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MIXED BOUNDARY VALUE PROBLEMS
OF THE THIRD KIND IN A THEORY
OF BENDING OF ELASTIC PLATES

P. SCHIAVONE AND C.Q. RU

ABSTRACT. A modified boundary integral equation method
is used to solve a specific type of mixed boundary value prob-
lem in a theory of bending of elastic plates with transverse
shear deformation. This type of problem (often referred to
as a mixed problem of the third kind) is characterized by the
fact that a combination of transverse displacement and bend-
ing and twisting moments is prescribed on the curve which
bounds the middle surface of the plate. Both interior and
exterior problems are formulated and the corresponding exis-
tence and uniqueness results derived.

1. Introduction. Dirichlet (displacement) and Neumann (traction)
problems for the bending of thin elastic plates with transverse shear
deformation have been studied extensively in [1]. A class of corre-
sponding mixed problems, when both displacement and traction are
prescribed separately on different parts of the boundary of the plate,
is discussed in [9]. The corresponding Robin problems are solved in
[10]. Unfortunately, these results do not accommodate a specific type
of mixed problem for plates defined by the requirement that a combina-
tion of transverse displacement and bending and twisting moments be
prescribed on the curve bounding the middle surface of the plate. This
problem is commonly referred to as a mixed boundary value problem of
the third kind [7] for elastic plates. Despite its practical significance, to
the authors’ knowledge, a rigorous treatment of this problem remains
absent from the literature. This can be attributed, in part, to the non-
standard boundary condition and, in the case of the exterior problem,
to the rapid growth at infinity of the corresponding matrix of funda-
mental solutions. Each of these features presents difficulties which are
not accommodated by classical boundary integral techniques [6], [7].

In this paper we use a modified boundary integral equation method
to solve both interior and exterior mixed problems of the third kind
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in the theory of bending of elastic plates presented in [1]. Using
certain modifications to the classical techniques used in [6] and [7],
including the use of a far-field pattern which allows for the possibility
of divergence at infinity, we establish uniqueness and existence results
in the appropriate function spaces.

Our technique is equally applicable, with modifications only in detail,
to similar problems arising from existing theories where the governing
system of equilibrium equations is elliptic, for example, problems from
asymmetric elasticity [4], [5].

2. Preliminaries. In what follows, Greek and Latin indices
take the values 1, 2 and 1, 2, 3, respectively; we sum over repeated
indices, Mm×n is the space of (m × n)-matrices, En is the identity
element in Mn×n, a superscript T indicates matrix transposition and
(· · · ),α = ∂(· · · )/∂xα. We define also the matrices

O33 =


 1 0 0

0 1 0
0 0 0


 and I33 =


 0 0 0

0 0 0
0 0 1


 .

Finally, if X is a space of scalar functions and v a matrix, v ∈ X means
that every component of v belongs to X.

Consider a homogeneous and isotropic plate occupying the region
S × [−h0/2, h0/2], where S ⊂ R2 is a domain bounded by a closed
C2-curve ∂S and constant = h0 � diamS is the plate’s thickness.
The equilibrium equations for bending in the absence of body forces
and moments and of forces and moments acting on the faces, can be
written in the form [1]

(1) L(∂x)u(x) = 0,

where x = (x1, x2) is a generic point in S, u = (u1, u2, u3)T a vector
characterizing the displacement field and L(∂x) = L(∂/∂xγ) is the
matrix partial differential operator defined by the matrix L(ξ) = L(ξγ)
given by:

(2) L(ξ1, ξ2)

=


h2µ∆ + h2(λ + µ)ξ2

1 − µ h2(λ + µ)ξ1ξ2 −µξ1
h2(λ + µ)ξ1ξ2 h2µ∆ + h2(λ + µ)ξ2

2 − µ −µξ2
µξ1 µξ2 µ∆


 .
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Here, λ and µ are the Lamé constants of the material, h2 = h2
0/12 and

∆ = ξαξα.

Together with L we consider the boundary stress operator T (∂x;n)
defined by

T (ξ1, ξ2;n)

=




h2(λ+2µ)n1ξ1+ h2µn2ξ2 h2µn2ξ1+ h2λn1ξ2 0
h2λn2ξ1+ h2µn1ξ2 h2µn1ξ1+ h2(λ+2µ)n2ξ2 0

µn1 µn2 µnαξα


 ,

where n = (n1, n2)T is the unit outward normal to ∂S. For brevity, we
write T (∂x;n) ≡ T (∂x) ≡ T .

With the assumption that λ + µ > 0, µ > 0, it is clear that the
operator L is elliptic and the internal energy density is positive [1].
Further, E(u, u) = 0 if and only if

(3) u(x) = (k1, k2,−k1x1 − k2x2 + k3)T ,

where ki are arbitrary constants. This is the most general rigid
displacement compatible with this plate theory. If we write

F =


 1 0 0

0 1 0
−x1 −x2 1


 ,

where the columns F (i) form a basis for (3), then any vector of the
form (3) can be written in the form Fk where k ∈ M3×1 is constant
and arbitrary. Further, it is clear that LF = 0 in R2 and that TF = 0
on ∂S.

The matrix of fundamental solutions for the operator L is given by
[1]

D(x, y) = L∗(∂x)t(x, y),

where

t(x, y) = c1[(4h2 + |x− y|2) ln |x− y| + 4h2K0(h−1|x− y|)],
L∗(ξ) is the adjoint of L, K0 the modified Bessel function of order zero
and c1 = [8πh2µ2(λ+ 2µ)]−1. This choice of matrix of fundamental so-
lutions seems natural since D(x, y) is computed by means of Galerkin’s
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method [2]. The columns D(i)(x, y) satisfy (1) at all x ∈ R2, x 
= y.
Further we note that [1]

(4) D(x, y) is O(|x|2 ln |x|), as |x| → ∞, y ∈ ∂S,

which will be seen to be significant in the application of the boundary
integral equation method to the exterior mixed problem.

Along with D(x, y) we consider the matrix of singular solutions

P (x, y;n) = (T (∂y;n)D(y, x))T ,

writing, for simplicity, P (x, y;n(y)) ≡ P (x, y). It is not difficult to
show that the columns of P (x, y) satisfy (1) at all x ∈ R2, x 
= y and
for any direction n independent of x.

Finally, let A be the class of vectors u ∈ M3×1 admitting an
asymptotic expansion of the form [1]:

u1(r, θ) = r−1[a0 sin θ + 2a1 cos θ − a0 sin 3θ + (a2 − a1) cos 3θ]
+ r−2[(2a3 + a4) sin 2θ + a5 cos 2θ − 3a3 sin 4θ + 2a6 cos 4θ]
+ r−3[2a7 sin 3θ + 2a8 cos 3θ + 3(a9 − a7) sin 5θ

+ 3(a10 − a8) cos 5θ] + O(r−4),

u2(r, θ) = r−1[2a2 sin θ + a0 cos θ + (a2 − a1) sin 3θ + a0 cos 3θ]
+ r−2[(2a6 + a5) sin 2θ − a4 cos 2θ + 3a6 sin 4θ + 2a3 cos 4θ]
+ r−3[2a10 sin 3θ − 2a9 cos 3θ + 3(a10 − a8) sin 5θ

+ 3(a7 − a9) cos 5θ] + O(r−4),

u3(r, θ) = −(a1 + a2) ln r − [a1 + a2 + a0 sin 2θ + (a1 − a2) cos 2θ]
+ r−1[(a3 + a4) sin θ + (a5 + a6) cos θ − a3 sin 3θ + a6 cos 3θ]
+ r−2[a11 sin 2θ + a12 cos 2θ + (a9 − a7) sin 4θ

+ (a10 − a8) cos 4θ] + O(r−3),

where a0, . . . , a12 are arbitrary constants. Consider also the class

A∗ = {u : u = Fk + u0},
where k ∈ M3×1 is constant and arbitrary and u0 ∈ M3×1 ∩ A. Both
A and A∗ are classes of finite energy functions.
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3. Boundary value problems. Let S+ be the bounded domain
enclosed by ∂S and S− = R2 \ (S+ ∪ ∂S).

We consider the following interior mixed boundary value problem of
the third kind.

Find u ∈ C2(S+) ∩ C1(S̄+) satisfying (1) in S+ and such that

(I) O33Tu(x) + I33u(x) = f(x), x ∈ ∂S,

where f ∈ M3×1 is prescribed on ∂S.

Similarly, we consider the corresponding exterior problem:

Find u ∈ C2(S−) ∩ C1(S̄−) ∩A∗ satisfying (1) in S− and such that

(E) O33Tu(x) + I33u(x) = g(x), x ∈ ∂S,

where g ∈ M3×1 is prescribed on ∂S.

In view of (4), we pose the exterior problem (E) in A∗ to allow as
large a set of admissible functions as possible.

Remark 1 (Betti Formulae). The following subsidiary formulae are
proved in [1].

(i) If u ∈ C2(S+) ∩ C(S̄+) is a solution of (1) in S+,

(5) 2
∫

S+
E(u, u) dσ =

∫
∂S

uTTu ds.

(ii) If u ∈ C2(S−) ∩ C−1(S̄−) ∩A∗ is a solution of (1) in S−,

(6) 2
∫

S−
E(u, u) dσ = −

∫
∂S

uTTu ds.

Using (5) in the case of the interior problem (I) and (6) in the case of
the exterior problem (E), standard arguments [1] lead to the following
uniqueness result for problems (I) and (E):

Theorem 1. Problems (I) and (E) have at most one solution.
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4. Existence theorems. In [1], the elastic single layer potential

(7) (V (ϕ))(x) =
∫

∂S

D(x, y)ϕ(y) ds(y)

and the elastic double layer potential

(8) (W (ϕ))(x) =
∫

∂S

P (x, y)ϕ(y) ds(y)

where ϕ is a density (3 × 1)-matrix, are used to establish existence
results for Dirichlet and Neumann type problems in the present theory
of bending of elastic plates. Existence theorems for the corresponding
mixed problems where Dirichlet and Neumann-type data are prescribed
separately on different parts of the boundary are examined in [9].
Another type of mixed problem known as the Robin problem for this
theory of plates is considered in [10]. To the authors’ knowledge, a
rigorous analysis of the corresponding mixed boundary value problems
of the third kind does not appear in the literature.

In [7], mixed boundary value problems of the third kind are posed for
a general three-dimensional elastic body. However, existence theorems
are proved using specially modified potentials constructed specifically
to deal with the nonstandard boundary condition. This requires certain
modifications to the conventional boundary integral equation method.

In this paper, in contrast to the results presented in [7], we show how
conventional elastic potentials of the type (7) and (8) can indeed be
used to solve the corresponding mixed boundary value problems of the
third kind from this theory of bending of elastic plates.

4.1 Interior mixed problem. Consider first the interior mixed
problem (I). We seek the solution in the form

(9)

(u(ϕ))(x) =
∫

∂S

[P (x, y) − P(x, y)]


 0

0
ϕ3


 (y) ds(y)

+
∫

∂S

[D(x, y) −D(x, y)]


ϕ1

ϕ2

0


 (y) ds(y)
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where ϕ = [ϕ1 ϕ2 ϕ3]T ∈ M3×1 is some unknown vector-density and
P,D ∈ M3×3 are known matrices constructed as follows.

Let Ω1 be a bounded domain with C2-boundary ∂Ω1 such that
S+ ∪ ∂S ⊂ Ω1.

We denote the columns of the matrix P by P(j) each of which satisfies
the boundary value problem:

L(∂x)P(j)(x, y) = 0, x ∈ Ω1,

P(j)(x, y) = P (j)(x, y), x ∈ ∂Ω1.

Similarly, the columns of the matrix, D denoted by D(j), satisfy the
boundary value problem:

L(∂x)D(j)(x, y) = 0, x ∈ Ω1,

D(j)(x, y) = D(j)(x, y), x ∈ ∂Ω1.

Noting that for y ∈ ∂S and x ∈ ∂Ω1, P (j)(x, y) and D(j)(x, y) are of
the class C1,α(∂Ω1), 0 < α < 1, (recall that ∂S ⊂ Ω1), it follows from
the existence result for the interior Dirichlet problem of plates [1], that
P(j)(x, y) and D(j)(x, y) exist uniquely for each y ∈ ∂S in the class
C2(Ω1)∩C1(Ω̄1). In fact, for each y, P(j)(x, y) and D(j)(x, y) take the
form of elastic double layer potentials (8) [1].

Suppose that the unknown density ϕ in (9) is of the class C1,α(∂S),
0 < α < 1.

Using the regularity properties of the elastic single and double layer
potentials (7) and (8) with C1,α-density [1] and the properties of the
matrix P and D, it is clear that u from (9) satisfies the continuity
and differentiability conditions of the problem (I) and the governing
equations (1) in S+.

Consider next the remaining boundary condition

(10) O33Tu(x) + I33u(x) = f(x), x ∈ ∂S.

The boundary integral equation method seeks to reduce the bound-
ary condition (10) to a system of Cauchy singular integral equations
on the curve ∂S. At first glance, this would not seem possible since
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(10) requires the application of the boundary stress operator T to the
elastic double layer potential appearing in (9). Since this potential is
already Cauchy singular on the boundary ∂S [1], a further applica-
tion of T would lead to a system of hypersingular integral equations.
This is the main reason why, in [7], the authors found it necessary to
construct specially modified potentials to deal with a similar nonstan-
dard boundary condition of the type (10). For the present boundary
value problems, however, we overcome this difficulty with the use of
the following lemma.

We denote by {Eij} the standard ordered basis for the set of (3× 3)-
matrices and by εγβ the alternating tensor.

Lemma 1. Using the results established in [1], it is not difficult to
show that:

εγβEγβ

∫
∂S

[
∂

∂s(y)
ln |x− y|

] 
 0

0
ϕ3


 (y) ds(y) = 0, x ∈ ∂S,

where the integral exists as principal value uniformly for all x ∈ ∂S and
is of the class C1,α(∂S), 0 < α < 1.

In view of Lemma 1 and the properties of the elastic single and
double layer potentials (7) and (8) [1], it follows that using (9) in
the remaining boundary condition (10) leads to the following system
of Cauchy singular integral equations over the boundary ∂S for the
unknown density ϕ = [ ϕ1 ϕ2 ϕ3 ]T :

(11)

A(z)ϕ(z) +
B(z)
πi

∫
∂S

ϕ(ζ)
ζ − z

dζ +
∫

∂S

H(z, ζ)ϕ(ζ) dζ = f(z), z ∈ ∂S.

Here z = x1 + ix2, ζ = ζ1 + iζ2,

A(z) =




1
2 0 ∗
0 1

2 ∗
0 0 −1

2


 , B(z) = − ic2

2


 0 1 ∗
−1 0 ∗
0 0 0


 ,

c2 is the material constant defined by c2 = (µ/(λ + 2µ)), ‘∗’ denotes a
(possibly) nonzero entry whose specific form is not required and H is
a weakly singular (Fredholm) kernel.
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Clearly, with the conditions λ + µ > 0 and µ > 0 assumed above,

det (A±B) = − 1
8

(1 − c22) 
= 0 everywhere on ∂S.

This means that the Cauchy singular integral equation (11) is of the
regular type and is accommodated by the results presented in [8].
Furthermore, the index [8] of the singular integral operator from (11)
is given by:

κ =
1

2π

[
arg

det (A−B)
det (A + B)

]
=

1
2π

arg (1) = 0,

which means that the Fredholm alternative holds for the system (11)
and its associated system in the (real) dual system (C0,α(∂S), C0,α(∂S)),
α ∈ (0, 1), with the bilinear form

(ϕ, ψ) =
∫

∂S

ϕT (y)ψ(y) ds(y).

Before we proceed with the main existence results, we note the
following lemmas.

Lemma 2. As in [1], we can prove that if f ∈ C1,α(∂S), α ∈ (0, 1),
then any solution ϕ ∈ C0,α(∂S) of (11) belongs to C1,α(∂S).

Lemma 3. Let Υ ⊂ Ω1 be the domain lying between ∂S and ∂Ω1.
Using (5) it is not difficult to show that the following boundary value
problem has only the trivial solution in Υ:

Find u ∈ C2(Υ) ∩ C1(Ῡ) satisfying (1) in Υ and such that

O33Tu(x) + I33u(x) = 0, x ∈ ∂S,

u(x) = 0, x ∈ ∂Ω1.

Theorem 2. The homogeneous system (11)0 ((11) with f ≡ 0) has
only the trivial solution in the space C0,α(∂S).
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Proof. In view of Lemma 2, it suffices to prove the assertion in
C1,α(∂S), α ∈ (0, 1). Let ϕ0 ∈ C1,α(∂S) be a solution of (11)0.
Then (u(ϕ0))(x) from (9) solves the homogeneous mixed problem (I)0.
Theorem 1 now yields (u(ϕ0))(x) = 0, x ∈ S+. Furthermore, since
by construction u from (9) satisfies (1) in Υ (as defined in Lemma 3)
and (using the properties of the matrices P and D) (u(ϕ0))(x) = 0,
x ∈ ∂Ω1, we have, from Lemma 3, that (u(ϕ0))(x) = 0, x ∈ Υ.
Thus (u(ϕ0))(x) vanishes on both sides of the boundary ∂S. From
(9), using the continuity of the elastic single layer potential and the
jump relations arising from the elastic double layer potential (8) as we
cross the boundary ∂S [1], we obtain:

ϕ3(x) = 0, x ∈ ∂S.

Similarly, applying the T -operator to (9), noting that the quantity
TW is continuous across the boundary ∂S [1] and the jump relations
arising from the application of the T operator to the elastic single layer
potential (7) as we cross the boundary ∂S, we obtain:

ϕα(x) = 0, x ∈ ∂S,

which completes the proof.

Theorem 3. The system (11) is uniquely solvable for any f ∈
C1,α(∂S), 0 < α < 1.

Proof. Using Theorem 2, since the Fredholm alternative applies to
(11) and its associated system, the latter also has only the trivial
solution in the space C0,α(∂S). This means that (11) is uniquely
solvable for any f ∈ C0,α(∂S) and hence any f ∈ C1,α(∂S), 0 < α < 1.

From Theorems 1 3, we have the main existence result for the interior
mixed problem (I):

Theorem 4. The problem (I) has a unique solution for any f ∈
C1,α(∂S), 0 < α < 1. This solution is given by (9) with ϕ ∈ C1,α(∂S),
the unique solution of the system (11).
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Remark 2. The condition f ∈ C1,α(∂S), 0 < α < 1, is sufficient but
not necessary for the solvability of the problem (I). In fact, from the
properties of the elastic double and single layer potentials (7) and (8),
the solution (9) of the problem (I) requires only that

ϕα ∈ C0,α(∂S) and ϕ3 ∈ C1,α(∂S), 0 < α < 1,

which, in turn, requires that the conditions on the prescribed data can
be weakened slightly to:

fα ∈ C0,α(∂S) and f3 ∈ C1,α(∂S), 0 < α < 1.

4.2 Exterior mixed problem. In the case of the exterior mixed
problem (E), the asymptotic behavior (4) of the matrix D(x, y) suggests
that we seek the solution in the form

(12)

(u(ϕ))(x)

=
∫

∂S

[P (x, y) − P1(x, y)]


 0

0
ϕ3


 (y) ds(y)

+
∫

∂S

[D(x, y) −M∞(x)FT (y) −D1(x, y)]


ϕ1

ϕ2

0


 (y) ds(y)

where ϕ = [ϕ1 ϕ2 ϕ3]T ∈ M3×1 is again some unknown vector-density
and M∞ ∈ M3×3 has columns [3]:

M∞(1)(r, θ) = − a1µ(µ(2 ln r + 2 + cos 2θ), µ sin 2θ,
− (µr(2 ln r + 1) − 4h2(λ + 2µ)r−1) cos θ)T

M∞(2)(r, θ) = − a1µ(µ sin 2θ, µ(2 ln r + 2 − cos 2θ),
− (µr(2 ln r + 1) − 4h2(λ + 2µ)r−1) sin θ)T ,

M∞(3)(r, θ) = − a1µ(2 ln r + 1) cos θ, µr(2 ln r + 1) sin θ,

− µr2 ln r + 4h2(λ + 2µ) ln r + 4h2(λ + 3µ))T ,

with polar coordinates (r, θ) given by r = |x| and θ = tan−1(x2/x1).
It is easily verified that LM∞ = 0 in R2 \ {0}. The matrices
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P1,D1 ∈ M3×3 are known matrices constructed using a procedure
similar to that used to construct the matrices P and D for problem
(I). That is, let Ω2 be an infinite domain with closed C2-boundary ∂Ω2

such that

(i) S− ⊂ Ω2,

(ii) ∂S ⊂ Ω2,

(iii) {0} /∈ Ω̄2.

We denote the columns of the matrix P1 by P(j)
1 , each of which

satisfies the boundary value problem:

L(∂x)P(j)
1 (x, y) = 0, x ∈ Ω2,

P(j)
1 (x, y) = P (j)(x, y), x ∈ ∂Ω2.

Similarly, the columns of the matrix, D1, denoted by D(j)
1 , satisfy the

boundary value problem:

L(∂x)D(j)
1 (x, y) = 0, x ∈ Ω2,

D(j)
1 (x, y) = G(j)(x, y), x ∈ ∂Ω2,

where G ∈ M3×3 is given by G(x, y) = D(x, y)−M∞(x)FT (y). Noting
that for y ∈ ∂S and x ∈ ∂Ω2, P (j)(x, y) and G(j)(x, y) are of the class
C1,α(∂Ω2), 0 < α < 1, (recall that ∂S ⊂ Ω2) it again follows from
the existence result for the exterior Dirichlet problem in this theory of
plates [1] that P(j)

1 (x, y) and D(j)
1 (x, y) exist uniquely for each y ∈ ∂S

in the class C2(Ω2) ∩ C1(Ω̄2) ∩ A∗. In fact, for each y, P(j)
1 (x, y) and

D(j)
1 (x, y) take the form of the sum of a double layer potential and a

matrix of the form (3).

Suppose that the unknown density ϕ in (12) is of the class C1,α(∂S),
0 < α < 1.

As in the case of problem (I), using the regularity properties of the
elastic single and double layer potentials (7) and (8) with C1,α-density
[1] and the properties of the matrices P1,D1 and M∞, we clearly see
that u from (12) satisfies the continuity and differentiability conditions
of the problem (E) and the governing equations (1) in S−. The fact
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that u ∈ A∗ is proved as follows. If we define φ = [ϕ1 ϕ2 0], as in [3],
letting |x| → ∞,

∫
∂S

[D(x, y) −M∞(x)FT (y)]φ(y) ds(y)

= M∞(x)
∫

∂S

FT (y)φ(y) ds(y) + u0

−M∞(x)
∫

∂S

FT (y)φ(y) ds(y)

= u0 ∈ A.

Also,
∫

∂S

D1(x, y)φ(y) ds(y) =
∫

∂S

D(j)
1 (x, y)φj(y) ds(y) ∈ A∗

since, as noted above, D(j)
1 (x, y) ∈ A∗ for each y. Finally, the term

∫
∂S

[P (x, y) − P1(x, y)]


 0

0
ϕ3


 (y) ds(y)

is also in A∗ by the properties of the elastic double layer potential (8)
[1] and the fact that P(j)

1 (x, y) ∈ A∗ for each y as discussed above.
Hence, u(x) ∈ A∗.

The remaining boundary condition

O33Tu(x) + I33u(x) = g(x), x ∈ ∂S

again leads to a system of Cauchy singular integral equations with zero
index similar in type and form to that in (11) for the interior problem.
Consequently, using the same arguments used above for problem (I),
we can prove the following existence theorem for problem (E).

Theorem 5. The problem (E) has a unique solution for any g ∈
C1,α(∂S), 0 < α < 1. This solution is given by (12) with ϕ ∈ C1,α(∂S)
the unique solution of the corresponding system of Cauchy singular
integral equations.
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