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THE THIRD PROBLEM FOR THE LAPLACE EQUATION
ON A PLANAR CRACKED DOMAIN WITH
MODIFIED JUMP CONDITIONS ON CRACKS

DAGMAR MEDKOVA

ABSTRACT. The paper studies the third problem for the
Laplace equation on a cracked bounded planar domain with
multiply connected Lipschitz boundary and boundary condi-
tions from LP. It is shown that, for 1 < p < 2, there is a unique
solution of the problem. This solution is constructed for a
domain, which boundary is formed by curves with bounded
rotation.

1. Introduction. Several boundary value problems for the Laplace
equation in a cracked planar domain has been studied by the integral
equation method recently, see [12—15]. Krutitskii studied in [11]
the boundary value problem for the Laplace equation outside several
smooth cuts in the plane. Two boundary conditions were given on
the cuts. One of them specified the jump of the unknown function.
Another one of the type of the Robin condition contained the jump of
the normal derivative of an unknown function and the one-side limit of
this function on the cuts. He looked for a solution of the problem in the
form of the sum of a single layer potential and an angular potential. He
has reduced the problem to solving an integral equation which turns out
to have a unique solution. Therefore, he proved the unique solvability
of the problem under the assumption that the boundary conditions
are smooth. We remark that he studied the same problem for the
Helmholtz equation by the same method, see [10].

This paper deals with the boundary value problem for the Laplace
equation on a bounded multiply connected planar domain G with
Lipschitz boundary and cracks. The cracks are arbitrary closed subsets
of Lipschitz arcs and can touch the boundary. The Robin condition
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is given on the boundary of the domain. The same conditions as
in [11] are on the cuts. The boundary conditions are from LP(9G),
and they are fulfilled in the sense of the nontangential limit. We
found the necessary and sufficient conditions for the solvability of the
problem. We compared an LP-solution of the problem and a weak
solution in W12(G). We proved that the LP-solution is a weak solution
in W2(G). (The LP-solution is a strong solution in some sense.) On
the other hand, we proved that for 1 < p < 2 the weak solution with
LP data is an LP-solution. From this fact we deduced Holder regularity
results for a weak solution.

The Robin problem was studied for noncracked domains with con-
nected Lipschitz boundary in R™, where m > 2, by Lanzani and Shen
in [17]. They looked for a solution in the form of a single layer po-
tential Sg where g € LP(0G). Hence, the authors were led to solving
the integral equation (1/2)g + K*g + hSg = f instead of the original
problem with the boundary condition du/0n + hu = f. They proved
for 1 < p <2 that (1/2)] + K* + hS is a Fredholm operator with index
0in LP(0G). Since the kernel of this operator is trivial, it gives that the
operator (1/2)I + K* + hS is continuously invertible in LP(0G). This
article includes the Robin problem for a noncracked domain as a special
case. Unfortunately, it is not possible to use the approach of Lanzani
and Shen for planar domains because the operator (1/2)I + K* + hS
is not injective. We looked for a solution of the problem in the form of
the sum of a modified single layer potential with an unknown density
¢ € LP(0G) and a double layer potential corresponding to the jump on
the crack. (If G has no cracks then we look for a solution in the form
of a modified single layer potential.) We reduced the problem to the
integral equation 7 = f on 0G.

In the last part of the paper we constructed the solution of the
corresponding integral equation 7¢ = f. Fabes, Sand and Seo studied

in [4] this problem for the Neumann problem in noncracked domains.
They proved for G convex and f € L*(9G), [ fdH1 = 0 that

¢ = 2i(1— 21y f
=0

is a solution of the equation 7¢ = f. Unfortunately, this series does
not converge for multiply connected sets. We expressed the solution of
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the equation 7 = f as a series for f € LP(0G), 1 < p <2, on a wide
class of domains including convex domains with cracks and domains
with piecewise C'' boundary and arbitrary cracks.

2. Formulation of the problem. We say that a bounded open
set H C R? has Lipschitz boundary OH if there exist a finite number
of (“local”) coordinate systems (xg,yx), & = 1,...,m, and a finite
number of Lipschitz functions ¢, k = 1,2,... ,m, defined on (—94,9),
where § > 0, such that

1. (zg,yr) € H for |zx] < 0, pr(zr) — 0 < yr < r(ar),

2. (xk,yx) ¢ clH, the closure of H, for |xi| < ¢, pr(zr) < yp <
er(zr) + 0,

3. for every z € OH there exists k, k = 1,... ,m, and xy € (—6,9),
such that z = (zg, pr(z)) in the corresponding coordinate system.

(We will say that H has (piecewise) C® boundary if ¢y above are
(piecewise) C'*.)

Let T be a rectifiable Jordan curve in R2. Let I' be parametrized
by the arc length s : I' = {¢(s); s € [a,b]}. Extend ¢ as a periodical
function in R' with the period b — a. Let f and df/07 be functions
defined on T'. We say that 9f/07 is the tangential derivative of f on T’
if J 4 o

[ roseode=- [ a3 o)
holds for all infinitely differentiable h supported in (¢, d) with d — ¢ <
b—a.

Let H C R? be a bounded open set with Lipschitz boundary,

1 < p < oco. We say that g € WHP(OH) if there is dg/0T € LP(OH)

such that dg/d7 is the tangential derivative of g on each curve from
OH. Define for such a g the norm

p 1/p

) dm} |

dg
1p — p _Z
lgllw.» o) {/BH <|9| + ’87

(Here Hy, is the k-dimensional Hausdorff measure normalized so that
Hy, is the Lebesgue measure in R*.) WP(9H) endowed with this norm
is a Banach space.
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Let 1 < p < 0o, G an open subset of R, k a positive integer. Denote
by W¥P (@) the space of all functions f € LP(G) such that 9* f € LP(G)
in the sense of distributions for each multiindex a with |a| < k. (Here
|a| is the length of a.) For f € W*P?(G), denote

1/p
e = | 3 [ lorsrara)
laj<k ¢

For K C R?, denote by C*(K) the space of all a-Hélder functions on
K with the norm

lg(z) — g(y)]
gllce = sup |g(z)| + sup ————.
lgllcex) xeKI ()] S Ty

T#Y

For a bounded open set H, z € 9H and «a > 0, denote
Lo(z,H) ={y € H; |z —y| < (1 + ) dist (y,0H)}

the nontangential approach regions of opening « corresponding to H
and z. Here dist (y, M) denotes the distance of the point y from the
set M. If u is a function on H, we denote

No(u, H)(x) = sup{[u(y)[; y € Ta(z, H)}

the nontangential maximal function of u with respect to H. If = €
clT's(z, H) and
c=lim u(y)
y€lq (x,H)
for each o > 3, we say that c is the nontangential limit of u at  with
respect to H.

Let H,H, C R? be bounded open sets with Lipschitz boundaries,
H, C H. (The boundaries of H and H, consist of a finite number
of closed curves. We do not suppose that 0H and 0H are disjoint.)
Put H_. = H \ cl Hy. Suppose that H_ is an open set with Lipschitz
boundary and H is connected. Then the outward unit normal n(z),
(nt(z),n" (x)), to H, (Hy, H_), exists at almost any point x of 9H,
(OH4,0H_), respectively. For a fixed closed subset v of 0H; NOH_,
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put G = H \ v. We will study the Robin problem for the Laplace
equation on the cracked open set G. (We remark that + is an arbitrary
closed subset of 9H, NOH_. If Hy(y) = 0, then our problem reduces
to a problem without a crack, see below.)

Since H,, H_ are open sets with Lipschitz boundary and H;{ UH_ C
G, 0G C (0Hy UOH_), there is an a > 0 such that for each z € 0G \ ¢
and y € v we have z € clTy(2,G), y € clTy(y,H+), y € clT(y, H_).
If w is a function in G, x € G\ v (x € OH,,x € OH_) denote by
u(z), (ut(z),u—(x)) the nontangential limit of u at = with respect to
G (Hy, H_), respectively.

Let 1 < p < oo. Denote by Wol’p('y) the space of all g € LP(y)
(= LP(Hy | y)) for which there is an extension g € WP(9H,) such
that g =0 on 0Hy NOH_ \ . Denote

p 1/p
> dHl} .

dg
— p _<Z
lolgrc = | / (1ot + |52

Fix p € (1,00). Let now h € L,(0G) (= LP(H1|0G)), h > 0,
f € LP(0G), g € Wol’p('y). We say that a function u on G is an
LP-solution of the problem

(1) Au=0 in G,
ou
(2) 8—ﬂ+hu-f on I0G\ 7,
(3) uy —u_=g on 7,
ou ou
(4) |:6n—+:|+— |:6n_+:|_+hu+f on 7y

if 1. uw is harmonic in G.
2. No(|Vul|,Hy) € LP(H1|0H+), No(|Vul|, H-) € LP(H1|0H-).
3. The nontangential limits of u and Vu with respect to G exist at

Hi-almost any x € G \ v and n(z) - Vu(z) + h(z)u(z) = f(r) almost
everywhere on 9G \ 7.
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4. The nontangential limits of v with respect to Hy and with respect
to H_ exist Hi-almost everywhere on v and u4(z) — u_(x) = g(z)
almost everywhere on ~.

5. The nontangential limits of Vu with respect to H; and with
respect to H_ exist Hi-almost everywhere on v and n* () - [Vu]y (z) —
nt(z) - [Vu]-(z) + h(z)uy(z) = f(x) almost everywhere on 7.

If h = 0 H;-almost everywhere on dG, we shall refer to (1)—(4) as
being a Neumann problem. In the opposite case we shall refer to (1)—(4)
as a Robin problem. If v = &, then this definition coincides with the
common definition of an LP-solution of the Neumann or the Robin
problem, compare [9, 17].

3. Single layer potentials. Fix R > 0. For f € LP(0G), p > 1,
define

1 R

Srf(x) . f(y)In

2y [z =yl

the modified single layer potential with density f. In the case of several
sets, we will write S§f. (For R = 1 we get the usual single layer
potential.) We remark that Sgf for different R’s differ by constants.
The function Sgf is harmonic in R? \ dG. Now we prove an auxiliary
lemma which will be used later.

Lemma 3.1. Let 1 < p < oo, R >0, h € LP(0G). The operator
Sk : f — Srf is a bounded linear operator from LP(OG) to W12P(Q)
and from LP(0G) to C®=V/P(cl G). If we denote Vif = hSrf, then
Vi is a compact linear operator in LP(0G).

Proof. Suppose first that v = &. Let f € LP(0G). We will show
that Spf € W1 (G). Denote by B29(G) the classical Besov space.
If p < 2, then Spf € BYY, (G) C B"*(G) C Wh(G) by [21,
Theorem 7.4], [2, Theorem 6.5.1] and [2, Theorem 6.4.4]. Suppose now
that 2 < p. According to [21, Theorem 7.4], we have S f € Bffl/p(G).
Using [8, Theorem 4.1], [8, Theorem 4.2] and the imbedding theorem,

see [1, Theorem 7.63], we have Sgf € W't1/Pr(G) c WH2P(@).
Denote
Q.(z)={ye R% |z —y| <r}.



THE THIRD PROBLEM FOR THE LAPLACE EQUATION 477

Fix r > 0 such that c1 G C Qgr(0). Since G has Lipschitz bound-
ary, there is u € W12P(Q,.(0)) such that u = Sgf in G, see [27,
Remark 2.5.2]. According to [7, Theorem 4.5.13], there is @ €
C®=1/P(cl G) such that & = u = Sgrf almost everywhere in G.
Since Spf is a continuous function in cl G, we conclude Sgrf €

Co-D/r(cl Q).

Let now v # @. Fix f € LP(0G). Denote fi(z) = f(z) for z € =,
fi(x) = 0 elsewhere, fo(x) = f(x) for x € OH, fo(xz) = 0 elsewhere.
We have proved that Sgpfo € W12(G) N CP=1/p(c] G), Srf1 €
Wb (H, ) nCP=D/P(cl H,), Spfi € WH2P(H_)n CP=Y/P(cl H_).
Hence Spf = Srf1 + Srfe € WH2(G) N CP=D/P(cl G).

If f,, — fin LP(0G), then Sgfn(x) — Srf(x) for each z € G. The
closed graph theorem, see [26, Chapter II, Section 6, Theorem 1], gives
that Sg is a bounded liner operator from LP(9G) to W12(G) and from
LP(9G) to C=N/P(cl G).

Since Sg is a continuous linear operator from L?(9G) to CP~1/?(cl G),
the operator Sg maps each bounded subset of LP(OG) onto the set of
equibounded equicontinuous functions on dG. Since such a set is pre-
compact in C(9G), see [26, Chapter III, Section 3|, the operator Sg is
a compact linear operator from L?(0G) to C(0G). Denote Hg = hg
for g € C(0G). Then H is a bounded linear operator from C(9G) to
L,(0G). Since V}, is the composition of the bounded linear operator H
and the compact linear operator Sg, it is a compact linear operator,
see [26, Chapter X, Section 2, Theorem)]. o

4. Properties of solutions. Verchota proved the following lemma,
see [25, Theorem 1.12].

Lemma 4.1. If V is a bounded open set with Lipschitz boundary,
then there is a sequence of C* domains V; with the following properties:

LdV,cV.

2. There are homeomorphisms Aj : OV — 0V;, such that sup{|y —
AW)); y € OV} — 0 as j — oo, and there is an o > 0 such that
A;(y) € To(y, V) for each j and each y € V.

3. There are positive functions w; on OV bounded away from zero
and infinity uniformly in j such that, for any measurable set E C
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oV, [pwjdHi = Hi(Aj(E)), and so that w; — 1 pointwise almost
everywhere and in every L1(Hy), 1 < g < oo.

4. The normal vectors to Vj, n(A;(y)), converge pointwise almost
everywhere and in every L1(0V), 1 < g < oo, to n(y).

Proposition 4.2. Let u be an LP-solution of the problem (1)—(4),
1 <p<oo. Thenu e WH(G) and u can be continuously extended
onto cl Hy and onto cl H_.

Proof. Put ¢ = min(p,2). Fix a component V of H,. Define
F = nt . [Vu]y on dV. Then u is an L? solution of the Neumann
problem for the Laplace equation on V with the boundary condition
F. According to [20, Theorem 5.1] and [20, Theorem 5.2] there is
a ¢ € LY(H,|0V) such that S ¢ is an L9 solution of the Neumann
problem for the Laplace equation in V' with the boundary condition F'.
Lemma 3.1 yields that S/ ¢ € C(cl V) N W12(V). According to [9,
Corollary 2.1.12], there is a constant ¢ such that v = S} ¢ + ¢ in
V. Therefore u € C(cl V) N W1L2(V). Since V is arbitrary, we have
u € C(cl Hy)NWY2(H,). Similarly, u € C(cl H_)NWY2(H_). Since
u € C®(G) and 9°u € L*(G) for each multi-index o with |a| < 1, we
deduce u € W12(Q). O

Proposition 4.3. Let 1 <p < oo, h =0, f € LP(H1|0G). If there
exists an LP-solution of the problem (1)—(4), then

(5) fdHy =0.
oG

Proof. Denote Fy = n™-[Vu|y in 9H; and F_ =n~-[Vu|_ in 0H_.
Let V; be a sequence of open sets from Lemma 4.1 corresponding to H ..
Since u is a classical solution of the Neumann problem for the Laplace
equation in V; with the boundary condition n-Vu, the Lebesque lemma
yields

0= lim n-Vudle/ FLdH;.
i—oo Joy, OH
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Similarly,

Oz/ F_dH;.
OH_

Since n~ = —n™ on OH, NIH_, we have

0:/ F,dHl-i-/ FidH, = fdH;. O
OH_ OH, Ye.

5. Uniqueness.

Theorem 5.1. Let 1 <p<oo, he LP(0G), h>0, f=0,9=0, u
be an LP-solution of the problem (1)—(4). Then w is constant in G. If
Hi({x € 0G; h(z) > 0}) >0, then u=0 in G.

Proof. Let V; be the sets from the Lemma 4.1 corresponding to the
set H,. Since g = 0, the function u can be extended, to the function
continuous on the closure of G, see Proposition 4.2. Using Green’s
formula and Lebesgue’s lemma, we get

/ u(n™ - [Vu]y)dHy = lim u(n - Vu) dH;
OH 4 I Jav;

= lim |Vu|2dH2:/ |Vu|? dHa.

I Jy; Hy
Similarly,
/ u(n™ - [Vu]-) dH; z/ |Vu|? d Hs.
OH _ H_
Since n~ = —n" on OH, N OH_, we get using the continuity of u on
cl G,

0= /(9G\’y[u(n~Vu) + hu®)dH;
+ / u{n® - [Vuly —n" - [Vu]_ + huy } dHy

= [ hPdH + /
oG OH,

:/ hu2dH1+/ |Vul|? d Hs.
oG G

u(n™ - [Vu]y) dHy —l—/ u(n™ - [Vu]-)dH;
OH_
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Since h > 0, we have

/ hu*dH; =0, /\vu|2dH2:0.
oG G

Since Vu = 0 on G, the function u is constant in each component of
G. Since u is continuous in cl G, there is a constant ¢ such that u = ¢
on cl G. If Hy({z € 8G; h(x) > 0}) > 0, then

—1
02—[/ hdHl] /hu2dH1:o. o
oG oG

6. Double layer potentials. If V is a bounded open set with
Lipschitz boundary, g € LP(9V) and n" (y) denotes the outward unit
normal to V' at y, define

nV(y) (y—=x
Drglo) = 5= [ D o) an)

the double layer potential corresponding to V with density g. If
V = Hy, we write Dg instead of Dyg. The following lemma is an
easy generalization of known results.

Lemma 6.1. Let 1 < p < oo, g € WYP(OH,). Then Dy is a har-
monic function in G, No(|[VDg|, Hy)€ LP(H1|0H,), No(|VDg|, H-) €
LP(H1|0H-), there are the nontangential limits of VDg with re-
spect to Hy and with respect to H_ Hy-almost everywhere in v and
nt(z) - [VDgl4(z) — nt(z) - [VDg]_(z) = 0 almost everywhere in .
There is the nontangential limit of VDg with respect to G Hi-almost
everywhere in OG \ v and

1IVDylllLracvy) < Cllgllwrrom, ),

where C is a constant depending only on G and p. The function
Dg can be extended onto [Dgly € CP~V/P(cl Hy) and onto [Dg]_ €
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Cw=1/r(cl H_). Moreover, [Dgl, — [Dg]_ = g Hi-almost everywhere
in OHy NOH_ and Dg € W1 (G),

IDgllw.2e(cy + 1Pl (@) < Cligllwrrom,),
where C is a constant depending only on G and p.

Proof. Since g € WYP(9H, ), we can suppose that g is continuous,
see [1, Theorem 5.4]. Since 0H; N 9H_ is formed by finitely many
arcs and there is a continuous extension operator from W?((a,b)) to
WP(RY), see [1, Theorem 4.26], we can extend g onto g € W1P(9H_)
so that

lgllwrror_y < MHQHWOLP(,Y),

with a constant M depending only on G and p. We can again suppose
that ¢ is continuous. By the characterization of WP on an interval,
we see that g € W'P(0H).

The boundary of H, is formed by finitely many Jordan curves. Fix
one of these curves I Denote gr = g on I, gr = 0 elsewhere.
Let T be parametrized by the arc length s: T = {p(s); s € [a,b]}
and H, is to the right when the parameter s increases on I'. Put
f(o(s)) = —[g(¢)]'(s). Then f € LP(T) because g € WHP(9H, ). For
r € R2\T and s € [a,b], denote by v(z,¢(s)) the increment of the
argument of y — x along the curve {y = ¢(¢); t € [a, 5]}, and

Vf(x)= %/Fv(af,y)f(y)d%(y)

the angular potential corresponding to f. (The angular potential was
introduced and studied by Gabov in [5].) Define f = 0 on R?\T. Since

V f is a conjugate function to —81H+f, see [19, pp. 226-227], we have

vy sty oV aS{tf

0xq Oxy 0x4 0z,

Using boundary properties of single layer potentials, see [9, Theo-
rem 2.2.13], we can deduce that N, (|VV f|, Hy) € LP(H1|0H.), there
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are the nontangential limits of VV f with respect to H; and with re-
spect to H_ Hj-almost everywhere in v and n' (2)-[VV f]4(x) —n™(z)-
[VV f]=(x) = 0 almost everywhere in y and

H
VY flelllzr @,y = VS flllleom,)
< Cillfllzroa) < Callgrllwrromr., s

where C7,Cy are constants depending only on G and p. Using
Lemma 3.1 we get that 9;V f, 0,V f € L?(G). Since V f is continuously
extendible onto ¢l H; by [19, Lemma 5], we obtain V f € W12P(H ).

Put g =g —g(¢(a)), g =g(e(a)) on T, g,§ = 0 elsewhere. Since

s b
(o)~ orle(@) = [ (~s@dt= [ sy,
we have according to [19, p. 226],

Dy, g=VF.

Therefore, No(|VDp, g|, Hy) € LP(H1|0H,), there are the nontan-
gential limits of VDp, g with respect to H, and with respect to
H_ 'Hy-almost everywhere in v and n*(z) - [VDg, g4+ (x) — nt(x) -
[VDy,g]-(x) = 0 almost everywhere in . Moreover, Dy, § €
W2P(H,) and Dg,§ can be continuously extendible onto ¢l Hy.
It is well known that the double layer potential with constant den-
sity corresponding to the Jordan curve I' is constant in the inte-
rior of T' and in the exterior of T' as well. (We can prove it us-
ing the expression of a harmonic function as the sum of the single
layer potential corresponding to the normal derivative and the dou-
ble layer potential corresponding to the boundary value of the func-
tion.) Thus VDg,g = 0 in R* \ T. So, there are the nontangen-
tial limits of VDgr = VDpg, g with respect to Hy and with respect
to H_ Hj-almost everywhere in vy, N, (|VDgr|, Hy) € LP(H1|0H),
nt(z) - [VDgr)+(z) —nt(z) - [VDgr]-(z) = 0 almost everywhere in
and
[VDgrl+lllzeom,) < Callgrllwrrom,)-

Summing over all T" we get No(|VDg|,Hy) € LP(Hi|0H;); there
are the nontangential limits of VDg with respect to H; and with
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respect to H_ Hj-almost everywhere in v, nt(z) - [VDgl4(z) —nt(z) -
[VDg]_(x) = 0 almost everywhere in vy and

IVDgly e orsy < Callgllwrrom,)-

Moreover, Dg € W1 (H,). Fix r > 0 such that cl Hy C Q,.(0).
Since H, has Lipschitz boundary, there is a u € W?P(Q,.(0)) such
that v = Dg in Hy, see [27, Remark 2.5.2]. According to [7,
Theorem 4.5.13], there is a @ € C?~1/P(cl H,) such that @ = u = Dg
almost everywhere in H,. Since Dg € C(H ), we have & = Dg in Hy.

Similarly, No([VDy_ gl H-) € LP(Hi|0H-), Nu(|VDpgl H) €
LP(H;1|0H), and

IIVDa_g]-|llzror_) < Csllgllwreom_),
1IVDugl|llromy < Csllgllwre@om

where C5 is a constant depending only on G and p. Moreover,
Drg € WY2P(H), Dy _g € WY2P(H_), Dyg can be extended onto
[Drg]- € C?P~D/P(cl H_) and Dy_g can be extended onto [Dy_g]_ €
C®=1/p(cl H_). Since Dyg = Dg + Dy_g, we deduce that Dg €
WL2P(@), and Dg can be extended onto [Dg]_ € CP=D/P(cl H_).
Since No(|VDy_g|, H_), Na(|VDpg|, H_) € LP(9H_\OH..), we have
No(|VDygl, H_) € LP(QH_ \ H.) and

IIVDylllLr oy < (C2 + C3 +2C3M)||gllwr o8 )-

Fix R > 0 such that ¢l H C Qg(0). Put ¢ = 0 on 9Qx(0) and
U = Qg(0)\ cl H. We have shown that N,(|VDyg|,U) € LP(9U).
If g, — g in WYP(9H ), then Dg,(x) — Dg(x) for each z € G. The
closed graph theorem, see [26, Chapter II, Section 6, Theorem 1], gives
that D : g — Dg is a bounded linear operator from W1P(0H,) to
Wh2P(@) and from WHP(0H,) to L>=(G).

According to [9, Theorem 2.2.13], we have [Dg|+ (x)—[Dg]_(z) = g(x)
almost everywhere in 0H, NOH_. O

7. Reduction of the problem. If 1 < p < o0, € > 0, we define for
w € LP(0G), z € 0G \ v,

RSN oy 1) (=)
K@ =g [ w) MR ar),
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(We repeat that .(x) is the open ball with the center z and the
radius €.) Denote wi(z) = w(z) for x € v, wi(x) = 0 elsewhere,
wa(x) = w(z) for v € IH NOH,, wa(x) = 0 elsewhere, ws(z) = w(z)
for x € OH NOH_, ws(x) = 0 elsewhere. If we use the properties of
the single layer potentials with densities w1, wy and ws corresponding
to open sets Hy, H_ and H, see [9, Theorem 2.2.13|, we get that for
H1 almost any = € G \ ~y there is

and K, is a bounded linear operator from LP(90G) to LP(0G \ 7).
Let 1 < p < oo, f € LP(3Q), h € LP(DG), h > 0, g € WyP (7). We
will look for a solution u of the problem (1)—(4) in the form

(6) u="Dg+wv.

According to Lemma 6.1 and [9, Theorem 2.2.13], the function u is an
L? solution of the problem (1)—(4) if and only if the function v is an
LP solution of the problem

(7) Av=0 in G,
(8) 9 +hv=F on O0G)\
on v © i

(9) vy —v_=0 on 7,

ov ov
(10) [W}Jr— [8?:|+ hU+ =F on vy
where
(11) F:f—%—hl)g on OG\OH,,

(12)  F=f—n-[VDgly —hlDgly on 9GNIH. \7,
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13 Fl) = 1) - ) (00 + Ko@)}, wen

We will look for an L” solution of the problem (7)—(10) in the
form of a modified single layer potential Spw where w € LP(9G)
and R > diam G, the diameter of G. Denote wi(z) = w(z) for
x € 7, wi(x) = 0 elsewhere, we(z) = w(x) for x € OH N OH,
wa(z) = 0 elsewhere, wz(x) = w(z) for x € OH NOH_, ws(x) = 0
elsewhere. If we use the properties of the single layer potentials with
densities w;, ws and ws corresponding to open sets H,, H_ and H,
see [9, Theorem 2.2.13], we get that N, (|VSgrw|, Hy) € LP(0H,) and
N,(|VSgwl|, H-) € LP(OH_), the nontangential limit of VSgw with
respect to G exists almost everywhere in 9G \ v and

(14) n(z) - VSrw(z) = %w(aj) + KGw(z) ae. in 909G\ 7,

the nontangential limits of VSgpw with respect to H; and with respect
to H_ exist almost everywhere in v and

(15) n'(z) - [VSrw]4(x) —nT(z) - [VSgpw]_(z) = w(z) ae. in 7.

Since the modified single layer potential Spw is a harmonic function in
G, we get using Lemma 3.1 that Spw is an LP solution of the problem
(7)—(10) if and only if

(16) Ty rw =F
where
1 *
(17) Ty rw = §w+KGw+hSRw on I0G\7,
(18) Thrw =w+ hSgpw on 7.

Since K¢, is a bounded linear operator from LP(0G) to LP(9G \ ),
Lemma 3.1 gives that T}, g is a bounded linear operator in LP(9G).
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8. Solvability of the problem.

Lemma 8.1. Let 1 < p < o0, g € LP(0G), H1({z € 9G; |g(x)| >
0}) >0, R > diam G. Then

0< /ac; g(x)Srg(x)dHy(z) < 0.

Proof. Fix ) in 0G. Put P(x) :~(J; —x9)/R, P_1(z) = Rz + x9
for x € R?, G = P(G). For z € 0G put g(z) = g(P-1(x)). Then
g € LP(0G) and Sgg(z) = RSlcg(P(ix)) for z € G. Denote by H the

restriction of H; onto AG. Since S¢|j| is continuous in R? by [19,
Lemma 4] we conclude

/|§|81G |Gl dH < 0o

and thus the real measure gH has finite energy, see [16, Chapter 1,
Section 4]). Since H;i({x € 0G; |§(z)| > 0}) > 0, [16, Theorem 1.16]
yields

/gs?gdﬁ > 0.

Now we use the fact that

/ 9(2)Sk g(x) dHy (z) = R? / _§@8C @) dHa(). O
oG oG

Lemma 8.2. Let 1 < p < oo, h € L?(0G), h > 0, R > diam G,
2 € Lp(aG) If T}iRSD - O, then Th,RSD = 0.

Proof. According to Section 7 we have Ty rp € LP(9G), and the
modified single layer potential SgT}, ry is an LP-solution of the problem
(1)~(4) with g = 0 and f = T} pp = 0. According to Theorem 5.1 and
Lemma 3.1, there is a constant ¢ such that SgT, rp = cin cl G. If
H1({z € 0G; h(z) > 0}) > 0, then ¢ = 0.
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According to Section 7 the modified single layer potential Spy is an
LP-solution of the problem (1)-(4) with ¢ = 0 and f = Tj re. If
H1({z € 0G; h(x) > 0}) =0, then

/ Th,R(PdHl =0.
oG
Thus

/ (Th,r)SRTh R dH1 = C/ (Th,rp) dH1 = 0.
Y Ye

According to Lemma 8.1 we have T}, rp = 0 almost everywhere in 0G.
]

Definition 8.3. The bounded linear operator 7" on the Banach
space X is called Fredholm if «(T'), the dimension of the kernel of T,
is finite, the range T'(X) of T is a closed subspace of X and ((T), the
codimension of T(X), is finite. The number i(T) = a(T) — 3(T) is the
index of T

Proposition 8.4. Let 1 < p < oo, h € LP(0G), h > 0, R > diam G,
Th.r be a Fredholm operator with index 0 in LP(0G). Denote by
LB(OG) the set of all f € LP(OG) for which (5) holds. If Hi({z €
0G; h(z) > 0}) =0 then Ty, g is continuously invertible in LE(0G). If
H1({z € 0G; h(z) > 0}) > 0, then Ty, r is continuously invertible in
LP(8G).

Proof. Suppose first that Hy({z € 0G; h(z) > 0}) > 0. If
p € LP(0G), Ty re = 0, then Sgyp is an LP-solution of the problem
(1)—(4) with f =0, g =0, see Section 7, and Theorem 5.1, Lemma 3.1
give that Sgrep = 0 on cl G. Since

/ @SrpdH; =0,
PYe

Lemma 8.1 shows that ¢ = 0 almost everywhere in 0G. Since
a(Th,gr) = 0 and i(Th,r) = 0, we deduce that G(T},r) = 0. Since
T, r(LP(0G)) = LP(0G) and the kernel of T}, g is trivial, the operator
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Ty, g is continuously invertible in LP(0G) by the closed graph theorem,
see [26, Chapter II, Section 6, Theorem 1].

Suppose now that h = 0 almost everywhere in 9G. If ¢ € LP(0G),
then Sre is an LP-solution of the problem (1)—(4) with ¢ = 0 and
[ = Th rep, see Section 7. Thus, T), rp € LE(OG) by Proposition 4.3.
Since Ty, r(LP(0G)) C LE(0G), we have 5(Ty g) > 1.

If ¢ € LP(0G), T re = 0,then Sryp is an LP-solution of the problem
(1)—(4) with f =0, g = 0, see Section 7. According to Theorem 5.1,
Lemma 3.1 there is a constant ¢ such that Spp =con cl G. If ¢ = 0,
then Lemma 8.1 yields that ¢ = 0 almost everywhere on dG. This
means that o(Tp r) < 1. Since 1 < B(Th,r) = a(Thr) < 1, we
deduce that 8(Th.r) = a(Th r) = 1. Since Ty r(LP(0G)) C LE(0G),
B(Th,r) = 1 shows that T}, r(LP(0G)) = LE(9G).

The kernel of the operator Tj, g in LE(OG) is trivial by Lemma 8.2.
Since LE(OG) is a Ty, g-invariant closed linear subspace of finite codi-
mension in LP(9G) and Ty, g is a Fredholm operator with index 0, the
restriction of T, g onto L (9G) is a Fredholm operator with index 0 by
[18, Proposition 3.7.1]. Since the kernel of the operator T}, g in Lf(9G)
is trivial, we deduce that T r(L5(0G)) = L§(0G). The closed graph
theorem, see [26, Chapter II, Section 6, Theorem 1], gives that T}, g is
continuously invertible in L§(9G). O

Notation 8.5. Let X be a real Banach space. Denote compl X =
{z +1iy; x,y € X} the complexification of X. If T is a linear operator
in X we define T'(z + iy) = Tx + iTy the linear extension of T' onto
compl X.

Lemma 8.6. Let 1 < p < oo, h € LP(0G), h > 0, R > diam G,
A # 1 be a complex number. Then T}, r — M is a Fredholm operator in
compl LP(0G) if and only if ((1/2) — \)I + K73; is a Fredholm operator
in compl LP(OH). Moreover, i(Tp,r — A) = i(((1/2) — N\ + K3).
(Here I denotes the identity operator.)

Proof. Let V}, be the operator from Lemma 3.1. Since V}, is a compact
linear operator in L?(9G), the operator Tj, p—AI is a Fredholm operator
in compl LP(0G) if and only if To.g — Al is a Fredholm operator in
compl LP(0G) and i(Ty, g — A\I) = i(To,r — M), see [24, Theorem 5.10].
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Denote

Tf(x)=(1/2-Nf(z)+ Ky f(x) for ze€0H,
Tfx)=(1—=XNf(z) for xe€n.

Then T is a bounded linear operator in compl LP(0G) which is a
Fredholm operator in compl LP(9G) if and only if (1/2 — X\)I + K is
a Fredholm operator in compl L?(0H) and i(T) = i((1/2 - NI+ K};).
Easy calculation yields that Ty g — Al — T is a compact operator in
LP(0G). Thus, Ty g — Al is a Fredholm operator in compl LP(9G) if
and only if T is a Fredholm operator in compl LP(0G) and i(T) =
i(To,r — M) by [24, Theorem 5.10]. o

Theorem 8.7. There is 2 < py < 0o depending only on G such that
following holds:

1. If po < p < oo, h e LP(0G), h > 0, R > 0, then T} g is not a
Fredholm operator with index 0 in LP(0G).

2. Let 1 <p<po, h € LP(IG), h > 0, H1({z € OG; h(z) > 0}) > 0,
R > diam G. Then Ty g is continuously invertible in LP(0G). If
f e LP(0G), g € Wol’p('y) then there is a unique LP-solution of the
problem (1)—(4). This solution is given by

(19) u=Dg+ SgT, ,F

where F is given by (11)—(13).

3. Let 1 < p < pyg, h =0, R > diam G. Denote by TVO,R the
restriction of Ty, g onto LE(OG). Then TQR is continuously invertible.
If f € LP(0G), g € WYP(y), then there is an LP-solution of the problem
(1)—(4) if and only if equation (5) is fulfilled. The general form of a
solution 1is

(20) uw="Dg+Sg(To.r) 'F +c

where F is given by (11)—(13) and c is arbitrary constant.
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Proof. Suppose first that 1 < p < oo is such that (1/2)] + K},
is a Fredholm operator with index 0 in LP(0H). If h € LP(9G),
h > 0, R > diam G, then T}, i is a Fredholm operator with index
0 in LP(0G) by Lemma 8.6. If Hi({x € 0G; h(xz) > 0}) > 0, then
Ty r is continuously invertible; if A = 0 then TVO) Rr 1s continuously
invertible, see Proposition 8.4. Let f € LP(dQG), g € Wy'(y) and
f € LE(OG) in case h = 0. Let F be given by (11)—(13). Suppose
first that Hi({z € 9G; h(z) > 0}) > 0. According to Section 7
the function u given by (19) is an LP-solution of the problem (1)—(4).
According to Theorem 5.1 this solution is unique. Suppose now i = 0.
According to Section 7 the function u given by (20) is an LP-solution
of the problem (1)—(4). Theorem 5.1 shows that (20) gives the general
form of a solution. Proposition 4.3 gives that f € LF(9G) is a necessary
condition for the solvability of the problem (1)—(4).

According to [20, Theorem 5.1], there is an € > 0 such that (1/2)] +
K7, is a Fredholm operator with index 0 in LP(9G) for 1 <p < 2+ «.
Put po = sup{p; p > 1, (1/2)I + K} is a Fredholm operator with
index 0 in LP(0H)}. Then 2 < py < o0. If py < p < o0, h € LP(0G),
h >0, R > 0, then T} g is not a Fredholm operator with index 0 in
L?(8G) by Lemma 8.6. Let now 2 < p < pg. Then there is a g € (p, po)
such that (1/2)I + K}; is a Fredholm operator with index 0 in LY(0H).
Put h = 1. Then there is continuous Thj}l% in L9(0G) and in L?(9G).
The Riesz-Thorin interpolation theorem, see [23, Theorem 6.1.1], yields
that there is continuous Tf?,}l% in LP(0G). Since Ty g is a Fredholm
operator with index 0 in L?(0G), Lemma 8.6 gives that (1/2)I + K},
is a Fredholm operator with index 0 in LP(0H). O

Corollary 8.8. Let 2 < py < oo be the constant from Theorem 8.7.
Let1<p<py, he LP(G), h >0, f € LP(dG), g € Wy () and u be
an LP solution of the problem (1)—(4). Then u € W12P(G), there are
uy € CP=V/P(cl Hy) and u_ € CP~D/P(cl H_) such that u = u, in
Hy,u=wu_in H_. If Hi({z € 0G; h(xz) > 0}) > 0, then

[ulL=(a) + lullwize ey < Clllfllzeac) + ||9||ngp(7)]~
If h =0, then there is a constant ¢ such that

lu = ¢lp=(a) + [lu—cllwrzre) < Clllfllzroc) + |\9|\W§vp(7)]-
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Here C is a constant depending only on G, p and h. If g = 0, then
ue CPN/P(cl G) and

ju(@) — u)| _ ~
1Y) — I - o )
z,yEG; xAy ‘.’[ — y|(;071)/p = Hf”L (8G)

where C is a constant depending only on G, p and h.

Proof. 1If we define g(x) = 0 for x € OHy N OH_ \ 7, then
g € WYP(OH, NOH_). Since 0H, N JH_ is formed by finitely many
arcs and there is a continuous extension operator from W?((a,b)) to
WP(RY), see [1, Theorem 4.26], we can extend g onto dH so that

(21) lgllwrrom,) < Mliglwe )

with a constant M depending only on G and p.

Fix R > diam G. Let F be given by (11)—(13). If h = 0 almost
everywhere on 0G put @ = TofllaF , in the opposite case put Q =
T,; }%F . According to Theorem 8.7 there is a constant ¢ such that
u = Dg+ SgQ +c. If Hi({x € 9G; h(z) > 0}) > 0, then
¢ = 0. Lemma 6.1 shows that Dg € W12P(G); there are [Dg], €
cw=/r(cl Hy), [Dg]- € C®=1/P(cl H_) such that Dg = [Dg], in
Hy, Dg = [Dg]- in H_ and there is a constant C; depending on G
and p such that

(22) IDgll=(c) + IPgllwr2r(c) < Cullgllwrr(y)-

F = f — h[Dg]+ on v by [9, Theorem 2.2.13]. Thus Lemma 6.1 gives
that there is a constant C5 depending only on G, p and h such that

(23) 1l e oc) < CalllFllroc) + 9llwar)-

According to Theorem 8.7 there is a constant C3 depending on G, p, h
and R so that

(24) 1Qllzrac) < Csl|FllLrac)-

According to Lemma 3.1 we have SpQ € W1H2P(G) N C®P=Y/P(cl G)
and

(25) ISRQ(@)lce-1/0(a ¢y + ISRQlw120 () < Cull QllLr(ac)
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where Cy is a constant depending only on G, R and p.
Since u — ¢ = Dg + SgQ, we obtain from (22), (25), (24) and (23)

lu=c|p=(c)+lu—cllwrzrq) < (Cr4+CoCsCH)[l|fllroc) +9llwre ())-

If g =0, then

|u(@) — u(y)]
s, G < i e o

TF#Y

9. Weak solution.

Notation 9.1. Let u € W12(G). Denote by u the restriction of u
onto H, and by u_ the restriction of u onto H_. Since u; € W2 (H,)
there is the trace uy of us almost everywhere on 0H . Similarly, there
is the trace u_ of u_ almost everywhere on dH_. We can write u
instead of uy or u_ on G\ 7. If uy = u_ on 7, we can write u instead
of uy or u_ on 7.

Remark 9.2. If w is an LP-solution of the problem (1)—(4) with
1 < p < oo, then u € WH?(G) by Corollary 8.8. Then u (uy, u_)
denotes the nontangential limit of w with respect to G (H4, H_) on
OG\ 7y () and the trace of u with respect to G (H;, H_), respectively.
But it is well known that if the trace and the nontangential limit exist
then they are the equal.

Remark 9.3. If u € WH%(Q), then uy € LP(OH,), u_ € LP(OH_),
for each p € (1,00), see [22, Théoreme 4.6].

Definition 9.4. Let f,h € LP(0G), g € LP(v), 1 < p < 0. We
say that u € W1%(Q) is a weak solution of the problem (1)—(4) if
uy —u— = g almost everywhere in v and

(26) /Vu-Vadeg—i—/ hugodHl—i—/hquadel = fodH,
G OG\y 0% oG

for each ¢ € W12(G) for which ¢, = ¢_ almost everywhere in .
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Lemma 9.5. Let h € LP(0G), h > 0, 1 < p < co. If u is a weak
solution of the problem (1)—(4) with f = 0, g = 0, then there is a
constant ¢ such that w = ¢ on cl G. If Hi({z € 0G; h(z) > 0}) > 0,
then ¢ = 0.

Proof. Since g = 0 we have u; = u_ almost everywhere in . We get
from (26) for ¢ = u

/\Vu|2dH2+/ hu? d'Hy = 0.
G oG

Since h > 0 we deduce that Vu = 0 in GG. Therefore, u is constant in
each component of G. Since uy = u_ almost everywhere in v and H
is connected, there is a constant ¢ such that u© = ¢ in G and hence on
cl G. Suppose now that H;({z € 0G; h(x) > 0}) > 0. Then,

-1
O_U \vu|2dH2+/ hzﬂdm] U hdHl} — 2 0
G oG oG

Lemma 9.6. Let f € LP(0G), g € LP(v), 1l < p < 00, h=0. If
there is a weak solution of the problem (1)—(4), then f € L§(9G).

Proof. We get this proposition from (26) for ¢ = 1. O

Proposition 9.7. Let 1 < p < oo, f,h € LP(0G), h > 0,
g€ Wyt (y). Ifu is an LP-solution of the problem (1)—(4), then u is a
weak solution of the problem (1)—(4). Suppose, moreover, that p < po,
where po is the constant from Theorem 8.7. If u is a weak solution of
the problem (1)—(4), then u is an LP-solution of the problem (1)—(4).

Proof. Suppose first that u is an LP-solution of the problem (1)—(4).
Proposition 4.2 gives that u € WY23(G). Let ¢ be an infinitely
differentiable function in R%. Let Vi, j=1,..., besets from Lemma 4.1
for H,. Using Green’s formula and Lebesque’s lemma, we get

Ve -VudHs = lim Ve - VudHs

H, i=eo Jy

= lim on-VudH, = / on™ - [Vuly dH;.
i— Joy; OH,
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Put p’ = p/(p—1). Since there is a bounded imbedding from W12(H,)
to LP (0H ), see [22, Theorem 4.6], and n-[Vu]; € LP(0H, ), Holder’s
inequality yields that

pr— | Vo-VudHy,  pr— [plsn® - [Vuly dHy
Hy OH,

are bounded linear functionals on W12(H,). Since the space of all
infinitely differentiable functions in R? is dense in W2(H, ), see [1,
Theorem 3.18], we get from the continuity of these functionals that

(27) / Ve -VudHy = / on™ - [Vuly dH,y

holds for each ¢ € W12(H, ). Similarly,

(28) / Ve -VudHsz = / en” - [Vu]_ dHy
OH_

for each ¢ € WY2(H_). Let o € WH2(G) for which ¢ = ¢_ almost
everywhere in v. Using (27) and (28), we get (26).

Suppose now that p < pg and wu is a weak solution of the problem
(1)—(4). According to Lemma 9.6 and Theorem 8.7, there is an LP-
solution v of the problem (1)—(4). This solution is a weak solution of
the problem (1)—-(4). If Hi({z € 0G; h(z) > 0}) > 0, then u = v
by Lemma 9.5. Suppose now that H;({z € 0G; h(z) > 0}) = 0.
According to Lemma 9.5 there is a constant ¢ such that v = v + c.
Since v is an LP-solution of the problem (1)—(4), the function v = v+¢
is an LP-solution of the problem (1)—(4). O

Corollary 9.8. Let 2 < pg < 0o be the constant from Theorem 8.7.
Let 1 < p < po, fLh € LP(OG), h > 0, g € Wol’p(y). If u is
a weak solution of the problem (1)—(4), then u € WLH2P(G), uy €
Ccw=D/r(cl Hy), u_ € CP=V/P(cl H_).

Proof. The corollary is a consequence of Proposition 9.7 and Corol-
lary 8.8. O
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10. Solution of the problem.

Lemma 10.1. Let 1 < p < oo, R > diam G, f,h € compl L?(9G),
Hi({z € 0G; |f(x)] > 0}) >0, h > 0. If X is a complex number such
that T, rf = Af, then A > 0.

Proof. Take f1, fo € LP(0G) such that f = fi + ifs. Let V; be the
sets from the Lemma 4.1 for H;. Since Sg(f1 — if2) is continuous in
R? by Lemma 3.1 and there is the nontangential limit of VSgf with
respect to H; almost everywhere in OH,, see Section 7, we get using
Fubini’s theorem, Green’s formula and Lebesgue’s lemma

/ [Sr(f1 —ifo)In™ - [VSr(f1 +if2)]+
= lim [Sr(f1 —if2)ln - [VSr(f1 +if2)]
i—o Jay,

:jnm [[VSrfil? + |VSrf2|*] d Ho

- / IVSrfi]* + |VSrfa|*] d Ho.
Hy
Similarly,
/ (Sr(frife)ln[VSr(fitifa)] = / IV Sk [PV Sk fal?) d Ho.
OH_ H_
Hence,

A/ (f1Srf1 + foSrf2) dHy
2G
= /aa[SR(fl —ifo)|Th,r(f1 +if2) dHy
— [ iSath —ifa)ln - IVSal + i)

n / (Sr(fy — ifo)ln - [VSr(f +if2)]-
OH_
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+ / W(Srf)? + (Snf2)?) dHy
oG

- / (VSR + VS fa?) dHy + / W(Srfi)?+ (Srfo)?) dHy.
G oG

Since

0< / (fiSrf1 + foSrf2) dH1 < 00,
PYe

by Lemma 8.1 and A > 0 we get

\ = JoIVSrfAP +IVSrf2|? ] dHy + [0 h(Srf1)? + (Srf2)?] d Hi
Joc (/1Srf1+ foSrf2) dHy

> 0. ]

Lemma 10.2. Let 1 < p < oo, R > diam G, f € compl LP(9G),
Hi({z € 0G; |f(z)] > 0}) > 0. If X is a complex number such that
TO,Rf = /\f, then 0 < A < 1.

Proof. We can suppose that A # 0. Lemma 10.1 yields A > 0 and we
thus can suppose that f € LP(0G). Since SgA~!f is an LP-solution of
the problem (1)—(4) with A =0, g = 0 (see Section 7), Proposition 4.3
gives (). Since To.rf = f on v, we deduce from Ty rf = Af that
A =1or f =0 almost everywhere on v. We can restrict ourselves to
the case when f = 0 almost everywhere on ~.

Fix r > 0 such that 0G C ©,(0), and put V" = Q,(0) \ cl G. Let V;
be the sets from Lemma 4.1. Then

/|VSRf\2dH1 = _lim/ |VSrf|?dH,
1% J—00 ‘/J

= lim (Srf)(n-VSrf)dH,

J—o0 oV,
1
~ [ sen(y1-Ki)ors [ 2 sppan,
OH 2 09,.(0) on

:(1—)\)/ stde1+/ Srf 05kt 43y,
8G 89,.(0) on
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Since (5) forces Spf(z) = o(1), VSrf(z) = O(1/|x|) as |z| — oo, we

get for r — o0,
[ 19safPar=-x [ fsafdr.
R2\cl G oG

Using Lemma 8.1, we get

(1 )\) . fR2\01 G ‘VSRfF dHl >
B fag fSRf d'Hy -

So, A < 1. O

Notation 10.3. Let X be a complex Banach space, and let T
be a bounded linear operator in X. Denote by o(7T') the spectrum
of T, r(T) = sup{|A|; XA € o(T)} the spectral radius of T' and
re(T) = sup{|Al; M — T is not a Fredholm operator with index 0}
the essential spectral radius of T'.

Lemma 10.4. Let 1 < p < oo, R > diam G, h € LP(0G), h > 0.
Put Vi, f = hSgf for f € compl LP(0G). Then

(29) 7(Vh) < sup Sgh(z).
z€0G

Proof. If f € compl L'(0G), then Fubini’s theorem yields
| seflars < [ |fiSehdr < [ \fdH: - s Seha).
oG oG oG ©€dd
Hence, V}, is a bounded linear operator in compl L!(dG) and
HVh”compl L'(0G) < sup SRh(x)
z€dG

According to [26, Chapter VIII, Section 2, Theorem 3] and [26,
Chapter VIII, Section 2, Theorem 4],

(30) r(Va) < [[Vall < sup Sgh(z)
z€0G

in compl L*(9G).
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Let now A € o(Vp) in compl LP(0G), A # 0. Since V}, is a
compact linear operator in compl LP(0G), by Lemma 3.1 there is an
f € compl LP(0G) such that Hi({z € 9G; |f(z)| > 0}) > 0 and
Vif = Af, see [26, Chapter X, Section 5, Theorem 2]. Thus A € o(V4)
in compl L' (dG). According to (30),

Al < sup Sgh(z).
z€0G

This forces (29). O

Lemma 10.5. Let T be a bounded continuously invertible linear
operator on the complex Banach space X. If o is a nonzero complex
number such that o(T) C {8 € C; |8 — | < |a|}, then there are
constants q € (0,1), M € (1,00) such that

(31) It = a™'T)"|| < Mqg"

for each nonnegative integer and

(32) T'=at Z o iT)"

Proof. o(a™'T —1I) C {8 € C; |B] < 1} by the spectral mapping
theorem, see [26, Chapter VIII, Section 7]. Since o(a™!T — I) is
compact, see [26, Chapter VIII, Section 2, Theorem 1], we deduce
r(a T — 1) < 1. Fix ¢ € (r(a™'T —I),1). Since r(a 1T —I) =
lim[||(a= T — I)™||]*/™ as n — oo, see [26, Chapter VIII, Section 2],
there is a constant M € (1, 00) such that (31) holds. So, the series (32)
converges. Easy calculation yields

(o9}

_12 —1T _(I_a—lT)Z(I_a—lT)n

n=0
(oo}
+Y I—a'T)" =1,
n=0

and (32) holds. O
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Theorem 10.6. Let 1 < p < oo, h € LP(9G), h > 0. Sup-
pose To(Kp) < (1/2) in compl LP(OH), R > diam G. If Hi({z €
8G; h(l‘) > 0}) >0, put Th,R = Th,R- Put

(33) ag =14 sup Sgh(x).
z€0G

If a > ag/2, there are constants q € (0,1), M € (1,00) dependent on
G, h, p and « such that

(34) I(I — o™ Thr)" | < Mq"

for each nonnegative integer, the operator Th, R s continuously invert-
ible and

oo
(35) T,p=a 'Y (I—a 'Thr)"
n=0

Proof. r.(To.r — (1/2)I) < 1/2 in compl LP(0H) by Lemma 8.6.
If X € o(Toor — (1/2)I), |A| > (1/2), then X is an eigenvalue of
To,r — (1/2)I. Since |A| < (1/2) for each eigenvalue of Ty g — (1/2)I
by Lemma 10.2 we get r(Tp, g — (1/2)I) < 1/2 in compl L?(0G). Put
Vif = hSgf for f € compl LP(0G). According to Lemma 10.4, [26,
Chapter VIII, Section 2] and [6, Satz 45.1], we have r(T}, g — (1/2)I) <
r(To,r — (1/2)I) + (Vi) < ap — (1/2) in compl L?(0G).

If A > (1/2), X # (1/2), then M — (T, r — (1/2)I) is a Fredholm
operator with index 0 by Lemma 8.6. If, moreover, A € o((Th.r —
(1/2)I)), then A is an eigenvalue of (T}, g —(1/2)I). Since A+(1/2) is an
eigenvalue of the operator T}, g, Lemma 10.1 yields 0 < A+(1/2). Hence
o((Th,r — (1/2)1)) C {A € C5 |A| < (1/2)} U{1/2} U (=1/2,7((Th,r —
(1/2))y c {x € C; |A < (1/2)} U {(=1/2,09 — (1/2)). Using the
spectral mapping theorem, see [26, Chapter VIII, Section 7], we get
o(Thm) © A € G5 |A— (1/2)] < (1/2)} U (0, ).

Let A € C\ o(Th,r). If Hi({z € 0G; h(x) > 0}) > 0, put LY (9G) =
LP(0G). Since compl L7 (0G) is a T}, g-invariant closed linear subspace
of finite codimension in compl LP(0G) and T r — Al is a Fredholm
operator with index 0, the operator Th., r — M is a Fredholm operator
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with index 0 in compl L} (0G) by [18, Proposition 3.7.1]. Since the
kernel of the operator Thﬁ — M is trivial the operator (Thﬂ —Al)
is onto and the closed graph theorem, see [26, Chapter II, Section 6,
Theorem 1], gives that T;% r — M is continuously invertible. Thus,
U(th7R) Co(Thr) C{N € C; |A—(1/2)] < 1/2} U (0, ). Since Ty g
is a Fredholm operator with index 0, Proposition 8.4 shows that Th., R
is continuously invertible. Therefore, o(Tj, r) C {A € C; |A — (1/2)] <
1/2} U (0,a0) C {A € C; |\ — ] < a}. The rest is a consequence of
Lemma 10.5.

Lemma 10.7. Let OH be formed by closed curves T'y,... ,I'y. Let
l<p<oo. For fe LP(T';),y ey, j=1,...,k define

) K= g o [ 7)) gy,

DA\Q () lz —y|?

Then K is a bounded linear operator in LP(I';). Let A be a complex
number. Then \I — K} is a Fredholm operator in compl LP(OH) if and
only if \I =K is a Fredholm operator in compl LP(L';) forj =1,... k.
Moreover, i(A — Kj§;) = i(AM — K{) + - +i(M — K}).

Proof. For f € LP(OH), define

Lf(y) =K;f(y) for yeTly.

Then L is a bounded operator in LP(0H). Since f is in the kernel of
M — L if and only if f|T'; is in the kernel of AT — K forj=1,... k,
and g is in the range of (M — L) if and only if g|T'; is in the range
of (\[ — K7) for j = 1,... ,k, we deduce that A — L is a Fredholm
operator in compl LP(0H) if and only if A\l — K7 is a Fredholm operator
in compl LP(T;) for j =1,... ,k and i(A\] — L) = i(A\] — K})+ -+~ +
i — K}).

Since Kj; — L is a compact linear operator from LP(0H) to C'(0H)
by Arzela-Ascoli’s theorem and the imbedding C(0H) into LP(OH) is
a bounded linear operator, the operator Kj, — L is a compact linear
operator in L?(OH), see [26, Chapter X, Section 2]. Since the operator
K7 — L is compact, the operator Al — Kj; is a Fredholm operator in
compl LP(OH) if and only if the operator AT — L is a Fredholm operator
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in compl LP(0H) and i(A — Kj;) = i(A — L), see [24, Chapter V,
Theorem 3.1]. o

Lemma 10.8. Let 1 < p < co. If(1/2)I+K}; is a Fredholm operator
in compl LP(0H), then i((1/2)I+K};) < 0. Let 0H be formed by closed
curves I',... ,T'x. Let K} be the operators in LP(L';) given by (36).
Then (1/2)I+ K3; is a Fredholm operator in compl LP(OH) with index
0 if and only if (1/2)I + K is a Fredholm operator in compl LP(T';)
with index 0 for j=1,... k.

Proof. We can suppose that v = @. Fix R > diam H. Let
(1/2)I + Kj; be a Fredholm operator in compl LP(0H). Put h = 1.
Then T}, g is a Fredholm operator in compl LP(0H) and i(T), r) =
i((1/2)I + K*) by Lemma 8.6. If o € LP(0H), T), r = 0, then Sgyp is
an LP-solution of the problem (1)—(4) with f = 0. Thus, Sgp =0in H
by Theorem 5.1. Since Sgp is continuous on ¢l H by Lemma 3.1, we
deduce Spp = 0 on 0H. Lemma 8.1 yields ¢ = 0 almost everywhere on
O0H. Thus, o(Th r) = 0and i((1/2) I+ K};) = i(Th,r) = —8(Th,r) <O0.

If (1/2)I+ K7 is a Fredholm operator in compl LP(I';) with index 0 for
j=1,...,k, then (1/2)I+K7}; is a Fredholm operator in compl LP(0H)
with index 0 by Lemma 10.7. Suppose now that (1/2)I + Kj; is a
Fredholm operator in compl LP(0H) with index 0. Then the operator
(1/2)I+ K is a Fredholm operator in compl LP(T';) for j = 1,... ,k by
Lemma 10.7. Fix j. If H is a subset of the interior of I';, then put V the
interior of I';. If H is a subset of the exterior of I';, fix R > 0 such that
I'; € Qr(0) and put V the bounded domain which boundary is formed
by T'; and 02z (0). In both cases, Lemma 10.7, [3, Theorem 1.9] and
[24, Chapter IV, Theorem 2.2] yield that (1/2)I 4+ K3 is a Fredholm
operator in compl LP(8V) and i((1/2)I + Ky) = i((1/2)I + KJ).
Thus, i((1/2)I + K7) = i((1/2)I + Ky;) < 0. Since 0 = i((1/2)] +
Ky) = i((1/2)I + K§) + --- +i((1/2)I + K;) by Lemma 10.7 and
i((1/2)I+K;) <O0forj=1,...,k, we conclude that i((1/2)[+K}) =0
forj=1,... k. a

Definition 10.9. Let S be a rectifiable curve, and let s denote the
arc length on S, 0 < s < [. If the angle 6(s) made by the positively



502 D. MEDKOVA

oriented tangent and the abscissa is a function of bounded variation on
(0,1), the curve S is said to be a curve with bounded rotation.

We remark that piecewise C'*t® bounded curves with o > 0 and the
boundary of a convex bounded set are curves with bounded rotation.
On the other hand, there are C! bounded curves which are not curves
with bounded rotation.

Notation 10.10. For z € R?, denote

L Ha(R(2)NG)
do(x) = i = @)

the density of G at x.

Proposition 10.11. Let 0H be formed by finitely many curves with
bounded rotation. Let po have the meaning of Theorem 8.7. Then

—1
(37) po =1+ ( sup |1 — 2dH(a:)|)
r€0H
and r.(K}) < (1/2) in compl LP(OH) for each 1 < p < po. (If
dy(x) = (1/2) for all x € OH, then py = o0.) If pg < p < oo,
h e LP(0G), h > 0, R > diam G then Ty g is not a Fredholm operator
with index 0 in LP(0QG).

Proof. Let I'1,... T’y be curves with bounded rotation which form

OH. Put .
pj =1+ (sup |1 — 2dH(a:)|)
z€ly

for j = 1,...,k. Let Kj be given by (36) for j = 1,... k. If
1 < p < oo, then (1/2) + K7 is a Fredholm operator with index 0
in compl LP(T;) if and only if p < pj, see [19, Lemma 24]. Using
Lemma 10.8 we get that (1/2)+ K7}, is a Fredholm operator with index 0
in compl L?(0H) if and only if p < min{p;; j =1,...,k}. According
to Lemma 8.6, the operator T}, g is a Fredholm operator with index 0
in compl LP(9G) if and only if p < min{p,; j =1,...,k}. Therefore,
po is given by (37). O
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We use the following result proved in [19, Lemma 27]:

Lemma 10.12. Let 1 < p < oo. Suppose that, for each x € OH there
are v > 0, an open set D with compact Lipschitz boundary such that
re(K3) < (1/2) in compl LP(9D), and there is a coordinate system
and Lipschitz functions W1, Uy defined in a neighborhood of 0 such
that W1(0) = Uy(0), ¥y — Wy is of class Ct, (U1 — Uy)"(0) = 0 and
UNH ={[t,s]; [t| <7, s>T1(t)}, UND = {[t,s]; [t| <7, s> Ta(t)}
for some neighborhood U of the point © = [0,0]. Then r.(K}) < 1/2
in compl LP(0H).

Theorem 10.13. Let H have piecewise C' boundary,

~1
(38) 1<p<1+<sup |1—2dH(a:)|) .
r€0H

Then p < po (see Theorem 8.7) and r.(Kj) < 1/2 in compl LP(0H).
Let h € LP(0G), h > 0, R > diam G. Fiz a > /2 where ayg is given
by (33). Let f € LP(0G), g € Wol’p(v). If h = 0 almost everywhere in
0G, suppose moreover (5). Let F be given by (11)—(13). Put

p=at Z(I —a Ty, g)"F.
n=0

If Hi({z € 0G; h(z) > 0}) > 0, then Dg+ Sgry is the general form of
an LP solution of the problem (1)—(4). If h = 0 almost everywhere in
O0G, then the general form of an LP solution of the problem (1)—(4) is
Dg + Srp + ¢, where ¢ is an arbitrary constant.

Proof. Fix x € JH. We can choose such a coordinate system, a
Lipschitz function ¥; and r > 0 that z = [0,0], ¥; € C((-r,0)),
U, € CY(0,7)) and UN H = {[t,s]; [t| < r, s > Uy(t)} for
some neighborhood U of [0,0]. If [0,0] is not an angle point of
OH, then there is a bounded domain D with C!' boundary such that
DNU = HNU. Since K7, is a compact operator in compl LP(D), see [3,
Theorem 1.9], [24, Chapter IV, Theorem 2.2], yields that r.(K},) < 1/2
in compl L?(0D).
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Suppose now that [0,0] is an angle point of OH. Define ¥o(t) =
t(¥1)".(0) for 0 <t < r and Wa(t) = t(¥,)" (0) for —r <t < 0. We can
choose a bounded domain D with connected Lipschitz boundary such
that DNU = {[t, s]; [t| <r,s > Uy(t)}NU, and for each y € 9D\ [0, 0]}
there is a coordinate system, a neighborhood V of y, § > 0 and a
function ¢ € C*°(—4, §) such that DNV = {[t, s]; [t| < d, s > ¢(t)}NV.
Clearly, ¥1(0) = W5(0), ¥; — U5 is of class C! and (¥; — ¥5)(0) = 0.
Since 0D is a curve with bounded rotation and

—1 —1
p<1+(sup |1—2dH(a:)|> §1+(sup 1—2dD(a:)|>
r€OH x€dD

[19, Lemma 24] yields that r.(K7}) < 1/2 in compl LP(9D).

According to Lemma 10.12 we have 7.(K};) < 1/2 in compl LP(0H).
Now we use Theorem 8.7 and Theorem 10.6. O

11. Swuccessive approximation method. Let 1 < p < oo be
such that r.(K}) < 1/2 in compl LP(OH). (This is fulfilled if H has
piecewise C! boundary and (38) holds.) Let f,h € LP(0G), h > 0,
g € Wy () be such that an LP-solution of the problem (1)—(4) exists.
Let F' be given by (11)—(13). If h = 0 almost everywhere, then
JF dHy; = 0. Fix R > diam G. If ¢ € LP(JG) is a solution of the
equation T} ry = F, then Dg + Sgryp is an LP-solution of the problem
(1)—(4). We construct ¢ by the successive approximation method.

Fix a > ag where g is given by (33). (If h = 0 we can take o = 1.)
We can rewrite the equation T}, rp = F as ¢ = (I—a T, g)p+a ' F.
Put

Yo = OéilF,

Ont1 =T —a Ty g)pn +a 'F

for nonnegative integers n. Then

Pnt+1 = a_l Z(I — a_lT}hR)kF.
k=0
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According to Theorem 10.6, there is the limit ¢ of the sequence ¢,, in
LP(0G) and Tp rep = F. Since

o0

p=a 'Y (I —a T, g)"F,
k=0
©—p=a"1 Z (I —a T, g)"F
k=n-+1

there are constants ¢ € (0,1), C € (1,00), depending only on G, p, h,
R and « such that

le = emllzro) < Ca™ I lzroa) + lglhwar )
Iellzroa) < CIflzroa) + lglwoe

see Theorem 10.6.

Put u = Dg + Sry, un = Dg + Srpn. Then u is an LP-solution of
the problem (1)—(4) and there is a constant C' depending only on G, p,
h, R and « such that

[ = |26 + e = wmllwraay < Ca™ I flliecocy + lgllwtoay)

[ulpe (@) + llullwrze) < C[Hf”LP(aG) + ||9||W01~P(7)}7

see Lemma 3.1 and Lemma 6.1.

Example 11.1. Suppose that the boundary of G is formed by
segments C1, ... ,Cy of the lengths [1,... ,lx, and h is bounded. The
calculation of py using (37) is easy. For solving the problem (1)—(4) by
the method described above, we need an estimation of ay. Denote by
x; the center of C; for j =1,... k. If z € 0G, then

k
1
Seh(w) < [hl) 3 5= [ R/l —sl) dPa(y)
j=1 3

and thus
k

1
a0 <1+ |hllL=(oc) 5 > Li[1—In(l;/2R)).
j=1
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