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THE THIRD PROBLEM FOR THE LAPLACE EQUATION
ON A PLANAR CRACKED DOMAIN WITH

MODIFIED JUMP CONDITIONS ON CRACKS

DAGMAR MEDKOVÁ

ABSTRACT. The paper studies the third problem for the
Laplace equation on a cracked bounded planar domain with
multiply connected Lipschitz boundary and boundary condi-
tions from Lp. It is shown that, for 1 < p ≤ 2, there is a unique
solution of the problem. This solution is constructed for a
domain, which boundary is formed by curves with bounded
rotation.

1. Introduction. Several boundary value problems for the Laplace
equation in a cracked planar domain has been studied by the integral
equation method recently, see [12 15]. Krutitskii studied in [11]
the boundary value problem for the Laplace equation outside several
smooth cuts in the plane. Two boundary conditions were given on
the cuts. One of them specified the jump of the unknown function.
Another one of the type of the Robin condition contained the jump of
the normal derivative of an unknown function and the one-side limit of
this function on the cuts. He looked for a solution of the problem in the
form of the sum of a single layer potential and an angular potential. He
has reduced the problem to solving an integral equation which turns out
to have a unique solution. Therefore, he proved the unique solvability
of the problem under the assumption that the boundary conditions
are smooth. We remark that he studied the same problem for the
Helmholtz equation by the same method, see [10].

This paper deals with the boundary value problem for the Laplace
equation on a bounded multiply connected planar domain G with
Lipschitz boundary and cracks. The cracks are arbitrary closed subsets
of Lipschitz arcs and can touch the boundary. The Robin condition
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is given on the boundary of the domain. The same conditions as
in [11] are on the cuts. The boundary conditions are from Lp(∂G),
and they are fulfilled in the sense of the nontangential limit. We
found the necessary and sufficient conditions for the solvability of the
problem. We compared an Lp-solution of the problem and a weak
solution in W 1,2(G). We proved that the Lp-solution is a weak solution
in W 1,2(G). (The Lp-solution is a strong solution in some sense.) On
the other hand, we proved that for 1 < p ≤ 2 the weak solution with
Lp data is an Lp-solution. From this fact we deduced Hölder regularity
results for a weak solution.

The Robin problem was studied for noncracked domains with con-
nected Lipschitz boundary in Rm, where m > 2, by Lanzani and Shen
in [17]. They looked for a solution in the form of a single layer po-
tential Sg where g ∈ Lp(∂G). Hence, the authors were led to solving
the integral equation (1/2)g + K∗g + hSg = f instead of the original
problem with the boundary condition ∂u/∂n + hu = f . They proved
for 1 < p ≤ 2 that (1/2)I +K∗ +hS is a Fredholm operator with index
0 in Lp(∂G). Since the kernel of this operator is trivial, it gives that the
operator (1/2)I + K∗ + hS is continuously invertible in Lp(∂G). This
article includes the Robin problem for a noncracked domain as a special
case. Unfortunately, it is not possible to use the approach of Lanzani
and Shen for planar domains because the operator (1/2)I + K∗ + hS
is not injective. We looked for a solution of the problem in the form of
the sum of a modified single layer potential with an unknown density
ϕ ∈ Lp(∂G) and a double layer potential corresponding to the jump on
the crack. (If G has no cracks then we look for a solution in the form
of a modified single layer potential.) We reduced the problem to the
integral equation τϕ = f on ∂G.

In the last part of the paper we constructed the solution of the
corresponding integral equation τϕ = f . Fabes, Sand and Seo studied
in [4] this problem for the Neumann problem in noncracked domains.
They proved for G convex and f ∈ L2(∂G),

∫
f dH1 = 0 that

ϕ = 2
∞∑

j=0

(I − 2τ )jf

is a solution of the equation τϕ = f . Unfortunately, this series does
not converge for multiply connected sets. We expressed the solution of
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the equation τϕ = f as a series for f ∈ Lp(∂G), 1 < p ≤ 2, on a wide
class of domains including convex domains with cracks and domains
with piecewise C1 boundary and arbitrary cracks.

2. Formulation of the problem. We say that a bounded open
set H ⊂ R2 has Lipschitz boundary ∂H if there exist a finite number
of (“local”) coordinate systems (xk, yk), k = 1, . . . , m, and a finite
number of Lipschitz functions ϕk, k = 1, 2, . . . , m, defined on (−δ, δ),
where δ > 0, such that

1. (xk, yk) ∈ H for |xk| < δ, ϕk(xk) − δ < yk < ϕk(xk),

2. (xk, yk) /∈ cl H, the closure of H, for |xk| < δ, ϕk(xk) < yk <
ϕk(xk) + δ,

3. for every z ∈ ∂H there exists k, k = 1, . . . , m, and xk ∈ (−δ, δ),
such that z = (xk, ϕk(xk)) in the corresponding coordinate system.

(We will say that H has (piecewise) Cα boundary if ϕk above are
(piecewise) Cα.)

Let Γ be a rectifiable Jordan curve in R2. Let Γ be parametrized
by the arc length s : Γ = {ϕ(s); s ∈ [a, b]}. Extend ϕ as a periodical
function in R1 with the period b − a. Let f and ∂f/∂τ be functions
defined on Γ. We say that ∂f/∂τ is the tangential derivative of f on Γ
if ∫ d

c

h′(t)f(ϕ(t)) dt = −
∫ d

c

h(t)
∂f

∂τ
(ϕ(t)) dt

holds for all infinitely differentiable h supported in (c, d) with d − c <
b − a.

Let H ⊂ R2 be a bounded open set with Lipschitz boundary,
1 < p < ∞. We say that g ∈ W 1,p(∂H) if there is ∂g/∂τ ∈ Lp(∂H)
such that ∂g/∂τ is the tangential derivative of g on each curve from
∂H. Define for such a g the norm

‖g‖W 1,p(∂H) =
[ ∫

∂H

(
|g|p +

∣∣∣∣∂g

∂τ

∣∣∣∣
p)

dH1

]1/p

.

(Here Hk is the k-dimensional Hausdorff measure normalized so that
Hk is the Lebesgue measure in Rk.) W 1,p(∂H) endowed with this norm
is a Banach space.
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Let 1 < p < ∞, G an open subset of R2, k a positive integer. Denote
by W k,p(G) the space of all functions f ∈ Lp(G) such that ∂αf ∈ Lp(G)
in the sense of distributions for each multiindex α with |α| ≤ k. (Here
|α| is the length of α.) For f ∈ W k,p(G), denote

‖f‖W k,p(G) =
[ ∑
|α|≤k

∫
G

|∂αf |p dH2

]1/p

.

For K ⊂ R2, denote by Cα(K) the space of all α-Hölder functions on
K with the norm

‖g‖Cα(K) = sup
x∈K

|g(x)| + sup
x,y∈K
x�=y

|g(x) − g(y)|
|x − y|α .

For a bounded open set H, x ∈ ∂H and α > 0, denote

Γα(x, H) = {y ∈ H; |x − y| < (1 + α) dist (y, ∂H)}

the nontangential approach regions of opening α corresponding to H
and x. Here dist (y, M) denotes the distance of the point y from the
set M . If u is a function on H, we denote

Nα(u, H)(x) = sup{|u(y)|; y ∈ Γα(x, H)}

the nontangential maximal function of u with respect to H. If x ∈
cl Γβ(x, H) and

c = lim
y→x

y∈Γα(x,H)

u(y)

for each α > β, we say that c is the nontangential limit of u at x with
respect to H.

Let H, H+ ⊂ R2 be bounded open sets with Lipschitz boundaries,
H+ ⊂ H. (The boundaries of H and H+ consist of a finite number
of closed curves. We do not suppose that ∂H and ∂H+ are disjoint.)
Put H− = H \ clH+. Suppose that H− is an open set with Lipschitz
boundary and H is connected. Then the outward unit normal n(x),
(n+(x), n−(x)), to H, (H+, H−), exists at almost any point x of ∂H,
(∂H+, ∂H−), respectively. For a fixed closed subset γ of ∂H+ ∩ ∂H−,
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put G = H \ γ. We will study the Robin problem for the Laplace
equation on the cracked open set G. (We remark that γ is an arbitrary
closed subset of ∂H+ ∩ ∂H−. If H1(γ) = 0, then our problem reduces
to a problem without a crack, see below.)

Since H+, H− are open sets with Lipschitz boundary and H+∪H− ⊂
G, ∂G ⊂ (∂H+ ∪∂H−), there is an α > 0 such that for each x ∈ ∂G\γ
and y ∈ γ we have x ∈ cl Γα(x, G), y ∈ cl Γα(y, H+), y ∈ cl Γα(y, H−).
If u is a function in G, x ∈ ∂G \ γ (x ∈ ∂H+, x ∈ ∂H−) denote by
u(x), (u+(x), u−(x)) the nontangential limit of u at x with respect to
G (H+, H−), respectively.

Let 1 < p < ∞. Denote by W 1,p
0 (γ) the space of all g ∈ Lp(γ)

(≡ Lp(H1 | γ)) for which there is an extension g ∈ W 1,p(∂H+) such
that g = 0 on ∂H+ ∩ ∂H− \ γ. Denote

‖g‖W 1,p
0 (γ) =

[ ∫
γ

(
|g|p +

∣∣∣∣∂g

∂τ

∣∣∣∣
p)

dH1

]1/p

.

Fix p ∈ (1,∞). Let now h ∈ Lp(∂G) (≡ Lp(H1|∂G)), h ≥ 0,
f ∈ Lp(∂G), g ∈ W 1,p

0 (γ). We say that a function u on G is an
Lp-solution of the problem

Δu = 0 in G,(1)

∂u

∂n
+ hu = f on ∂G \ γ,(2)

u+ − u− = g on γ,(3)

[
∂u

∂n+

]
+

−
[

∂u

∂n+

]
−

+ hu+ = f on γ(4)

if 1. u is harmonic in G.

2. Nα(|∇u|, H+) ∈ Lp(H1|∂H+), Nα(|∇u|, H−) ∈ Lp(H1|∂H−).

3. The nontangential limits of u and ∇u with respect to G exist at
H1-almost any x ∈ ∂G \ γ and n(x) · ∇u(x) + h(x)u(x) = f(x) almost
everywhere on ∂G \ γ.
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4. The nontangential limits of u with respect to H+ and with respect
to H− exist H1-almost everywhere on γ and u+(x) − u−(x) = g(x)
almost everywhere on γ.

5. The nontangential limits of ∇u with respect to H+ and with
respect to H− exist H1-almost everywhere on γ and n+(x) · [∇u]+(x)−
n+(x) · [∇u]−(x) + h(x)u+(x) = f(x) almost everywhere on γ.

If h = 0 H1-almost everywhere on ∂G, we shall refer to (1) (4) as
being a Neumann problem. In the opposite case we shall refer to (1) (4)
as a Robin problem. If γ = ∅, then this definition coincides with the
common definition of an Lp-solution of the Neumann or the Robin
problem, compare [9, 17].

3. Single layer potentials. Fix R > 0. For f ∈ Lp(∂G), p > 1,
define

SRf(x) =
1
2π

∫
∂G

f(y) ln
R

|x − y| dH1(y)

the modified single layer potential with density f . In the case of several
sets, we will write SG

R f . (For R = 1 we get the usual single layer
potential.) We remark that SRf for different R’s differ by constants.
The function SRf is harmonic in R2 \ ∂G. Now we prove an auxiliary
lemma which will be used later.

Lemma 3.1. Let 1 < p < ∞, R > 0, h ∈ Lp(∂G). The operator
SR : f �→ SRf is a bounded linear operator from Lp(∂G) to W 1,2p(G)
and from Lp(∂G) to C(p−1)/p(cl G). If we denote Vhf = hSRf , then
Vh is a compact linear operator in Lp(∂G).

Proof. Suppose first that γ = ∅. Let f ∈ Lp(∂G). We will show
that SRf ∈ W 1,2p(G). Denote by Bp,q

α (G) the classical Besov space.
If p ≤ 2, then SRf ∈ Bp,2

1+1/p(G) ⊂ B2p,2
1 (G) ⊂ W 1,2p(G) by [21,

Theorem 7.4], [2, Theorem 6.5.1] and [2, Theorem 6.4.4]. Suppose now
that 2 < p. According to [21, Theorem 7.4], we have SRf ∈ Bp,p

1+1/p(G).
Using [8, Theorem 4.1], [8, Theorem 4.2] and the imbedding theorem,
see [1, Theorem 7.63], we have SRf ∈ W 1+1/p,p(G) ⊂ W 1,2p(G).

Denote
Ωr(x) = {y ∈ R2; |x − y| < r}.
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Fix r > 0 such that cl G ⊂ ΩR(0). Since G has Lipschitz bound-
ary, there is u ∈ W 1,2p(Ωr(0)) such that u = SRf in G, see [27,
Remark 2.5.2]. According to [7, Theorem 4.5.13], there is ũ ∈
C(p−1)/p(cl G) such that ũ = u = SRf almost everywhere in G.
Since SRf is a continuous function in cl G, we conclude SRf ∈
C(p−1)/p(cl G).

Let now γ �= ∅. Fix f ∈ Lp(∂G). Denote f1(x) = f(x) for x ∈ γ,
f1(x) = 0 elsewhere, f2(x) = f(x) for x ∈ ∂H, f2(x) = 0 elsewhere.
We have proved that SRf2 ∈ W 1,2p(G) ∩ C(p−1)/p(cl G), SRf1 ∈
W 1,2p(H+) ∩ C(p−1)/p(cl H+), SRf1 ∈ W 1,2p(H−) ∩ C(p−1)/p(cl H−).
Hence SRf = SRf1 + SRf2 ∈ W 1,2(G) ∩ C(p−1)/p(cl G).

If fn → f in Lp(∂G), then SRfn(x) → SRf(x) for each x ∈ G. The
closed graph theorem, see [26, Chapter II, Section 6, Theorem 1], gives
that SR is a bounded liner operator from Lp(∂G) to W 1,2(G) and from
Lp(∂G) to C(p−1)/p(cl G).

Since SR is a continuous linear operator from Lp(∂G) to C(p−1)/p(cl G),
the operator SR maps each bounded subset of Lp(∂G) onto the set of
equibounded equicontinuous functions on ∂G. Since such a set is pre-
compact in C(∂G), see [26, Chapter III, Section 3], the operator SR is
a compact linear operator from Lp(∂G) to C(∂G). Denote Hg = hg
for g ∈ C(∂G). Then H is a bounded linear operator from C(∂G) to
Lp(∂G). Since Vh is the composition of the bounded linear operator H
and the compact linear operator SR, it is a compact linear operator,
see [26, Chapter X, Section 2, Theorem].

4. Properties of solutions. Verchota proved the following lemma,
see [25, Theorem 1.12].

Lemma 4.1. If V is a bounded open set with Lipschitz boundary,
then there is a sequence of C∞ domains Vj with the following properties:

1. cl Vj ⊂ V .

2. There are homeomorphisms Λj : ∂V → ∂Vj, such that sup{|y −
Λj(y)|; y ∈ ∂V } → 0 as j → ∞, and there is an α > 0 such that
Λj(y) ∈ Γα(y, V ) for each j and each y ∈ ∂V .

3. There are positive functions ωj on ∂V bounded away from zero
and infinity uniformly in j such that, for any measurable set E ⊂
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∂V ,
∫

E
ωj dH1 = H1(Λj(E)), and so that ωj → 1 pointwise almost

everywhere and in every Lq(H1), 1 ≤ q < ∞.

4. The normal vectors to Vj, n(Λj(y)), converge pointwise almost
everywhere and in every Lq(∂V ), 1 ≤ q < ∞, to n(y).

Proposition 4.2. Let u be an Lp-solution of the problem (1) (4),
1 < p < ∞. Then u ∈ W 1,2(G) and u can be continuously extended
onto cl H+ and onto cl H−.

Proof. Put q = min(p, 2). Fix a component V of H+. Define
F = n+ · [∇u]+ on ∂V . Then u is an Lq solution of the Neumann
problem for the Laplace equation on V with the boundary condition
F . According to [20, Theorem 5.1] and [20, Theorem 5.2] there is
a ϕ ∈ Lq(H1|∂V ) such that SV

1 ϕ is an Lq solution of the Neumann
problem for the Laplace equation in V with the boundary condition F .
Lemma 3.1 yields that SV

1 ϕ ∈ C(cl V ) ∩ W 1,2(V ). According to [9,
Corollary 2.1.12], there is a constant c such that u = SV

1 ϕ + c in
V . Therefore u ∈ C(cl V ) ∩ W 1,2(V ). Since V is arbitrary, we have
u ∈ C(cl H+)∩W 1,2(H+). Similarly, u ∈ C(cl H−)∩W 1,2(H−). Since
u ∈ C∞(G) and ∂αu ∈ L2(G) for each multi-index α with |α| ≤ 1, we
deduce u ∈ W 1,2(G).

Proposition 4.3. Let 1 < p < ∞, h ≡ 0, f ∈ Lp(H1|∂G). If there
exists an Lp-solution of the problem (1) (4), then

(5)
∫

∂G

f dH1 = 0.

Proof. Denote F+ = n+ · [∇u]+ in ∂H+ and F− = n− · [∇u]− in ∂H−.
Let Vj be a sequence of open sets from Lemma 4.1 corresponding to H+.
Since u is a classical solution of the Neumann problem for the Laplace
equation in Vj with the boundary condition n·∇u, the Lebesque lemma
yields

0 = lim
j→∞

∫
∂Vj

n · ∇u dH1 =
∫

∂H+

F+ dH1.
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Similarly,

0 =
∫

∂H−
F− dH1.

Since n− = −n+ on ∂H+ ∩ ∂H−, we have

0 =
∫

∂H−
F− dH1 +

∫
∂H+

F+ dH1 =
∫

∂G

f dH1.

5. Uniqueness.

Theorem 5.1. Let 1 < p < ∞, h ∈ Lp(∂G), h ≥ 0, f ≡ 0, g ≡ 0, u
be an Lp-solution of the problem (1) (4). Then u is constant in G. If
H1({x ∈ ∂G; h(x) > 0}) > 0, then u = 0 in G.

Proof. Let Vj be the sets from the Lemma 4.1 corresponding to the
set H+. Since g ≡ 0, the function u can be extended, to the function
continuous on the closure of G, see Proposition 4.2. Using Green’s
formula and Lebesgue’s lemma, we get∫

∂H+

u(n+ · [∇u]+) dH1 = lim
j→∞

∫
∂Vj

u(n · ∇u) dH1

= lim
j→∞

∫
Vj

|∇u|2 dH2 =
∫

H+

|∇u|2 dH2.

Similarly, ∫
∂H−

u(n− · [∇u]−) dH1 =
∫

H−
|∇u|2 dH2.

Since n− = −n+ on ∂H+ ∩ ∂H−, we get using the continuity of u on
cl G,

0 =
∫

∂G\γ

[u(n · ∇u) + hu2] dH1

+
∫

γ

u{n+ · [∇u]+ − n+ · [∇u]− + hu+} dH1

=
∫

∂G

hu2 dH1 +
∫

∂H+

u(n+ · [∇u]+) dH1 +
∫

∂H−
u(n− · [∇u]−) dH1

=
∫

∂G

hu2 dH1 +
∫

G

|∇u|2 dH2.
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Since h ≥ 0, we have

∫
∂G

hu2 dH1 = 0,

∫
G

|∇u|2 dH2 = 0.

Since ∇u = 0 on G, the function u is constant in each component of
G. Since u is continuous in cl G, there is a constant c such that u = c
on cl G. If H1({x ∈ ∂G; h(x) > 0}) > 0, then

c2 =
[∫

∂G

h dH1

]−1 ∫
∂G

hu2 dH1 = 0.

6. Double layer potentials. If V is a bounded open set with
Lipschitz boundary, g ∈ Lp(∂V ) and nV (y) denotes the outward unit
normal to V at y, define

DV g(x) =
1
2π

∫
∂V

nV (y) · (y − x)
|x − y|2 g(y) dH1(y),

the double layer potential corresponding to V with density g. If
V = H+, we write Dg instead of DV g. The following lemma is an
easy generalization of known results.

Lemma 6.1. Let 1 < p < ∞, g ∈ W 1,p(∂H+). Then Dg is a har-
monic function in G, Nα(|∇Dg|, H+)∈ Lp(H1|∂H+), Nα(|∇Dg|, H−)∈
Lp(H1|∂H−), there are the nontangential limits of ∇Dg with re-
spect to H+ and with respect to H− H1-almost everywhere in γ and
n+(x) · [∇Dg]+(x) − n+(x) · [∇Dg]−(x) = 0 almost everywhere in γ.
There is the nontangential limit of ∇Dg with respect to G H1-almost
everywhere in ∂G \ γ and

‖|∇Dg|‖Lp(∂G\γ) ≤ C‖g‖W 1,p(∂H+),

where C is a constant depending only on G and p. The function
Dg can be extended onto [Dg]+ ∈ C(p−1)/p(cl H+) and onto [Dg]− ∈
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C(p−1)/p(cl H−). Moreover, [Dg]+ − [Dg]− = g H1-almost everywhere
in ∂H+ ∩ ∂H− and Dg ∈ W 1,2p(G),

‖Dg‖W 1,2p(G) + ‖Dg‖L∞(G) ≤ C̃‖g‖W 1,p(∂H+),

where C̃ is a constant depending only on G and p.

Proof. Since g ∈ W 1,p(∂H+), we can suppose that g is continuous,
see [1, Theorem 5.4]. Since ∂H+ ∩ ∂H− is formed by finitely many
arcs and there is a continuous extension operator from W 1,p((a, b)) to
W 1,p(R1), see [1, Theorem 4.26], we can extend g onto g ∈ W 1,p(∂H−)
so that

‖g‖W 1,p(∂H−) ≤ M‖g‖W 1,p
0 (γ),

with a constant M depending only on G and p. We can again suppose
that g is continuous. By the characterization of W 1,p on an interval,
we see that g ∈ W 1,p(∂H).

The boundary of H+ is formed by finitely many Jordan curves. Fix
one of these curves Γ. Denote gΓ = g on Γ, gΓ = 0 elsewhere.
Let Γ be parametrized by the arc length s: Γ = {ϕ(s); s ∈ [a, b]}
and H+ is to the right when the parameter s increases on Γ. Put
f(ϕ(s)) = −[g(ϕ)]′(s). Then f ∈ Lp(Γ) because g ∈ W 1,p(∂H+). For
x ∈ R2 \ Γ and s ∈ [a, b], denote by v(x, ϕ(s)) the increment of the
argument of y − x along the curve {y = ϕ(t); t ∈ [a, s]}, and

V f(x) =
1
2π

∫
Γ

v(x, y)f(y) dH1(y)

the angular potential corresponding to f . (The angular potential was
introduced and studied by Gabov in [5].) Define f = 0 on R2 \Γ. Since
V f is a conjugate function to −SH+

1 f , see [19, pp. 226 227], we have

∂V f

∂x1
= −∂SH+

1 f

∂x2
,

∂V f

∂x2
=

∂SH+
1 f

∂x1
.

Using boundary properties of single layer potentials, see [9, Theo-
rem 2.2.13], we can deduce that Nα(|∇V f |, H+) ∈ Lp(H1|∂H+), there
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are the nontangential limits of ∇V f with respect to H+ and with re-
spect to H− H1-almost everywhere in γ and n+(x)·[∇V f ]+(x)−n+(x)·
[∇V f ]−(x) = 0 almost everywhere in γ and

‖|[∇V f ]+|‖Lp(∂H+) = ‖|[∇SH+
1 f ]+|‖Lp(∂H+)

≤ C1‖f‖Lp(∂G) ≤ C2‖gΓ‖W 1,p(∂H+),

where C1, C2 are constants depending only on G and p. Using
Lemma 3.1 we get that ∂1V f, ∂2V f ∈ L2p(G). Since V f is continuously
extendible onto cl H+ by [19, Lemma 5], we obtain V f ∈ W 1,2p(H+).

Put g̃ = g − g(ϕ(a)), ĝ = g(ϕ(a)) on Γ, g̃, ĝ = 0 elsewhere. Since

gΓ(ϕ(s)) − gΓ(ϕ(a)) =
∫ s

a

(−f(t)) dt =
∫ b

s

f(t) dt,

we have according to [19, p. 226],

DH+ g̃ = V f.

Therefore, Nα(|∇DH+ g̃|, H+) ∈ Lp(H1|∂H+), there are the nontan-
gential limits of ∇DH+ g̃ with respect to H+ and with respect to
H− H1-almost everywhere in γ and n+(x) · [∇DH+ g̃]+(x) − n+(x) ·
[∇DH+ g̃]−(x) = 0 almost everywhere in γ. Moreover, DH+ g̃ ∈
W 1,2p(H+) and DH+ g̃ can be continuously extendible onto cl H+.
It is well known that the double layer potential with constant den-
sity corresponding to the Jordan curve Γ is constant in the inte-
rior of Γ and in the exterior of Γ as well. (We can prove it us-
ing the expression of a harmonic function as the sum of the single
layer potential corresponding to the normal derivative and the dou-
ble layer potential corresponding to the boundary value of the func-
tion.) Thus ∇DH+ ĝ = 0 in R2 \ Γ. So, there are the nontangen-
tial limits of ∇DgΓ = ∇DH+ g̃ with respect to H+ and with respect
to H− H1-almost everywhere in γ, Nα(|∇DgΓ|, H+) ∈ Lp(H1|∂H+),
n+(x) · [∇DgΓ]+(x) − n+(x) · [∇DgΓ]−(x) = 0 almost everywhere in γ
and

‖|[∇DgΓ]+|‖Lp(∂H+) ≤ C2‖gΓ‖W 1,p(∂H+).

Summing over all Γ we get Nα(|∇Dg|, H+) ∈ Lp(H1|∂H+); there
are the nontangential limits of ∇Dg with respect to H+ and with
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respect to H− H1-almost everywhere in γ, n+(x) · [∇Dg]+(x)−n+(x) ·
[∇Dg]−(x) = 0 almost everywhere in γ and

‖|[∇Dg]+|‖Lp(∂H+) ≤ C2‖g‖W 1,p(∂H+).

Moreover, Dg ∈ W 1,2p(H+). Fix r > 0 such that cl H+ ⊂ Ωr(0).
Since H+ has Lipschitz boundary, there is a u ∈ W 1,2p(Ωr(0)) such
that u = Dg in H+, see [27, Remark 2.5.2]. According to [7,
Theorem 4.5.13], there is a ũ ∈ C(p−1)/p(cl H+) such that ũ = u = Dg
almost everywhere in H+. Since Dg ∈ C(H+), we have ũ = Dg in H+.

Similarly, Nα(|∇DH−g|, H−) ∈ Lp(H1|∂H−), Nα(|∇DHg|, H) ∈
Lp(H1|∂H), and

‖|[∇DH−g]−|‖Lp(∂H−) ≤ C3‖g‖W 1,p(∂H−),

‖|∇DHg|‖Lp(∂H) ≤ C3‖g‖W 1,p(∂H)

where C3 is a constant depending only on G and p. Moreover,
DHg ∈ W 1,2p(H), DH−g ∈ W 1,2p(H−), DHg can be extended onto
[DHg]− ∈ C(p−1)/p(cl H−) and DH−g can be extended onto [DH−g]− ∈
C(p−1)/p(cl H−). Since DHg = Dg + DH−g, we deduce that Dg ∈
W 1,2p(G), and Dg can be extended onto [Dg]− ∈ C(p−1)/p(cl H−).
Since Nα(|∇DH−g|, H−), Nα(|∇DHg|, H−) ∈ Lp(∂H− \∂H+), we have
Nα(|∇DHg|, H−) ∈ Lp(∂H− \ ∂H+) and

‖|∇Dg|‖Lp(∂G\γ) ≤ (C2 + C3 + 2C3M)‖g‖W 1,p(∂H+).

Fix R > 0 such that cl H ⊂ ΩR(0). Put g = 0 on ∂ΩR(0) and
U = ΩR(0) \ cl H+. We have shown that Nα(|∇DUg|, U) ∈ Lp(∂U).
If gn → g in W 1,p(∂H+), then Dgn(x) → Dg(x) for each x ∈ G. The
closed graph theorem, see [26, Chapter II, Section 6, Theorem 1], gives
that D : g �→ Dg is a bounded linear operator from W 1,p(∂H+) to
W 1,2p(G) and from W 1,p(∂H+) to L∞(G).

According to [9, Theorem 2.2.13], we have [Dg]+(x)−[Dg]−(x) = g(x)
almost everywhere in ∂H+ ∩ ∂H−.

7. Reduction of the problem. If 1 < p < ∞, ε > 0, we define for
w ∈ Lp(∂G), x ∈ ∂G \ γ,

K∗
G,εw(x) =

1
2π

∫
∂G\Ωε(x)

w(y)
n(x) · (y − x)

|x − y|2 dH1(y).
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(We repeat that Ωε(x) is the open ball with the center x and the
radius ε.) Denote w1(x) = w(x) for x ∈ γ, w1(x) = 0 elsewhere,
w2(x) = w(x) for x ∈ ∂H ∩ ∂H+, w2(x) = 0 elsewhere, w3(x) = w(x)
for x ∈ ∂H ∩ ∂H−, w3(x) = 0 elsewhere. If we use the properties of
the single layer potentials with densities w1, w2 and w3 corresponding
to open sets H+, H− and H, see [9, Theorem 2.2.13], we get that for
H1 almost any x ∈ ∂G \ γ there is

K∗
Gw(x) = lim

ε→0+
K∗

G,εw(x)

and K∗
G is a bounded linear operator from Lp(∂G) to Lp(∂G \ γ).

Let 1 < p < ∞, f ∈ Lp(∂G), h ∈ Lp(∂G), h ≥ 0, g ∈ W 1,p
0 (γ). We

will look for a solution u of the problem (1) (4) in the form

(6) u = Dg + v.

According to Lemma 6.1 and [9, Theorem 2.2.13], the function u is an
Lp solution of the problem (1) (4) if and only if the function v is an
Lp solution of the problem

Δv = 0 in G,(7)

∂v

∂n
+ hv = F on ∂G \ γ,(8)

v+ − v− = 0 on γ,(9)

[
∂v

∂n+

]
+

−
[

∂v

∂n+

]
−

+ hv+ = F on γ(10)

where

F = f − ∂Dg

∂n
− hDg on ∂G \ ∂H+,(11)

F = f − n · [∇Dg]+ − h[Dg]+ on ∂G ∩ ∂H+ \ γ,(12)
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(13) F (x) = f(x) − h(x)
(

1
2

g(x) + K∗
H+

g(x)
)

, x ∈ γ.

We will look for an Lp solution of the problem (7) (10) in the
form of a modified single layer potential SRw where w ∈ Lp(∂G)
and R > diam G, the diameter of G. Denote w1(x) = w(x) for
x ∈ γ, w1(x) = 0 elsewhere, w2(x) = w(x) for x ∈ ∂H ∩ ∂H+,
w2(x) = 0 elsewhere, w3(x) = w(x) for x ∈ ∂H ∩ ∂H−, w3(x) = 0
elsewhere. If we use the properties of the single layer potentials with
densities w1, w2 and w3 corresponding to open sets H+, H− and H,
see [9, Theorem 2.2.13], we get that Nα(|∇SRw|, H+) ∈ Lp(∂H+) and
Nα(|∇SRw|, H−) ∈ Lp(∂H−), the nontangential limit of ∇SRw with
respect to G exists almost everywhere in ∂G \ γ and

(14) n(x) · ∇SRw(x) =
1
2

w(x) + K∗
Gw(x) a.e. in ∂G \ γ,

the nontangential limits of ∇SRw with respect to H+ and with respect
to H− exist almost everywhere in γ and

(15) n+(x) · [∇SRw]+(x) − n+(x) · [∇SRw]−(x) = w(x) a.e. in γ.

Since the modified single layer potential SRw is a harmonic function in
G, we get using Lemma 3.1 that SRw is an Lp solution of the problem
(7) (10) if and only if

(16) Th,Rw = F

where

Th,Rw =
1
2

w + K∗
Gw + hSRw on ∂G \ γ,(17)

Th,Rw = w + hSRw on γ.(18)

Since K∗
G is a bounded linear operator from Lp(∂G) to Lp(∂G \ γ),

Lemma 3.1 gives that Th,R is a bounded linear operator in Lp(∂G).



486 D. MEDKOVÁ

8. Solvability of the problem.

Lemma 8.1. Let 1 < p < ∞, g ∈ Lp(∂G), H1({x ∈ ∂G; |g(x)| >
0}) > 0, R > diam G. Then

0 <

∫
∂G

g(x)SR g(x) dH1(x) < ∞.

Proof. Fix x0 in ∂G. Put P (x) = (x − x0)/R, P−1(x) = Rx + x0

for x ∈ R2, G̃ = P (G). For x ∈ ∂G̃ put g̃(x) = g(P−1(x)). Then
g̃ ∈ Lp(∂G̃) and SRg(x) = RSG̃

1 g̃(P (x)) for x ∈ G. Denote by H the
restriction of H1 onto ∂G̃. Since SG̃

1 |g̃| is continuous in R2 by [19,
Lemma 4] we conclude

∫
|g̃|SG̃

1 |g̃| dH < ∞

and thus the real measure g̃H has finite energy, see [16, Chapter 1,
Section 4]). Since H1({x ∈ ∂G̃; |g̃(x)| > 0}) > 0, [16, Theorem 1.16]
yields ∫

g̃SG̃
1 g̃ dH > 0.

Now we use the fact that∫
∂G

g(x)SR g(x) dH1(x) = R2

∫
∂G̃

g̃(x)SG̃
1 g̃(x) dH1(x).

Lemma 8.2. Let 1 < p < ∞, h ∈ Lp(∂G), h ≥ 0, R > diam G,
ϕ ∈ Lp(∂G). If T 2

h,Rϕ = 0, then Th,Rϕ = 0.

Proof. According to Section 7 we have Th,Rϕ ∈ Lp(∂G), and the
modified single layer potential SRTh,Rϕ is an Lp-solution of the problem
(1) (4) with g ≡ 0 and f = T 2

h,Rϕ = 0. According to Theorem 5.1 and
Lemma 3.1, there is a constant c such that SRTh,Rϕ = c in cl G. If
H1({x ∈ ∂G; h(x) > 0}) > 0, then c = 0.
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According to Section 7 the modified single layer potential SRϕ is an
Lp-solution of the problem (1) (4) with g ≡ 0 and f = Th,Rϕ. If
H1({x ∈ ∂G; h(x) > 0}) = 0, then∫

∂G

Th,Rϕ dH1 = 0.

Thus ∫
∂G

(Th,Rϕ)SRTh,Rϕ dH1 = c

∫
∂G

(Th,Rϕ) dH1 = 0.

According to Lemma 8.1 we have Th,Rϕ = 0 almost everywhere in ∂G.

Definition 8.3. The bounded linear operator T on the Banach
space X is called Fredholm if α(T ), the dimension of the kernel of T ,
is finite, the range T (X) of T is a closed subspace of X and β(T ), the
codimension of T (X), is finite. The number i(T ) = α(T )− β(T ) is the
index of T .

Proposition 8.4. Let 1 < p < ∞, h ∈ Lp(∂G), h ≥ 0, R > diam G,
Th,R be a Fredholm operator with index 0 in Lp(∂G). Denote by
Lp

0(∂G) the set of all f ∈ Lp(∂G) for which (5) holds. If H1({x ∈
∂G; h(x) > 0}) = 0 then Th,R is continuously invertible in Lp

0(∂G). If
H1({x ∈ ∂G; h(x) > 0}) > 0, then Th,R is continuously invertible in
Lp(∂G).

Proof. Suppose first that H1({x ∈ ∂G; h(x) > 0}) > 0. If
ϕ ∈ Lp(∂G), Th,Rϕ = 0, then SRϕ is an Lp-solution of the problem
(1) (4) with f ≡ 0, g ≡ 0, see Section 7, and Theorem 5.1, Lemma 3.1
give that SRϕ = 0 on cl G. Since∫

∂G

ϕSRϕ dH1 = 0,

Lemma 8.1 shows that ϕ = 0 almost everywhere in ∂G. Since
α(Th,R) = 0 and i(Th,R) = 0, we deduce that β(Th,R) = 0. Since
Th,R(Lp(∂G)) = Lp(∂G) and the kernel of Th,R is trivial, the operator
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Th,R is continuously invertible in Lp(∂G) by the closed graph theorem,
see [26, Chapter II, Section 6, Theorem 1].

Suppose now that h = 0 almost everywhere in ∂G. If ϕ ∈ Lp(∂G),
then SRϕ is an Lp-solution of the problem (1) (4) with g ≡ 0 and
f = Th,Rϕ, see Section 7. Thus, Th,Rϕ ∈ Lp

0(∂G) by Proposition 4.3.
Since Th,R(Lp(∂G)) ⊂ Lp

0(∂G), we have β(Th,R) ≥ 1.

If ϕ ∈ Lp(∂G), Th,Rϕ = 0,then SRϕ is an Lp-solution of the problem
(1) (4) with f ≡ 0, g ≡ 0, see Section 7. According to Theorem 5.1,
Lemma 3.1 there is a constant c such that SRϕ = c on cl G. If c = 0,
then Lemma 8.1 yields that ϕ = 0 almost everywhere on ∂G. This
means that α(Th,R) ≤ 1. Since 1 ≤ β(Th,R) = α(Th,R) ≤ 1, we
deduce that β(Th,R) = α(Th,R) = 1. Since Th,R(Lp(∂G)) ⊂ Lp

0(∂G),
β(Th,R) = 1 shows that Th,R(Lp(∂G)) = Lp

0(∂G).

The kernel of the operator Th,R in Lp
0(∂G) is trivial by Lemma 8.2.

Since Lp
0(∂G) is a Th,R-invariant closed linear subspace of finite codi-

mension in Lp(∂G) and Th,R is a Fredholm operator with index 0, the
restriction of Th,R onto Lp

0(∂G) is a Fredholm operator with index 0 by
[18, Proposition 3.7.1]. Since the kernel of the operator Th,R in Lp

0(∂G)
is trivial, we deduce that Th,R(Lp

0(∂G)) = Lp
0(∂G). The closed graph

theorem, see [26, Chapter II, Section 6, Theorem 1], gives that Th,R is
continuously invertible in Lp

0(∂G).

Notation 8.5. Let X be a real Banach space. Denote compl X =
{x + iy; x, y ∈ X} the complexification of X. If T is a linear operator
in X we define T (x + iy) = Tx + iTy the linear extension of T onto
compl X.

Lemma 8.6. Let 1 < p < ∞, h ∈ Lp(∂G), h ≥ 0, R > diam G,
λ �= 1 be a complex number. Then Th,R − λI is a Fredholm operator in
compl Lp(∂G) if and only if ((1/2)− λ)I + K∗

H is a Fredholm operator
in compl Lp(∂H). Moreover, i(Th,R − λI) = i(((1/2) − λ)I + K∗

H).
(Here I denotes the identity operator.)

Proof. Let Vh be the operator from Lemma 3.1. Since Vh is a compact
linear operator in Lp(∂G), the operator Th,R−λI is a Fredholm operator
in compl Lp(∂G) if and only if T0,R − λI is a Fredholm operator in
compl Lp(∂G) and i(Th,R−λI) = i(T0,R−λI), see [24, Theorem 5.10].
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Denote

Tf(x) = (1/2 − λ)f(x) + K∗
Hf(x) for x ∈ ∂H,

Tf(x) = (1 − λ)f(x) for x ∈ γ.

Then T is a bounded linear operator in compl Lp(∂G) which is a
Fredholm operator in compl Lp(∂G) if and only if (1/2 − λ)I + K∗

H is
a Fredholm operator in compl Lp(∂H) and i(T ) = i((1/2−λ)I +K∗

H).
Easy calculation yields that T0,R − λI − T is a compact operator in
Lp(∂G). Thus, T0,R − λI is a Fredholm operator in compl Lp(∂G) if
and only if T is a Fredholm operator in compl Lp(∂G) and i(T ) =
i(T0,R − λI) by [24, Theorem 5.10].

Theorem 8.7. There is 2 < p0 ≤ ∞ depending only on G such that
following holds:

1. If p0 < p < ∞, h ∈ Lp(∂G), h ≥ 0, R > 0, then Th,R is not a
Fredholm operator with index 0 in Lp(∂G).

2. Let 1 < p < p0, h ∈ Lp(∂G), h ≥ 0, H1({x ∈ ∂G; h(x) > 0}) > 0,
R > diam G. Then Th,R is continuously invertible in Lp(∂G). If
f ∈ Lp(∂G), g ∈ W 1,p

0 (γ) then there is a unique Lp-solution of the
problem (1) (4). This solution is given by

(19) u = Dg + SRT−1
h,RF

where F is given by (11) (13).

3. Let 1 < p < p0, h ≡ 0, R > diam G. Denote by T̃0,R the
restriction of T0,R onto Lp

0(∂G). Then T̃0,R is continuously invertible.
If f ∈ Lp(∂G), g ∈ W 1,p(γ), then there is an Lp-solution of the problem
(1) (4) if and only if equation (5) is fulfilled. The general form of a
solution is

(20) u = Dg + SR(T̃0,R)−1F + c

where F is given by (11) (13) and c is arbitrary constant.
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Proof. Suppose first that 1 < p < ∞ is such that (1/2)I + K∗
H

is a Fredholm operator with index 0 in Lp(∂H). If h ∈ Lp(∂G),
h ≥ 0, R > diam G, then Th,R is a Fredholm operator with index
0 in Lp(∂G) by Lemma 8.6. If H1({x ∈ ∂G; h(x) > 0}) > 0, then
Th,R is continuously invertible; if h ≡ 0 then T̃0,R is continuously
invertible, see Proposition 8.4. Let f ∈ Lp(∂G), g ∈ W 1,p

0 (γ) and
f ∈ Lp

0(∂G) in case h ≡ 0. Let F be given by (11) (13). Suppose
first that H1({x ∈ ∂G; h(x) > 0}) > 0. According to Section 7
the function u given by (19) is an Lp-solution of the problem (1) (4).
According to Theorem 5.1 this solution is unique. Suppose now h ≡ 0.
According to Section 7 the function u given by (20) is an Lp-solution
of the problem (1) (4). Theorem 5.1 shows that (20) gives the general
form of a solution. Proposition 4.3 gives that f ∈ Lp

0(∂G) is a necessary
condition for the solvability of the problem (1) (4).

According to [20, Theorem 5.1], there is an ε > 0 such that (1/2)I +
K∗

H is a Fredholm operator with index 0 in Lp(∂G) for 1 < p < 2 + ε.
Put p0 = sup{p; p > 1, (1/2)I + K∗

H is a Fredholm operator with
index 0 in Lp(∂H)}. Then 2 < p0 ≤ ∞. If p0 < p < ∞, h ∈ Lp(∂G),
h ≥ 0, R > 0, then Th,R is not a Fredholm operator with index 0 in
Lp(∂G) by Lemma 8.6. Let now 2 ≤ p < p0. Then there is a q ∈ (p, p0)
such that (1/2)I +K∗

H is a Fredholm operator with index 0 in Lq(∂H).
Put h ≡ 1. Then there is continuous T−1

h,R in Lq(∂G) and in L2(∂G).
The Riesz-Thorin interpolation theorem, see [23, Theorem 6.1.1], yields
that there is continuous T−1

h,R in Lp(∂G). Since Th,R is a Fredholm
operator with index 0 in Lp(∂G), Lemma 8.6 gives that (1/2)I + K∗

H

is a Fredholm operator with index 0 in Lp(∂H).

Corollary 8.8. Let 2 < p0 ≤ ∞ be the constant from Theorem 8.7.
Let 1 < p < p0, h ∈ Lp(∂G), h ≥ 0, f ∈ Lp(∂G), g ∈ W 1,p

0 (γ) and u be
an Lp solution of the problem (1) (4). Then u ∈ W 1,2p(G), there are
u+ ∈ C(p−1)/p(cl H+) and u− ∈ C(p−1)/p(cl H−) such that u = u+ in
H+, u = u− in H−. If H1({x ∈ ∂G; h(x) > 0}) > 0, then

|u|L∞(G) + ‖u‖W 1,2p(G) ≤ C[‖f‖Lp(∂G) + ‖g‖W 1,p
0 (γ)].

If h ≡ 0, then there is a constant c such that

|u − c|L∞(G) + ‖u − c‖W 1,2p(G) ≤ C[‖f‖Lp(∂G) + ‖g‖W 1,p
0 (γ)].



THE THIRD PROBLEM FOR THE LAPLACE EQUATION 491

Here C is a constant depending only on G, p and h. If g ≡ 0, then
u ∈ C(p−1)/p(cl G) and

sup
x,y∈G; x�=y

|u(x) − u(y)|
|x − y|(p−1)/p

≤ C̃‖f‖Lp(∂G)

where C̃ is a constant depending only on G, p and h.

Proof. If we define g(x) = 0 for x ∈ ∂H+ ∩ ∂H− \ γ, then
g ∈ W 1,p(∂H+ ∩ ∂H−). Since ∂H+ ∩ ∂H− is formed by finitely many
arcs and there is a continuous extension operator from W 1,p((a, b)) to
W 1,p(R1), see [1, Theorem 4.26], we can extend g onto ∂H+ so that

(21) ‖g‖W 1,p(∂H+) ≤ M‖g‖W 1,p
0 (γ)

with a constant M depending only on G and p.

Fix R > diam G. Let F be given by (11) (13). If h = 0 almost
everywhere on ∂G put Q = T̃−1

0,RF , in the opposite case put Q =
T−1

h,RF . According to Theorem 8.7 there is a constant c such that
u = Dg + SRQ + c. If H1({x ∈ ∂G; h(x) > 0}) > 0, then
c = 0. Lemma 6.1 shows that Dg ∈ W 1,2p(G); there are [Dg]+ ∈
C(p−1)/p(cl H+), [Dg]− ∈ C(p−1)/p(cl H−) such that Dg = [Dg]+ in
H+, Dg = [Dg]− in H− and there is a constant C1 depending on G
and p such that

(22) ‖Dg‖L∞(G) + ‖Dg‖W 1,2p(G) ≤ C1‖g‖W 1,p
0 (γ).

F = f − h[Dg]+ on γ by [9, Theorem 2.2.13]. Thus Lemma 6.1 gives
that there is a constant C2 depending only on G, p and h such that

(23) ‖F‖Lp(∂G) ≤ C2[‖f‖Lp(∂G) + ‖g‖W 1,p
0 (γ)].

According to Theorem 8.7 there is a constant C3 depending on G, p, h
and R so that

(24) ‖Q‖Lp(∂G) ≤ C3‖F‖Lp(∂G).

According to Lemma 3.1 we have SRQ ∈ W 1,2p(G) ∩ C(p−1)/p(cl G)
and

(25) ‖SRQ(x)‖C(p−1)/p(cl G) + ‖SRQ‖W 1,2p(G) ≤ C4‖ Q‖Lp(∂G)
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where C4 is a constant depending only on G, R and p.

Since u − c = Dg + SRQ, we obtain from (22), (25), (24) and (23)

|u−c|L∞(G)+‖u−c‖W 1,2p(G) ≤ (C1+C2C3C4)[‖f‖Lp(∂G)+‖g‖W 1,p
0 (γ)].

If g ≡ 0, then

sup
x,y∈G
x�=y

|u(x) − u(y)|
|x − y|(p−1)/p

≤ C4C3C2‖f‖Lp(∂G).

9. Weak solution.

Notation 9.1. Let u ∈ W 1,2(G). Denote by u+ the restriction of u
onto H+ and by u− the restriction of u onto H−. Since u+ ∈ W 1,2(H+)
there is the trace u+ of u+ almost everywhere on ∂H+. Similarly, there
is the trace u− of u− almost everywhere on ∂H−. We can write u
instead of u+ or u− on ∂G\γ. If u+ = u− on γ, we can write u instead
of u+ or u− on γ.

Remark 9.2. If u is an Lp-solution of the problem (1) (4) with
1 < p < ∞, then u ∈ W 1,2(G) by Corollary 8.8. Then u (u+, u−)
denotes the nontangential limit of u with respect to G (H+, H−) on
∂G\γ (γ) and the trace of u with respect to G (H+, H−), respectively.
But it is well known that if the trace and the nontangential limit exist
then they are the equal.

Remark 9.3. If u ∈ W 1,2(G), then u+ ∈ Lp(∂H+), u− ∈ Lp(∂H−),
for each p ∈ 〈1,∞), see [22, Théorème 4.6].

Definition 9.4. Let f, h ∈ Lp(∂G), g ∈ Lp(γ), 1 < p < ∞. We
say that u ∈ W 1,2(G) is a weak solution of the problem (1) (4) if
u+ − u− = g almost everywhere in γ and

(26)
∫

G

∇u ·∇ϕ dH2+
∫

∂G\γ

huϕ dH1+
∫

γ

hu+ϕ dH1 =
∫

∂G

fϕ dH1

for each ϕ ∈ W 1,2(G) for which ϕ+ = ϕ− almost everywhere in γ.
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Lemma 9.5. Let h ∈ Lp(∂G), h ≥ 0, 1 < p < ∞. If u is a weak
solution of the problem (1) (4) with f ≡ 0, g ≡ 0, then there is a
constant c such that u = c on cl G. If H1({x ∈ ∂G; h(x) > 0}) > 0,
then c = 0.

Proof. Since g ≡ 0 we have u+ = u− almost everywhere in γ. We get
from (26) for ϕ = u∫

G

|∇u|2 dH2 +
∫

∂G

hu2 dH1 = 0.

Since h ≥ 0 we deduce that ∇u = 0 in G. Therefore, u is constant in
each component of G. Since u+ = u− almost everywhere in γ and H
is connected, there is a constant c such that u = c in G and hence on
cl G. Suppose now that H1({x ∈ ∂G; h(x) > 0}) > 0. Then,

0 =
[∫

G

|∇u|2 dH2 +
∫

∂G

hu2 dH1

][∫
∂G

h dH1

]−1

= c2.

Lemma 9.6. Let f ∈ Lp(∂G), g ∈ Lp(γ), 1 < p < ∞, h ≡ 0. If
there is a weak solution of the problem (1) (4), then f ∈ Lp

0(∂G).

Proof. We get this proposition from (26) for ϕ ≡ 1.

Proposition 9.7. Let 1 < p < ∞, f, h ∈ Lp(∂G), h ≥ 0,
g ∈ W 1,p

0 (γ). If u is an Lp-solution of the problem (1) (4), then u is a
weak solution of the problem (1) (4). Suppose, moreover, that p < p0,
where p0 is the constant from Theorem 8.7. If u is a weak solution of
the problem (1) (4), then u is an Lp-solution of the problem (1) (4).

Proof. Suppose first that u is an Lp-solution of the problem (1) (4).
Proposition 4.2 gives that u ∈ W 1,2(G). Let ϕ be an infinitely
differentiable function in R2. Let Vj , j = 1, . . . , be sets from Lemma 4.1
for H+. Using Green’s formula and Lebesque’s lemma, we get∫

H+

∇ϕ · ∇u dH2 = lim
j→∞

∫
Vj

∇ϕ · ∇u dH2

= lim
j→∞

∫
∂Vj

ϕn · ∇u dH1 =
∫

∂H+

ϕn+ · [∇u]+ dH1.
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Put p′ = p/(p−1). Since there is a bounded imbedding from W 1,2(H+)
to Lp′

(∂H+), see [22, Theorem 4.6], and n · [∇u]+ ∈ Lp(∂H+), Hölder’s
inequality yields that

ϕ �−→
∫

H+

∇ϕ · ∇u dH2, ϕ �−→
∫

∂H+

[ϕ]+n+ · [∇u]+ dH1

are bounded linear functionals on W 1,2(H+). Since the space of all
infinitely differentiable functions in R2 is dense in W 1,2(H+), see [1,
Theorem 3.18], we get from the continuity of these functionals that

(27)
∫

H+

∇ϕ · ∇u dH2 =
∫

∂H+

ϕn+ · [∇u]+ dH1

holds for each ϕ ∈ W 1,2(H+). Similarly,

(28)
∫

H−
∇ϕ · ∇u dH2 =

∫
∂H−

ϕn− · [∇u]− dH1

for each ϕ ∈ W 1,2(H−). Let ϕ ∈ W 1,2(G) for which ϕ+ = ϕ− almost
everywhere in γ. Using (27) and (28), we get (26).

Suppose now that p < p0 and u is a weak solution of the problem
(1) (4). According to Lemma 9.6 and Theorem 8.7, there is an Lp-
solution v of the problem (1) (4). This solution is a weak solution of
the problem (1) (4). If H1({x ∈ ∂G; h(x) > 0}) > 0, then u = v
by Lemma 9.5. Suppose now that H1({x ∈ ∂G; h(x) > 0}) = 0.
According to Lemma 9.5 there is a constant c such that u = v + c.
Since v is an Lp-solution of the problem (1) (4), the function u = v + c
is an Lp-solution of the problem (1) (4).

Corollary 9.8. Let 2 < p0 ≤ ∞ be the constant from Theorem 8.7.
Let 1 < p < p0, f, h ∈ Lp(∂G), h ≥ 0, g ∈ W 1,p

0 (γ). If u is
a weak solution of the problem (1) (4), then u ∈ W 1,2p(G), u+ ∈
C(p−1)/p(cl H+), u− ∈ C(p−1)/p(cl H−).

Proof. The corollary is a consequence of Proposition 9.7 and Corol-
lary 8.8.
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10. Solution of the problem.

Lemma 10.1. Let 1 < p < ∞, R > diam G, f, h ∈ compl Lp(∂G),
H1({x ∈ ∂G; |f(x)| > 0}) > 0, h ≥ 0. If λ is a complex number such
that Th,Rf = λf , then λ ≥ 0.

Proof. Take f1, f2 ∈ Lp(∂G) such that f = f1 + if2. Let Vj be the
sets from the Lemma 4.1 for H+. Since SR(f1 − if2) is continuous in
R2 by Lemma 3.1 and there is the nontangential limit of ∇SRf with
respect to H+ almost everywhere in ∂H+, see Section 7, we get using
Fubini’s theorem, Green’s formula and Lebesgue’s lemma

∫
∂H+

[SR(f1 − if2)]n+ · [∇SR(f1 + if2)]+

= lim
j→∞

∫
∂Vj

[SR(f1 − if2)]n · [∇SR(f1 + if2)]

= lim
j→∞

∫
Vj

[|∇SRf1|2 + |∇SRf2|2] dH2

=
∫

H+

[|∇SRf1|2 + |∇SRf2|2] dH2.

Similarly,

∫
∂H−

[SR(f1−if2)]n−·[∇SR(f1+if2)]− =
∫

H−
[|∇SRf1|2+|∇SRf2|2] dH2.

Hence,

λ

∫
∂G

(f1SRf1 + f2SRf2) dH1

=
∫

∂G

[SR(f1 − if2)]Th,R(f1 + if2) dH1

=
∫

∂H+

[SR(f1 − if2)]n+ · [∇SR(f1 + if2)]+

+
∫

∂H−
[SR(f1 − if2)]n− · [∇SR(f1 + if2)]−
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+
∫

∂G

h[(SRf1)2 + (SRf2)2] dH1

=
∫

G

[|∇SRf1|2+ |∇SRf2|2] dH1 +
∫

∂G

h[(SRf1)2+ (SRf2)2] dH1.

Since

0 <

∫
∂G

(f1SRf1 + f2SRf2) dH1 < ∞,

by Lemma 8.1 and h ≥ 0 we get

λ =

∫
G

[|∇SRf1|2 + |∇SRf2|2] dH1 +
∫

∂G
h[(SRf1)2 + (SRf2)2] dH1∫

∂G
(f1SRf1 + f2SRf2) dH1

≥ 0.

Lemma 10.2. Let 1 < p < ∞, R > diam G, f ∈ compl Lp(∂G),
H1({x ∈ ∂G; |f(x)| > 0}) > 0. If λ is a complex number such that
T0,Rf = λf , then 0 ≤ λ ≤ 1.

Proof. We can suppose that λ �= 0. Lemma 10.1 yields λ > 0 and we
thus can suppose that f ∈ Lp(∂G). Since SRλ−1f is an Lp-solution of
the problem (1) (4) with h ≡ 0, g ≡ 0 (see Section 7), Proposition 4.3
gives (5). Since T0,Rf = f on γ, we deduce from T0,Rf = λf that
λ = 1 or f = 0 almost everywhere on γ. We can restrict ourselves to
the case when f = 0 almost everywhere on γ.

Fix r > 0 such that ∂G ⊂ Ωr(0), and put V = Ωr(0) \ cl G. Let Vj

be the sets from Lemma 4.1. Then∫
V

|∇SRf |2 dH1 = lim
j→∞

∫
Vj

|∇SRf |2 dH1

= lim
j→∞

∫
∂Vj

(SRf)(n · ∇SRf) dH1

=
∫

∂H

(SRf)
(

1
2

I−K∗
H

)
fδH1+

∫
∂Ωr(0)

∂SRf

∂n
SRf dH1

= (1 − λ)
∫

∂G

fSRf dH1 +
∫

∂Ωr(0)

SRf
∂SRf

∂n
dH1.
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Since (5) forces SRf(x) = o(1), ∇SRf(x) = O(1/|x|) as |x| → ∞, we
get for r → ∞,∫

R2\cl G

|∇SRf |2 dH1 = (1 − λ)
∫

∂G

fSRf dH1.

Using Lemma 8.1, we get

(1 − λ) =

∫
R2\cl G

|∇SRf |2 dH1∫
∂G

fSRf dH1
≥ 0.

So, λ ≤ 1.

Notation 10.3. Let X be a complex Banach space, and let T
be a bounded linear operator in X. Denote by σ(T ) the spectrum
of T , r(T ) = sup{|λ|; λ ∈ σ(T )} the spectral radius of T and
re(T ) = sup{|λ|; λI − T is not a Fredholm operator with index 0}
the essential spectral radius of T .

Lemma 10.4. Let 1 < p < ∞, R > diam G, h ∈ Lp(∂G), h ≥ 0.
Put Vhf = hSRf for f ∈ compl Lp(∂G). Then

(29) r(Vh) ≤ sup
x∈∂G

SRh(x).

Proof. If f ∈ compl L1(∂G), then Fubini’s theorem yields∫
∂G

|hSRf | dH1 ≤
∫

∂G

|f |SRh dH1 ≤
∫

∂G

|f | dH1 · sup
x∈∂G

SRh(x).

Hence, Vh is a bounded linear operator in compl L1(∂G) and

‖Vh‖compl L1(∂G) ≤ sup
x∈∂G

SRh(x).

According to [26, Chapter VIII, Section 2, Theorem 3] and [26,
Chapter VIII, Section 2, Theorem 4],

(30) r(Vh) ≤ ‖Vh‖ ≤ sup
x∈∂G

SRh(x)

in compl L1(∂G).
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Let now λ ∈ σ(Vh) in compl Lp(∂G), λ �= 0. Since Vh is a
compact linear operator in compl Lp(∂G), by Lemma 3.1 there is an
f ∈ compl Lp(∂G) such that H1({x ∈ ∂G; |f(x)| > 0}) > 0 and
Vhf = λf , see [26, Chapter X, Section 5, Theorem 2]. Thus λ ∈ σ(Vh)
in compl L1(∂G). According to (30),

|λ| ≤ sup
x∈∂G

SRh(x).

This forces (29).

Lemma 10.5. Let T be a bounded continuously invertible linear
operator on the complex Banach space X. If α is a nonzero complex
number such that σ(T ) ⊂ {β ∈ C; |β − α| < |α|}, then there are
constants q ∈ (0, 1), M ∈ (1,∞) such that

(31) ‖(I − α−1T )n‖ ≤ Mqn

for each nonnegative integer and

(32) T−1 = α−1
∞∑

n=0

(I − α−1T )n.

Proof. σ(α−1T − I) ⊂ {β ∈ C; |β| < 1} by the spectral mapping
theorem, see [26, Chapter VIII, Section 7]. Since σ(α−1T − I) is
compact, see [26, Chapter VIII, Section 2, Theorem 1], we deduce
r(α−1T − I) < 1. Fix q ∈ (r(α−1T − I), 1). Since r(α−1T − I) =
lim[‖(α−1T − I)n‖]1/n as n → ∞, see [26, Chapter VIII, Section 2],
there is a constant M ∈ (1,∞) such that (31) holds. So, the series (32)
converges. Easy calculation yields

Tα−1
∞∑

n=0

(I − α−1T )n = −(I − α−1T )
∞∑

n=0

(I − α−1T )n

+
∞∑

n=0

(I − α−1T )n = I,

and (32) holds.
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Theorem 10.6. Let 1 < p < ∞, h ∈ Lp(∂G), h ≥ 0. Sup-
pose re(K∗

H) < (1/2) in compl Lp(∂H), R > diam G. If H1({x ∈
∂G; h(x) > 0}) > 0, put T̃h,R = Th,R. Put

(33) α0 ≡ 1 + sup
x∈∂G

SRh(x).

If α > α0/2, there are constants q ∈ (0, 1), M ∈ (1,∞) dependent on
G, h, p and α such that

(34) ‖(I − α−1T̃h,R)n‖ ≤ Mqn

for each nonnegative integer, the operator T̃h,R is continuously invert-
ible and

(35) T̃−1
h,R = α−1

∞∑
n=0

(I − α−1T̃h,R)n.

Proof. re(T0,R − (1/2)I) ≤ 1/2 in compl Lp(∂H) by Lemma 8.6.
If λ ∈ σ(T0,R − (1/2)I), |λ| > (1/2), then λ is an eigenvalue of
T0,R − (1/2)I. Since |λ| ≤ (1/2) for each eigenvalue of T0,R − (1/2)I
by Lemma 10.2 we get r(T0,R − (1/2)I) ≤ 1/2 in compl Lp(∂G). Put
Vhf = hSRf for f ∈ compl Lp(∂G). According to Lemma 10.4, [26,
Chapter VIII, Section 2] and [6, Satz 45.1], we have r(Th,R− (1/2)I) ≤
r(T0,R − (1/2)I) + r(Vh) ≤ α0 − (1/2) in compl Lp(∂G).

If |λ| ≥ (1/2), λ �= (1/2), then λI − (Th,R − (1/2)I) is a Fredholm
operator with index 0 by Lemma 8.6. If, moreover, λ ∈ σ((Th,R −
(1/2)I)), then λ is an eigenvalue of (Th,R−(1/2)I). Since λ+(1/2) is an
eigenvalue of the operator Th,R, Lemma 10.1 yields 0 ≤ λ+(1/2). Hence
σ((Th,R − (1/2)I)) ⊂ {λ ∈ C; |λ| < (1/2)} ∪ {1/2} ∪ 〈−1/2, r((Th,R −
(1/2)I))〉 ⊂ {λ ∈ C; |λ| < (1/2)} ∪ 〈−1/2, α0 − (1/2)〉. Using the
spectral mapping theorem, see [26, Chapter VIII, Section 7], we get
σ(Th,R) ⊂ {λ ∈ C; |λ − (1/2)| < (1/2)} ∪ 〈0, α0〉.

Let λ ∈ C \ σ(Th,R). If H1({x ∈ ∂G; h(x) > 0}) > 0, put Lp
h(∂G) =

Lp(∂G). Since compl Lp
h(∂G) is a Th,R-invariant closed linear subspace

of finite codimension in compl Lp(∂G) and Th,R − λI is a Fredholm
operator with index 0, the operator T̃h,R − λI is a Fredholm operator
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with index 0 in compl Lp
h(∂G) by [18, Proposition 3.7.1]. Since the

kernel of the operator T̃h,R − λI is trivial the operator (T̃h,R − λI)
is onto and the closed graph theorem, see [26, Chapter II, Section 6,
Theorem 1], gives that T̃h,R − λI is continuously invertible. Thus,
σ(T̃h,R) ⊂ σ(Th,R) ⊂ {λ ∈ C; |λ − (1/2)| < 1/2} ∪ 〈0, α0〉. Since Th,R

is a Fredholm operator with index 0, Proposition 8.4 shows that T̃h,R

is continuously invertible. Therefore, σ(T̃h,R) ⊂ {λ ∈ C; |λ − (1/2)| <
1/2} ∪ (0, α0〉 ⊂ {λ ∈ C; |λ − α| < α}. The rest is a consequence of
Lemma 10.5.

Lemma 10.7. Let ∂H be formed by closed curves Γ1, . . . , Γk. Let
1 < p < ∞. For f ∈ Lp(Γj), y ∈ Γj, j = 1, . . . , k define

(36) K∗
j f(y) = lim

ε→0+

1
2π

∫
Γj\Ωε(y)

f(x)
n(y) · (x − y)

|x − y|2 dH1(x).

Then K∗
j is a bounded linear operator in Lp(Γj). Let λ be a complex

number. Then λI−K∗
H is a Fredholm operator in compl Lp(∂H) if and

only if λI−K∗
j is a Fredholm operator in compl Lp(Γj) for j = 1, . . . , k.

Moreover, i(λI − K∗
H) = i(λI − K∗

1 ) + · · · + i(λI − K∗
k).

Proof. For f ∈ Lp(∂H), define

Lf(y) = K∗
j f(y) for y ∈ Γj .

Then L is a bounded operator in Lp(∂H). Since f is in the kernel of
λI − L if and only if f |Γj is in the kernel of λI − K∗

j for j = 1, . . . , k,
and g is in the range of (λI − L) if and only if g|Γj is in the range
of (λI − K∗

j ) for j = 1, . . . , k, we deduce that λI − L is a Fredholm
operator in compl Lp(∂H) if and only if λI−K∗

j is a Fredholm operator
in compl Lp(Γj) for j = 1, . . . , k and i(λI − L) = i(λI − K∗

1 ) + · · · +
i(λI − K∗

k).

Since K∗
H − L is a compact linear operator from Lp(∂H) to C(∂H)

by Arzelà-Ascoli’s theorem and the imbedding C(∂H) into Lp(∂H) is
a bounded linear operator, the operator K∗

H − L is a compact linear
operator in Lp(∂H), see [26, Chapter X, Section 2]. Since the operator
K∗

H − L is compact, the operator λI − K∗
H is a Fredholm operator in

compl Lp(∂H) if and only if the operator λI−L is a Fredholm operator
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in compl Lp(∂H) and i(λI − K∗
H) = i(λI − L), see [24, Chapter V,

Theorem 3.1].

Lemma 10.8. Let 1 < p < ∞. If (1/2)I+K∗
H is a Fredholm operator

in compl Lp(∂H), then i((1/2)I+K∗
H) ≤ 0. Let ∂H be formed by closed

curves Γ1, . . . , Γk. Let K∗
j be the operators in Lp(Γj) given by (36).

Then (1/2)I +K∗
H is a Fredholm operator in compl Lp(∂H) with index

0 if and only if (1/2)I + K∗
j is a Fredholm operator in compl Lp(Γj)

with index 0 for j = 1, . . . , k.

Proof. We can suppose that γ = ∅. Fix R > diam H. Let
(1/2)I + K∗

H be a Fredholm operator in compl Lp(∂H). Put h ≡ 1.
Then Th,R is a Fredholm operator in compl Lp(∂H) and i(Th,R) =
i((1/2)I + K∗) by Lemma 8.6. If ϕ ∈ Lp(∂H), Th,Rϕ = 0, then SRϕ is
an Lp-solution of the problem (1) (4) with f ≡ 0. Thus, SRϕ = 0 in H
by Theorem 5.1. Since SRϕ is continuous on cl H by Lemma 3.1, we
deduce SRϕ = 0 on ∂H. Lemma 8.1 yields ϕ = 0 almost everywhere on
∂H. Thus, α(Th,R) = 0 and i((1/2)I+K∗

H) = i(Th,R) = −β(Th,R) ≤ 0.

If (1/2)I+K∗
j is a Fredholm operator in compl Lp(Γj) with index 0 for

j = 1, . . . , k, then (1/2)I+K∗
H is a Fredholm operator in compl Lp(∂H)

with index 0 by Lemma 10.7. Suppose now that (1/2)I + K∗
H is a

Fredholm operator in compl Lp(∂H) with index 0. Then the operator
(1/2)I+K∗

j is a Fredholm operator in compl Lp(Γj) for j = 1, . . . , k by
Lemma 10.7. Fix j. If H is a subset of the interior of Γj , then put V the
interior of Γj . If H is a subset of the exterior of Γj , fix R > 0 such that
Γj ⊂ ΩR(0) and put V the bounded domain which boundary is formed
by Γj and ∂ΩR(0). In both cases, Lemma 10.7, [3, Theorem 1.9] and
[24, Chapter IV, Theorem 2.2] yield that (1/2)I + K∗

V is a Fredholm
operator in compl Lp(∂V ) and i

(
(1/2)I + K∗

V

)
= i((1/2)I + K∗

j ).
Thus, i((1/2)I + K∗

j ) = i
(
(1/2)I + K∗

V

) ≤ 0. Since 0 = i((1/2)I +
K∗

H) = i((1/2)I + K∗
1 ) + · · · + i((1/2)I + K∗

k) by Lemma 10.7 and
i((1/2)I+K∗

j ) ≤ 0 for j = 1, . . . , k, we conclude that i((1/2)I+K∗
j ) = 0

for j = 1, . . . , k.

Definition 10.9. Let S be a rectifiable curve, and let s denote the
arc length on S, 0 ≤ s ≤ l. If the angle θ(s) made by the positively
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oriented tangent and the abscissa is a function of bounded variation on
〈0, l〉, the curve S is said to be a curve with bounded rotation.

We remark that piecewise C1+α bounded curves with α > 0 and the
boundary of a convex bounded set are curves with bounded rotation.
On the other hand, there are C1 bounded curves which are not curves
with bounded rotation.

Notation 10.10. For x ∈ R2, denote

dG(x) = lim
r→0+

H2(Ωr(x) ∩ G)
H2(Ωr(x))

the density of G at x.

Proposition 10.11. Let ∂H be formed by finitely many curves with
bounded rotation. Let p0 have the meaning of Theorem 8.7. Then

(37) p0 = 1 +
(

sup
x∈∂H

|1 − 2dH(x)|
)−1

and re(K∗
H) < (1/2) in compl Lp(∂H) for each 1 < p < p0. (If

dH(x) = (1/2) for all x ∈ ∂H, then p0 = ∞.) If p0 ≤ p < ∞,
h ∈ Lp(∂G), h ≥ 0, R > diam G then Th,R is not a Fredholm operator
with index 0 in Lp(∂G).

Proof. Let Γ1, . . . , Γk be curves with bounded rotation which form
∂H. Put

pj = 1 +
(

sup
x∈Γj

|1 − 2dH(x)|
)−1

for j = 1, . . . , k. Let K∗
j be given by (36) for j = 1, . . . , k. If

1 < p < ∞, then (1/2) + K∗
j is a Fredholm operator with index 0

in compl Lp(Γj) if and only if p < pj , see [19, Lemma 24]. Using
Lemma 10.8 we get that (1/2)+K∗

H is a Fredholm operator with index 0
in compl Lp(∂H) if and only if p < min{pj ; j = 1, . . . , k}. According
to Lemma 8.6, the operator Th,R is a Fredholm operator with index 0
in compl Lp(∂G) if and only if p < min{pj ; j = 1, . . . , k}. Therefore,
p0 is given by (37).
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We use the following result proved in [19, Lemma 27]:

Lemma 10.12. Let 1 < p < ∞. Suppose that, for each x ∈ ∂H there
are r > 0, an open set D with compact Lipschitz boundary such that
re(K∗

D) < (1/2) in compl Lp(∂D), and there is a coordinate system
and Lipschitz functions Ψ1, Ψ2 defined in a neighborhood of 0 such
that Ψ1(0) = Ψ2(0), Ψ1 − Ψ2 is of class C1, (Ψ1 − Ψ2)′(0) = 0 and
U ∩H = {[t, s]; |t| < r, s > Ψ1(t)}, U ∩D = {[t, s]; |t| < r, s > Ψ2(t)}
for some neighborhood U of the point x = [0, 0]. Then re(K∗

H) < 1/2
in compl Lp(∂H).

Theorem 10.13. Let H have piecewise C1 boundary,

(38) 1 < p < 1 +
(

sup
x∈∂H

|1 − 2dH(x)|
)−1

.

Then p < p0 (see Theorem 8.7) and re(K∗
H) < 1/2 in compl Lp(∂H).

Let h ∈ Lp(∂G), h ≥ 0, R > diam G. Fix α > α0/2 where α0 is given
by (33). Let f ∈ Lp(∂G), g ∈ W 1,p

0 (γ). If h = 0 almost everywhere in
∂G, suppose moreover (5). Let F be given by (11) (13). Put

ϕ = α−1
∞∑

n=0

(I − α−1Th,R)nF.

If H1({x ∈ ∂G; h(x) > 0}) > 0, then Dg + SRϕ is the general form of
an Lp solution of the problem (1) (4). If h = 0 almost everywhere in
∂G, then the general form of an Lp solution of the problem (1) (4) is
Dg + SRϕ + c, where c is an arbitrary constant.

Proof. Fix x ∈ ∂H. We can choose such a coordinate system, a
Lipschitz function Ψ1 and r > 0 that x = [0, 0], Ψ1 ∈ C1((−r, 0〉),
Ψ1 ∈ C1(〈0, r)) and U ∩ H = {[t, s]; |t| < r, s > Ψ1(t)} for
some neighborhood U of [0, 0]. If [0, 0] is not an angle point of
∂H, then there is a bounded domain D with C1 boundary such that
D∩U = H∩U . Since K∗

D is a compact operator in compl Lp(D), see [3,
Theorem 1.9], [24, Chapter IV, Theorem 2.2], yields that re(K∗

D) < 1/2
in compl Lp(∂D).
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Suppose now that [0, 0] is an angle point of ∂H. Define Ψ2(t) =
t(Ψ1)′+(0) for 0 ≤ t < r and Ψ2(t) = t(Ψ1)′−(0) for −r < t < 0. We can
choose a bounded domain D with connected Lipschitz boundary such
that D∩U = {[t, s]; |t| < r, s > Ψ2(t)}∩U , and for each y ∈ ∂D\[0, 0]}
there is a coordinate system, a neighborhood V of y, δ > 0 and a
function ϕ ∈ C∞(−δ, δ) such that D∩V = {[t, s]; |t| < δ, s > ϕ(t)}∩V .
Clearly, Ψ1(0) = Ψ2(0), Ψ1 − Ψ2 is of class C1 and (Ψ1 − Ψ2)′(0) = 0.
Since ∂D is a curve with bounded rotation and

p < 1 +
(

sup
x∈∂H

|1 − 2dH(x)|
)−1

≤ 1 +
(

sup
x∈∂D

|1 − 2dD(x)|
)−1

[19, Lemma 24] yields that re(K∗
D) < 1/2 in compl Lp(∂D).

According to Lemma 10.12 we have re(K∗
H) < 1/2 in compl Lp(∂H).

Now we use Theorem 8.7 and Theorem 10.6.

11. Successive approximation method. Let 1 < p < ∞ be
such that re(K∗

H) < 1/2 in compl Lp(∂H). (This is fulfilled if H has
piecewise C1 boundary and (38) holds.) Let f, h ∈ Lp(∂G), h ≥ 0,
g ∈ W 1,p

0 (γ) be such that an Lp-solution of the problem (1) (4) exists.
Let F be given by (11) (13). If h = 0 almost everywhere, then∫

F dH1 = 0. Fix R > diam G. If ϕ ∈ Lp(∂G) is a solution of the
equation Th,Rϕ = F , then Dg + SRϕ is an Lp-solution of the problem
(1) (4). We construct ϕ by the successive approximation method.

Fix α > α0 where α0 is given by (33). (If h ≡ 0 we can take α = 1.)
We can rewrite the equation Th,Rϕ = F as ϕ = (I−α−1Th,R)ϕ+α−1F .
Put

ϕ0 = α−1F,

ϕn+1 = (I − α−1Th,R)ϕn + α−1F

for nonnegative integers n. Then

ϕn+1 = α−1
n∑

k=0

(I − α−1Th,R)kF.



THE THIRD PROBLEM FOR THE LAPLACE EQUATION 505

According to Theorem 10.6, there is the limit ϕ of the sequence ϕn in
Lp(∂G) and Th,Rϕ = F . Since

ϕ = α−1
∞∑

k=0

(I − α−1Th,R)kF,

ϕ − ϕn = α−1
∞∑

k=n+1

(I − α−1Th,R)kF

there are constants q ∈ (0, 1), C ∈ (1,∞), depending only on G, p, h,
R and α such that

‖ϕ − ϕm‖Lp(∂G) ≤ Cqm
[
‖f‖Lp(∂G) + ‖g‖W 1,p

0 (γ)

]
,

‖ϕ‖Lp(∂G) ≤ C
[
‖f‖Lp(∂G) + ‖g‖W 1,p

0 (γ)

]
,

see Theorem 10.6.

Put u = Dg + SRϕ, un = Dg + SRϕn. Then u is an Lp-solution of
the problem (1) (4) and there is a constant C̃ depending only on G, p,
h, R and α such that

|u − um|L∞(G) + ‖u − um‖W 1,2(G) ≤ C̃qm
[
‖f‖Lp(∂G) + ‖g‖W 1,p

0 (γ)

]
,

|u|L∞(G) + ‖u‖W 1,2(G) ≤ C̃
[
‖f‖Lp(∂G) + ‖g‖W 1,p

0 (γ)

]
,

see Lemma 3.1 and Lemma 6.1.

Example 11.1. Suppose that the boundary of G is formed by
segments C1, . . . , Ck of the lengths l1, . . . , lk, and h is bounded. The
calculation of p0 using (37) is easy. For solving the problem (1) (4) by
the method described above, we need an estimation of α0. Denote by
xj the center of Cj for j = 1, . . . , k. If x ∈ ∂G, then

SRh(x) ≤ ‖h‖L∞(∂G)

k∑
j=1

1
2π

∫
Lj

ln(R/|xj − y|) dH1(y)

and thus

α0 ≤ 1 + ‖h‖L∞(∂G)
1
2π

k∑
j=1

lj [1 − ln(lj/2R)].
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19. D. Medková, The oblique derivative problem for the Laplace equation in a
plain domain, Integral Equations Operator Theory 48 (2004), 225 248.

20. D. Mitrea and I. Mitrea, On the Besov regularity of conformal maps and
layer potentials on nonsmooth domains, J. Funct. Anal. 201 (2003), 380 429.



THE THIRD PROBLEM FOR THE LAPLACE EQUATION 507

21. M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Rieman-
nian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct.
Anal. 176 (2000), 1 79.
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