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ITERATIVELY REGULARIZED GRADIENT METHOD
WITH A POSTERIORI STOPPING RULE FOR

2D INVERSE GRAVIMETRY PROBLEM

A. BAKUSHINSKY, A. SMIRNOVA AND M.A. SKINNER

ABSTRACT. A nonlinear operator equation F (x) = fδ,
‖f − fδ‖ ≤ δ, on a pair of real Hilbert spaces H1 and H2 is
considered. The operator F is assumed to be Fréchet differ-
entiable without such structural assumptions as monotonicity,
invertibility of F ′(x), etc., i.e. the problem is ill-posed. In or-
der to solve the above equation numerically we suggest the
iteratively regularized gradient method [3] combined with a
new generalized discrepancy principle:

‖F (xN ) − fδ‖2 < τδ ≤ ‖F (xn) − fδ‖2 , 0 ≤ n < N, τ > 1.

A convergence theorem is proven under a source type condi-
tion

x̂ − x0 = F ′∗(x̂)v, v ∈ H2.

The proposed algorithm is tested on the 2D inverse gravime-
try problem [15] reduced to a nonlinear integral equation of
the first kind. The results of numerical simulations are pre-
sented and some practical recommendations on the choice of
parameters are given.

1. Introduction. Consider the following inverse problem:

(1.1) F (x) = f, F : H1 −→ H2,

where F is a nonlinear Fréchet differentiable operator on a pair of real
Hilbert spaces H1 and H2. Assume that the element f ∈ H2 is given
by its δ-approximation:

(1.2) ‖f − fδ‖ ≤ δ
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By taking the standard gradient process as a basic numerical scheme,
we get the following iteratively regularized gradient method [3, 5]:

(1.3) x0 ∈ H1, xn+1 = xn−μn {F ′∗(xn)(F (xn)−fδ)+αn(xn−x0)} .

Here μn is an a priori prescribed step size, and αn is a regularization
parameter at the nth iteration:

(1.4) μn > 0, αn ≥ αn+1 > 0, lim
n→∞ αn = 0.

In the case when δ > 0, the sequence {xn} generated by an iteratively
regularized process (1.3) does not usually converge to a minimizer
x̂ of (1.1). It does, however, allow a stable approximation to x̂ if
iterations are stopped at an appropriate step n = N(δ) such that
limδ→0

∥∥xN(δ) − x̂
∥∥ = 0. When functional (1.1) is convex, convergence

of xN(δ) to x̂ can be established by using the scheme proposed for
monotone operator equations in [4]. Unfortunately, the convexity
assumption is not satisfied for most applied nonlinear problems. For
that reason, instead of convexity of Φ(x), certain restrictions on the
type of nonlinearity of F have been used in the literature. For example,
the condition

(1.5) F ′(y) = F ′(x)R(x, y), x, y ∈ B (x̂)

with linear operator R(x, y) satisfying a Lipschitz-type estimate

(1.6) ‖R(x, y) − I‖ = ‖R(x, y) − R(x, x)‖ ≤ CR ‖x − y‖

was considered in [14]. It is closely related to the so-called affine
covariant Lipschitz condition [9]. Identities (1.5) and (1.6) have been
verified for some parameter identification problems in PDEs, where the
forward operator consisted of a nonlinear solution operator, composed
with a linear operator mapping the solution to the given boundary
values.

An alternative nonlinearity condition [11 14] takes the following
form:

(1.7) F ′(y) = R(x, y)F ′(x), x, y ∈ B(x̂),
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where R(x, y) are regular operators. The related Newton-Mysovskii
conditions have been discussed in [8].

In this paper, the convergence analysis is done without using any
structural assumptions on either Φ(x) or F (x). It covers, therefore, the
case of a general nonlinear operator, for example, an integral operator
with a smooth nonlinear kernel. The analysis is based on the source-
wise representation condition:

(1.8) x̂ − x0 = F ′∗ (x̂) v, v ∈ H2.

The stopping number n = N(δ) is chosen by the generalized discrep-
ancy principle, see [6]:

(1.9) ‖F (xN ) − fδ‖2
< τδ ≤ ‖F (xn) − fδ‖2

, 0 ≤ n < N, τ > 1.

The paper is organized as follows. In Section 2 the main convergence
result, Theorem 2.1, is established, and examples of regularization
parameters are given. In Section 3 the application of algorithm (1.3),
(1.9) to the 2D inverse problem of gravimetry [1, 15] is studied. The
problem consists of finding an interface between two media of different
densities. It is reduced to a nonlinear integral equation of the first kind
(nonlinear ill-posed problem):

F (x) := g�σ

∫ b

a

∫ d

c

{
1

[ (ξ −t)2 + (ν −s)2 + x2(ξ, ν) ]1/2

− 1
[ (ξ−t)2 + (ν−s)2 + h2 ]1/2

}
dξ dν = f(t, s),

where g is the gravitational constant, �σ is the density jump on the
interface and f(t, s) is the gravitational strength anomaly. Based on
the results of numerical experiments, some practical recommendations
on the choice of parameters αn, μn and τ are provided.

2. Regularization procedure and convergence theorem. In
order to analyze the behavior of iterations generated by method (1.3),
(1.9), we state a priori conditions on the rate of decay for parameters
{αn} and {μn}, see (2.2) below, as well as certain limitations on the
initial element x0 given by formulas (2.3) (2.5). Conditions (2.2) are
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independent of a specific operator on a class described by inequalities
(2.1). Thus, algorithm (1.3), (1.9) is well defined for all operators in
class (2.1).

Theorem 2.1. 1. Assume equation F (x) = f is solvable, maybe
non-uniquely.

2. The Fréchet derivative of the operator F is bounded and Lipschitz-
continuous:

(2.1)
‖F ′(x)‖ ≤ 1, ‖F ′(x) − F ′(y)‖ ≤ L ‖x − y‖

for any x, y ∈ H1.

3. The element f is known approximately and inequality (1.2) is
fulfilled.

4. For some positive constants ε, ξ > 0,

(2.2) μn = εαn > 0, αn ↘ 0 as n → 0,
αn − αn+1

α2
nαn+1

≤ ε ξ.

5. The source-wise condition holds in the form

(2.3) x̂ − x0 = F ′∗ (x̂) v, v ∈ H2,

where x̂ ∈ H1 is a solution to F (x) = f , and

(2.4) ‖v‖ < min
{

2 − ε(3 + α2
0)

2L(1 + εα0 + 2εα2
0L)

, 2
}

,

(2.5) 2c ‖v‖ (1 + ε ξα2
0)

{
L

2
+

1
(
√

τ − 1)2

}
+ ξ ≤ η.

Here τ > 1,

(2.6) c :=
√

(1 + 3εα0)(1 + ε + εα0(2 + L)),

(2.7) η := 2
[
1 − L ‖v‖ (1 + εα0 + 2εα2

0L)
] − ε(3 + α2

0)
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6. The initial element x0 satisfies the condition

(2.8)
‖x0 − x̂‖2

α0
≤ 2 ‖v‖2 (1 + ε + εα0(2 + L))(1 + ε ξα2

0)
η − ξ

:= l.

Then

1. For n = 0, 1, . . . , N(δ), one has

(2.9) ‖xn − x̂‖2 ≤ l αn,

where N = N(δ) is chosen by the generalized discrepancy principle

(2.10) ‖F (xN ) − fδ‖2 ≤ τδ < ‖F (xn) − fδ‖2 , 0 ≤ n ≤ N, τ > 1.

2. The sequence {N(δ)} is admissible, i.e.,

(2.11) lim
δ→0

∥∥xN(δ) − x∗∥∥ = 0,

x∗ is a solution to F (x) = f . If N(δ) → ∞ as δ → 0, then x∗ = x̂.

Remark 2.2. One of the main assumptions of the paper is that, for
all x, y ∈ H1, ‖F ′(x)‖ ≤ 1, ‖F ′(x) − F ′(y)‖ ≤ L ‖x − y‖. The second
condition is often fulfilled in practical applications. But if one considers,
e.g., the operator of autoconvolution, then the first estimate holds only
in a bounded region. The structure of the proofs for convergence and
stability of the proposed method is always that it is shown

‖xn − x̂‖√
αn

≤
√

l

holds and, because αn is monotone decreasing, all iterates for n ≤ N
will stay in a bounded neighborhood of the solution x̂,

‖xn − x̂‖ ≤
√

α0 l.

Therefore it is actually sufficient for the first estimate ‖F ′(x)‖ ≤ 1 to
hold in a sufficiently large neighborhood of x̂.



380 A. BAKUSHINSKY, A. SMIRNOVA AND M.A. SKINNER

Proof of Theorem 2.1. Take arbitrary n < N(δ) and suppose that,
for any k, 0 < k ≤ n < N(δ), the induction assumption

(2.12)
‖xk − x̂‖2

αk
≤ l

holds. By condition (2.1) it follows that

(2.13) 0 = F (x̂) − f = F (xn) − f + F ′(xn) (x̂ − xn) + G (xn, x̂) ,

(2.14) ‖G (xn, x̂)‖ ≤ L

2
‖xn − x̂‖2

Thus source-wise condition (2.3) yields

(2.15)

xn+1 − x̂ = (1 − μnαn) (xn − x̂) − μn F ′∗(xn)F ′(xn) (xn − x̂)
+ μn F ′∗(xn) (G (xn, x̂) − f + fδ)
− μnαn (F ′ (x̂) − F ′(xn))∗ v

− μnαn F ′∗(xn)v.

Since H1 is a real Hilbert space
(2.16)

‖xn+1 − x̂‖2 = ‖(1 − μnαn) (xn − x̂) − μn F ′∗(xn)F ′(xn) (xn − x̂)

−μnαn F ′∗(xn)v‖2

+ 2 μn

(
(1 − μnαn) (xn − x̂) − μn F ′∗(xn)
× F ′(xn) (xn − x̂) − μnαn F ′∗(xn)v,

F ′∗(xn) (G (xn, x̂)−f+fδ)−αn (F ′ (x̂)−F ′(xn))∗ v
)

+ μ2
n ‖F ′∗(xn) (G (xn, x̂) − f + fδ)

−αn(F ′ (x̂) − F ′(xn))∗v‖2
.

Estimate the first term in (2.16)

(2.17)

An : = ‖(1 − μnαn) (xn − x̂) − μn F ′∗(xn)F ′(xn) (xn − x̂)

−μnαn F ′∗(xn)v‖2

= (1 − μnαn) ‖xn − x̂‖2 + μ2
n ‖F ′∗(xn)F ′(xn) (xn − x̂)‖2

+ μ2
nα2

n ‖F ′∗(xn)v‖2

− 2 μn(1 − μnαn)
(
F ′∗(xn)F ′(xn) (xn − x̂) , xn − x̂

)
− 2 μnαn(1 − μnαn)

(
F ′∗(xn)v, xn − x̂

)
+ 2 μ2

nαn

(
F ′∗(xn)F ′(xn) (xn − x̂) , F ′∗(xn)v

)
.
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From the inequality ‖F ′(x)‖ ≤ 1, one concludes

(2.18)

An ≤ [
(1 − μnαn)2 + μ2

n

] ‖xn − x̂‖2 + μ2
nα2

n ‖v‖2

− 2μn (1 − μnαn) ‖F ′(xn) (xn − x̂)‖2

+ 2μnαn (1 − μnαn) ‖v‖ ‖F ′(xn) (xn − x̂)‖
+ 2μ2

nαn ‖xn − x̂‖ ‖v‖ .

Clearly,

2αn ‖v‖ ‖F ′(xn) (xn − x̂)‖ ≤ ‖F ′(xn) (xn − x̂)‖2 + α2
n ‖v‖2

and
2αn ‖xn − x̂‖ ‖v‖ ≤ ‖xn − x̂‖2 + α2

n ‖v‖2 ,

which implies together with (2.18) that

(2.19)

An ≤ [
1− 2μnαn+ μ2

n(α2
n+ 2)

] ‖xn− x̂‖2

− μn(1−μnαn) ‖F ′(xn) (xn−x̂)‖2+μnα2
n [1−μnαn+2μn] ‖v‖2

.

Now estimate the second term in (2.16)

(2.20)

Bn := 2μn

(
(1 − μnαn) (xn − x̂) − μnF ′∗(xn)F ′(xn) (xn − x̂)
− μnαnF ′∗(xn)v, F ′∗(xn) (G (xn, x̂) − f + fδ)

−αn (F ′ (x̂) − F ′(xn))∗ v
)

≤ μn (1 − μnαn)
{[ ‖G (xn, x̂)‖ + δ

]2 + ‖F ′(xn) (xn − x̂)‖2}
+ 2μnαn(1 − μnαn)L ‖v‖ ‖xn − x̂‖2

+ μ2
n

{[ ‖G (xn, x̂)‖+ δ
]2 + ‖xn− x̂‖2}+ 2μ2

nαnL ‖v‖ ‖xn− x̂‖2

+ μ2
nαn

{[ ‖G (xn, x̂)‖ + δ
]2 + ‖v‖2}

+ μ2
nα2

nL ‖v‖2 {‖xn − x̂‖2 + 1
}
.

From (2.20), (2.4) and (2.14) one derives

(2.21)

Bn ≤ μn(1 + μn)
[
L

2
‖xn − x̂‖2 + δ

]2

+ μn(1 − μnαn) ‖F ′(xn) (xn − x̂)‖2

+ μn [2 αnL ‖v‖ (μn + 1) + μn] ‖xn − x̂‖2

+ μ2
nαn(1 + αnL) ‖v‖2 .
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Finally,
(2.22)

Cn := μ2
n

∥∥F ′∗(xn) (G(xn, x̂)−f+fδ)−αn (F ′ (x̂)−F ′(xn))∗ v
∥∥2

≤ 2μ2
n

{[
L

2
‖xn − x̂‖2 + δ

]2

+ α2
nL2 ‖v‖2 ‖xn − x̂‖2

}
.

Since n < N(δ), according to (2.10)

τδ ≤ ‖F (xn) − fδ‖2
.

Thus by (1.2)

(2.23)
√

τδ ≤ ‖F (xn) − f‖ + ‖f − fδ‖ ≤ ‖xn − x̂‖ + δ,

and

(2.24)
√

τδ − δ ≤ ‖xn − x̂‖ .

Without loss of generality one can assume δ < 1, therefore

(2.25) δ ≤ ‖xn − x̂‖2

(
√

τ − 1)2
.

Combining (2.2), (2.19), (2.21), (2.22) and (2.25), one gets

(2.26) ‖xn+1 − x̂‖2 ≤ (1 − η εα2
n) ‖xn − x̂‖2 + λαn ‖xn − x̂‖4 + ρ α3

n,

where η is defined by (2.7) and

(2.27) λ := ε (1 + 3 εα0)
{

L

2
+

1
(
√

τ − 1)2

}2

,

(2.28) ρ = ε ‖v‖2 [1 + εα0(2 + L) + ε] .

Let γn := ‖xn − x̂‖2 /αn. Then one has

(2.29) γn+1 ≤ (1 − η εα2
n)

αn

αn+1
γn + λ

α3
n

αn+1
γ2

n + ρ
α3

n

αn+1
.
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The sequence {αn} was chosen to satisfy the condition αn − αn+1/
α2

nαn+1 ≤ ε ξ, and by induction assumption γn ≤ l. So by (2.5) and
(2.8)

(2.30)

γn+1 − l ≤ α2
n

{−ε(η − ξ) l + λ
(
1 + ε ξα2

0

)
l2 + ρ

(
1 + ε ξα2

0

)} ≤ 0.

The sequence N = N(δ) is nondecreasing as δ → 0. Two cases are
possible:

1. N(δ) = N0 for any δ ≤ δ0. Then limδ→0 xN0(fδ) is a solution to
F (x) = f .

2. N(δ) → ∞ as δ → 0. Then∥∥xN(δ) − x̂
∥∥ ≤

√
l αN(δ) −→ 0 as δ → 0.

In any case limδ→0

∥∥xN(δ) − x∗∥∥ = 0, x∗ is a solution to F (x) = f .
This completes the proof.

Remark 2.3. The sequence αn = α0/(1 + n)p satisfies assumption
(2.2) if

0 < p ≤ 1
2

and α0 ≥
√

p

ε ξ
.

As another example one can take αn = α0/ln(1 + n) with α0 ≥ √
1/ε ξ.

3. Numerical simulations. To test iteratively regularized gradient
method (1.3), (1.9) numerically, the two-dimensional inverse gravime-
try problem was considered. It was assumed that the lower half-space
is formed by two media with constant densities separated by a surface
x = x(ξ, ν). The gravitational anomaly, f = f(t, s), is caused by the
deviation of the above surface from the horizontal plane x(ξ, ν) = h.
As it is shown in [15], in the Descartes coordinate system the inverse
gravimetry problem can be reduced to the 2D nonlinear integral equa-
tion of the first kind:

(3.1)

F (x) := g�σ

∫ b

a

∫ d

c

{
1

[ (ξ−t)2 + (ν −s)2 + x2(ξ, ν) ]1/2

− 1
[ (ξ−t)2 + (ν −s)2 + h2 ]1/2

}
dξ dν

= f(t, s),
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and it consists of finding the unknown function x = x(ξ, ν), which
describes the interface, from the measured data f = f(t, s). Here g is
the gravitational constant and �σ is the density jump on the interface.
Choose H1 = H1(Ω) and H2 = L2(Ω), Ω = [a, b]× [c, d]. If one denotes
the kernel of the nonlinear operator F (x) by K(t, s, ξ, ν, x(ξ, ν)):

(3.2)
K(t, s, ξ, ν, x(ξ, ν)) :=

{
1

[ (ξ − t)2 + (ν − s)2 + x2(ξ, ν) ]1/2

1
[ (ξ − t)2 + (ν − s)2 + h2 ]1/2

}
,

then the Fréchet derivative of F (x) is given by

(3.3) F ′(x)y = g�σ

∫
Ω

∫
K ′

x(t, s, ξ, ν, x(ξ, ν))y(ξ, ν) dξ dν,

where

(3.4) K ′
x(t, s, ξ, ν, x(ξ, ν)) =

−x(ξ, ν)
[ (ξ − t)2 + (ν − s)2 + x2(ξ, ν) ]3/2

.

To evaluate the corresponding adjoint operator, one needs to solve
an auxiliary integro-differential equation. Hence, direct numerical
realization of (1.3) is very complicated in our case. It was shown in
[3] that one can find an approximate solution to (3.1) by replacing
the integral in (3.1) with a quadrature formula. Thus, from now on,
we consider a finite-dimensional analog of equation (3.1) and construct
iterations (1.3) in a suitable Euclidian space.

The numerical experiments were performed on a Pentium IV desktop
using Matlab 6.5.1. Discretization was done by taking an evenly spaced
grid over the domain Ω = [2.8, 20.0]× [0.0, 8.0] (km2) with 43×20 node
points, respectively. This resolution gave the corresponding mesh width
of w = 0.4 (km) in both directions. The two-dimensional analog of the
midpoint quadrature rule was used to approximate the integral operator
in (3.1). The ground surface height was taken to be h = 2.0 (km). The
gravitational anomaly was calculated by solving the direct problem with
x = xmod(ξ, ν), and the identity was rescaled by dropping the constants
g and �σ from the original formula. The constant horizontal plane
x0(ξ, ν) = 0.1 (km) was taken as the initial guess for all the simulations
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below. In order to select the regularization parameter αn, the step
size parameter μn, and the discrepancy parameter τ , the following
representative, asymmetric model solution, obtained by translating
and scaling Gaussian distributions, was considered (see ‘Built-in Peaks
Surface Function’ in Matlab manual):

(3.5)

x
(1)
mod(ξ̃, ν̃) =

1
14

{
3(1 − ξ̃)2e−ξ̃2−(ν̃+1)2 − 10

(
1
5

ξ̃ − ξ̃3 − ν̃5

)
e−ξ̃2−ν̃2

− 1
3

e−(ξ̃+1)2−ν̃2
}

+ 1,

where

ξ̃ = 6
(

ξ − c

d − c

)
− 3, and ν̃ = 6

(
ν − a

b − a

)
− 3

are appropriate domain transformations. For the above model solution,
the sequence μn was numerically determined so as to give the most
aggressive convergence rate for the experiments conducted in a noise-
free case and in the presence of noise at the level from 2% to 5%.
The best convergence rate was obtained for μn = μ0 = 0.015. The
regularization parameter sequence αn = α0(1+n)−0.25 with α0 = 0.001
was chosen to ensure the best stability in the presence of noise. For the
noise-free case there was no apparent need for regularization (we could
use αn = 0). An attractive feature of scheme (1.3) is that it is not very
sensitive to the values of parameters {μn} and {αn}. For the relative
noise 5% we were able to take α0 from the interval

[
10−7, 10−2

]
and

αn = α0/(1 + n)p with 0 < p ≤ 1. One can see that for our particular
problem the interval for p is bigger than the interval guaranteed by the
convergence theorem. As for the choice of μn, if one takes μn = μ0 then
one can use any μ0 ∈ [0.005, 0.03]. The sequence μn = μ0/(1 + n)q,
0 < q ≤ 1 and μ0 ∈ [0.005, 0.03], also works. For q > 1 convergence
becomes rather slow.

The following algorithm was used to determine τ . Iterations (1.3)
were performed with random noise functions added to the right-hand
side of equation (3.1). The relative discrepancy:

(3.6) �δ :=
‖F (xmod) − fδ‖

‖F (xmod)‖
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ranged from 0.02 to 0.2. Altogether 10 different noise functions were
investigated with �δ(k) = 0.02k, k = 1, 2, . . . , 10. For every noise
function, iterative process (1.3) was stopped at the first number n =
n(k) such that

‖xn − xmod‖
‖xmod‖ >

‖xn−1 − xmod‖
‖xmod‖

and τ = τ (k) was calculated from the identity

‖F (xn) − fδ‖2 = τδ.

It was discovered that, for k = 1, 2, . . . , 10, τ (k) ∈ [8.02, 11.46]. As the
result, the value τ = 11.46 was taken to reconstruct two other model
solutions

x
(2)
mod(ξ̃, ν̃) = sin

(∣∣∣ξ̃∣∣∣ − |ν̃|
) /

3 + 1,

ξ̃ = 10
(

ξ − c

d − c

)
− 5, ν̃ = 10

(
ν − a

b − a

)
− 5

and

x
(3)
mod(ξ̃, ν̃) = exp(−ξ̃2 − ν̃2) + 0.5,

ξ̃ = 3
(

ξ − c

d − c

)
− 1.5, ν̃ = 3

(
ν − a

b − a

)
− 1.5
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using method (1.3) and a posteriori stopping rule (1.9) (with parame-
ters μn = 0.015 and αn = 0.001(1 + n)−0.25).

In Figure 1, one can see the graph of x
(2)
mod(t, s), (t, s) ∈ Ω, as well

as the graphs of approximate solutions for the noise-free case, for the
case when �δ := 0.02 and �δ := 0.05, see formula (3.6). The cross-
sectional comparison for s = 10 is presented in Figure 2. The same
results for x

(3)
mod(t, s) are illustrated in Figures 3 and 4, respectively.

The number of iterations in the noise-free case for both model solutions
was 50. When the relative level of noise was 2% and the experiment was
conducted with x

(3)
mod(t, s), the iterations were stopped by generalized

discrepancy principle (1.9) at n = 31. When the level of noise was 5%,
for the same model solution, the iterations were stopped at n = 22.

FIGURE 1.
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FIGURE 3.
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