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pTH MEAN INTEGRABILITY AND ALMOST
SURE ASYMPTOTIC STABILITY OF SOLUTIONS

OF ITÔ-VOLTERRA EQUATIONS

JOHN A.D. APPLEBY

ABSTRACT. This paper studies the pathwise asymptotic
stability and integrability of the zero solution of a finite-
dimensional Itô-Volterra equation. Under Lipschitz conditions
on the state-dependent functions, and with continuity and
integrability required of the kernels, it is shown that any
solution which is pth mean integrable for some p ≥ 2 is pth
mean-asymptotically stable, and also pth mean integrable and
asymptotically stable, almost surely. If there is no delay-
dependent term in the volatility, the same result can be
shown for p ≥ 1. Examples which illustrate the usefulness
of these results are presented, and extensions to other classes
of functional differential equations are discussed.

1. Introduction. Much research in recent years has focused on the
almost sure exponential asymptotic stability of solutions of stochastic
differential equations and stochastic delay differential equations with
bounded delay, with several recent monographs appearing by Mao [11,
12]. However, less attention has been devoted to the almost sure
exponential asymptotic stability of Itô-Volterra equations, where the
delay is unbounded. It has been shown in Appleby and Reynolds [3]
for nonlinear scalar time-homogeneous Itô-Volterra equations of the
form

(1) dX(t) =
(
f(X(t)) +

∫ t

0

k(t− s)g(X(s)) ds
)
dt+ h(X(t)) dB(t)

for which the kernel k is strictly positive and satisfies a nonexponential
asymptotic condition, the solution satisfies

lim sup
t→∞

|X(t)|eεt = ∞, a.e. on A
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for every ε > 0, where A = {ω ∈ Ω : X(t, ω) → 0 as t → ∞}. This
result is a stochastic analogue of the deterministic case which was pre-
sented in this journal in [2]. These results are instances of a more gen-
eral stability phenomenon exhibited by equations with unbounded de-
lay. For deterministic Volterra integrodifferential equations, Murakami
has shown in [16, 17] that if all solutions of the finite dimensional
equation

(2) x′(t) = Ax(t) +
∫ t

0

K(t− s)x(s) ds

converge exponentially fast to the zero solution, and the entries of the
integrable kernel K do not change sign on R+, then

(3)
∫ ∞

0

‖K(s)‖eγs ds <∞, for some γ > 0.

Therefore, exponential stability cannot always be guaranteed if the ker-
nel does not vanish exponentially fast, in some sense. Thus, the ques-
tion of asymptotic stability of functional differential equations with un-
bounded delay is one of independent interest from the exponential sta-
bility, not only for deterministic equations, but potentially for stochas-
tic ones also. In this paper attempts are made to develop some sufficient
conditions under which almost sure stability can be established.

For stochastic differential equations and stochastic functional differ-
ential equations, it is known that almost sure exponential asymptotic
stability is often implied by exponential stability in pth mean, see
Arnold, Oeljeklaus and Pardoux [4] for linear SDEs and Mao [12] for
nonlinear SDEs, and SFDEs with bounded delay. In [13], mean square
and almost sure exponential asymptotic stability are established for an
Itô-Volterra equation which has an exponential decay criterion required
on the kernels. Hausmann [8] and Zabczyk [18] provide a connection
between the square integrability of the mild solution of a linear bounded
delay equation of Lurie type, and the almost sure exponential stability
of the strong solution of the stochastic delay equation.

The main result presented is motivated by the above theory for
stochastic equations and also by the fact that, if the solution of the
linear deterministic Volterra equation (2) is integrable, then its solution
tends to zero as t → ∞. We show that this result for deterministic
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Volterra equations can be extended to Itô-Volterra equations with
solution X , if the integrability condition is amended to

(4) E[‖X(t)‖p] ∈ L1(R+),

for some p ≥ 2. Then, not only does the solution satisfy

(5) lim
t→∞E[‖X(t)‖p

2] = 0,

but the solution is also almost surely asymptotically stable; that is,
(6)

lim
t→∞X(t, ω) = 0 for almost all outcomes ω in the sample space Ω.

Moreover, X ∈ Lp(R+) almost surely. This result is the subject
of Theorem 4. The result is sharpened for some special cases in
Theorem 5. The proofs are adaptations of results from [8] and Mao
[12, Chapter 4].

These adaptations are necessitated as the hypothesis (4) does not
provide a pointwise estimate on the decay rate of t �→ E[‖X(t)‖p]. In-
deed, it may be that such a decay rate does not exist. In particular, not
only can almost sure exponential decay of solutions not be guaranteed
but, as we later establish, exponential decay of solutions in pth mean
cannot be guaranteed either.

The moment asymptotic stability and integrability of Itô-Volterra
equations has received the attention of several authors, among which
we highlight the work of Kolmanovskii and Myskis [10] and Mizel and
Trutzer [15]. Hence, Theorem 4 has the benefit of connecting the pth
mean stability to the almost sure stability. It also improves results
obtained by the author in [1], in which both (4) and (5) are required
to prove (6). We show by an example, that because the pth mean
integrability only is required, one can lift some of the restrictions placed
on Liapunov functionals in order to obtain asymptotic stability, so the
result is of additional use in obtaining a.s. asymptotic stability. We
also show Theorem 5 enables us to compare the asymptotic stability
of a special, but much studied, linear scalar Volterra integrodifferential
equation and its stochastic counterpart. Theorem 5 provides sharper
results on almost sure stability than can be obtained by using the pth
mean integrability, for p > 1, to prove a.s. asymptotic stability.
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The organization of this presentation is as follows. Section 2 describes
in precise terms the problem to be studied, introduces terminology and
known results, and proves (or states) preparatory lemmata. Section 3
concerns the proof of Theorems 4 and 5. Section 4 is devoted to exam-
ples which highlight the results of Theorems 4 and 5. The concluding
Section 5 contains a discussion on the extension of the methods of the
paper to cover the asymptotic stability of nonconvolution and nonau-
tonomous Itô-Volterra equations and more general stochastic functional
differential equations with infinite delay.

2. Statement of the problem and preliminary results. We
first establish some standard notation. As usual, let x ∨ y denote the
maximum of x, y ∈ R, and x ∧ y their minimum. Let d, m and r
be positive integers. Denote by C(Rd;Rm) the space of continuous
functions from Rd to Rm, and C(Rd;Rd×Rr) the space of continuous
functions from Rd to Rd × Rr. We identify the space of real valued
d×mmatrices, denotedMd,m(R), with Rd×Rm. Let C(R+;Md,m(R))
stand for all continuous d × m matrix-valued functions with domain
R+. For x, y ∈ Rd, we denote the (standard) inner product of x
and y by 〈x, y〉. Let ‖x‖2 stand for the Euclidean norm of x ∈ Rd.
For A ∈ Md,m(R) denote ‖A‖2 to be the operator norm of A, with
‖A‖2 = max‖x‖2=1 ‖Ax‖. If A = (aij) ∈ Md,m(R), we denote its
Frobenius norm by ‖A‖F (d,m):

‖A‖2
F (d,m) =

d∑
i=1

m∑
j=1

a2
ij .

Observe, for all A ∈Md,m(R) and all B ∈Mm,r(R), that

(7) ‖AB‖F (d,r) ≤
√
m ‖A‖F (d,m)‖B‖F (m,r).

Denote by L1(R+) the space of all measurable real valued functions
integrable on R+. We say that K(t) ∈ Md,m(R) is in L1(R+) if each
of its entries is in L1(R+). For such a function K, we write

‖K‖L1(R+)
F (d,m) =

∫ ∞

0

‖K(t)‖F (d,m) dt, ‖K‖L1(R+)
2 =

∫ ∞

0

‖K(t)‖2 dt.

We denote the convolution of the functions x1, x2 ∈ C(R+;R) by
x1 ∗ x2.



SOLUTIONS OF ITÔ-VOLTERRA EQUATIONS 325

Let f1 ∈ C(Rd;Rd), g1 ∈ C(Rd;Rn), f2 ∈ C(Rd;Rd × Rr), and
g2 ∈ C(Rd;Rm × Rr), while

(8)

K1 ∈ C(R+;Md,n(R)) ∩ L1(R+), K2 ∈ C(R+;Md,m(R)) ∩ L1(R+).

Further suppose that f1, f2, g1, g2 satisfy global Lipschitz conditions.
For definiteness, there exists some λ > 0 such that

(9)

‖f1(x) − f1(y)‖2 ∨ ‖f2(x) − f2(y)‖F (d,r)

∨ ‖g1(x) − g1(y)‖2

∨ ‖g2(x) − g2(y)‖F (m,r) ≤ λ‖x− y‖2

for all x, y ∈ Rd. We also assume

(10)
f1(0) = 0 ∈ Rd, f2(0) = 0 ∈ Rd × Rr,

g1(0) = 0 ∈ Rd × Rn, g2(0) = 0 ∈ Rm × Rr.

(9), (10) imply that f1, f2, g1, g2 are linearly bounded.

Let (Ω,F ,P) be a probability space and B = {B(t),FB
t ; 0 ≤ t <∞}

an r-dimensional Brownian motion on it. Let ξ be a random vector
in Rd, independent of B with E[‖ξ‖p∨2] < ∞, where p ≥ 1. Then
there exists a filtration (Ft)t≥0 so that {B(t),Ft; 0 ≤ t < ∞} is an
r-dimensional Brownian motion. Under the above hypotheses, there
exists a continuous adapted process X = {X(t);Ft; 0 ≤ t < ∞} which
is a strong solution of the Itô-Volterra equation

(11)
dX(t) =

(
f1(X(t)) +

∫ t

0

K1(t− s)g1(X(s)) ds
)
dt

+
(
f2(X(t)) +

∫ t

0

K2(t− s)g2(X(s)) ds
)
dB(t)

relative to B with initial condition ξ, see Berger and Mizel [5] or Itô
and Nisio [9]. The hypotheses also ensure that if ξ = 0 a.s., then the
solution of (11) is X(t) = 0 for all t ≥ 0 a.s. This is called the zero
solution to (11).

The purpose of the paper is the following: to establish conditions
under which there exists Ω∗ ⊆ Ω with P[Ω∗] = 1 such that, for all
ω ∈ Ω∗

(12) lim
t→∞X(t, ω) = 0,
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whatever the value of the initial condition X(0) = ξ. If (12) holds we
say that the solution of (11) is almost surely (globally) asymptotically
stable.

We will make use of the following result on the continuity of the
moments of the solution, proved in [1].

Lemma 1. Under the forgoing hypotheses, we have

(i) E[‖X(0)‖p] <∞,

(ii) For 0 ≤ T <∞, E[sup0≤t≤T ‖X(t)‖p] ≤ Kp(T ) <∞.

(iii) The mapping t �→ E[‖X(t)‖p] is continuous on R+.

For x ∈ C(R+;Rd), define xt = {x(s) : 0 ≤ s ≤ t}. Define the
functionals Y1 : R+ × C(R+;Rd) → Rd, Y2 : R+ × C(R+;Rd) →
Rd × Rr, so that

Y1(t, xt) = f1(x(t)) +
∫ t

0

K1(t− s)g1(x(s)) ds,(13)

Y2(t, xt) = f2(x(t)) +
∫ t

0

K2(t− s)g2(x(s)) ds.(14)

Then it is possible to write the equation (11) as

(15) X(t) = X(0) +
∫ t

0

Y1(s,Xs) ds+
∫ t

0

Y2(s,Xs) dB(s).

We use the following estimates on the functionals Y1, Y2 throughout
the paper, which are established in [1].

Lemma 2. If x ∈ C(R+;Rd), then the functionals defined by (13),
(14) satisfy:

(16) ‖Y1(t, xt)‖2 ≤ λ‖x(t)‖2 + λ (‖K1‖2 ∗ ‖x‖2) (t),

and

(17) ‖Y2(t, xt)‖2
F (d,r)

≤ 2λ2‖x(t)‖2
2 + 2λ2m‖K2‖L1(R+)

F (d,m)

(‖K2‖F (d,m) ∗ ‖x‖2
2

)
(t),
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for t ≥ 0.

The following result will also be required.

Lemma 3. Suppose x : R+ → R+ is a continuous, integrable
function, and µ > 0 is any fixed constant. Then, there exists a sequence
{an}∞n=0 satisfying

(18) a0 = 0, 0 < an+1 − an < µ for all n ∈ N, lim
n→∞ an = ∞,

together with

(19)
∞∑

n=0

x(an) <∞.

Proof. Construct {an}∞n=0 recursively as follows: let a0 = 0, and for
n ∈ N

an+1 = inf
{
t ∈ [an +µ/2, an +3µ/4] : x(t) = min

an+µ/2≤τ≤an+3µ/4
x(τ)

}
.

The existence of such a sequence can be proved by induction on n,
taking note that x is continuous on the compact interval [an +µ/2, an+
3µ/4], and hence attains its minimum. By construction, we have

(20) an+1 − an >
µ

4
> 0,

and an+1 − an ≤ 3µ/4 < µ, so {an}∞n=0 satisfies (18). To prove
(19), note that x(an+1) ≤ x(t) for an + µ/2 ≤ t ≤ an + 3µ/4, so
by integrating both sides of this inequality over [an + µ/2, an + 3µ/4],
using the nonnegativity of x(·) and an + 3µ/4 < an+1 + µ/2, which
follows from (20), we get

1
4
µx(an+1) ≤

∫ an+3µ/4

an+µ/2

x(t) dt ≤
∫ an+1+µ/2

an+µ/2

x(t) dt.

Summing both sides of this inequality establishes (19).



328 J.A.D. APPLEBY

If E[‖X(t)‖p] ∈ L1(R+) for some p > 0, then x(t) = E‖X(t)‖p

satisfies the conditions of Lemma 3, by Lemma 1 (i), (iii). Thus, for
every µ > 0, there exists a sequence {an}∞n=0 satisfying (18) and for
which

(21)
∞∑

n=0

E[‖X(an)‖p] <∞.

Recall by the Burkholder-Davis-Gundy inequality that, for every p ≥ 0,
there exists a constant Cp > 0 such that

E
[

max
a≤t≤b

‖
∫ t

a

Y (s) dB(s)‖p

]
≤ CpE

[( ∫ b

a

‖Y (s)‖2
F (d,r) ds

) p
2
]

where Cp is independent of 0 ≤ a ≤ b and the Md×r(R)-valued Ft-
adapted process Y . Define µ > 0 by

(22) µ =
(

1
3
λ

)2( 3
2Cp

)2/p

,

and let {an}∞n=0 be a sequence for which (18) and (21) hold.

3. Proofs. We are now in a position to prove the main results of
the paper.

Theorem 4. Suppose that f1, f2, g1, g2 satisfy the hypotheses (9),
(10) and K1, K2 are continuous and integrable functions. Let X be
the unique strong solution of (11). If there exists p ≥ 2 such that
E[‖X(0)‖p] <∞, and

(23)
∫ ∞

0

E[‖X(t)‖p] dt <∞,

then each of the following holds:

lim
t→∞E[‖X(t)‖p] = 0,(24a)

X(t) ∈ Lp(R+), a.s.,(24b)
lim

t→∞X(t) = 0, a.s.(24c)
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Proof. Let µ > 0 be given by (22) and {an}∞n=0 be a sequence for
which (18) and (21) hold. Thus, for each t ≥ 0, there exists n ∈ N
such that an ≤ t < an+1. By (18), (13) and (14), we have

X(t) = X(an) +
∫ t

an

Y1(s,Xs) ds+
∫ t

an

Y2(s,Xs) dB(s).

Taking norms on both sides of this equality, using the triangle inequality
and the scalar inequality, (a+ b+ c)p ≤ 3p−1(ap + bp + cp) yields

‖X(t)‖p
2 ≤ 3p−1

(
‖X(an)‖p

2 +
∥∥∥∥

∫ t

an

Y1(s,Xs) ds
∥∥∥∥

p

2

+
∥∥∥∥

∫ t

an

Y2(s,Xs) dB(s)
∥∥∥∥

p

2

)
.

Therefore, taking suprema on each side of this inequality, and then
taking the expectations of both sides, we get
(25)

E
[

max
an≤t≤an+1

‖X(t)‖p
2

]
≤ 3p−1

(
E[‖X(an)‖p

2]

+ E
[

max
an≤t≤an+1

∥∥∥∥
∫ t

an

Y1(s,Xs) ds
∥∥∥∥

p

2

]

+ E
[

max
an≤t≤an+1

∥∥∥∥
∫ t

an

Y2(s,Xs) dB(s)
∥∥∥∥

p

2

])
.

Let us obtain estimates for the second and third terms on the righthand
side of (25). Using (16), we have

∥∥∥∥
∫ t

an

Y1(s,Xs) ds
∥∥∥∥

2

≤
∫ t

an

λ‖X(s)‖2 + λ (‖K1‖2 ∗ ‖X‖2) (s) ds,

so by applying Jensen’s inequality, and then taking the maximum over
[an, an+1], we get

(26)
max

an≤t≤an+1

∥∥∥∥
∫ t

an

Y1(s,Xs) ds
∥∥∥∥

p

2

≤ λp(an+1−an)p−1

∫ an+1

an

(‖X(s)‖2+(‖K1‖2 ∗ ‖X‖2) (s))p
ds.
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Applying the scalar inequality (a + b)p ≤ 2p−1(ap + bp), and then
Hölder’s inequality to the integrand in (26) yields

(27)

E
[

max
an≤t≤an+1

∥∥∥∥
∫ t

an

Y1(s,Xs) ds
∥∥∥∥

p

2

]

≤ λp(an+1 − an)p−12p−1

×
∫ an+1

an

E[‖X(s)‖p
2]+

(
‖K1‖L1(R+)

2

)p−1

(‖K1‖2 ∗ E[‖X‖p
2])(s) ds,

after taking expectations across (26). We now seek an estimate on the
third term on the right-hand side of (25). Using the Burkholder-Davis-
Gundy inequality, we obtain

(28) E
[

max
an≤t≤an+1

∥∥∥∥
p

2

]
≤ CpE

[( ∫ an+1

an

‖Y2(s,Xs)‖2
F (d,r) ds

) p
2
]
.

Define Λ = 2λ2(1 ∨m‖K2‖L1(R+)
F (d,m) ), so using (17), we obtain∫ an+1

an

‖Y2(s,Xs)‖2
F (d,r) ds ≤ Λ

∫ an+1

an

‖X(s)‖2
2+

(‖K2‖F (d,m)∗‖X‖2
2

)
(s) ds.

Using Hölder’s inequality successively, together with the elementary
inequality (a+ b)p/2 ≤ 2(p/2)−1(ap/2 + bp/2), leads to the estimate( ∫ an+1

an

‖Y2(s,Xs)‖2
F (d,r) ds

) p
2

≤ Λ
p
2 (an+1−an)(

p
2 )−1

∫ an+1

an

(‖X(s)‖2
2+

(‖K2‖F (d,m) ∗ ‖X‖2
2

)
(s)

) p
2 ds

≤ Λ
p
2 2( p

2 )−1(an+1−an)(
p
2 )−1

×
∫ an+1

an

‖X(s)‖p
2+

(
‖K2‖L1(R+)

F (d,m)

)( p
2 )−1 (‖K2‖F (d,m) ∗ ‖X‖p

2

)
(s) ds.

Inserting this estimate into (28), we get

(29)

E
[

max
an≤t≤an+1

∥∥∥∥
∫ t

an

Y2(s,Xs) dB(s)
∥∥∥∥

p

2

]

≤ CpΛ
p
2 2(p/2)−1(an+1 − an)(

p
2 )−1

∫ an+1

an

E[‖X(s)‖p
2]

+
(
‖K2‖L1(R+)

F (d,m)

)( p
2 )−1 (‖K2‖F (d,m) ∗ E[‖X‖p

2]
)
(s) ds.
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Using the estimates (27) and (29) in (25), and noting that an+1−an <
µ, we get
(30)

E
[

max
an≤t≤an+1

‖X(t)‖p
2

]
≤ c1E[‖X(an)‖p

2] + c2

∫ an+1

an

E[‖X(s)‖p
2] ds

+ c3

∫ an+1

an

(‖K1‖2 ∗ E[‖X‖p
2])(s) ds

+ c4

∫ an+1

an

(‖K2‖F (d,m) ∗ E[‖X‖p
2])(s) ds,

once we define c1 − c4 to be

c1 = 3p−1,

c2 = λpµp−12p−1 + CpΛ
p
2 2( p

2 )−1µ( p
2 )−1,

c3 = λpµp−12p−1
(
‖K1‖L1(R+)

2

)p−1

,

c4 = Cp Λ
p
2 2

p
2−1µ

p
2−1

(
‖K2‖L1(R+)

F (d,m)

)( p
2 )−1

.

Since E[‖X‖p
2] ∈ L1(R+), and K1, K2 ∈ L1(R+), it follows that

‖Kj‖ ∗ E[‖X‖p
2] ∈ L1(R+) for j = 1, 2, and the construction of the

sequence {an}∞n=0 in Lemma 3 implies that (21) holds. Hence, summing
both sides of (30) yields

(31)
∞∑

n=0

E
[

max
an≤t≤an+1

‖X(t)‖p
2

]
<∞.

This sequence is convergent, so E
[
maxan≤t≤an+1 ‖X(t)‖p

2

] → 0 as
n → ∞, which implies (24a). To prove (24c), note that (31) also
implies

∞∑
n=1

max
an≤t≤an+1

‖X(t)‖p
2 <∞, a.s.,

and so
lim

n→∞ max
an≤t≤an+1

‖X(t)‖p
2 = 0, a.s.

Therefore, as an → ∞ as n→ ∞, ‖X(t)‖p
2 → 0 as t→ ∞, a.s. Turning

to the proof of (24b), note that (23) and Fubini’s theorem imply
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E
∫ ∞
0

‖X(s)‖p
2 ds < ∞, which guarantees that

∫ ∞
0

‖X(s)‖p
2 ds < ∞

a.s.

With some modifications, the proof of Theorem 4 can be adapted to
establish the following result, when there is no delay-dependent term
in the volatility coefficient.

Theorem 5. Let f1, f2, g1 satisfy the hypotheses (9), (10) and let
K1 be a continuous and integrable function. Let X be the unique strong
solution of

(32) dX(t)

=
(
f1(X(t))+

∫ t

0

K1(t−s)g1(X(s)) ds
)
dt+f2(X(t)) dB(t).

Suppose that there exists p ≥ 1 such that E[‖X(0)‖p∨2] <∞, and (23)
holds. Then each of (24a), (24b), (24c) are true.

Proof. Choosing {an}∞n=0 so as to satisfy (18) and (21), with µ > 0
given by (22), we obtain (25) with Y2(t,Xt) = f2(X(t)). We bound the
second term on the righthand side of (25) as in (25). As to the third
term, which is now

E
[

max
an≤t≤an+1

∥∥∥∥
∫ t

an

f2(X(s)) dB(s)
∥∥∥∥

p

2

]
,

by using the Burkholder-Davis-Gundy inequality, (9), the continuity of
the solution, and (22), we obtain

E
[

max
an≤t≤an+1

∥∥∥∥
∫ t

an

f2(X(s)) dB(s)
∥∥∥∥

p

2

]
(33)

≤ CpE
[( ∫ an+1

an

‖f2(X(s))‖2
F (d,r) ds

) p
2
]

≤ Cpλ
pE

[( ∫ an+1

an

‖X(s)‖2
2 ds

) p
2
]

≤ Cpλ
pE

[(
(an+1 − an) max

an≤t≤an+1
‖X(t)‖2

2

) p
2
]
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≤ Cpλ
pµ

p
2 E

[
max

an≤t≤an+1
‖X(t)‖p

2

]

≤ 1
3p−1

1
2
E

[
max

an≤t≤an+1
‖X(t)‖p

2

]
.

Putting (27) and (33) into (25) gives

1
2

E
[

max
an≤t≤an+1

‖X(t)‖p
2

]
≤ 3p−1

{
E[‖X(an)‖p

2

+ λpµp−12p−1

∫ an+1

an

E[‖X(s)‖p
2] ds

+ λpµp−12p−1
(
‖K1‖L1(R+)

2

)p−1

×
∫ an+1

an

(‖K1‖2 ∗ E[‖X‖p
2])(s) ds

}
.

From this inequality (31) can be easily inferred. The remainder of
the proof of this theorem follows verbatim the line of argument in
Theorem 4 after the inequality (31), and is therefore omitted.

Note that Theorem 5 has a direct deterministic counterpart. For the
Volterra integrodifferential equation

x′(t) = f1(x(t)) +
∫ t

0

K1(t− s)g1(x(s)) ds

it is true that x(t) ∈ Lp(R+) for p ≥ 1 implies x(t) → 0 as t→ ∞.

4. Examples. We illustrate Theorems 4 and 5 with some examples.

4.1 Scalar equation without instantaneous negative feedback. Our
first example is an adaptation of a result in [10, Chapter 10], which is
concerned with the boundedness of the moments of a scalar SFDE with
bounded delay, but without requiring instantaneous negative feedback.
Here, we modify the problem and functional so that we can study the
convergence of solutions for the corresponding Itô-Volterra equation,
which has unbounded delay.
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Let X(t) be the unique strong solution of the SFDE given by

(34) dX(t) =
(
−

∫ t

0

k0(t−s)X(s) + a1(t,Xt)
)
dt+ a2(t,Xt) dB(t),

where B = {B(t); 0 ≤ t ≤ 0} is a standard one-dimensional Brow-
nian motion. Let k0 ∈ L1(R+) ∩ C(R+;R). Let a1, a2 : [0,∞) ×
C(R+;R) �→ R satisfy

aj(t, xt)2 ≤ σ2
jx(t)

2 +
∫ t

0

kj(t− s)x(s)2 ds, j = 1, 2,

where σ1, σ2 ≥ 0 and k1, k2 ∈ L1(R+)∩C(R+;R+). The equation can
serve as a one-dimensional stochastic model in viscoelasticity where the
solution is the strain, and k0 is the relaxation function. We assume that∫ ∞
0 k0(u) du > 0,

∫ ∞
0 u|k0(u)| du < 1, and

(35)
∫ ∞

0

k0(u) du
(

1 −
∫ ∞

0

u|k0(u)| du
)
− 1

2

(
σ2

2 +
∫ ∞

0

k2(u) du
)

−
(
σ2

1 +
∫ ∞

0

k1(u) du
)1/2(

1 +
∫ ∞

0

u|k0(u)| du
)
> 0.

Assume that a1(t, xt) �= 0, so σ2
1 +

∫ ∞
0
k1(s) ds > 0, and define

V (t, xt) =
(
x(t) −

∫ t

0

∫ ∞

t

k0(τ − s) dτx(s) ds
)2

+ c1

∫ t

0

∫ ∞

t

∫ ∞

v−s

|k0(u)| du dv x(s)2 ds

+
∫ t

0

∫ ∞

t

(k2(τ − s) + c2k1(τ − s)) dτ x(s)2 ds,

where c1, c2 are nonnegative constants to be determined later. Thus

(36)

dV (t,Xt) =
{

2
(
X(t) −

∫ t

0

∫ ∞

t

k0(τ − s) dτ X(s) ds
)

×
(
a1(t,Xt) −

∫ ∞

0

k0(s) dsX(t)
)

+ a2(t,Xt)2
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+X(t)2
(
c1

∫ ∞

0

u|k0(u)| du+
∫ ∞

0

k2(s) + c2k1(s) ds
)

− c1

∫ t

0

∫ ∞

t−s

|k0(u)| duX(s)2 ds− (
(k2+c2k1) ∗X2

)
(t)

}
dt

+ 2
(
X(t) −

∫ t

0

∫ ∞

t

k0(τ − s) dτ X(s) ds
)
a2(t,Xt) dB(t).

For all γ1, γ2, γ3 > 0, we have

|2X(t)a1(t,Xt)| ≤ 1
γ1
X(t)2 + γ1

(
σ2

1X(t)2 + (k1 ∗X2)(t)
)
,

∣∣∣∣γ2

∫ t

0

∫ ∞

t−s

|k0(u)| duX(s)X(t) ds
∣∣∣∣

≤ γ2

∫ t

0

∫ ∞

t−s

|k0(u)| duX(s)2 ds+
1
γ2
X(t)2

∫ ∞

0

u|k0(u)| du,

and
∣∣∣∣2

∫ t

0

∫ ∞

t

k0(τ − s) dτX(s) ds a1(t,Xt)
∣∣∣∣

≤ 1
γ3

∫ t

0

∫ ∞

t−s

|k0(u)| duX(s)2 ds

+ γ3

∫ ∞

0

u|k0(u)| du (
σ2

1X(t)2 + (k1 ∗X2)(t)
)
.

Now, define Kj =
∫ ∞
0 kj(s) ds, K ′

0 =
∫ ∞
0 u|k0(u)| du, and set c1 =

(1/γ3) +K0γ2, c2 = γ1 + γ3K
′
0. Putting the above estimates into (36),

and using the notation just introduced yields, for t ≥ s ≥ 0:

V (t,Xt) − V (s,Xs)

≤
∫ t

s

(
− 2K0 +

1
γ1

+K0
1
γ2
K ′

0 + c1K
′
0 + c2K1 + γ1σ

2
1 + γ3σ

2
1K

′
0

+K2 + σ2
2

)
X(u)2 +

(
a2(u,Xu)2 − σ2

2X(u)2 − (k2 ∗X2)(u)
)
du

+
∫ t

s

2
(
X(u) −

∫ u

0

∫ ∞

u

k0(τ − v) dτ X(v) dv
)
a2(u,Xu) dB(u).
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By putting γ2 = 1, γ1 = γ3 = (σ2
1 +K1)−1/2, and

A = 2
(
K0(1 −K ′

0) −
1
2

(
σ2

2 +K2

) −
√
σ2

1 +K1 (1 +K ′
0)

)
,

(35) gives A > 0. Moreover, the last inequality gives

E[V (t,Xt)] − E[V (s,Xs)] ≤ −A
∫ t

s

E[X(u)2] du,

provided E[X(0)4] <∞. Since V is nonnegative, E[X2] ∈ L2(R+), and
by Theorem 4, we have limt→∞ E[X(t)2] = 0, along with X ∈ L2(R+)
and limt→∞X(t) = 0, a.s. The calculations are more straightforward
in the case when a1(t, xt) ≡ 0, but again (35) suffices to prove∫ ∞
0

E[X(t)2] dt < ∞, with the same functional V as before, where
on this occasion, c2 = 0.

4.2 Nondestabilization of scalar Volterra equation by noise. Our
second example indicates an application of the extra sharpness obtained
in Theorem 5. Consider the scalar linear Itô-Volterra equation

(37) dX(t) =
(
− aX(t) +

∫ t

0

k(t− s)X(s) ds
)
dt+ σX(t) dB(t),

where k ∈ L1(R+)∩C(R+;R+), is strictly positive. Also consider the
deterministic counterpart to (37) viz.,

(38) x′(t) = −ax(t) +
∫ t

0

k(t− s)x(s) ds.

According to Miller [14], the zero solution of (38) is uniformly asymp-
totically stable if and only all solutions of (38) are in L1(R+). Further-
more, all solutions are integrable if and only if λ+ a− k̂(λ) �= 0, for all
λ ∈ C with �e(λ) ≥ 0 where k̂ is the Laplace transform of k, refer to
Grossman and Miller [7]. It is a consequence of these results, and work
of Burton and Mahfoud [6] that solutions of the initial value problem
(38) are integrable if and only if

(39) a >

∫ ∞

0

k(s) ds.



SOLUTIONS OF ITÔ-VOLTERRA EQUATIONS 337

Therefore, if we can show that x(t) = E[|X(t)|] is a solution of (38)
with x(0) = E[|X(0)|], we will have established the following stability
result.

Theorem 6. Suppose that k is a strictly positive, continuous and
integrable function. If the zero solution of (38) is uniformly asymp-
totically stable, then the solution of (37) satisfies E[|X |] ∈ L1(R+),
limt→∞ E[|X(t)|] = 0, and X ∈ L1(R+), limt→∞X(t) = 0 a.s.

Proof. For (37), it has been shown in [3] that X(t)/X(0) > 0 for all
t ≥ 0, a.s., and if X1(t) is the solution of (37) with initial condition 1,
then X(t) = X1(t)X(0). As X(0) is independent of the process X1, we
have

E[|X(t)|] = E[|X1(t)|]E[|X(0)|] = E[X1(t)]E[|X(0)|].
But x1(t) = E[X1(t)] is a solution of (38) with initial condition
x1(0) = 1, so therefore x(t) = E[|X(t)|] solves (38) with initial
condition x(0) = E[|X(0)|]. By hypothesis, x(t) ∈ L1(R+), so
E[|X(t)|] ∈ L1(R+), and the conclusions of Theorem 5 hold, as (37) is
in the same form as (32).

It is appropriate to say that the presence of noise does not destabilize
the (asymptotically) stable zero solution of (38) for, if all solutions
of this problem tend to zero as t → ∞ and are integrable, then all
solutions of the stochastic problem (37) tend to zero as t→ ∞ and are
integrable, both in first mean, and almost surely.

Theorem 5 enables us to obtain a weaker sufficient condition for the
almost sure stability of the solution of (37) than that which can be
obtained by first proving that E[X2] ∈ L1(R+), and by then using
Theorem 4. Indeed, availing of Theorem 5.4 in [1], we see that whenever

(40) a >

∫ ∞

0

k(s) ds+ σ2,

we have E[X2] ∈ L1(R+), and so E[X(t)2] → 0 as t→ ∞, X ∈ L2(R+)
a.s. and X(t) → 0 as t → ∞ a.s. Clearly, (40) is a more conservative
sufficient condition for the almost sure asymptotic stability and a.s.
square integrability of the solution of (37) than (39).



338 J.A.D. APPLEBY

Theorem 6 also enables us to show that there are scalar Volterra
equations whose solutions cannot be exponentially stable in p-th mean,
for any p ≥ 1. In particular such solutions cannot be exponentially
stable in mean square, as claimed in the introduction. Suppose that k
is positive and integrable, and obeys (39). Then all solutions of (38)
are integrable, and tend to zero as t → ∞. However, according to
Murakami, if k also obeys

∫ ∞

0

k(t)eεt dt = ∞,

for every ε > 0, then every nontrivial solution of (38) obeys

lim sup
t→∞

|x(t)|eεt = ∞

for every ε > 0. Since t �→ E[|X(t)|] is a solution of (38) with
x(0) = E[|X(0)|], we have

lim sup
t→∞

E[|X(t)|]eεt = ∞

for every ε > 0; moreover, by Liapunov’s inequality, we have

lim sup
t→∞

E[|X(t)|p]eεt = ∞

for every ε > 0, and every p ≥ 1.

5. Extensions. In this paper, we have concentrated our analysis on
the autonomous convolution Volterra integrodifferential equation initial
value problem. However, it is not difficult to see that one can recover
very similar results for nonautonomous nonconvolution equations of the
form

dX(t) =
(
f1(t,X(t)) +

∫ t

0

g1(s, t,X(s)) ds
)
dt

+
(
f2(t,X(t)) +

∫ t

0

g2(s, t,X(s)) ds
)
dB(t).

For instance, suppose f1, f2 are globally linearly bounded and obey
local Lipschitz conditions in the space coordinate, and are continuous
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in time. Also, suppose that g1, g2 are Lipschitz in the space coordinate,
continuous in the time coordinates, while also obeying bounds of the
form ‖g(s, t, x)‖ ≤ k(t−s)‖x‖ for some scalar continuous and integrable
function k. If f1(t, 0) = f2(s, t, 0) = 0, and g1(t, 0) = g2(s, t, 0) = 0,
then the conclusions of Theorem 4 hold provided E[‖X‖p] ∈ L1(R+)
for some p ≥ 2. If g2(s, t, x) ≡ 0, an analogue of Theorem 5 also holds.

Theorem 4 has a counterpart in the mean square case for the general
stochastic functional differential equation

dX(t) = f1(t,Xt) dt+ f2(t,Xt) dB(t),

even in the case where the equation has infinite delay. In this case
for the continuous function x (which belongs to the appropriate initial
history space) xt = {x(s) : s ≤ t}. We define ψ to be the initial
function, so ψ is in some subspace of C((−∞, 0];Rd), and

X(t) = ψ(t), t ≤ 0.

Of course, to ensure that one can study stability, we require that
f1(t, 0) = 0, f2(t, 0) = 0 for all t ≥ 0. We refer the interested reader
to Chapter 3.2.5 and Chapter 10.1.1 of [10] for a description of the
appropriate setting for the initial function space, and assumptions on
the functionals f1, f2 in order to assure existence and uniqueness of
strong solutions on [0,∞).

Now consider the unbounded delay case, under the hypothesis that
the functionals f1, f2 obey

‖fj(t, xt) − fj(t, yt)‖2
2 ≤

∫ 0

−∞
‖x(t+ θ) − y(t+ θ)‖2

2
drj(θ)

for any t ≥ 0 and continuous functions x and y defined on R whose
restrictions to the negative half line are in BC((−∞, 0]), and r1, r2
are nonnegative, bounded and nondecreasing functions of bounded
variation. A careful inspection of the proof of Theorem 4 now reveals
that if the initial function, which one can take to be deterministic,
without loss of generality, is in BC((−∞, 0]) ∩ L2((−∞, 0]), and the
solution obeys ∫ ∞

0

E[‖X(t)‖2] dt <∞,
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then all the conclusions of Theorem 4 hold, with p = 2.
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