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REGULARIZATION OF FIRST KIND INTEGRAL
EQUATIONS WITH APPLICATION

TO COUETTE VISCOMETRY

F.R. DE HOOG AND R.S. ANDERSSEN

ABSTRACT. The recovery of flow curves for non-Newtonian
fluids from Couette rheometry measurements involves the so-
lution of a quite simple first kind Volterra integral equation
with a discontinuous kernel. In this paper, a new implementa-
tion of regularization is proposed. It involves the direct regu-
larization of the observational equations through the construc-
tion of basis functions that exploit the mathematical structure
in the integral equation. The proposed implementation is first
derived for a general first kind integral equation and then ap-
plied to the Couette rheometer equation. For the regulariza-
tion of this problem, the basis functions take on a form similar
to that for B-splines.

1. Introduction. From a rheological as well as an integral equa-
tion and numerical analysis perspective, the recovery of flow curves for
non-Newtonian fluids from torque measurements on a Couette (coaxial
cylindrical) rheometer has a long and interesting history which dates
from Couette’s (1890) invention, [21]. Rheologically, because it is a
simple and fairly inexpensive experiment to perform, it is still a widely
utilized procedure to characterize the viscometric properties of New-
tonian and non-Newtonian fluids. Furthermore, when compared with
capillary and cone-and-plate rheometry, it has a number of important
advantages including ease of construction and alignment, experimen-
tal accuracy and predictability of secondary flows. Exact solutions are
only known for the inversion of capillary and cone-and-plate measure-
ments, and this is one of the reasons behind their historic popularity,
especially before the advent of electronic computers.

However, the importance of Couette rheometers relates more to their
industrial rather than their scientific use. They allow an assessment
of a non-Newtonian fluid to be made relatively quickly and inexpen-
sively. A snapshot of their wide range of industrial application can be
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found in Calderbank and Moo-Young [5], who examine the power con-
sumption in the agitation of non-Newtonian fluids, Rosenblatt et al.
[27], who investigate sedimentation and aggregation in a blood rheol-
ogy study, Grikshtas and Rao [13] who determined the slip velocities
of various tomato concentrates and apple sauces, Ayora et al. [2] where
the flow properties of different PVC-natural fiber suspensions were as-
sessed, Baudez and Coussot [3] and Baudez, et al. [4] where pasty
materials were the focus of deliberations and Picart et al. [22] where
the rheological properties of blood are analyzed.

The basic integral equation that relates the torque measurements to
the fluidity is a deceptively simple first kind Volterra integral equation
with a discontinuous kernel. As discussed in Section 2, it is only mildly
improperly posed. Infinite series solutions, derived independently by
Krieger and Elrod [16] and Pawlowski [20] have, until quite recently,
been the starting point for the numerical inversion of Couette rheome-
ter measurements. A number of methods have been proposed for the
summation of the infinite series including various Euler-Maclaurin sum
formula approximations starting with the key paper of Krieger and El-
rod [16] (Coleman and Noll [7], Krieger [14, 15], Code and Raal [6],
Yang and Krieger [28]). More recently, with the increasing availability
of new instrumentation and more comprehensive measurements, com-
pletely new methods have been proposed based on discretized Tikhonov
regularization [18] and wavelet-vaguelette decomposition [1]. A ma-
jor driver has been the increasing sophistication of materials manu-
factured from petro-chemicals and botanical/crop products, which has
generated a growing demand not only for new instruments but also
for improved algorithms for the recovery of information from indirect
measurements, such as Couette flow data.

The paper has been organized in the following manner. The Couette
rheometer integral equation is derived in Section 2. An infinite series
solution is then used to assess the improperly posedness of this inte-
gral equation. A brief discussion follows about the historic evaluation
on this series solution including the application of the Euler-Maclaurin
sum formula. The published applications of Tikhonov regularization to
the Couette equation are briefly assessed, and a new regularization ap-
proach is formulated in Section 3 for the standard Tikhonov quadratic
functional for a general first kind integral equation. The key step es-
tablishes that the equations, resulting from setting the first variation



FIRST KIND INTEGRAL EQUATIONS 251

of this discretization to zero, can be solved analytically. This result
is used to derive a set of basis functions for the solution of the set of
discretized functionals. These results are then utilized in Section 4 to
derive a set of basis function for the approximate solution of the Cou-
ette integral equation. Though there are various ways in which such
functions can be constructed, it turns out that there is a basis that is
closely related to B-splines.

2. The Couette rheometer equation and its formal solution.
A Couette (concentric cylinder) rheometer consists of an inner cylinder
(the bob) of length L and radius rb and the outer cylinder (the cup)
of radius rc, where the cup is rotated at an angular velocity Ω while a
torque M is applied to the bob to hold it stationary.

Mooney [19] was the first to formulate the basic equation from first
principles, viewing it as the solution to the problem of “ . . . calculating
slip and fluidity from experimental data.” As Mooney [19] noted,
Reiner’s [23] earlier approach floundered because it failed to separate
the solution of the inverse problem into the two clearly distinct steps of
first formulating a model for the measurements in terms of the unknown
flow curve and then solving the resulting mathematical relationship for
the flow curve.

The essence of Mooney’s [19] derivation is built on the assumption
that “ . . . no turbulence or other factor, aside from fluidity and slip, . . .
affect the measurements; and all surfaces in contact with the moving
fluid must be alike . . . .” Essentially, this means that the flow of the
fluid in the rheometer will be steady-state with only the azimuthal
component of the velocity nonzero.

Equilibrium requires that the shear-stress τ (r) exerted on the fluid
between the two cylinders at a radius r, rb ≤ r ≤ rc, be

(1) τ (r) =
M

2πr2L
.

Thus, it follows that

(2)
dτ

dr
= − 2τ

r
.
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In the current context, the constitutive relationship can be formulated
to take the form

γ̇ = τf(τ ),

which states that, for an ideal liquid in Couette flow, the rate of
shearing, γ̇, is a function τf(τ ) of the local shear stress τ only. Here,
f(τ ) denotes the fluidity which corresponds to the reciprocal of the
viscosity. In the simplest case of a Newtonian liquid, the fluidity is a
constant. For many non-Newtonian materials, a power law is a good
approximation, though more complex situations arise. For example,
in a Bingham fluid, shearing does not commence until the shear stress
exceeds the threshold yield stress.

For the azimuthal flow in a Couette rheometer,

γ̇ = − r
dω

dr
,

where ω(r) denotes the angular velocity of the fluid at a radial distance
r from the axis of the rheometer. Substitution of this result in the
constitutive relationship yields

− r
dω

dr
= − r

dω

dτ

dτ

dr
= τf(τ ),

and, on applying equation (2), one obtains

2
dω

dτ
= f(τ ).

Integration of this last equation from ω = 0 at the bob, to ω = Ω at
the cup, and utilizing the fact that the shearing at the bob and the
cup, τb and τc, respectively, are related, through (1), by

α =
τc

τb
=

(
rb

rc

)2

,

the required Volterra integral relationship is derived

(3) 2Ω(τ ) =
∫ τ

ατ

f(η) dη.
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One can reinterpret the Couette integral equation (3) as the difference
between two integrals of the form

F (τ ) =
∫ τ

0

f(η) dη,

and, thereby, obtain

(4) 2Ω(τ ) = F (τ )−F (ατ ), or equivalently F (τ ) = F (ατ )+2Ω(τ ).

Iteration of the second equation in (4) to the limit, utilizing the fact
that F (0) = 0, yields

F (τ ) = 2
∞∑

j=0

Ω(αjτ ),

which, when differentiated with respect to τ , gives the following infinite
series solution for f(τ ),

(5) f(τ ) = 2
∞∑

j=0

αjΩ′(αjτ ), Ω′ =
dΩ
dτ

.

This derivation is somewhat simpler than that given in earlier publica-
tions.

Clearly, for the (physically unrealistic) situation where α → 0, the
improper posedness of (3) corresponds to that of a single differentiation.
The importance of the series representation of equation (5) is that,
more generally, it establishes that the inherent improper posedness
associated with the Couette rheometer equation (3) can be viewed as
the sum of numerical differentiations of the Ω data. However, the
summation appears to play a smoothing role. This can be illustrated
in the following manner by reformulating (3) to take the form

2Ω(τ )
(1 − α)τ

=
∫ T

0

H(η − ατ ) − H(η − τ )
(1 − α)τ

f(η) dη,

where T is the maximum value that τ can take, and H(·) denotes
the Heaviside unit step function which takes the value 1 for positive
arguments and is zero otherwise. Clearly, from (3), Ω(τ ) depends on
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α. Furthermore, in the limit as α tends to one, the kernel becomes the
Dirac delta function δ(η − τ ). It therefore follows that

lim
α→1

[
2Ω(τ )

(1 − α)τ

]
= f(τ ).

The existence of this limit implies, heuristically, that, at least for α ∼ 1,
the summation in equation (5) tends to play a smoothing role. In fact,
the application of the standard integral mean value theorem to equation
(3) yields

2Ω(τ ) = (1 − α)τf(τ̂), α τ < τ̂ < τ,

which yields a clear encapsulation of the nature of that smoothing.

However, there is a dichotomy. From a rheological perspective, the
larger the radius of the bob and the narrower the gap between the
bob and the cup, for which α ∼ 1, the more accurately will be the
recovery of the non-Newtonian behavior of a fluid to shearing, as a good
approximation to shearing between flat parallel plates will be obtained
and end effects will decrease. From a numerical analysis perspective,
the closer the value of α is to 1, the slower will be the convergence
of the infinite series solution (5) and the more problematic will be the
evaluation of the Euler-Maclaurin sum formula approximation, since
the relative error in the data is often larger for instruments where the
bob and the cup are very close. For α ∼ 1, such approximations will
be useful only when the need can be avoided to compute derivatives of
Ω higher than the first. Furthermore, as discussed in Section 3, even
the published Tikhonov regularization methods proposed for (3) can
become problematic.

Krieger and Elrod [16] made the fundamental observation that the
Euler-Maclaurin sum formula could be applied to an alternative form
of the sum in (5). This has been investigated in a number of inde-
pendent ways. Formally, if the derivatives of Ω are known exactly,
the Euler-Maclaurin sum formula approximation will give a very good
approximation for α ∼ 1. However, since the relative errors in the Ω
data are often larger for instruments where the bob and cup are very
close to each other, the Euler-Maclaurin sum formula approach can
become quite problematic [7]. Aware of this difficulty, Code and Raal
[6] developed a reinterpretation of the Euler-Maclaurin sum formula by
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modeling the constitutive relationship, of the fluid under investigation,
in terms of a power-law departure factor. The goal here was to ob-
tain approximations for the higher order derivatives in terms of lower
order derivatives. In a way, this approach can be viewed as a form
of ad hoc regularization. It was subsequently pursued in a number of
independent ways by Yang and Krieger [28].

The success of the simplicity and applicability of the above approx-
imations was such that they became the standard for decades. Only
the advent of improved instrumentation and more comprehensive data
stimulated the need for improved algorithms. In addition, the greater
amounts of data on finer grids forced the inherent improperly posed
nature of equation (3) to be taken explicitly into account.

This has seen the publication of various algorithms based on Tikhonov
regularization [18, 29]. Ancey [1] has proposed the use of the wavelet-
vaguelette decomposition for performing the regularization.

3. Direct regularization of the observational equations. In
this section, a different approach to the regularization of first kind
integral equations is proposed.

Equation (3) can be viewed as a special case of a first kind integral
equation of the form

(6)
∫ 1

0

k(t, s)x(s) ds = y(t), 0 < t < 1,

by using appropriately scaled variables. With respect to given observa-
tional data di = y(ti) + εi, i = 1, 2, . . . , n, where the εi denote random
measurement errors, equation (6) takes the following discretized form∫ 1

0

k(ti, s)x(s) ds = di, i = 1, 2, . . . , n.

For the recovery of a continuous approximation from the discrete ob-
servational data {di}, this set of equations is clearly underdetermined,
irrespective of the smoothness of the kernel k(t, s). The underlying im-
proper posedness is further exacerbated as the smoothness of the kernel
increases.

Clearly, some form of regularization is required in order to identify
and stabilize the recovery of a unique approximation f to the solution x.
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There are various ways in which regularization can be applied to this
set of discretized equations. However, if it is known that the solution is
smooth and the measurement errors are independently and identically
distributed, then Tikhonov regularization, which takes the following
form, is appropriate

(7)

min
f

{F(f ;d)},

F(f ;d) =
n∑

i=1

[ ∫ 1

0

k(ti, s)f(s) ds − di

]2

+ λ

∫ 1

0

(f (m)(s))2 ds,

λ > 0,

where d denotes the n-dimensional vector with components di and

fm(s) =
dmf(s)

dsm
, m � n.

Heuristically, in this form of regularization, uniqueness and stability are
achieved as a balancing, controlled by the value of the regularization
parameter λ, between the need for a smooth approximation f and
an appropriate fit to the data. The results derived below can be
generalized to a much wider class of regularization procedures than
is encapsulated in (7) which, among other possibilities, could involve
introducing known weightings into the two integral components in (7).
Such an extension would arise naturally if the measurement errors {εi}
were not independently and identically distributed.

As explained for the Couette rheometer equation (3) in Yeow et al.
[29] and Leong and Yeow [18], the popular strategy for deriving an
approximation f on the basis of the quadratic functional (7) is to first
construct a discretization of this functional and to then minimize the
resulting algebraic quadratic form with respect to the components in
the discretization of f . Historically, the essence of this idea dates back
to Whittaker’s [27] work on graduation. As explained in various places
such as Shaw and Tigg [26] for the implementation proposed by Yeow
et al., and more generally by Engl et al. [11, Chapter 9], this normally
is a quite natural and sensible strategy that results in the solution
of a relatively small number of equations. However, for the Couette
equation (3) in order to obtain an accurate approximation to f(τ )
using the method proposed by Yeow et al. [29] it will be necessary
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to construct and solve quite large matrix equations. In particular,
when α ∼ 1, because of the small range [ατ, τ ] over which the kernel
k(t, s), as a function of s, is defined, the number of discretization points
on each of the intervals [ατ, τ ] must be reasonably large. Thus, when
α ∼ 1, there will be many small intervals, and, consequently, it will
be necessary to work with quite large matrices. This fact has been
acknowledged in [18].

It turns out however that the optimal solution of equation (7) can be
determined without resorting to approximation, in an analogous way
in which Schoenberg [25] generalized the work of Whittaker [27]. In
fact, for the case of the Couette equation (3), an analogue of the Curry
and Schoenberg [9] B-splines can be derived as shown in Section 4.

On setting the first variation of the functional in (7) to zero, one
obtains the following ordinary differential equation

(8) f (2m)(s) =
n∑

i=1

βik(ti, s), βi =
(−1)mri

λ
,

along with the natural boundary conditions

(9) f (m+j−1)(0) = f (m+j−1)(1) = 0, j = 1, 2, . . . , m,

where the ri are the residuals

ri =
[ ∫ 1

0

k(ti, η)f(η) dη − di

]
.

From Taylor’s theorem, utilizing the fact that

f (m+j−1)(0) = 0, j = 1, 2, . . . , m,

it follows that

f (m+j−1)(s) =
1

(m − j)!

∫ s

0

(s − η)m−jf (2m)(η) dη, j = 1, 2, . . . , m.

The other natural boundary condition

f (m+j−1)(1) = 0, j = 1, 2, . . . , m,
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when applied to this result, yields

f (m+j−1)(1) =
1

(m − j)!

∫ 1

0

(1 − η)m−jf (2m)(η) dη = 0,

j = 1, 2, . . . , m.

Substitution of equation (8) into this result gives

(10)

f (m+j−1)(1) =
n∑

j=1

βicij = 0,

cij =
1

(m − j)!

∫ 1

0

(1 − η)m−jk(ti, η) dη,

j = 1, 2, . . . , m.

The next step is the identification of the conditions that guarantee
that the minimization of F(f ;d) is unique. If it is assumed that the
functional F(·;d) has two minimizers f and f + p, then it follows that,
because the first variation of F(f ;d) is zero,

F(f + p;d) = F(f ;d) +
n∑

i=1

( ∫ 1

0

k(ti, s)p(s) ds

)2

+
∫ 1

0

(p(m)(s))2 ds.

As minimizers of F(·;d), the solutions f and f + p guarantee that the
values of F(f + p;d) and F(f ;d) must be the same, which can only
occur if ∫ 1

0

(p(m)(s))2 ds = 0,

and
n∑

i=1

( ∫ 1

0

k(ti, s)p(s) ds

)2

= 0.

The former condition implies that p must be a polynomial of the form

pm−1(η) =
m∑

j=1

γj(1 − η)m−j ≡ 0.
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The latter condition implies that∫ 1

0

k(ti, η)pm−1(η) dη = 0, i = 1, 2, . . . , n,

and, hence,

m∑
j=1

γj

∫ 1

0

k(ti, η)(1 − η)m−j dη =
m∑

j=1

cijγj = 0.

Uniqueness of the minimizer of F(·;d) implies that Cγ = 0 if and only
if γ equals zero, which implies that the rank of the matrix C ∈ Rn×m

is m.

Let G ∈ R(n−m)×n denote a matrix of rank n−m, the rows of which
are orthogonal to the columns of C; namely,

(11)
GC = 0,

n∑
i=1

gqicij =
n∑

i=1

gqi

∫ 1

0

k(ti, η)ηm−j dη,

q = 1, 2, . . . , m − n, j = 1, 2, . . . , m.

Together, equations (10) and (11) imply that the vector [β1, β2, . . . , βn]
is orthogonal to the columns of the matrix C and, therefore, must lie in
the span of the matrix GT . This implies that the {βi} can be rewritten
as a linear combination of the {gqi}, q = 1, 2, . . . , n − m; namely,

(12) βi =
n−m∑
q=1

ζm+qgqi.

The application of the Taylor series expansion with integral remainder
to f(s) yields

f(s) =
2m∑
j=1

sj−1

(j − 1)!
f j−1(0) +

1
(2m − 1)!

∫ s

0

(s − η)2m−1f (2m)(η) dη.

Combining this result with equation (8) and the natural boundary
conditions (9), at the origin, yields

f(s) =
m∑

j=1

sj−1

(j − 1)!
f j−1(0) +

n∑
i=1

βiK2m(ti, s),



260 F.R. DE HOOG AND R.S. ANDERSSEN

where

Kj(ti, s) =
1

(j − 1)!

∫ s

0

(s − η)j−1k(ti, η) dη, j = 1, 2, . . . , 2m.

In conjunction with equation (12), this last equation becomes

f(s) =
m∑

j=1

sj−1

(j − 1)!
f j−1(0) +

n∑
i=1

n−m∑
q=1

ζm+qgqiK2m(ti, s),

which, on changing the order of summation, yields

f(s) =
m∑

j=1

sj−1

(j − 1)!
f j−1(0) +

n−m∑
q=1

ζm+q

n∑
i=1

gqiK2m(ti, s).

Thus, on introducing the basis functions

(13) φq(s) =
sq−1

(q − 1)!
, ζq = f (q−1)(0), q = 1, 2, . . . , m,

and

(14) φm+q(s) =
n∑

i=1

gqiK2m(ti, s), q = 1, 2, . . . , n − m,

it follows that the solution of equations (8) and (9) can be written as

(15) f(s) =
n∑

q=1

ζqφq(s).

This establishes the fact that the minimizer of the functional (7)
can be written as a linear combination of the basis functions φq(s),
q = 1, 2, . . . , n.

Substitution of this approximation for f(s) into equations (7) and
differentiation of the resulting set of equations with respect to the
unknowns ζl yields the following matrix counterpart of the fact that
the first variation of the underlying matrix quadratic form is zero

Aζ = z,
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where

alj =
n∑

i=1

∫ 1

0

k(ti, s)φj(s) ds

∫ 1

0

k(ti, s̄)φl(s̄) ds̄

+ λ

∫ 1

0

φ
(m)
j (s) ds

∫ 1

0

φ
(m)
l (s̄) ds̄,

ζ = (ζ1, ζ2, . . . , ζn)T , z = (z1, z2, . . . , zn)T ,

and

zl =
n∑

i=1

di

∫ 1

0

k(ti, s)φl(s) ds.

It is clear from the above construction that the structure of the
{k(ti, s)} now plays an explicit role in determining the form of the
regularized approximation (15) to the solution of the integral equation
(6). Furthermore, the choice of the design points {ti}, at which the
measurements {di} are made, controls the choice of the {k(ti, s)} and,
thereby, the resulting form of the {φj(s)}.

4. Construction of the basis functions φl(s) for the Couette
flow problem. It follows from a comparison of equations (3) and (6)
that

k(t, s) = H(αt − s) − H(t − s),

and, hence, that

Kj(t, s) =
1
j!

[(s − αt)j
+ − (s − t)j

+].

For this problem, it is convenient to rescale Kj(t, s) as follows

K̃j(t, s) =
1
j!

[(s − αt)j
+ − (s − t)j

+]
(1 − α)t

,

which is zero for s < αt and a polynomial of degree j − 1 in t for s > t.

It is well known that, in general, the truncated polynomials (t− ti)
q
+,

defined on some nondecreasing set t = {ti}, do not define computa-
tionally a suitable set of basis functions for the application of spline
functions. The resulting linear systems of equations tend to be poorly
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Basis Functions, m=1

0

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 1. A plot of a representative set of the basis functions.

conditioned Greville [12, p. 21]. On the other hand, B-splines, gen-
erated by taking appropriate divided differences of truncated polyno-
mials, are known to yield much better conditioned linear systems. In
part, this is due to their relatively small support [10].

The concept of a B-spline dates back to Curry and Schoenberg [9].
Following de Boor [10], the ith normalized B-spline of order k for a
given knot sequence t is denoted by Bi,k,t(s) and defined by

Bi,k,t(s) := (ti+k − ti)[ti, . . . , ti+k](· − s)k−1
+ ,

for all s ∈ R, where [ti, . . . , ti+k]h(·) denotes the kth divided difference
of the values of the function h(t) at the knot points {ti}. The kth
divided difference eliminates polynomials in t of degree less than k.
Hence, their support is limited to the interval [ti, ti+k].

Consequently, it is natural to define the basis function {φi} to take
the form

φl(s) = [tl−m, . . . , tl+m]K̃2m(·, s), l = m + 1, . . . , n − m.

This choice yields essentially the same structure as the more general
functions {φi} of equations (13) and (14), in that they correspond to
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a linear combination of the K2m(ti, s). Furthermore, since K̃2m(t, s) is
zero for s < αt and is a polynomial of degree 2m−1 on s > t, it follows
that the support of the basis functions φl, l = m + 1, . . . , n − m, is
restricted to the interval [αtl−m, tl+m]. Since 0 < αtl−m < tl+m < 1, it
follows that the boundary conditions (9) are satisfied.

The remaining 2m basis functions correspond to the m functions

(16) φn−m+l(s) = [tn−2m+l, . . . , tn]K̃2m(·, s), l = 1, . . . , m,

which have support on [tn−2m+l, 1], and the m functions

(17) φl(s) = [t1, . . . , tm+l]K̂2m(·, s), l = 1, . . . , m,

with support on [0, αtm+l], where

K̂j(t, s) =
1
j!

[(s − αt)j
− − (s − t)j

−]
(1 − α)t

.

That the boundary conditions are satisfied by these basis functions can
be verified in the following manner. First consider the basis functions
of equation (16). It follows that

(18) φ
(m+j−1)
n−m+l (s) = [tn−2m+l, . . . , tn]K̃m−j+1(·, s), l = 1, . . . , m.

Now K̃m−j+1(t, s) is zero for s < αt and is a polynomial of degree
m − j in t on [tn, 1] which is eliminated by the divided differences in
equation (18). Thus, the supports for each φ

(m+j−1)
n−m+l (s) is the interval

[αtn−2m+l, tn] and hence the boundary conditions (9) are satisfied. A
similar argument applies for the basis functions of equation (17).

Because of the limited local support of these basis functions as well as
the kernel of the integral equation (5), the resulting matrix equations
will be quite sparse. An illustration of the resulting set of basis
functions for m = 1 is given in Figure 1.

Note added to proofs. It has come to our attention that the derivation
of the basis functions of equations (13) and (14) is similar to that
used by D. Nychka, G. Wahba, S. Goldfarb and T. Pugh (Cross-
validation spline methods for the estimation of three-dimensional tumor
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size distributions from observational on two-dimensional cross sections,
JASA 79 (1984), 832 846) where reproducing kernel Hilbert space
results are employed.
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