the differential expression (14) with conditions (15) is associated with
the Bessel’s function T 0(κ) of order zero (cf. [6, p. 321]). Here
N = {1} ⊂ ∂Ω = {0, 1} and instead of 2.2(6), respectively 3.2(3),
one must assume, e.g., that the limit

(17) lim
x̃→x

x̃∈ΩN

∫
Ω

Kσ−1(x̃, s) ds, x ∈ N,

respectively

(18) lim
s̃→s

s̃∈ΩN

∫
Ω

Kσ(x, s̃) ds, s ∈ N

exists. Setting, for instance, σ(x) = 1 − x, x ∈ Ω = [0, 1], then

(19)
∫

Ω

Kσ−1(x, s) ds = 1 − 1 + x

4
, x ∈ [0, 1),

and hence

(20) lim
x̃→1

x̃∈[0,1)

∫ 1

0

Kσ−1(x, 1) ds =
1
2
.

So, with these alternations, such problems can also be handled similar
to the case K(·, ·) ∈ C(Ω× Ω). The details are omitted for the sake of
brevity.

5. Application to a boundary value problem. In this section we
consider a boundary value problem of an ordinary differential equation
in physics, respectively engineering, its reformulation as an integral
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equation as well as convergence criteria in unweighted and weighted
norms. Especially, the convergence criteria of Section 4 are applicable
to the example. The problem is solved by the Jacobi method for specific
data. Numerical tests confirm the theoretical results.

5.1. Elastically supported string. From [4], the elastically
supported string is described by the BVP

(1) −u′′(x) + cu(x) = f(x), 0 < x < l

(2) u(0) = u(l) = 0.

Here c > 0 describes the elastic support, u means the vertical displace-
ment, and f the load per unit length. As for f , we assume, e.g., that
f ∈ C[0, l]. In this case the solution u ∈ C0(Ω) ∩ C2(Ω), Ω := [0, l],
with C0(Ω) := {u ∈ C(Ω) | u(0) = u(l) = 0} being searched for. Or, let
f ∈ L2(Ω) and consider the above BVP in the sense of distributions,
i.e.,

∫ l

0

u′(x)ϕ′(x) dx + c

∫ l

0

u(x)ϕ(x) dx =
∫ l

0

f(x)ϕ(x) dx,

ϕ ∈ C∞
0 (

◦
Ω).

Then a solution u ∈ H1
0 (

◦
Ω)∩H2(

◦
Ω) is sought. Particularly, in this case

u ∈ C1(Ω) holds because of Sobolev’s inequality. This will be confirmed
in another way by the integral representation of the solution.

In both cases, the solution can be given by the Green’s function of
the differential operator u′′(x) + cu(x):

(3) u(x) =
∫

Ω

G̃(x, s, c)f(s) ds, x ∈ Ω

with

(4) G̃(x, s, c) =

⎧⎪⎪⎨
⎪⎪⎩

sinh
√

c(l − x)
sinh(

√
cl)

sinh(
√

cs)√
c

, 0 ≤ s ≤ x ≤ l

sinh
√

c(l − s)
sinh(

√
cl)

sinh(
√

cx)√
c

, 0 ≤ x ≤ s ≤ l.
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Here also G̃(x, s, c) ≥ 0, x, s ∈ Ω.

So BVP (1), (2) is exactly solvable and can serve as a test problem.
To solve (1) and (2) by the Jacobi method, let G(x, s) be the Green’s
function of −u′′. Then one has

(5) u(x) = −c

∫
Ω

G(x, s)u(s) ds + g(x), x ∈ Ω

with

(6) g(x) =
∫

Ω

G(x, s)f(s) ds, x ∈ Ω,

i.e.,

(7) u(x) =
∫

Ω

K(x, s)u(s) ds + g(x), x ∈ Ω,

with

(8) K(x, s) = −cG(x, s) =: K(x, s, c), x, s ∈ Ω,

where G(·, ·) is given by

(9) G(x, s) =
{

(1 − x/l)s, 0 ≤ s ≤ x ≤ l

(1 − s/l)x, 0 ≤ x ≤ s ≤ l.

Here there holds

(10) K(x, s) ≤ 0, x, s ∈ Ω,

whence

(11) |K(x, s)| = −K(x, s) = cG(x, s), x, s ∈ Ω.

Remark . When the above differential equation (1) is studied under
the boundary conditions u(0) = u′(l) = 0, then one has

(12) G(x, s) =
{

s, 0 ≤ s ≤ x ≤ l

x, 0 ≤ x ≤ s ≤ l.



JACOBI METHOD 111

We shall not pursue this case further.

5.2. The convergence criteria. In the spaces C(Ω) and L(Ω), the
strong RIC and the strong CIC are satisfied, if

(1) c
l2

8
< 1

and the weak RIC and the weak CIC, if

(2) c
l2

8
≤ 1.

In the spaces Cσ−1(Ω) and Lσ(Ω) with σ(x) = (x/l)(1 − x/l), x ∈ Ω,
the strong σ−1-RIC and the strong σ-CIC are satisfied for

(3) c
5
6

l2

8
< 1

and the weak σ−1-RIC and weak σ-CIC, when

(4) c
5
6

l2

8
≤ 1.

Finally, in the spaces Cκ−1(Ω) and Lχ(Ω) with κ(x) = χ(x) =
sin(πx/l), x ∈ Ω, the κ−1-RIC and the χ-CIC are satisfied, if

(5) c
l2

π2
< 1.

5.3. Numerical example.

(i) Problem and exact solution. As a numerical example, we consider
the BVP

−u′′ + u = 1, x ∈ (0, 1)(1)

u(0) = u(1) = 0,(2)

i.e., c = 1, l = 1, f(x) ≡ 1. The exact solution is given by

(3) z(x) = uexact(x) =
∫ 1

0

G̃(x, s, c = 1) ds
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with

(4) G̃(x, s, c = 1) =

⎧⎪⎨
⎪⎩

sinh(1 − x)
sinh(1) sinh s, 0 ≤ s ≤ x ≤ 1

sinh(1 − s)
sinh(1) sinh x, 0 ≤ x ≤ s ≤ 1.

From (3) and (4), one infers

(5)
z(x) = uexact(x)

=
1

sinh(1)
{sinh(1−x)[cosh(x)−1] + sinh(x)[cosh(1−x)−1]}

(ii) The Jacobi method. Let G(·, ·) be the Green’s function corre-
sponding to −u′′. Then

(6) u(x) =
∫ 1

0

K(x, s)u(s) ds + g(x), x ∈ Ω = [0, 1]

with

G(x, s) =

{
(1 − x)s, 0 ≤ s ≤ x ≤ 1

(1 − s)x, 0 ≤ x ≤ s ≤ 1,
(7)

g(x) =
∫ 1

0

G(x, s) ds =
x(1 − x)

2
, x ∈ [0, 1],(8)

and

(9) K(x, s) = −G(x, s), x, s ∈ [0, 1].

The spectral radius of

(10) |B|u(x) :=
∫ 1

0

|K(x, s)|u(s) ds =
∫ 1

0

G(x, s)u(s) ds, 0≤x≤1,

is given by

(11) ρ(|B|) = ρ∞(|B|) = ρ(−B) =
1
π2

< 1
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and the corresponding eigenfunction reads

(12) κ(x) = sin πx, 0 ≤ x ≤ 1.

The Jacobi method can be considered, e.g., in the spaces V =
Cκ−1 [0, 1], respectively, V = C[0, 1]. It is given by

(13) ut+1(x) =
∫ 1

0

K(x, s)ut(1) ds + g(x), 0 ≤ x ≤ 1

t = 0, 1, 2, . . . , with any u0 ∈ V .

(iii) Error estimates and numerical results. In V = Cκ−1 [0, 1], the
error estimate reads

(14)
||ut − z||∞,κ−1 ≤ ρ∞(|B|)

1−ρ∞(|B|) ||ut−ut−1||∞,κ−1

≤ ρt
∞(|B|)

1−ρ∞(|B|) ||u1−u0||∞,κ−1 → 0, t → ∞

t = 1, 2, . . . and correspondingly in the space V = C[0, 1],

(15)
||ut − z||∞ ≤ ||B||∞

1 − ||B||∞
||ut − ut−1||∞

≤ ||B||t∞
1 − ||B||∞

||u1 − u0||∞ → 0, t → ∞

with u0 ∈ V , respectively. Fully written, this means
(14′)

sup
x∈(0,1)

|ut(x)−z(x)|
sin πx

≤
1

π2

1− 1
π2

sup
x∈(0,1)

|ut(x)−ut−1(x)
sin πx

≤
( 1

π2 )t

1− 1
π2

sup
x∈(0,1)

|u1(x)−u0(x)|
sin πx

→ 0, t → ∞,

respectively,

(15)

max
x∈[0,1]

|ut(x)−z(x)| ≤
1
8

1− 1
8

max
x∈[0,1]

|ut(x)−ut−1(x)|

≤
( 1
8 )t

1− 1
8

max
x∈[0,1]

|u1(x)−u0(x)| → 0, t → ∞.
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For u0(x) ≡ 0 ∈ V = Cκ−1 [0, 1], respectively V = C[0, 1],

(16)

u0(x) ≡ 0

u1(x) =
x(1 − x)

2

u2(x) =
x(1 − x)

24
(x2 − x + 11) =

x(1 − x)
2

11 − x(1 − x)
12

u3(x) =
x(1 − x)
24 · 60

[2x4 − 4x3 + 56x2 − 54x + 666]

=
x(1 − x)
24 · 60

{666 + 2 × (1 − x)[x(1 − x) − 27]}
...

z(x) =
1

sinh(1)
{sinh(1 − x)[cosh(x) − 1]

+ sinh(x)[cosh(1 − x) − 1]}.

holds. Further, one has

(17)

sup
x∈(0,1)

|ut(x) − z(x)|
sin πx

= lim
x→0

|ut(x) − z(x)|
sin πx

= lim
x→1

|ut(x) − z(x)|
sin πx

,

sup
x∈(0,1)

|ut(x) − ut−1(x)|
sin πx

= lim
x→0

|ut(x) − ut−1(x)|
sin πx

= lim
x→1

|ut(x) − ut−1(x)|
sin πx

t = 1, 2, . . . , as well as

(18)
max

x∈[0,1]
|ut(x) − z(x)| = |ut(

1
2
) − z(

1
2
)|

max
x∈[0,1]

|ut(x) − ut−1(x)| = |ut(
1
2
) − ut−1(

1
2
)|, t = 1, 2, . . . .

The error estimates in V = Cκ−1 [0, 1], respectively V = C[0, 1], along
with the numerical values are compiled in Tables 1 and 2.
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TABLE 1. Error estimates in the norm || · ||∞,κ−1 for t = 1, 2, 3.

‖u1 − z‖∞ ≤ ‖u1 − z‖∞,κ−1 ≤
1

π2

1− 1
π2

‖u1 − u0‖∞,κ−1

0.01181889 ≤ 0.01205848 ≤ 0.017944373

‖u2 − z‖∞ ≤ ‖u2 − z‖∞,κ−1 ≤
1

π2

1− 1
π2

‖u2 − u1‖∞,κ−1

≤ ( 1
π2 )2

1− 1
π2

‖u1 − u0‖∞,κ−1

0.00120194 ≤ 0.00120443 ≤ 0.00149532 ≤ 0.00181809

‖u3 − z‖∞ ≤ ‖u3 − z‖∞,κ−1 ≤
1

π2

1− 1
π2

‖u3 − u2‖∞,κ−1

≤ ( 1
π2 )2

1− 1
π2

‖u2 − u1‖∞,κ−1 ≤ ( 1
π2 )3

1− 1
π2

‖u1 − u0‖∞,κ−1

0.00012184 ≤ 0.00012186 ≤ 0.00014853

≤ 0.00015151 ≤ 0.00018421

TABLE 2. Error estimates in the norm || · ||∞ for t = 1, 2, 3.

‖u1 − z‖∞ ≤
1
8

1− 1
8
‖u1 − u0‖∞

0.01181889 ≤ 0.01785714

‖u2 − z‖∞ ≤
1
8

1− 1
8
‖u2 − u1‖∞ ≤ ( 1

8 )2

1− 1
8
‖u1 − u0‖∞

0.00120194 ≤ 0.00186012 ≤ 0.00223214

‖u3 − z‖∞ ≤
1
8

1− 1
8
‖u3 − u2‖∞

≤ ( 1
8 )2

1− 1
8
‖u2 − u1‖∞ ≤ ( 1

8 )3

1− 1
8
‖u1 − u0‖∞

0.00012184 ≤ 0.00018911 ≤ 0.00023265 ≤ 0.00027902
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10
x

u x z xt ( ) − ( )

u x z x

x
t ( ) − ( )

sin π
t = 1 t = 2 t = 3

0.01205848 0.00120443 0.00012186

0.01181889 0.00120194 0.00012184

0.0 0.0 0.0

FIGURE 5. Qualitative course of the graphs of |ut(x) − z(x)|/ sin πx and of
|ut(x) − z(x)| as well as corresponding ordinate ranges.

Because of

(19) max
x∈[0,1]

|ut(x)−z(x)| ≤ sup
x∈(0,1)

|ut(x) − z(x)|
sin πx

, t = 0, 1, 2, . . . ,

one also obtains with the estimates in Cκ−1 [0, 1] estimates in the space
C[0, 1].

Looking at the tables, it can be seen that the estimates in Cκ−1 [0, 1]
begin at a higher level, which can also be deduced from (19). The a
posteriori and a priori error estimates are then better than in C[0, 1],
however. This becomes especially clear by comparing the curves of
|ut(x) − z(x)|/ sin πx, x ∈ (0, 1), and |ut(x) − z(x)|, x ∈ [0, 1], in the
same coordinate system. The qualitative course of these curves can
be seen in Figure 5. The ordinate range for |ut(x) − z(x)|/ sin πx is
drawn outsized. The ratio of the ordinate ranges is compiled in Table
3. On the whole, the results show that, with weighted norms, the error
estimates can be sharpened.

TABLE 3. Ratio of the ordinate ranges according to Figure 5.

t

supx∈(0,1)
|ut(x)−z(x)|

sin πx − inf
x∈(0,1)

|ut(x)−z(x)|
sin πx

maxx∈[0,1] |ut(x) − z(x)| − minx∈[0,1] |ut(x) − z(x)|

1
0.01205848 − 0.01181889

0.01181899 − 0.0
.= 0.027

2
0.00120443 − 0.00120194

0.00120194 − 0.0
.= 0.0021

3
0.00012186 − 0.00012184

0.00012184 − 0.0
.= 0.00016
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Räumen, Akademie-Verlag, Berlin, 1964.

9. S. Karlin, Positive operators, J. Math. Mech. 8 (1959), 907 937.

10. M.A. Krasnosel’skij, Je.A. Lifshits and A.V. Sobolev, Positive linear systems
The method of positive operators, Heldermann Verlag, Berlin, 1989.

11. M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone of
a Banach space (Russian), Uspechi mate. nauk 3 (23) 1948, 3 95; English transl. in
Amer. Math. Soc. Transl., vol. 26.

12. N. Luther, K. Niederdrenk, F. Reutter and H. Yserentant, Gewöhnliche
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