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WEAK ALMOST PERIODICITY OF CONVOLUTIONS

JAN PRÜSS AND WOLFGANG M. RUESS

ABSTRACT. It is shown that, for an Eberlein-weakly al-
most periodic (w.a.p.) function f with values in a Banach
space X, the convolution dK∗f is again w.a.p. in Z, whenever
the kernel K(t) ∈ B(X, Z) is of uniform bounded variation.
This result is applied to abstract Cauchy problems as well as
to abstract Volterra equations.

1. Introduction. Let X be a Banach space, A the generator of
a C0-semigroup (S(t))t≥0 on X of type ω(A) < 0, and consider the
abstract Cauchy problem

(1.1) u̇(t) = Au(t) + f(t), u(0) = u0, t ≥ 0,

where f ∈ Cb(R+; X), u0 ∈ X, as well as the evolution equation

(1.2) v̇(t) = Av(t) + g(t), t ∈ R,

on the line, where g ∈ Cb(R; X). The unique mild solutions of (1.1)
and (1.2) are then given by

(1.3) u(t) = S(t)u0 +
∫ t

0

S(τ )f(t− τ ) dτ, t ≥ 0,

and

(1.4) v(t) =
∫ ∞

0

S(τ )g(t − τ ) dτ, t ∈ R,

respectively. Such variation of parameters formulae also arise in the
context of abstract linear Volterra equations, where S(t) then denotes
the so-called resolvent family; see Section 4 for details.
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The study of almost periodicity properties of the solutions to equa-
tions of this kind naturally leads to the question whether convolutions
of the form

(1.5) v(t) =
∫ ∞

−∞
dK(τ )g(t − τ ), t ∈ R,

and

(1.6) u(t) =
∫ t

−∞
dK(τ )f(t − τ ), t ∈ R,

preserve such properties; here {K(t)}t∈R is a family of bounded linear
operators from X to another Banach space Z which is of uniform
bounded variation, i.e.,

VarK|∞−∞ = sup
{ n∑

j=1

|K(tj) − K(tj−1)|B(X,Z) :

−∞ < t0 < t1 < · · · < tn < ∞
}

< ∞,

K ∈ BV (R;B(X, Z)) for short. To draw the connection between the
semigroup S(t) and K(t), observe that if K(t) = 0 for t < 0, and
K(t) =

∫ t

0
S(τ ) dτ for t ≥ 0, then K ∈ BV (R;B(X)).

It is well known (and easy to prove) that g ∈ AP (X) implies v ∈
AP (X), where AP (X) denotes the space of all almost periodic (a.p.)
functions on R with values in X in the sense of Bochner. Similarly,
if f is asymptotically almost periodic (a.a.p.), i.e., f ∈ AAP (X) then
u ∈ AAP (X).

In this note we address the problem of whether corresponding in-
variance properties of the convolution hold for weak almost periodicity
in the sense of Eberlein. This latter kind of asymptotic behavior has
recently been shown to arise naturally for solutions of both linear and
nonlinear evolution equations, see Ruess/Summers [13, 15, 16].

Section 2 contains some background material about a.p. and w.a.p.
functions. The formulation of our main result, which answers the above
question in the affirmative, and its proof are presented in Section 3.
For the sake of completeness and easy reference, we also include the
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corresponding results for a.p. and a.a.p. functions. Section 4 is devoted
to the discussion of some consequences of the main result for abstract
Cauchy problems as well as for abstract Volterra equations.

2. Preliminaries. In the sequel, the spaces of bounded, con-
tinuous and of bounded, uniformly continuous X-valued functions
on an interval J ⊂ R, equipped with the sup-norm | · |∞, will be
denoted by Cb(J ; X) and Cub(J ; X), respectively. We abbreviate
Cb(X) = Cb(R; X) and Cub(X) = Cub(R; X). The group of trans-
lations {Tt}t∈R, defined by

(Ttf)(τ ) = f(t + τ ), t, τ ∈ R,

consists of isometries and is strongly continuous in Cub(R; X), but not
in Cb(R; X). Recall that a function f ∈ Cb(X) is called almost periodic
(a.p.), respectively, weakly almost periodic in the sense of Eberlein
(w.a.p.), if TRf = {Tτf : τ ∈ R} is relatively compact, respectively,
weakly relatively compact, in Cb(X) (Bohl/Bohr/Bochner, cf. [3], and
Eberlein [7] and Ruess/Summers [14]). Both a.p. and w.a.p. functions
are uniformly continuous (Bochner [3] and Ruess/Summers [17]), so
that the spaces AP (X) and W (X) of all a.p. and of all w.a.p. functions,
respectively, are closed translation invariant subspaces of Cub(X). Note
that periodic functions p are characterized among a.p. functions by the
stronger property that TRp is compact in Cb(X).

We further recall that, according to the Jacobs-DeLeeuw/Glicksberg
decomposition theorem (cf. Krengel [10, Section 2.4]), we have the
topological direct sum decomposition

W (X) = AP (X) ⊕ W0(X),

where the space W0(X) ⊂ W (X) is given by

W0(X) = {f ∈ W (X) : w − lim
n→∞Tτn

f = w − lim
n→∞ Tσn

f = 0,

for some sequences τn → ∞, σn → −∞}.

The Bohr transform, given by

α(ρ, f) := lim
N→∞

N−1

∫ N

0

e−iρtf(t) dt, ρ ∈ R, f ∈ AP (X),
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is well defined and continuous from AP (X) to X. For f ∈ AP (X) its
exponent set

exp(f) = {ρ ∈ R : α(ρ, f) �= 0}
is at most countable. Bochner’s approximation theorem states that,
given a fixed countable subset {ρj}∞1 , there are convergence factors
γnj ∈ R with γnj → 1 as n → ∞ such that the trigonometric
polynomials

Bnf =
n∑

j=1

γnjα(ρj , f)eiρjt, n ∈ N,

converge to f uniformly on R, provided exp(f) ⊂ {ρj}∞1 . By virtue of
this result, it is also clear that f ∈ AP (X) is uniquely determined by
its Bohr transform. (See Amerio and Prouse [1] for proofs.)

If f ∈ Cb(X) is ω-periodic, then exp(f) ⊂ (2π/ω)Z and

α(2πn/ω, f) = fn =
1
ω

∫ ω

0

e−2πint/ωf(t) dt, n ∈ Z,

are the Fourier coefficients of f . The space of all continuous ω-periodic
X-valued functions will be denoted by Pω(X).

Turning to the halfline R+ = [0,∞), we first recall that a function
f ∈ Cub(X) is called asymptotically almost periodic (a.a.p.) (to the
right) if TR+f |R+ ⊂ Cb(R+; X) is relatively compact. Similarly, a
function f ∈ Cub(X) is called weakly asymptotically almost periodic in
the sense of Eberlein [7] (w.a.a.p.) if TR+f |R+ ⊂ Cb(R+; X) is weakly
relatively compact. The spaces AAP+(X) and W+(X) of all a.a.p. and
of all w.a.a.p. functions, respectively, are closed translation invariant
subspaces of Cub(X). Once again, the Jacobs-DeLeeuw/Glicksberg
theorem (cf. Krengel [10, Section 2.4]) yields topological direct sum
decompositions of these spaces of the form

AAP+(X) = AP (X)⊕ C+
0 (X), and W+(X) = AP (X)⊕ W+

0 (X),

respectively, where C+
0 (X) and W+

0 (X) are defined by

C+
0 (X) = {f ∈ Cub(X) : f(t) → 0 as t → ∞}
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and

W+
0 (X) = {f ∈ W+(X) : w − lim

n→∞Tτn
f |R+ = 0 in Cb(R+; X),

for some sequence τn → ∞},

respectively.

Note that the space

C+
l (X) = {f ∈ Cub(X) : f(∞) = lim

t→∞ f(t) exists}

is a closed subspace of AAP+(X).

Finally, once again, both for f ∈ AAP+(X) and f ∈ W+(X), the
Bohr transform is well defined and, in either case, we have

α(ρ, f) = lim
N→∞

N−1

∫ N

0

e−iρtf(t) dt = α(ρ, fa), ρ ∈ R,

where fa denotes the respective a.p. part of f in the Jacobs-DeLeeuw
and Glicksberg decomposition of f . This is implied by the general mean
ergodic theorem for bounded C0-semigroups; see, e.g., Hille/Phillips [9,
Chapter XVIII] and Ruess/Summers [17].

3. The main result. Let K ∈ BV (R;B(X, Z)), where Z denotes
another Banach space and, for a given f ∈ Cb(X), define v ∈ Cb(Z) as
the convolution

(3.1) v(t) =
∫ ∞

−∞
dK(τ )f(t − τ ), t ∈ R,

where the integral is well defined in the Riemann-Stieltjes sense. The
map G : f 	→ v obviously is bounded linear from Cb(X) to Cb(Z) with
norm |G| ≤ VarK|∞−∞ and commutes with the group of translations.
For this reason, and since G is also weakly continuous, it is evident that
G maps the subspaces Cub(X), AP (X), Pω(X), W (X), and W0(X)
into the corresponding spaces of Z-valued functions. The same is
easily shown to be true also for C+

0 (X) and for C+
l (X), hence also for

AAP+(X). It is also valid for W+(X) and W+
0 (X) which, however, is
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less obvious. For such kernels K the Fourier transform of dK is denoted
by d̃K, i.e.,

d̃K(ρ) =
∫ ∞

−∞
e−iρtdK(t), t ∈ R;

then d̃K ∈ Cub(B(X, Z)) is easily proved. The main result of this paper
reads as follows.

Theorem 1. Suppose K ∈ BV (R;B(X, Z)), and let G be defined
according to (Gf)(t) = v(t), t ∈ R, where v(t) is given by (3.1), for
f ∈ Cb(X). Then G belongs to B(Cb(X), Cb(Z)) and commutes with
the group of translations {Tt}t∈R. Furthermore, we have:

(i) f ∈ Cub(X) implies Gf ∈ Cub(Z);

(ii) f ∈ Pω(X) implies Gf ∈ Pω(Z), and

(3.2) (Gf)n = d̃K(2πn/ω)fn, n ∈ Z;

(iii) f ∈ AP (X) implies Gf ∈ AP (Z), exp(Gf) ⊂ exp(f), and

(3.3) α(ρ, Gf) = d̃K(ρ)α(ρ, f), ρ ∈ exp(f);

(iv) f ∈ AAP+(X) implies Gf ∈ AAP+(Z), (Gf)0 = Gf0,
(Gf)a = Gfa and also (3.3) holds;

(v) f ∈ C+
l (X) implies Gf ∈ C+

l (Z) and

(3.4) (Gf)(∞) = d̃K(0)f(∞);

in particular, f ∈ C+
0 (X) implies Gf ∈ C+

0 (Z);

(vi) f ∈ W+(X) (respectively, W (X)) implies Gf ∈ W+(Z)
(respectively, W (Z)), (Gf)a = Gfa, (Gf)0 = Gf0, and (3.3) holds;
in particular, G maps W+

0 (X) (respectively, W0(X)) into W+
0 (Z)

(respectively, W0(Z)).

Proof. Let H denote any of the symbols Cub, AP , Pω, C+
0 , C+

l ,
AAP+, W , W0, W+, W+

0 ; then H(X) is a closed subspace of Cub(X)
which is translation invariant, the group of translations {Tt}t∈R is
strongly continuous and bounded in H(X). Furthermore, if K ∈
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B(X, Z) and f ∈ H(X), then Kf , defined by (Kf)(t) = Kf(t),
t ∈ R, belongs to H(Z). This way K is extended to an operator
K ∈ B(H(X),H(Z)), and similarly, K ∈ BV (R;B(X, Z)) extends to
K ∈ BV (R;B(H(X),H(Z))). For such K(t) and f ∈ H(X), we have

(dK ∗ f)(t) =
∫ ∞

−∞
dK(τ )(T−τf)(t) =

( ∫ ∞

−∞
dK(τ )T−τf

)
(t),

t ∈ R;

since Tτf is uniformly continuous on R in H(X),
∫ ∞
−∞ dK(τ )T−τf

exists as a Riemann-Stieltjes integral in H(Z). Therefore, G ∈
B(H(X),H(Z)), which proves the first part of each of the statements
(i) (vi) of Theorem 1.

If f ∈ W+(X), then there is the unique decomposition f = f0 + fa,
where f0 ∈ W+

0 (X) and fa ∈ AP (X); this implies Gf = Gf0+Gfa and
Gf0 ∈ W+

0 (Z), Gfa ∈ AP (Z), hence (Gf)a = Gfa and (Gf)0 = Gf0,
by uniqueness of the decomposition. This proves the second statement
of (vi), and replacing W+ by AAP+, W+

0 by C+
0 in the argument just

given, the second assertion of (iv) follows as well.

To prove (3.3), let f(t) =
∑n

k=1 eiρktfk be a trigonometric polyno-
mial; then

(Gf)(t) =
n∑

k=1

∫ ∞

−∞
eiρk(t−τ)dK(τ )fk =

n∑
k=1

eiρktd̃K(ρk)fk

is again a trigonometric polynomial with exp(Gf) ⊂ exp(f) and
(3.3) holds. The continuity of the Bohr transform and Bochner’s
approximation theorem for a.p. functions then imply (iii), in particular
(3.3). Equations (3.2) and (3.4) are direct consequences of (3.3); hence,
the proof is complete.

As an easy consequence of Theorem 1, we also obtain the mapping
behavior of G+, defined by

(3.5) (G+f)(t) =
∫ t

−∞
dK(τ )f(t − τ ), t ∈ R,
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where f ∈ Cb(X). G+ is also bounded linear; however, it does not
commute with the group of translations. But the estimate

|(Gf)(t) − (G+f)(t)| =
∣∣∣∣
∫ ∞

t

dK(τ )f(t − τ )
∣∣∣∣ ≤ VarK|∞t |f |∞ → 0

as t → ∞ shows Gf −G+f ∈ C+
0 (Z) for any f ∈ Cb(X). Therefore we

obtain:

Corollary 1. Suppose K ∈ BV (R;B(X, Z)), let G be defined as in
Theorem 1, and G+ by (3.5); let H denote any of the symbols Cb, Cub,
C+

0 , C+
l , AAP+, W+, W+

0 . Then G−G+ belongs to B(Cb(X), C+
0 (Z));

consequently, G+ maps H(X) into H(Z) and (3.3) and (3.4) remain
valid for G+f .

Observe that in case K(t) ≡ K(−∞) on t < 0, Corollary 1 yields an
analogous result for the convolution

w(t) =
∫ t

0

dK(τ )f(t − τ ), t ≥ 0,

on the halfline.

4. Applications to evolutionary integral equations. Let X
and Y be Banach spaces such that Y is densely embedded into X,
let A ∈ L1

loc(R+;B(Y, X)), and h ∈ L1
loc(R+; X). In this section we

consider the application of our main result to the linear evolutionary
integral equation

(4.1) u(t) =
∫ t

0

A(t − s)u(s) ds + h(t), t ∈ R+.

Clearly, the abstract Cauchy problem (1.1) is a special case of (4.1);
choose A(t) ≡ A, Y = D(A), the domain of A equipped with the graph
norm of A, and

(4.2) h(t) = u0 +
∫ t

0

f(s) ds, t ≥ 0.
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It is well known that many problems from mathematical physics can
be formulated as (4.1), in particular, linear viscoelasticity, the theory
of heat conduction with memory, and electrodynamics with memory
lead to such problems; see Dafermos [6], Miller [11], Carr/Hannsgen
[4], Clément/Nohel [5], Bloom [2], and many others. A recent account
of the theory is presented in the first author’s monograph [12]. In these
applications one should think of X as a space of functions defined on
a region Ω ⊂ Rn, of A(t) as a partial differential operator, and of Y as
the domain of A(t), including the boundary conditions involved.

The most important concept for (4.1) is that of the resolvent S(t),
which is defined as follows. A family {S(t)}t∈R+ ⊂ B(X) is called a
resolvent family for (4.1) if S(·)x is continuous in X, for each x ∈ X,
S(t) leaves Y invariant, S(·)y is continuous in Y , and the resolvent
equations hold.

S(t)y = y +
∫ t

0

A(t − τ )S(τ )y dτ, for all y ∈ Y, t ≥ 0;

(4.3)

S(t)y = y +
∫ t

0

S(τ )A(t− τ )y dτ, for all y ∈ Y, t ≥ 0;

(4.4)

there can be at most one resolvent family for (4.1) and, if this equation
admits such a family, then every solution of (4.1) is represented by the
variation of parameters formula

(4.5) u(t) =
d

dt

∫ t

0

S(t − τ )h(τ ) dτ, t ≥ 0.

If h(t) is of the form (4.2), then (4.5) becomes (1.3) and, in the special
case of the Cauchy problem (1.1) we have S(t) = eAt, the semigroup
generated by A.

The resolvent S(t) for (4.1) is called integrable if there is a function
ϕ ∈ L1(R+) such that |S(t)| ≤ ϕ(t) for all t > 0. In the setting of the
Cauchy problem, this is fulfilled if and only if the semigroup is of type
ω(A) < 0.

If the resolvent S(t) is integrable, then the function K, defined
by K(t) = 0 for t < 0, K(t) =

∫ t

0
S(τ ) dτ for t ≥ 0, belongs to
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BV (R;B(X)); hence, Theorem 1 and Corollary 1 apply. The resolvent
equations show that d̃K(ρ) is then given by d̃K(ρ) = H(iρ), where

(4.6) H(λ) = Ŝ(λ), Reλ ≥ 0.

As a result, we obtain

Theorem 2. Let X and Y be Banach spaces with Y densely
embedded into X, and assume A ∈ L1

loc(R+;B(Y, X)). Suppose (4.1)
admits an integrable resolvent S(t), let H(λ) be defined by (4.6) and let
u(t), respectively v(t), be defined according to (1.3), respectively (1.4),
with g = f , where h is of the form (4.2), with u0 = 0 and f ∈ Cb(X).

Then u, v ∈ Cb(X) and u(t) − v(t) → 0 as t → ∞. Furthermore, the
following assertions hold.

(a) f ∈ Cub(X) implies u, v ∈ Cub(X);

(b) f ∈ AAP+(X) implies u, v ∈ AAP+(X), and

(4.7) α(ρ, u) = α(ρ, v) = H(iρ)α(ρ, f), ρ ∈ R;

(c) f ∈ W+(X) implies u, v ∈ W+(X), and (4.7) holds; in particular,
if f ∈ W+

0 (X) then u, v ∈ W+
0 (X);

(d) f ∈ C+
l (X) implies u, v ∈ C+

l (X) and u(∞) = v(∞) =
H(0)f(∞); in particular, if f ∈ C+

0 (X), then u, v ∈ C+
0 (X);

(e) F ∈ Pω implies v ∈ Pω and

(4.8) vn = H(2πni/ω)fn, n ∈ Z;

(f) f ∈ AP (X) implies v ∈ AP (X) and (4.7) holds.

If u0 ∈ X is nonzero and, in addition, S(t)x → 0 as t → ∞ for
each x ∈ X, the same results are valid except that u(t) has a jump
discontinuity of magnitude uo at t = 0.

If, in addition to the assumptions of Theorem 2, we have A(t) =
A1(t) + A2(t), t > 0, where A1 ∈ L1(R+;B(Y, X)) and A2 ∈
BV (R+;B(Y, X)), then by the resolvent equations,

(4.9) H(λ) = (λ − λÂ1(λ) − d̂A2(λ))−1, Reλ > 0;
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moreover, the function v(t) can then be considered as the solution of
(4.10)

v̇(t) =
∫ ∞

0

A1(τ )v̇(t − τ ) dτ +
∫ ∞

0

dA2(τ )v(t − τ ) + f(t), t ∈ R.

Since u(t) behaves asymptotically as v(t), (4.10) can be termed limiting
equation for (4.1). Note that the special case A1 = 0 and A2 ≡ A in
(4.10) corresponds to the Cauchy problem (1.2). For more details and
further discussion, we refer to Prüss [12].
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