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A SURVEY OF NUMERICAL METHODS FOR SOLVING
NONLINEAR INTEGRAL EQUATIONS

KENDALL E. ATKINSON

ABSTRACT. A survey is given of numerical methods for
calculating fixed points of nonlinear integral operators. The
emphasis is on general methods, ones that are applicable to a
wide variety of nonlinear integral equations. These methods
include projection methods (Galerkin and collocation) and
Nystrom methods. Some of the practical problems related
to the implementation of these methods is also discussed.
All of the methods considered require the solution of finite
systems of nonlinear equations. A discussion is given of some
recent work on iteration methods for solving these nonlinear
equations.

1. Introduction. In the following survey, we consider numerical
methods of a general nature, those that can be applied to a wide variety
of nonlinear integral equations. The integral equations are restricted
to be of the second kind,

(1.1) x = K(x)

where K is a nonlinear integral operator. Important special cases
include Hammerstein and Urysohn integral operators.

The Hammerstein integral equation is

(1.2) z(t) = y(t) + /DK(t,s)f(s,x(s)) ds, teD.

with D a closed region or manifold in R™, some m > 1. A well-known
example is the Chandrasekhar H -equation

(1'3) H(t):1+g/0 Zﬂi?_—z(s)ds
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It can be rewritten in the form (1.2) by letting «(t) = 1/H (t) and rear-
ranging the equation. For an exact solution, see [63]. For some recent
work on (1.3) and related equations, see [34]. Another rich source of
Hammerstein integral equations is the reformulation of boundary value
problems for both ordinary and partial differential equations.

The Urysohn equation

(1.4) ;v(t)z/DK(t,s,:c(s))ds, teD

includes the Hammerstein equation and many other equations. A case
of recent interest is

u(P) =+ [ u@ g0z |P - @l 4o(Q)

™

1

(1.5)
+ = [ 0@ (@) = 7(@1og| P~ Qldo(@), PeT

It arises in the solution of Laplace’s equation in the plane with nonlin-
ear boundary conditions. This nonlinear integral operator is the sum
of a linear operator and a Hammerstein operator. As a consequence, a
theory for it can also be based on generalizations of that for Hammer-
stein equations. For recent work on (1.5), see [12, 59, 60, 61].

There are nonlinear integral equations not of the forms (1.2) and (1.4),
thus motivating the need for a general theory of numerical methods set
in a functional analysis framework. One such well-studied equation is
Nekrasov’s equation,

2(t) = A /O "Lt s) sin(z(s)) ds

143X\ [P sin(z(r)) dr
(1.6) 1 . Jo sin(z(r))
sin 5 (t + s)
T sin 5(t — s)

This arises in the study of water waves on liquids of infinite depth.
For a derivation, see [49, p. 415], and for a general discussion of the
bifurcation of solutions in nonlinear operator equations such as (1.6),
see [41, p. 191]. For other examples of nonlinear integral equations, see
[4].
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Nonlinear Volterra integral equations are not considered here. They
require methods that generalize numerical methods for solving initial
value problems for ordinary differential equations, and the methods
used are very different than those used for Fredholm integral operators.
As introductions to the theory of numerical methods for Volterra
integral equations, see [17, 20, 48].

For most of this survey, the following properties are assumed for the
nonlinear operator K. For some open connected subset 2 of C(D),

(1.7) K:Q— C(D)

is a completely continuous operator. D is assumed to be either a
bounded closed domain or a piecewise smooth manifold in R™, some
m > 1. The space X = C(D) with the maximum norm is a Banach
space. Occasional use is made of some other spaces, in particular,
L?(D) and the Sobolev spaces H" (D). But most of the analysis of the
numerical methods can be done in C(D), and uniform error bounds are
usually considered superior to those in the norms of L?(D) and H" (D).
An extensive discussion of completely continuous integral operators is
given in [41].

It is assumed that the equation x = K(z) has an isolated solution .
which we are seeking to calculate. Moreover, the solution z, is assumed
to have a nonzero Schauder-Leray index as a fixed point of K. This
will be true if

(1.8) [-K'(x.): C(D) = C(D)
where K'(z.) denotes the Frechet derivative of K(x) at .. The index of
x, can be nonzero without (1.8), but (1.8) is true for most applications.

For an introduction to some of the tools of nonlinear functional analysis
being used here, see [31, Chap. 17-18, 50, 58].

There are some nonlinear integral equations of the second kind that
are not included under the above schema, usually because the integral
operator is not completely continuous. A major source of such problems
is boundary integral equations, for example (1.5), with the boundary I’
only piecewise smooth. Another source is equations of radiative transfer
that cannot be reformulated conveniently using completely continuous
operators, as was done with (1.3) above; see [34] for details. Even
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so, the methods covered here are also the starting point of numerical
methods for these other equations.

The numerical solution of nonlinear integral equations has two ma-
jor aspects. First, the equation z = K(x) is discretized, generally by
replacing it with a sequence of finite dimensional approximating prob-
lems z,, = IC,,(z,,), with n — oo, n some discretization parameter. The
major forms of discretization are: (1) Projection methods, with the
most popular ones being collocation methods and Galerkin methods;
and (2) Nystrom methods, which include product integration methods.
Projection methods are discussed in Section 2, and Nystrom methods
in Section 3.

Following the discretization of = K(z), the finite dimensional prob-
lem must be solved by some type of iteration scheme. We give iteration
schemes for z,, = IC,,(z,,) regarded as an operator equation on C'(D) to
C(D). Tt is generally straightforward to then obtain the corresponding
iteration method for the finite system of nonlinear equations associ-
ated with x, = K,(z,). A rough classification of iteration schemes
is as follows: (1) Newton’s method and minor modifications of it; (2)
Broyden’s method and other quasi-Newton methods; and (3) two-grid
and multigrid iteration methods. We will discuss some of these in more
detail in Section 4.

There are many other approaches to the numerical solution of nonlin-
ear integral equations. Many of these are discussed in [42, 43, 67]. One
particularly important class of numerical methods, including Galerkin
methods, is based on the theory of monotone nonlinear operators. As
introductions to this theory, see [2, 3, 19], and the previously cited
texts. We omit here a discussion of such monotone operator methods
because (1) these methods are principally of use for solving Hammer-
stein integral equations, a less general class, and (2) the assumption of
complete continuity for K yields a rich and adequate numerical theory
that includes Galerkin methods.

There are problems for nonlinear integral equations that do not occur
with linear integral equations. One of the more important classes of
such problems are those that are associated with bifurcation of solutions
and turning points. We consider problems which depend on a parameter
A, say

(1.9) x=K(x,\)
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with A a real number or a real vector A € R™ for some m > 1. Denote
a solution by z), and consider the case with A € R. We ask how
x) varies with A. If we have two distinct parametrized families of
solutions, say x and yy, for a < A < b, and if z) = y, for some isolated
A = u € [a,b], then we say p is either a turning point or a bifurcation
point for the equation (1.9). (The distinction between turning point
and bifurcation point is one that we will not consider here.) For such
points u, we have that I — K'(x,, 1) does not have a bounded inverse
on the Banach space X on which (1.9) is being considered. Often the
value p has a special physical significance, e.g. a critical force at which
the mechanical behavior of a system will change in a qualitative sense.
The Nekrasov equation (1.6) is an example of a bifurcation problem;
see [41, p. 191] for more information on the points A = p at which
bifurcation occurs. For a general introduction to these problems, see
[39, 40].

There are special numerical problems when solving such problems.
Most numerical schemes assume [I — K'(z, )] ™! exists on X for the
values of A at which (1.9) is being solved; and to avoid ill-conditioning
in the approximating finite discretized problem, it is assumed that
Il — K'(x,\)]7]] does not become too large. But the fact that
I — K'(z, ) does not have a bounded inverse means that for A ~ pu,
numerical schemes for (1.9) will be ill-conditioned or possibly insoluble.

For an introduction to the numerical solution of these problems, see
[39].

2. Projection methods. General theoretical frameworks for
projection methods have been given by a number of researchers. Among
these are [6, 15, 41, 42, 43, 56, 57, 64, 65]. The results in [7, 66]
were directed at Nystrom methods, but they also apply to projection
methods. Here we give only the most important features of the analysis
of projection methods and then discuss some applications.

Let X be a Banach space, usually C(D) or L?(D); and let X,,, n > 1,
be a sequence of finite dimensional subspaces being used to approximate
onto

z.. Let P, : X — X, be a bounded projection, n > 1; and for
simplicity, let &}, have dimension n. It is usually assumed that

(2.1) Pox—xz as n—oo, €k

or for all x in some dense subspace of X containing the range of IC. In
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abstract form, the projection method amounts to solving
(2.2) xn = P, K(xy,)

For motivation connecting this with a more concrete integral equation,
see the discussion in [9, p. 54-71] for linear integral equations.

Assume P, can be written
(2.3) P,z = le(;v)goj, reX
j=1

with {¢1,...,¢n} a basis of X, and {l1,...,1,} a set of bounded linear
functionals that are independent over X,,. The latter is true if

(2.4) det l;(i7;)] # 0

To reduce (2.2) to a finite nonlinear system, let
(2.5) Ty = Z a;jp;
j=1

Solve for {a;} from the nonlinear system

(2.6) z:;ajzi(%) :zi(/c<éaj<pj>), i=1,....n

The choice of {¢1,...,p,} and {ly,...,l,} determines the particular
method.

A very general framework for the error analysis of projection methods
was given in [41]. Tt uses the concept of rotation of a completely
continuous vector field, described in that reference. For a proof of
the following theorem, see [41, p. 169-180] or [43, p. 325].

Theorem 1. Let K : Q C X — X be completely continuous with X
Banach and Q open. Assume that the sequence of bounded projections
{P,} on X satisfies

(2.7) Supremum||(I — P,)K(z)|| = 0 asn — oo
rEB
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Jor all bounded sets B C 2. Then for any bounded open set B, with
B C Q, there is an N such that I — K and I — P,K have the same
rotation on the boundary of B, for n > N.

In the particular case that x, is an isolated fixed point of nonzero
index of IC, there is a neighborhood

B. = {al & - o] < &}

with P,KC having fized points in B. that are convergent to x.. (The
index of x, is defined as the rotation of I — K over the surface S of
any ball B. which contains only the one fixed point x.. In the case
[I — K'(z,)]7" exists on X to X, the index of v, is +1.)

Generally, the projections are assumed to be pointwise convergent
on X, as in (2.1); and in that case, (2.7) follows in straightforward
way. However, only (2.7) is actually needed. As an important example
where only (2.7) is valid, let X = C,[0, 2], the space of 27-periodic
continuous functions, and let P,z be the truncation of the Fourier
series of x to terms of degree < m. Then (2.1) is not true (and
IP.]| = O(log n)); but (2.7) is true for most integral operators K
of interest, because K(B) is usually contained in the set of functions
for which the Fourier series is uniformly convergent.

Let x, denote a fixed point of P,K, corresponding to the fixed
point x, being sought. To obtain orders of convergence and to show
uniqueness of z, for each n, we assume that K is twice Frechet
differentiable in a neighborhood of x, and that

(2.8) (I — P)K'(x.)]] =0 asn — oo
Then [I — P,K'(z,)]~! exists and is uniformly bounded for all suffi-

ciently large n, say n > N. In addition, z,, is the unique fixed point
of P,K within some fixed neighborhood of x., uniformly for n > N.
Rates of convergence follow from the identity
(I—L)(xw—zp) =T — Py)ze — (I — Pp)L(zs — )
+ PolK(2s) — K(2n) — L2y — )]
where L = K'(x,). Taking bounds and using standard contractive
mapping arguments,

(2.9) cl|ze — Pozi|| < |ze — || < co||@s — Prxill, n>N
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for suitable constants ¢y, co > 0.

This result says that z, — x, and P,z. — x. at exactly the
same rate. See [15] for the details of obtaining (2.9). Using (2.9),
if Pz, — x, is not true for some x,, then {z,} will not converge to
z4. But for cases such as that cited earlier, with X = C,[0,27] and
P,z the truncated Fourier series of z, {z,} will converge to z. for all
sufficiently smooth functions x,.

We assume henceforth in this section that K(z) is twice Frechet
differentiable in a neighborhood of z,. This is usually a stronger
assumption than is needed, but it often simplifies either the statement
of a theorem or its proof. The weaker assumption that can often be
used is that K’ (z) is a Lipschitz continuous function of z, with possibly
other assumptions.

With the assumption of the existence of (I — L)™! on X, a relatively
simple contractive mapping argument can be used to obtain the exis-
tence of x,, replacing the earlier argument based on the rotation of a
completely continuous vector field. See [66] for details.

Iterated projection methods. Given the projection method
solution x,,, define

(2.10) T = K(xy).
Then using (2.2),

(2.11) P&, = P.K(z,) = xy,
and Z,, satisfies

(2.12) Tn = K(Priy)-
With K differentiable in a neighborhood of z,,

(2.13) |zs — @n|| < ¢l — 2], n>N.

Thus, &, — x. at least as rapidly as x,, — .. For many methods of
interest, especially Galerkin methods, the convergence &, — x, can be
shown to be more rapid than that of x,, — =z, as is discussed later.
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The idea of the iterated projection method for linear problems began
with Sloan [62] and was developed in a series of papers by him. For
the nonlinear iterated projection method, see [15].

Galerkin’s method. Let X be C(D) with the uniform norm || - || o,
or L?(D); and let X,, be a finite dimensional subspace of X. Define P,x
to be the orthogonal projection of z onto X,,, based on using the inner
product of L?(D) and regarding &, as a subspace of L?(D). Thus

(2.14) (Prx,y) = (z,y), allye X,

with (-,+) the inner product in L?(D). Other Hilbert spaces (e.g.,
H"(D)) and inner products are also used in some applications.

Let
n
Tn =D 0%
=1

with {¢1,...,¢,} a basis of X,. Solve for {e;} using

(2.15) D (e e)) = (%/C<Z%'4Pj)), i=1,...,n.
i=1 =1

Generally, the integrals must be evaluated numerically, thus introduc-
ing new errors. When this is done, it is called the discrete Galerkin
method.

In general, for any projection method,

||I* - in” < CnH(I - Pn)l‘*”

(2.16) en = ¢ Max {[|(I = Bz, 1K (x)(I — B[}

If X is a Hilbert space, then ¢, converges to zero, because
1K () (I = Po)ll = (I = Po)K'(2.)"]| = 0 asn — oo.

This uses the fact that K'(x,) and K'(z.)* are compact linear operators.
Thus, Z, converges to x, more rapidly than does z,,. In any Hilbert
space, &, — x, more rapidly than does x,, — x,. Similar results can
be shown for Galerkin’s method in C'(D), with the uniform norm. See
[15].
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Numerical example—Galerkin’s method. Solve

ds

Y g<t<1
t+s+xz(s)

1
(2.17) ﬂw:m0+A

with y(t) so chosen that, for a given constant «,

1
«(1) = ——
v(t) =
To define X,,, introduce
1 . .
h=—, Tj=jh forj=0,1,...,m
m

and let » > 1 be an integer. Let f € A, mean that on each interval
(1j-1,75), f is a polynomial of degree < r. The dimension of X, is
n = rm. The integrals of (2.15) were computed by high order numerical
integration, using Gaussian quadrature; and these were quite expensive
in computation time.

TABLE 1. 2, =1/(141t), r=2

n ||z« — Znllo  Ratio |z« — &nlloc  Ratio
2.51E-2 4.02E-6
8 7.92E-3 3.17 7.83E-7 5.1
16 2.26E-3 3.50 5.88E-8 13.3
32 6.05E-4 3.74 3.82E-9 15.4

TABLE 2. . =1/(1+t), r=3

n ||z« — Znllo  Ratio |z« — &nlloc  Ratio
6 3.03E-3 1.05E-6
12 5.28E-4 5.74 1.86E-8 56.5
24 7.96E-5 6.63 2.90E-10 64.1

48 1.10E-5 7.24 4.58E-12 63.3
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TABLE 3. z. =1/(.141%), r=3

n ||z« —znllo  Ratio |z« — Znlloc  Ratio
6 1.65E+0 1.69E-3
12 6.88E-1 2.40 7.94E-5 21.3
24 2.16E-1 3.19 2.18E-6 36.4
48 5.09E-2 4.24 4.39E-8 49.7

Based on standard results,
|z — Pzl < CrhT“x(T)”

if 27 € X, X = C[0,1] or L*(0,1), with the associated norm || - ||.
For the present equation, the Galerkin and iterated Galerkin solutions
satisfy

[z« — Tnlloo < ch”

2.18
(2.18) 22— Bulloo < ch”

The solution z, is somewhat badly behaved in the case of Table 3. As
a result, the values of n in the table are not large enough to have the
computed values have the correct asymptotic rate of convergence.

Collocation method. Let X = C(D). Let t1,...,t, € D be such
that

(2.19) Det [p;(t:)] # 0

Define P,z to be the element in X,, that interpolates x at the nodes
t1,...,tn. To find z, € X, solve the nonlinear system

(2.20) éajgpj(ti) - K(éajwj)(ti), i=1,...,n

The integrals must usually be evaluated numerically, introducing a
new error. This is called the discrete collocation method. In using
the general error result (2.9), ||z« — Py Z«||o is simply an interpolation
€error.
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For the iterated collocation method,

(2.21) 2« = Znlloo < cnllTs — 2nllco
cn = ¢ Max{||z. — oploo, [[(I = Pn)L||, en}

e, =
" = Pzl
To show superconvergence of &, to x,, one must show

(2.23) Limit e, = 0

n—oo

An examination of this is given in [15].

The collocation method for the Urysohn integral equation

(2.24) z(t) = y(t) —I—/ K(t,s,xz(s))ds,

is considered in [15] for various types of collocation. In particular,
define X, as in the preceding example (2.17), as piecewise polynomial
functions of degree < r. As collocation points, use the Gauss-Legendre
zeros of degree r in each subinterval [7;,7;_1], 7; = a + jh. With
sufficient smoothness on K, 0K/0u, and .,

|7+ — Znlle = O(R")

(2.25) ) v
|2 = &nlloc = O(R*")

Remarks on Hammerstein equations. Consider using the pro-
jection method to solve

(2.26) x(t) = y(t) + /D K(t,s)f(s,z(s))ds, te€D

For nonlinear integral equations, Galerkin and collocation methods can
be quite expensive to implement. But for this equation, there is an
alternative formulation which can lead to a less expensive projection
method.
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We consider the problem when using a collocation method. Let
T, () = D7 ap;(t), and solve for {a;} using

220 Yases(t) =y + [ Kef (s asese)) ds

for7=1,...,n. In the iterative solution of this system, many integrals
will need to be computed, which usually becomes quite expensive. In
particular, the integral on the right side will need to re-evaluated with
each new iterate.

Kumar [44] and Kumar and Sloan [46] recommend the following

variant approach. Define z(s) = f(s,z(s)). Solve the equivalent
equation
(2.28) 2(t) = f(t,y(t) +/ K(t,s)z(s)ds), teD

D

and obtain z(t) from

The collocation method for (2.28)
= 2P
Zﬁ]%pj (twy +Z/Bj/ Ktzys (Pj d)

The integrals on the right side need be evaluated only once, since they
are dependent only on the basis, not on the unknowns {«a;}. Many
fewer integrals need be calculated to solve this system.

(2.29)

For further results on Hammerstein integral equations, see [2, 3, 19,
22, 23, 30, 61].

3. Nystrom methods. Introduce a numerical integration scheme.
For n > 1, let

(3.1) ij’nx(tj’n) — / z(s)ds asn — oo, z€C(D).
=1 b
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Using this numerical integration rule, approximate the integral in
the Urysohn integral equation (2.24). This gives the approximating
numerical integral equation

(32) T (t) = Z wj,nK(t, tj’n, T (tj’n)), teD.
j=1
Determine {z,(¢;)} by solving the finite nonlinear system
n
(33) 2 = ij,TLK(ti,natj,nvzj); 1= 17 ,n.
j=1
The function
(3.4) z(t) = ij,nK(t, tim,2j), t€D
j=1

interpolates the discrete solution {z;}; and as such, z(t) satisfies (3.2).
The formula (3.4) is called the Nystrém interpolation formula. Formu-
las (3.2) and (3.3) are completely equivalent in their solvability, with
the Nystrom formula giving the connection between them. In practice,
we solve (3.3), but we use (3.2) for the theoretical error analysis.

This approximation scheme generalizes to other types of nonlinear
integral equations such as Nekrasov’s equation (1.6). It also generalizes
to other forms of numerical integral equations, including the use of
product integration schemes to compensate for singular integrands. For
(1.6), see [7].

An abstract error analysis. We consider solving an abstract
nonlinear operator equation z, = K, (z,), with (3.2) serving as an
example. The numerical integral operators K, n > 1, are assumed to
satisfy the following hypotheses.

H1. X is a Banach space, Q C X. K and K, n > 1, are completely
continuous operators on {2 into X.

H2. {K,} is a collectively compact family on 2.
H3. K,z — Kz asn — oo, all z € Q.
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H4. {K,} is equicontinuous at each = € Q.

The earlier error analysis of Krasnoselskii for projection methods can
be repeated, but the proof requires some changes. An important lemma
to be shown is
(3.5) Supremum||}C(z) — K, (2)|| =0 asn — oo

z€EB
for all compact sets B C €2; and it follows from the above hypotheses.
This replaces the crucial assumption (2.7) used in the earlier proofs

for projection methods. With (3.5), Theorem 1 generalizes to z, =
Ko (xy); see [7].
For convergence rates, assume [I — K'(x,)]~

further assume

H5. |K,(@)] < aa < oo, [Kl(z)|]| < ¢a < o0, for n > 1
and ||z — x.]| < e, some ¢, ¢1, ¢a > 0.

! exists on X to X, and

Then
(3.6) |2 — zp|| < cf|K(zs) = Kn(zi)ll, n=>=N.

Thus, the speed of convergence is that of the numerical integration
method applied to K(z.), and this is usually obtained easily. Also,
with these assumptions, a simpler convergence analysis is given by
[66], using the standard contractive mapping theorem and the theory
of linear collectively compact operator approximations.

Discrete Galerkin method. Consider the Galerkin method for the
Urysohn equation

z(t) = /DK(t,s,;L"(s)) ds, teD.

Let X,, have basis {¢1,...,¢n}. Let z,(t) = > a;p,(t), and solve

n

(3'7) Zaj(soiuspj) = ((pi,/DK(',&ZOé]‘QDj(S)dS)), i=1,...,n
j=1

=1

To compute this numerically, use the approximating integrals

R,
(38) (xay) ~ (l'vy)n = ijx(tj)y(tj)a T,y € C(D)
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(3.9.) K(z)(t) ~ Zu] (t,t;,2(t;)). teD

Using these in (3.7), we obtain the discrete Galerkin method. Let
zn =y Bj¢j, and solve

(3.10) éﬁj(%"%‘) (pi, K (Z@) i=1,...,n.

Define the iterated discrete Galerkin solution by
(3.11) 20 = Knlzn)-

An error analysis of {z,} and {Z,} is given in [16], and a summary is
given below.

An especially interesting result occurs when the R,,, the number of
integration node points, equals n, the dimension of X,,, provided also
that

(3.12) detli; (1)] # 0.

Then the iterated discrete Galerkin solution is exactly the solution of
the Nystrém equation x,, = KCp,(2,), with no approximating subspace
X,, involved in the approximation. The condition (3.12) is usually easily
checked. It says that the interpolation problem

(3.13) > gt =y, i=0,1,...,n
j=1
has a unique solution in X, for every set of interpolation values {y; }.
For the general case of R,, > n, assume
Al. All weights w; >0,:=0,1,... ,n
A2. Ifzxe X,, z#0, then (z,x), > 0.

This last assumption implies that

[zlln = V(@ 2)n
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is an inner product norm on X,,. Define an operator @, : C(D) — X,
by

(3.14) (Qnz,y)n = (x,y)n, allye X,

Q. is called the discrete orthogonal projection of X = C(D) onto X,,.
A thorough discussion of it is given in [11]. When R, = n, Q,
is the interpolating projection operator used earlier in analyzing the
collocation method.

With these operators, it can be shown that the discrete Galerkin
method can be written as

(3.15) Zn = Qnkn(zn), zZp € Xy

Then it follows easily that

(3.16) Zn = QnZn
and
(3.17) Zn = K?L(Qnén)-

Note the close correspondence with (2.10)—(2.12) for the iterated
Galerkin method.

An error analysis for (3.17) can be given based on the earlier frame-
work which assumed H1-H5 for Nystrom methods. With it, we obtain

(3.18) 2+ = Znlloc < IK(24) = Kn@Qn(2s)lloo, n = N.

For the discrete Galerkin method

(3.19) |26 = znlloo < |24 — @uilloo + 1Qn Il — Znlloo

thus giving a way to bound the error in z,. Bounding the right side in
(3.18) so as to get the maximal speed of convergence can be difficult.
But for cases using piecewise polynomial subspaces X,,, an analysis can

be given that will give the same rate as for the continuous Galerkin
results, in (2.16).
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Discrete collocation method. A theory of discrete collocation
methods is also possible. [21, 24, 29] give error analyses for such
methods for linear integral equations; and [22, 45] contain a theory of
discrete collocation methods for Hammerstein integral equations. We
describe here a general framework for discrete collocation methods for
nonlinear integral equations, one that generalizes the ideas in [21, 24].

Approximate x,, = P,K(x,) by
(3.20) zn = Pl (2n).

The numerical integration operator KC,, is to be the same as for the
Nystrom method or the discrete Galerkin method, satisfying H1-H5.
For the Urysohn integral operator, we use the definition (3.9). The
framework (3.20) will contain all discrete collocation methods con-

sidered previously. For notation, let {7y,...,7,} denote the colloca-
tion node points, replacing the use of {t1,...,t,} in (2.20); and let
{t1,...,tr} denote the integration nodes, R = R,, as in (3.9).

Define the iterated discrete collocation solution by
(3.21) 20 = Kn(zn).
Then easily,
(3.22) Pozn =z,
and %, satisfies

(3.23) 20 = Kn(Pon).

Assuming P,z — z for all x € X = C(D), and assuming that {/C,,}
satisfies H1-H5, it can be shown that {K,P,} also satisfies H1-HS5.
Then the analysis of [7] and [66] generalizes to (3.23), implying unique
solvability of (3.23) in some neighborhood of x,. In addition,

(3.24) [ = Znlloo < cl[Kn(zs) = Kn(Pazs)lloo

for all sufficiently large n, for some ¢ > 0.

An important special case of the above occurs when n = R,,, and
when the collocation points {r;} = {t;}. Then the equation (3.23)
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becomes more simply Z,, = KC,,(2,,), the Nystrom method; and thus 2,
is simply the Nystrom solution studied earlier in this section. Most
of the earlier cases in which the discrete collocation method has been
studied fall into this category. For a more extensive discussion of the
above framework for discrete collocation methods, see [13].

4. Iteration methods. There are many fixed point iteration
methods for solving nonlinear operator equations, as can be seen in
the large work of [67]. But for general methods that converge for a
wide variety of equations, we generally begin with Newton’s method.
To iteratively solve x,, = K,,(zy,), define

(4.1) et =2l — [ = K, ()] el — ()]

for K =0,1,.... Under the earlier assumptions on K and K,, it can be
can be shown that

(4.2) |zn — ‘TngJrl)H < cl|zn — ‘Tng)H27 n>N

for some N > 0. Newton’s method is usually very inefficient in
numbers of arithmetic operations. But it is a useful beginning point
for developing more efficient methods. For an extensive discussion of
Newton’s method for solving nonlinear operator equations and their

discretizations, see [50, 52, 53, 54, 58]. As a particular example of
Newton’s method, see [28].

Since we are concerned with solving a family of nonlinear equations
xn = Kn(xy,), the concept of mesh independence principle is a useful
one. We compare the number k(g) of iterations needed to have

o — 2] < e
and the number k, (¢) needed to have

e — 2] < e.

It is shown in [1] that under reasonable assumptions on the discretiza-
tion C,, and the initial guesses zq, x,, for n > 1, we have

(4.3) k(e) — kn(e)] <1, n > N.
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Thus the cost in number of iterates of using Newton’s method does not
vary as m increases.

Newton’s method is expensive to implement. At each iterate x%k), a

new matrix I — IC;Z(:USZC)) must be computed, say of order n x n, and a

new system
(4.4) (1=K z))e =1l = ) — Ka(al?)

must be solved. (Only the operator equation is given here, but (4.4)
is equivalent to a finite system of nonlinear equations, say of order n.)
To be more precise as to cost, for use later in comparing with other
methods, we give a more detailed function count for a particular case.

Assume the Urysohn equation

(4.5) J;(t):/DK(t,s,x(s))ds, teD

is being solved, using the Nystrém method with n nodes. The derivative
operator K’ is given by

(4.6) K'(z)h(s) = /D K, (t,s,z(s))h(s)ds, te€ D, heC(D)

with K, denoting the partial of K with respect to u. For solving
the finite nonlinear system associated with z,, = K, (z,), a partial
operations count for Newton’s method (giving only the major costs)
includes the following:

1. Creation of matrix for (4.4): n? evaluations of the function

K, (t,s,u).
2. Solution of linear system for (4.4): About (2/3)n® arithmetic
operations.

These are operation counts per iteration. With other methods, we can
get by with O(n?) arithmetic operations and with far fewer evaluations
of the function K, (t, s, u).

Broyden’s method. This is a well known and popular method
for solving linear and nonlinear systems, and it can be considered an
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approximation of Newton’s method. In recent years, it has been applied
to nonlinear integral equations, leading to methods that cost O(n?)
arithmetic operations to solve z, = K,,(z,). For a general introduction
to this work, see [25, 36, 37, 38].

To simplify the formulas, introduce
(4.7 F(z) =2 —Ky(z)
Newton’s method can then be written
(4.8) Y =2l — [F ()] Fa(al?), k20

Broyden’s method produces a sequence of approximations By, to F’(x),
in analogy with the approximations Fy’b(xgﬁ)) for Newton’s method.

More precisely, define

(4.92) Bis™) = —F, ), = —F,(a{)
(4.9b) gD = g B 4 k)

- Fn,kJrl ® S(k)

(49C) Bk+1 = Bk + W

In the last formula, (-,-) denotes the inner product in C(D), regarded
as a subspace of L2(D). The operation r®s denotes the bounded linear
operator

(4.10) (r@s)(z)=(s,z)r, z=e€C(D)
With the definition (4.9), Bj41 satisfies the secant condition
(411) Bk+18k = Fk+1 — Fk

The definition of By is a rank one update of By, and special formulas
are known for updating either the LU factorization or the inverse of By,
to obtain the same quantity for Bj1.

For an extensive discussion of the implementation of Broyden’s
method when solving nonlinear integral equations, see [36]. In this
paper, the authors given convergence results for Broyden’s method;
and under suitable assumptions, they show a mesh-independence prin-
ciple of the type given in (4.3) for Newton’s method. An extensive
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theoretical investigation of Broyden’s method for infinite dimensional
problems in a Hilbert space context is given in [25]. In it, he shows
(with respect to our assumptions) that if 29 is chosen sufficiently close
to x,, then the iterates z(*) converge superlinearly to z, in the sense
that

s —a®FV)

(4.12) Limit =0

k—oo Hx* —:Zj(k)”

An important aspect of his result is that the initial guess By can be
a very poor estimate of F'(z,), with an assumption that By — F'(z.)
is compact being sufficient for convergence. For example, By = [ is
sufficient in our context.

Two-grid methods. The idea of a two-grid method is to use
information from a coarse grid approzimation to iteratively solve a fine
grid approximation. For the Nystrom equation x,, = KC,,(z,,), we define
a two-grid iteration by using an approximation of the Newton method
(4.1). Let m < n, and approximate the operator [I —K/,(2)]~! by using
information derived in solving the coarse grid equation ., = K (2m).
In particular, for z near z,, use

[ =KL ()7 =1+ [1 = K(2)] 7' (2)

(4.13) =T+ (1 - Ky (21)] 7K (22)

for any z1, zo near x,. Because the operator K/ (z3) is compact, the
approximation in (4.13) is uniform in m.

The Newton iteration (4.1) is modified using
(4.14) [ = K@) = T+ 1 = K7, (2)] 7K (2)

where z = z,, is the final iterate from the m-level discretization. This
leads to the following iteration method:

S1. rﬁlk) = zglk) - ICn(xglk))
S2. ¢l = IC’n(z)r,(,k)
$3. 6% = [1— K’ (2)]Lq

S, 2D = 3P ) _ g0
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For linear integral equations, this method originated with [18], and
it was further developed in [8, 9]. An automatic program for linear
integral equations, using S1-S4, was given [10]. This method was first
proposed for nonlinear integral equations in [8]; and it has been further
developed in the papers of [33, 34, 38]. Also see the discussion of
iteration methods in [12] for solving (1.5).

The method S1-S4 can be shown to satisfy

|2n — xgzk—i_l)”oo < Mn,men - x’ELk)HOO
Limit [Sup M, m] =0

m—00 n>m

(4.15)

Thus the iteration will converge if m is chosen sufficiently large, inde-
pendent of the size of the fine mesh parameter n. We fix m so that
for some ¢ < 1, My, ,,, < c for all n > m; and then we let n increase.
The iterates converge linearly, with an upper bound of ¢ on the rate of
convergence.

Cost of two-grid iteration. Assume that we are solving the
Urysohn equation (4.5) with the Nystrom method (3.2). The nonlinear
system to be solved is

(416)  @n(tin) = > winK(tin, b, Tnltin), i=1,...,n
j=1

For simplicity in the arguments, further assume that {¢; .} C {tin}
Then the major costs are as follows.

1. Evaluations of K (t,s,u): n? per iteration.
2. Evaluations of K,(s,t,u): n? for each n. This is done only once.

3. Arithmetic operations: If n > m, then about 4n? + O(nm) per
iterate.

Compare these costs with those for Newton’s method, given following
(4.6). Newton’s method uses both many more evaluations of the
functions K and K, and a larger order of arithmetic operations. If the
choice of the coarse grid parameter m and the initial guess x;‘)) is made
carefully in the two-grid method, then the number of iterations needed
is usually only about two for each value of n. Thus the iteration S1-S4

is generally quite inexpensive. We illustrate this below.
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Multigrid methods. A main idea of these methods is to use
information from all levels of the approximation z,, = K,,(z,,) for
the sequence of all past grid parameters m < n. There several possible
multigrid iterations for solving (4.16), and we refer the reader to [26,
889.2-9.3, 16.6-16.10] for a detailed discussion of them. In the following
comparisons of the two-grid and multigrid methods, we use a multigrid
method based on a linear multigrid method for solving

[ = K(2))6 = 2 = Ka(al?)
a modified version of the correction equation (4.4), which occurs in the
Newton iteration for solving z,, = IC\,(z,,).

When used along the lines of the two-grid method given above, this
leads to an iteration method satisfying

lzn — xgszrl)”oo < My, — xgzk)”oo

LimitM,, =0

n—oo

(4.17)

The cost per iteration is greater than with the two-grid methods, but
it is still O(n?) operations per iterate. The rate of convergence is
increasingly rapid as n — oo. These ideas are developed in [26], along
with other types of multigrid iteration for nonlinear equations. A short
discussion is given below of two-grid and multigrid methods, following
the presentation and illustration of an automatic program based on
two-grid iteration.

An automatic program. We discuss a program with automatic
error control for solving the Urysohn equation (4.5) in one space
variable,

b
(4.18) x(t) = / K(t,s,xz(s))ds, a<t<b

The program uses Nystrom’s method (3.2) with Simpson’s numerical
integration rule. The numerical integration rule can easily be upgraded
to some other rule, and Simpson’s rule was chosen only as an interesting
example. The program is very similar in structure to the program
IESIMP of [10] for the automatic solution of linear Fredholm integral
equations with error control.
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The program is divided into two parts, called Stage A and Stage B.
The program begins in Stage A; and it goes to Stage B when the two-
grid iteration converges with sufficient rapidity. The program begins
with n = ng, with ng user-supplied; and the user must also supply
an initial guess 2(*) for the solution of the integral equation. In both
Stage A and Stage B, the number of subdivisions n is increased, using
n := 2n, until the program’s approximation of the error condition

(4.19) 2y — Znloo < €

is satisfied. The error ||z, — zp| e is estimated using

o1

for smooth K and x,. The program actually attempts to measure the
ratio by which the error ||z, — =,/ is decreasing when n is doubled,
and in this way to choose suitably the constant multiplier of the right
side of (4.20), to reflect the speed of convergence of {z,}. This is very
similar to what is done in IESIMP, cited above.

In Stage B, the program iteratively solves x,, = IC,,(x,,) using the two-

grid method S1-S4. At level n, the iteration begins with :UE?) = Tn/2,
which uses Nystrom interpolation. In steps S2 and S3, we use z = x,,.
For efficiency, we want to iterate only until the test

(4.21) |2n — x'SLk)HOO < c|zs — Tnllo

is satisfied, with ¢ ~ .2 or perhaps a little smaller. In Stage A, the
program chooses the coarse mesh index m > ng so as to have (4.21)
be true with only £ = 2. Until a value of m is obtained for which the
latter is true, the control of the program remains in Stage A.

In Stage A, the nonlinear system (4.16) is solved by a modified
Newton iteration, basically a chord method. Writing (4.16) as

(4.22) En = Kn (&), z, € R"
we use the iteration

(4.23) 2 =l — L, - K@) Y - Ka@)), k>0
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The index [ > 0 is chosen so that the Jacobian matrix is deemed to be
a good approximation of [I,, — K/, (#,)] ™!, the inverse Jacobian matrix
based on the true solution Z,, that is being sought. Other techniques for
solving (4.22) directly could be used, for example, Broyden’s method;
and a larger region of convergence could be attained by forcing descent
in the minimization of the residual ||z, — K, (Z,)||. At this time, we
have not tried any of these modifications.

Using (4.21),
(4.24) ||z =2 lloo < los = Znlloo+ll@n —2 [l < (14C)|2x~nlloo

This is a simplification of the actual bounds and tests used in the
program, but it demonstrates that the iteration error need only be of
the same size as the discretization error ||z, — Zn|lco. With this, the
order of convergence of {z,} is preserved when z,, is replaced by xsf ),
along with the magnitude of the error.

With the above framework, the total operations cost of satisfying
(4.19), including the costs at all levels of discretization used, is about:

P1. Evaluations of K: %nQ

P2. Evaluations of K,: %nQ

P3. Arithmetic operations: 13—6n2

For comparison, the operations cost of Newton’s method under the
same type of framework is:

N1. Evaluations of K: %On2

N2. Evaluations of K,: %nQ

N3. Arithmetic operations: %n?’

The last line will make Newton’s method much more expensive for
larger values of n. For smaller values of n, the smaller number of
evaluations of K, will be the major advantage of the two-grid method
over the Newton method.

The automatic program is in a prototype form, but the testing has
shown it to be quite robust. Further testing and development is taking
place, and eventually the program will be submitted for publication.
A comparison program based on a multigrid variant of the above was
presented in [4], and generally it has been slower than the two-grid
program being described here.
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Numerical example—Automatic program. Solve

1
ds
t) =y(t —, 0<t<1
z(®) y()—|—/0 t+ s+ .3x(s)’ -
with y(t) so chosen that
1
«(t) = —
=0 =77

The results of various values of ¢ is given in Table 4. The following
notation is used in the table.

€ The desired relative error tolerance

n The final number of subdivisions

PE The predicted relative error

AFE The actual relative error in the computed answer

CNT The number of function evaluations used by the program
R The final value of the ratio associated with the speed

of convergence of the two-grid iteration for

solving x,, = Ky, (x,) is

=5 — 20V
- k—1 k—2
[l

TABLE 4. Automatic program example.

n € PE AE CNT:K CNT:K, R
8 1.0E-2 2.58E-4 1.58E-4 335 208 .0265
16 1.0E-4 1.26E-5 1.04E-5 1117 999  .0220
32 1.0E-5 6.80E-7 6.58E-7 3955 1886  .0207
64 1.0E-7 4.09E-8 4.12E-8 14745 6501  .0204
128 1.0E-8 2.54E-9 2.57E-9 56799 23916  .0203
256 1.0E-9 1.58E-10 1.61E-10 222821 91507  .0202

512 1.0E-10 9.80E-12 1.03E-11 882539 357754 .0191
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FIGURE 1. logy(n) vs. CNT/n?

In addition to the above, we give a graph of n versus the actual
counts of the integrand evaluations of K and K,. The horizontal
scale is logy(n), and the vertical scale is the actual function count
(CNT) divided by n?. According to P1 and P2, these graphs should
approach the values of 10/3 and 4/3 for K and K,,, respectively. These
asymptotic limits are shown as horizontal lines in the graph; and indeed,
the function counts approach these limits. This example is very typical
of all of our examples to date. The program also shows that it is
possible to solve quite inexpensively the large scale nonlinear systems
associated with nonlinear integral equations.

Two-grid vs. multigrid iteration. In the case of multigrid
iteration, the rate of convergence increases as n increases, as stated
in (4.17). But with either method, we need to compute only two
iterates. (Actually one iterate is sufficient, but we prefer to be cautious
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in checking for convergence in the iteration.) Thus the faster rate
of convergence of the multigrid method is not needed in practice, as
it produces an additional accuracy in the iterate that is not needed.
Moreover, the multigrid method is more complicated to implement, and
it costs somewhat more per iteration. An advantage of the multigrid
method is that for larger values of n, it is generally safer to compute
only the one iterate :10511) for each n; whereas this is riskier with the two-
grid iteration. Even with such a modification to the multigrid method,
[4] found empirically that the multigrid method is still slower than the
two-grid method in actual running time. For these reasons, we believe
the two-grid iteration is to be preferred when solving integral equations.

This discussion has been based on the use of composite numerical
integration methods. However, in the linear case the best program
resulted from using Gaussian quadrature; see IEGAUS in [10]. The
performance of this latter program was much better than that of IES-
IMP or of any other standard composite rule; and thus we should also
use Gaussian quadrature in place of Simpson’s rule in the construction
of an automatic program for solving nonlinear integral equations. It
should be noted that there is no known multigrid variant in this case.
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