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STABILITY IN DISTRIBUTION OF
FORWARD STOCHASTIC FLOWS

D. KANNAN AND HONG ZHANG

ABSTRACT. We discuss here the stability in distribution

of a forward stochastic flow governed by its B0,1
b

-local charac-
teristic. We first study the special case when the local charac-

teristic belongs to the class B0,1
ub

and is absolutely continuous
with respect to the Lebesgue measure. The stability for the
more general case is obtained via the time change procedure.

1. Introduction. Several stability properties of a Brownian flow
have received reasonable attention in the past few years (see [7]); for
example, a stability in large or asymptotic flatness property of the
Brownian flow has been studied more recently by Basak and Kannan
[3]. Our purpose in writing this article is to establish the stability
in distribution of the stochastic forward flow ϕs,t, 0 ≤ s ≤ t < ∞,
governed by the stochastic equation

(1.1) ϕs,t(x) = x+
∫ T

s

F (ϕs,u, du),

where F is a semi-martingale. Whereas Kunita [7] discusses the weak
convergence of a stochastic flow by considering the joint law of the ϕs,t
and F , we instead consider the distribution of the flow itself. We shall
show, under suitable conditions on the local characteristic of F , that
the forward flow is stable in distribution. We will observe that the
limiting probability is independent of the initial position, the initial
moment, and the local characteristic of F . We begin by setting up
some basic notations and recalling from [7] necessary definitions.

Notations, Definitions and Remarks.

• (Ω,F , P ) is a complete probability space supporting all our random
variables.

• An Rd-valued continuous random field ϕs,t(x, ω), with x ∈ Rd,
ω ∈ Ω, is called a forward stochastic flow provided there is a null set
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N ⊂ Ω such that for all ω ∈ Nc and all s, t, u with 0 ≤ s ≤ t ≤ u < ∞,
we have

ϕs,s(ω) is the identity map for all 0 ≤ s,

ϕs,u(ω) = ϕt,u(ω) ◦ ϕs,t(ω), s ≤ t ≤ u,

ϕs,t(ω) : Rd → Rd is a continuous map for all s, t.

We shall suppress the argument ω in the above and in what follows, as
is customary. Since the flow is continuous, we treat it as a separable
and measurable version.

• t → F (x, t) = (F 1(x, t), . . . , F d(x, t)), x ∈ Rd, will denote a
continuous semi-martingale with values in C = C(Rd : Rd) = {f :
Rd → Rd is continuous}. The semi-norms inducing a Frechet space
topology on C is described infra (in a more general set up).

• Let F i(x, t) = M i(x, t) + Bi(x, t) be a decomposition such that
M i(x, t) is a continuous local martingale and Bi(x, t) is a continuous
process of bounded variation, 1 ≤ i ≤ d.

• Set
A

ij
(x, y, t) = 〈M i(x, t),M j(y, t)〉,

where the righthand side is the joint (quadratic) variation of the local
martingales M i(x, t) and M j(y, t), 1 ≤ i, j ≤ d.

• If At is a continuous strictly increasing process such that both
A

ij
(x, y, t) and Bi(x, t) are absolutely continuous with respect to At,

a.s., for any x, y ∈ Rd, then there exist predictable processes aij(x, y, t)
and bi(x, t) with parameters x, y such that, for all t ∈ [0, T ],

A
ij
(x, y, t) =

∫ t

0

aij(x, y, s) dAs,

Bi(x, t) =
∫ t

0

bi(x, s) dAs a.s.

•Define a measure µ on ([0, T ]×Ω,P) by µ(B) = E[
∫ t

0
1(B)(s, w) dAs],

for all B ∈ P, where P is the predictable σ-field and 1(·) is the indicator
function.

• a(x, y, t) = (aij(x, y, t)), i, j = 1, . . . , d is a d × d-matrix valued
function with the following properties:



STABILITY IN STOCHASTIC FLOWS 119

(a) Symmetry: aij(x, y, t) = aji(y, x, t) holds µ-a.e., for all x, y, i, j.

(b) Nonnegative definiteness:
∑

i,j,p,q a
ij(xp, xq, t)ξipξjq ≥ 0 holds µ-

a.e., for all xp = (ξ1
p, . . . , ξ

d
p), and xq = (ξ1

q , . . . , ξ
d
q ), p, q = 1, 2, . . . , n.

• b(x, t) = (b1(x, t), . . . , bd(x, t))′.

• The triple (a(x, y, t), b(x, t), At) is called the local characteristic of
F (x, t).

• Let D be a domain in Rd, and let m be a nonnegative integer.
Denote by Cm(D,Rd) ≡ Cm = {f : D �→ Rd is m-times continuously
differentiable}. When m = 0, C0 is denoted by C(D,Rd). For
the multi-index of nonnegative integers α = (α1, α2, . . . , αd), the
differential operator Dα

x is defined by

Dα
x =

∂|α|

∂xα1
1 · · · ∂xαd

d

,

where |α| = ∑
αi. Let K ⊂ D, and set

(1.2) ‖f‖m:K = sup
x∈K

|f(x)|
1 + |f(x)| +

∑
1≤|α|≤m

sup
x∈K

|Dαf(x)|.

Cm(D : Rd) is a Frechet space induced by the semi-norms ‖ ‖m,K .

• Definition 1.1. The local characteristic (a, b, At) of the semi-
martingale F belongs to the class B0,1

b if a(x, y, t) and b(x, t) have
predictable modifications satisfying the following

Assumptions A: (A.1) For t ≥ 0,∫ ∞

0

‖a(t)‖∼1 dAt < ∞, a.s.,

where

‖a(t)‖∼1 = sup
x,y∈Rd

|a(x, y, t)|
(1 + |x|)(1 + |y|)

+ sup
x,y,x′,y′∈Rd

x�=x′,y �=y′

|a(x, y, t)− a(x′, y, t)− a(x, y′, t) + a(x′, y′, t)|
|x− x′||y − y′|

< ∞, ∀ω ∈ Ω;
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(A.2) for t ≥ 0,

(1.3)
∫ ∞

0

‖b(t)‖1 dAt < ∞, a.s.,

where

(1.4)
‖b(t)‖1 = sup

x∈Rd

|b(x, t)|
1 + |x| + sup

x,y∈Rd

x�=y

|b(x, t)− b(y, t)|
|x− y| < ∞,

∀ω ∈ Ω.

The local characteristic (a, b, At) of F belongs to the class B0,1
ub

provided there exists a constant L1 such that

(1.5) ‖a(t)‖∼1 ≤ L1, for all t ∈ [0, T ] and for all ω ∈ Ω,

and

(1.6) ‖b(t)‖1 ≤ L1, for all t ∈ [0, T ], and for all ω ∈ Ω;

in other words, (A.3)

|b(x, t)− b(y, t)| ≤ L1|x− y|,
‖a(x, y, t)− 2a(x, y, t) + a(y, y, t)‖ ≤ L1|x− y|2,

|b(x, t)| ≤ L1(1 + |x|),
‖a(x, y, t)‖ ≤ L1(1 + |x|)(1 + |y|),

hold for all t ∈ [0, T ], x, y ∈ Rd and ω ∈ Ω where | | and ‖ ‖ denote
norms of vectors and matrices, respectively.

• Let t0 ∈ [0, T ] and x0 ∈ Rd. A continuous Rd-valued process ϕt0,t,
0 ≤ t0 ≤ t ≤ T adapted to (Ft0,t) is called a solution of Ito’s stochastic
differential equation based on F (x, t) starting at x0 at time t0 if it
satisfies

(1.7) ϕt0,t = x0 +
∫ t

t0

F (ϕt0,s, ds).

Also ϕt0,t is said to be governed by Ito’s stochastic differential equation
based on F (x, t).
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• It is known from [7] that, if the local characteristic of F belongs to
the class B0,1

b , then for each t0 and x0, the equation (1.7) has a unique
solution.

The following form of Ito’s formula is central to our analysis. A proof
of the formula can be found in [7]. (A discrete-time version of this
formula, due to Kannan and Bo Zhang, will appear elsewhere.)

Theorem 1.2 (Generalized Ito formula). Assume that G(x, t),
x ∈ Rd, is a continuous C2-process and also a continuous C1-semi-
martingale with local characteristic belonging to the class B1,0

b . Let gt
be a continuous semi-martingale with values in Rd. Then G(gt, t) is a
continuous semi-martingale satisfying the formula

(1.8)

G(gt, t)−G(g0, 0) =
∫ t

0

G(gs, ds) +
d∑

i=1

∫ t

0

∂G

∂xi
(gs, s) dgis

+
1
2

d∑
i,j=1

∫ t

0

∂2G

∂xi∂xj
(gs, s) d〈gis, gjs〉

+
d∑

i=1

〈 ∫ t

0

∂G

∂xi
(gs, ds), git

〉
.

Comparing this formula with the standard Ito formula, we note that
the last term here is a correction term. When the function G is
deterministic, the generalized Ito formula reduces to the standard Ito
formula. Now, since the solution of equation (1.7) is a continuous semi-
martingale, we apply the generalized Ito formula to a deterministic
C2-function G : Rd �→ R so that

(1.9)

G(ϕt0,t)−G(x) =
d∑

i=1

∫ t

t0

∂G

∂xi
(ϕt0,s) dϕ

i
t0,s

+
1
2

d∑
i,j=1

∫ t

t0

∂2G

∂xi∂xj
(ϕt0,s) d〈ϕit0,s, ϕjt0,s〉.

Since ϕt0,t is a solution of the SDE (1.7), viz. dϕt0,t = F (ϕt0,t, dt), we
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have from the semi-martingale decomposition of F that

d∑
i=1

∫ t

t0

∂G

∂xi
(ϕt0,s, s)F

i(ϕt0,s, ds)

=
d∑

i=1

∫ t

t0

∂G

∂xi
(ϕt0,s, s)M

i(ϕt0,s, ds)

+
d∑

i=1

∫ t

t0

∂G

∂xi
(ϕt0,s, s)B

i(ϕt0,s, ds).

It follows from Theorem 3.2.4 in [7] that

(1.11)

〈ϕit0,t, ϕjt0,t〉 =
〈
x+

∫ t

t0

F i(ϕt0,s, ds), x+
∫ t

x0

F j(ϕt0,s, ds)
〉

=
〈∫ t

t0

M i(ϕt0,s, ds),
∫ t

t0

M j(ϕt0,s, ds)
〉

=
∫ t

t0

aij(ϕt0,s, s) dAs.

Hence we write d〈ϕt0,t, ϕt0,t〉 = aij(ϕt0,t, t) dAt. Also, since B(x, t) =∫ t

x0
b(x, s) dAs, we shall write this as B(x, dt) = b(x, t) dAt. We thus

have
(1.12)

G(ϕt0−t)−G(x) =
d∑

i=1

∫ t

t0

∂G

∂xi
(ϕt0,s)M

i(ϕt0,s, ds)

+
d∑

i=1

∫ t

t0

∂G

∂xi
(ϕt0,s)b

i(ϕt0,s, s) dAs

+
1
2

d∑
i,j=1

∫ t

t0

∂2G

∂xi∂xj
(ϕt0,s)a

ij(ϕt0,s, s) dAs.

In particular, when we take G(x) := [
∑d

i,j=1 qijxixj ]
1−δ = (x,Qx)1−δ

for a d × d positive definite matrix Q = (qij), we then obtain, by the
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stopping time argument,

(1.13)

E(ϕt0,t, Qϕt0,t)
1−δ − (x,Qx)1−δ

= E

∫ t

t0

{
(1− δ)(ϕt0,s, Qϕt0,s)

−δ

[
2(ϕt0,s, Qb(ϕt0,s, s))

+ Tr (Qa(ϕt0,s, s)) + 2δ
(Qϕt0,s, a(ϕt0,s, s)Qϕt0,s)

(ϕt0,s, Qϕt0,s)

]}
dAs.

In this paper we discuss the stability in distribution of forward
stochastic flow governed by equation (1.1). We first prove in Section 2
that the distribution of ϕs,t converges to a probability measure when
the local characteristic (a, b, At) ∈ B0,1

ub . We later extend this main
result to the more general case (a, b, At) ∈ B0,1

b . In the case of
B0,1
ub -local characteristic, we first consider the flow when At = t to

obtain the main stability result. By changing the time scale we get
the stability in distribution of the flow in the general case. Finally,
for a flow governed by a B0,1

b -local characteristic, we appeal to a fact
which renders it equivalent to a B0,1

ub -local characteristic and obtain
the stability in distribution via conditions in terms of the B0,1

b -local
characteristic (a, b, At).

2. Stability in distribution of the flow. As pointed out in the
introduction, we first establish the stability in distribution of the flow
ϕs,t when the local characteristic belongs to B0,1

ub . We then address the
more general case where the local characteristic belongs to B0,1

b .

We begin by noticing that Assumptions (A.1) (A.3) assure us of the
existence and uniqueness of a solution of equation (1.1). We also need
the following assumptions to prove the main stability results.

Assumptions B. Put

b(x, y, t) := b(x, t)− b(y, t),
A(x, y, t) := a(x, x, t)− 2a(x, y, t) + a(y, y, t).

(B.1) There is a symmetric positive definite matrix Q and a constant
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γ > 0 satisfying

2((x−y), Qb(x, y, t))−2
(x−y,QA(x, y, t)Q(x−y))

((x− y), Q(x− y))
+Tr (A(x, y, t)Q)

≤ −γ(Q(x− y), x− y),

for all t ∈ [0, T ] and x, y ∈ Rd, x �= y, where Tr (A) = trace of A.

(B.2) For a symmetric positive definite matrix C we have

2(x,Cb(x, t))− 2
(x,Ca(x, x, t)Cx)

(x,Cx)
+ Tr (a(x, x, t)C) ≤ −α(Cx, x),

for all sufficiently large |x|, t ∈ [0, T ] and for some α > 0.

Remark 2.1. The assumptions (A.3) and (B.1) imply (B.2) for C = Q
and every α ∈ (0, γ).

The main results of this article present the weak convergence of the
flow distribution ps,t(x, dy) = P (ϕxs,t ∈ dy), 0 ≤ s ≤ t, to a probability
measure, as t → ∞, and the limit being independent of s. Recall
that the weak convergence of probability measures on a metric space S
depends on the topology of S and not on how we metrize the topology.
Dudley observe, in [6], that a nice class of functions to work with is
the space BL of all bounded Lipschitz functions metrized as follows.
Define, for a real-valued function f on a metric space (S, d),

(2.1) ‖f‖L := sup
x�=y

|f(x)− f(y)|
d(x, y)

, ‖f‖∞ := sup
x∈S

|f(x)|,

and

‖f‖BL := ‖f‖L + ‖f‖∞.

The space BL is now defined by BL (S, d) := {f : ‖f‖BL < ∞}.
Dudley showed that the weak convergence of probability measures can
be obtained as a metric convergence with respect to the BL -distance.
This BL -distance between two probability measures µ and ν on the
Borel σ-field of Rd is given by

(2.2) ‖µ− ν‖BL := sup
f∈BL

∣∣∣∣
∫
f dµ−

∫
f dν

∣∣∣∣.
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To establish our first stability result, we need three auxiliary results.
We start with the following estimate.

Lemma 2.2. Assume that At ≡ t, that the local characteristics
(a, b) ∈ B0,1

ub , and that (B.1) holds. Then, for t ≥ t0, there exist an ε
with 0 < ε < 1 and a β > 0 such that

(2.3) E(Qϕxt0,t, ϕ
x
t0,t)

ε ≤ (Qx, x)ε exp(−β(t− t0)).

Proof. Let G(x) := (Qx, x)1−δ0 , for some positive definite matrix Q
and some 0 < δ0 < 1. Then

L(Qx, x)1−δ0 = (1− δ0)(Qx, x)−δ0(Qx, 2b(x, t))
+ 2(1− δ0)(−δ0)(Qx, x)−δ0−1(Qx, a(x, x, t)Qx)
+ (1− δ0)(Qx, x)−δ0Tr(Qa(x, x, t))

= (1− δ0)(Qx, x)−δ0

{
2(x,Qb(x, t)) + 2(1− δ0)

· (x,Qa(x, x, t)Qx)
(Qx, x)

− 2
(x,Qa(x, x, t)Qx)

(Qx, x)

+ Tr(a(x, x, t)Q)
}
.

Since we have KQ(Qx, x) ≤ (x, x) ≤ KQ(Qx, x) for some positive
constants KQ and KQ, we obtain from (A.3) and (B.1) that

(x,Qa(x, x, t)Qx)
(Qx, x)

≤ ‖a(x, x, t)‖(Qx,Qx)
(Qx, x)

≤ ‖Q‖2(KQ)2L1(Qx, x)
= λa(Qx, x),

where λa = ‖Q‖2(KQ)2L1. Thus,

L(Qx, x)1−δ0 ≤ (1−δ0)(Qx, x)−δ0 [−α(Qx, x) +2(1−δ0)λa(Qx, x)]
= β(Qx, x)1−δ0 ,
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for all sufficiently large x, where β = (1− δ0){α− 2(1− δ0)β1λα} > 0
for δ0 sufficiently close to 1. Therefore,

sup
|x|>M

L(Qx, x)1−δ0 ≤ −βQM2(1−δ0)

for M large enough, where βQ = β× (minimum eigenvalue of Q). It
is easy to deduce from this that for some δ ∈ (δ0, 1), (Qϕxt0,t, ϕ

x
t0,t

)1−δ

is uniformly integrable. We now have by using the standard stopping
time argument that

EG(ϕxt0,t)−G(x) = E

∫ t

t0

LG(ϕxt0,u) du

≤ −βE
∫ t

t0

G(ϕxt0,u) du,

so that
d

dt
E(G(ϕxt0,t)) ≤ −βEG(ϕxt0,t).

This yields
E[G(ϕxt0,t) exp(β(t− t0))] ≤ G(x).

Therefore, taking ε = 1− δ,

E(Qϕxt0,t, ϕ
x
t0,t)

ε ≤ (Qx, x)ε exp(−β(t− t0)).

This completes the proof.

Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then, for t0,
r ≥ 0 and all compact K ⊂ Rd, there exists an ε, 0 < ε < 1, such that

(2.4) lim
t→∞ sup

x∈K
E|ϕt0,t+r(x)− ϕt0,t(x)|ε = 0.

Proof. Let u = ϕt0,t+r(x) and v = ϕt0,t(x) with t ≥ t0 and r ≥ 0.

(Q(u− v), (u− v))1−δ = ((Qu, u)− 2(Qu, v) + (Qu, v))1−δ

≤ [2(Qu, u) + 2(Qv, v)]1−δ

≤ 21−δ max{[2(Qu, u)]1−δ, [2(Qv, v)]1−δ}(2.5)
≤ 41−δ[(Qu, u)1−δ + (Qv, v)1−δ].
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Thus

E(Q(ϕt0,t+r(x)− ϕt0,t(x)), ϕt0,t+r(x)− ϕt0,t(x))
1−δ

≤ 41−δ[E(Qϕt0,t+r(x), ϕt0,t+r(x))1−δ

+ E(Qϕt0,t(x), ϕt0,t(x))
1−δ]

≤ 41−δ[(Qx, x)1−δ exp(−β(t+ r − t0))
+ (Qx, x)1−δ exp(−β(t− t0))],

by (2.3),

= 41−δ(Qx, x)1−δ exp(−β(t− t0))[exp(−βr) + 1](2.6)
≤ 23−2δ(Qx, x)1−δ exp(−β(t− t0))
→ 0, (exponentially fast), as t → ∞.

Taking into account the quadratic nature of (Qx, x), this implies for
ε = 1− δ and for every compact K ⊂ Rd that

lim
t→∞ sup

x∈K
E|ϕt0,t+r(x)− ϕt0,t(x)|ε = 0,

and this completes the proof.

Lemma 2.4. Let the assumptions of Lemma 2.2 hold. Then, for
t0 ≥ 0, there exists an ε, 0 < ε < 1, such that, for every compact
K ⊂ Rd,

(2.7) lim
t→∞ sup

x,y∈K
E|ϕt0,t(x)− ϕt0,t(y)|ε = 0.

Proof. For x, y ∈ Rd, x �= y and r ≥ 0, define

λ := (1− δ)[γ − 2(1− δ)(KQ)2L1‖Q‖2],
w(t0, t, x) := exp(λ(t− t0))(Qx, x)1−δ,

Zt0,t(x, y) := ϕt0,t(x)− ϕt0,t(y),
τ̄r := inf {t ≥ t0 : |Zt0,t(x, y)| ≤ r},
τ̄xJ := inf {t ≥ t0, |ϕt0,t(x)− x| ≥ J/3},
τ ′J := inf {t ≥ t0 : |Zt0,t(x, y)| ≥ J},
τJ := τ̃xJ ∧ τ̃yJ ∧ τ ′J ,
τJr := tr ∧ τJ , where tr := t ∧ τ̃r, for t ≥ t0.



128 D. KANNAN AND H. ZHANG

Let |x|, |y| < J/3, 0 < r ≤ r1 ≤ |x − y| < J/3, and t0 ≤ s < t. It
follows from the Assumptions (A.3) and (B.1) and from Ito’s lemma
applied for the random time tJr , that

w(t0, tJr , Zt0,tJr
(x, y))

= w(t0, sJr1 , Zt0,tJr
(x, y)) +

∫ tJr

sJ
r1

∂w

∂u
(t0, u, Zt0,u(x, y)) du

+
∫ tJr

sJ
r1

exp(λ(u−t0))
{
(1−δ)(Zt0,u(x, y))

−δ

·
[
2(Zt0,u(x, y), Qb(ϕt0,u(x), ϕt0,u(y), u))

+Tr(QA)−2δ
(QZt0,u(x, y),AQZt0,u(x, y))
(Zt0,u(x, y), QZt0,u(x, y))

]}
du

≤ w(t0, sJr1 , Zt0,tJr
(x, y))

+
∫ tJr

sJ
r1

λ exp(λ(u− t0))(QZt0,u(x, y), Zt0,u(x, y))
1−δ du

+
∫ tJr

sJ
r1

exp(λ(u− t0))(1− δ)[−γ + 2(1− δ)L1(KQ‖Q‖)2]

· (QZt0,u(x, y), Zt0,u(x, y))
1−δ du.

Using the martingale convergence theorem, as J → ∞, one has

(2.9) E[w(t0, tr, Zt0,tr (x, y))|Ft0,sr1
] ≤ w(t0, sr1 , Zt0,sr1

(x, y)) a.s.

Letting r ↓ 0 and using Fatou’s lemma, we get

(2.10) E[w(t0, t∧ τ̄0, Zt0,t∧τ̄0(x, y))|Ft0,sr1
] ≤ w(t0, sr1 , Zsr1

(x, y)) a.s.

Next letting r1 ↓ 0 and using martingale convergence theorem we
observe that

E[w(t0, t ∧ τ̄0, Zt0,t∧τ̄0(x, y))|Ft0,s∧τ̄0 ]
≤ w(t0, s ∧ τ̄0, Zt0,s∧τ̄0(x, y)) a.s.
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In other words, {w(t0, t∧ τ̄0, ϕt∧τ̄0(x)−ϕt∧τ̄0(y)) : t ≥ t0} is a positive
super-martingale, for any δ ∈ (δ0, 1) where δ0 is chosen to be

δ0 := 1− γ

2L1(KQ‖Q‖)2 .

Therefore,

E(w(t0, t, ϕt0,t(x)− ϕt0,t(y))It0≤t≤τ̄0) ≤ w(t0, t0, x− y).

Since ϕt0,t(x)− ϕt0,t(y) = 0 a.s., for t ≥ τ̄0,

E(exp(λ(t−t0))(Q(ϕt0,t(x)−ϕt0,t(y)), ϕt0,t(x)−ϕt0,t(y))1−δIt≥τ̄0) = 0.

So

(2.11) E((Q(ϕt0,t(x)− ϕt0,t(y)), ϕt0,t(x)− ϕt0,t(y))
ε)

≤ exp(−λ(t− t0))(Q(x− y), x− y)ε.

Hence, from the quadratic nature of (Qx, x), it follows that for ε = 1−δ
and every compact K,

(2.12) lim
t→∞ sup

x,y∈K
E|ϕt0,t(x)− ϕt0,t(y)|ε = 0.

We are now ready to state and prove our first stability result.

Theorem 2.5. Assume At ≡ t, the local characteristic (a, b) ∈ B0,1
ub ,

and (A.3) and (B.1) hold. Then there exists a unique probability
measure π such that

sup{‖pt0(x, dy)− π(dy)‖BL
: x ∈ K} −→ 0

exponentially fast, as t → ∞, for every compact K. Here the limit
measure π is independent of the initial moment t0.

Proof. In proving this theorem, we first show that the flow distribu-
tion {pt0,t(x, dy)} = {P (ϕxt0,t ∈ dy)} is Cauchy (with respect to t) in
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the dBL -metric and that it converges to a probability measure πt0 . We
next show that the distribution πt0 is independent of t0.

For all t ≥ t0, and all s ≥ 0,

‖pt0,t+s(x, dy)− pt0,t(x, dy)‖BL

= sup
f∈BL

|Ef(ϕt0,t+s(x))− Ef(ϕt0,t(x))|

≤ sup
f∈BL

|Ef(ϕt0,t+s(x))− f(ϕt0,t(x))|

≤ E{|ϕt0,t+s(x)− ϕt0,t(x)| ∧ 2}.
Since the inequality (2.3) renders the family of probability measures
{pt0,t(x, dy) : t ≥ t0} tight, there exists for all ε > 0, a compact subset
Kε0 of Rd such that∫

Rd−Kε0

pt0,s(x, dy) <
ε0
4
, ∀ s ≥ t0.

It follows from (2.4) that, for any compact K ⊂ Rd, for all δ > 0, there
exists T0 > 0 such that, for all t ≥ T0,

sup
x∈K

P (|ϕt0,t+s(x)− ϕt0,t(x)| > δ) <
δ

2
.

Therefore,

E{|ϕt0,t+s(x)− ϕt0,t(x)| ∧ 2}
≤ E[|ϕt0,t+s(x)− ϕt0,t(x)|I{|ϕt0,t+s(x)−ϕt0,t(x)|≤(ε0/2)}]

+ E[(|ϕt0,t+s(x)− ϕt0,t(x)| ∧ 2)I{|ϕt0,t+s(x)−ϕt0,t(x)|>(ε0/2)}]

<
ε0
2
+ 2

ε0
4

= ε0.

Hence, for each initial moment s, {ps,t(x, ·)} is Cauchy. Also, ps,t(x, ·)
→ πs(·), as t → ∞, in the BL metric dBL .

Before proving that the limit probability πs is independent of the
initial moment s, we show that πs does not depend on the initial
position x of the flow. For x, z ∈ Rd,

(2.13) ‖ps,t(z, dy)− πs(dy)‖BL

≤ ‖ps,t(z, dy)− ps,t(x, dy)‖BL + ‖ps,t(x, dy)− πs(dy)‖BL.
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The second term on the righthand side of the above inequality goes to
zero, as t → ∞. Regarding the first term,

(2.14)
‖ps,t(z, ·)− ps,t(x, ·)‖BL = sup

f∈BL
|E(f(ϕs,t(z))− f(ϕs,t(x))|

≤ E{|ϕs,t(z)− ϕs,t(x)| ∧ 2}.
It now follows from (2.7) that, for any compact K ⊂ Rd and for all
δ > 0, there exists ε′ > 0 such that

sup
x,z∈K

P (|ϕt0,t(z)− ϕt0,t(x)| > δ) < ε′.

Now a T0 > 0 exists such that for all t ≥ T0,

(2.15) E{|ϕt0,t(z)− ϕt0,t(x)| ∧ 2} < ε0
4
, ∀x, z ∈ K.

Thus, ‖ps,t(z, dy)− πs(dy)‖BL → 0 as t → ∞.

Finally we prove that for 0 ≤ s ≤ r, πs = πr. Fix an r with s ≤ r ≤ t
and an A ∈ B(Rd). Keeping in mind that our forward flow is continuous
in x, we notice that

{ϕs,t(x) ∈ A} = {ϕr,t(ϕs,r(x)) ∈ A}
=

⋃
y=ϕs,r(x)

{ϕr,t(y) ∈ A}

⊇ {ϕr,t(y) ∈ A},
where y = ϕs,r(x). Thus P (ϕs,t(x) ∈ A) ≥ P (ϕr,t(y) ∈ A). Now
letting t → ∞, we notice

(2.16) πs(A) ≥ πr(A).

To see the reverse inequality, we first note from the separability of the
process that

(2.17)

{ϕr,t(x) ∈ A} =
⋃

0≤s≤r

{ϕr,t(ϕs,r(ϕ−1
s,r(x))) ∈ A}

=
⋃

0≤s≤r

{ϕs,t(ϕ−1
s,r(x)) ∈ A}

=
⋃

0≤s≤r

⋃
y=ϕ−1

s,r(x)

{ϕs,t(y) ∈ A}

⊇ {ϕs,t(y) ∈ A},



132 D. KANNAN AND H. ZHANG

i.e., P (ϕr,t(x) ∈ A) ≥ P (ϕs,t(y) ∈ A). Now letting t → ∞, we have

(2.18) πr(A) ≤ πs(A).

Hence πs(A) = πr(A). This implies that, for any simple function f on
Rd,

(2.19)
∫
f(y)πs(dy) =

∫
f(y)πr(dy).

Let f ∈ BL ; there exists a sequence of simple functions gn ∈ L∞(Rd)
such that gn → f as n→ ∞ in L∞. This implies

∣∣∣∣
∫
f(y)πs(dy)−

∫
f(y)πr(dy)

∣∣∣∣
≤

∫
|f(y)− gn(y)|πs(dy) +

∣∣∣∣
∫
gn(y)πs(dy)−

∫
gn(y)πr(dy)

∣∣∣∣
+

∫
|f(y)− gn(y)|πr(dy)

≤
∫

|f(y)− gn(y)|πs(dy) +
∫

|f(y)− gn(y)|πr(dy)
−→ 0, as t → ∞.

So ∫
Rd

f(y)πs(dy) =
∫
Rd

f(y)πr(dy), ∀ f ∈ BL.

Therefore πs = πr = π. Hence the proof.

The following result of Basak [2] can be deduced as a special case of
our Theorem 2.5.

Corollary 2.6. Assume (A.1), (A.2) and (B̂.1): there is a symmetric
positive definite matrix Q and a constant γ > 0 such that

(2.20)

2((x−y), Qb(x, y))− 2
(x−y,QA(x, y)Q(x−y))

((x−y), Q(x−y)) + Tr (A(x, y)Q)

≤ − γ (Q (x−y), x−y)
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holds for all x, y ∈ Rd, x �= y.

Then there exists a unique invariant probability π for the flow

φt(x) = x+
∫ t

0

b(φu) du+
∫ t

0

n∑
k=1

σk(φu) dBk(u)

such that the transition probability of the flow converges weakly to π.

Proof. The Markovian property of a Brownian flow φu implies the
invariance of the limiting measure π.

We next discuss the case where At is a more general strictly increasing
continuous process that is not necessarily equal to t. We still continue
to assume that the local characteristic (a, b, A) ∈ B0,1

ub .

Theorem 2.7. Assume that the local characteristic (a, b, A) of
F belongs to B0,1

ub , and let (B.1) hold. Then there exists a unique
probability π for the process ϕt0,t(x) and

sup{‖pt0,t(x, dy)− π(dy)‖BL : x ∈ K} −→ 0 as t → ∞,

for every compact K. The limit probability π is independent of the
initial moment and initial position.

We need the next three lemmas to prove Theorem 2.7. First let us
recall that the topology on Cm,γ = {f ∈ Cm : Dαf, |α| = m, are
γ-Holder continuous} is defined by the semi-norm

(2.21) ‖f‖m+γ:K = ‖f‖m,K +
∑

|α|=m

sup
x,y∈K
x�=y

|Dαf(x)−Dαf(y)|
|x− y|γ .

Lemma 2.8. Assume that (a, b, A) ∈ B0,1
ub and (B.1) holds. Then

the solution ϕt0,t to the stochastic equation

ϕt0,t(x) = x+
∫ t

t0

F (ϕt0,s(x), ds)



134 D. KANNAN AND H. ZHANG

satisfies the inequality

(2.22) E(Qϕt0,t(x), ϕt0,t(x))
(1−δ)/2

≤ (Qx, x)(1−δ)/2[E exp(−β(At −At0))]
1/2,

for some 0 < δ < 1 and β > 0.

Proof. Let τt be the inverse function of At. Set F̃t = Fτt
and

F̃ (x, t) = F (x, τt). F̃ (x, t) is a C0,γ-semi-martingale for any 0 <
γ < 1, and its local characteristic (a(x, y, τt), b(x, τt), t) belongs to
B0,1
ub . Moreover, (B.1) holds in terms of a(x, y, τt) and b(x, y, τt). This

implies that the solution of the stochastic differential equation based on
F̃ (x, t) has a modification of a stochastic flow ϕ̃t0,t of homeomorphisms
generated by F̃ (x, t). Therefore, we now know from (2.3) that

E[(Qϕ̃t0,t(x), ϕ̃t0,t(x))
1−δ exp(β(t− t0))] ≤ (Qx, x)1−δ.

Also, for t ≥ t0,

E[(Qϕ̃At0 ,At
(x), ϕ̃At0 ,At

(x))1−δ exp(β(At −At0))] ≤ (Qx, x)1−δ.

Noticing that ϕ̃t0,t(x) = ϕτt0 ,τ1
(x), we now have

(2.23) E[(Qϕt0,t(x), ϕt0,t(x))
1−δ exp(β(At −At0))] ≤ (Qx, x)1−δ.

Therefore,

(2.24) E(Qϕt0,t(x), ϕt0,t(x))
(1−δ)/2

≤ {E[(Qϕt0,t(x), ϕt0,t(x))1−δ exp(β(At −At0))]}1/2

· [E exp(−β(At −At0))]
1/2

≤ (Qx, x)(1−δ)/2 [E exp(−β(At −At0))]
1/2.

This establishes the result.

Remark 2.9. From Lemma 2.8 and the dominated convergence
theorem, we know that {pt0,t(x, dy), t ≥ t0} is tight if At → ∞, a.s., as
t → ∞. Hence there exists a subsequence of {pt0,t(x, dy)} converging
to a probability measure πt0 .
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Lemma 2.10. Assume that (a, b, At) ∈ B0,1
ub , (B.1) holds and that

limt→∞At = ∞, a.s. If ϕt0,t is a solution to the stochastic equation

ϕt0,t = x+
∫ t

t0

F (ϕt0,s, ds),

then for every compact K ⊂ Rd and r ≥ 0

(2.25) lim
t→∞ sup

x∈K
E|ϕt0,t+r(x)− ϕt0,t(x)|ε = 0,

for some 0 < ε < 1.

Proof. We will first reduce the proof to the case At ≡ t by chang-
ing the time scale. Let τu be the inverse function of Au and put
F̃ (x, u) = F (x, τu). F̃ is a continuous C0,γ-semi-martingale adapted
to (F̃u) = (Fτu

) for any positive γ < 1. The local characteristic
(a(x, y, τu), b(x, τu), u) of F̃ belongs to the class B0,1

ub . Therefore, the
solution ϕ̃t0,t(x) = ϕτt0 ,τt

(x) to the stochastic equation governed by F̃
satisfies, by (2.6), the following inequality.

(2.26)

E[exp(β(t−t0))(Q(ϕ̃t0,t+r(x)−ϕ̃t0,t(x)), ϕ̃t0,t+r(x)−ϕ̃t0,t(x))1−δ]

≤ 23−2δ(Qx, x)1−δ,

where t ≥ t0, r ≥ 0. Therefore, for r̄ = At+r −At ≥ 0,

(2.27)

E[exp(β(t−t0))(Q(ϕ̃t0,t+r̄(x)−ϕ̃t0,t(x)), ϕ̃t0,t+r̄(x)−ϕ̃t0,t(x))1−δ]

≤ 23−2δ(Qx, x)1−δ.

We thus have

(2.28)
E[exp(β(At−At0))(Q(ϕ̃At0 ,At+r̄(x)− ϕ̃At0 ,At

(x)), ϕ̃At0 ,At+r̄(x)

− ϕ̃At0 ,At
(x))1−δ] ≤ 23−2δ(Qx, x)1−δ.
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That is,

(2.29) E[exp(β(At −At0))(Q(ϕt0,t+r(x)− ϕt0,t(x)), ϕt0,t+r(x)

− ϕt0,t(x))
1−δ] ≤ 23−2δ(Qx, x)1−δ.

Also,

E[(Q(ϕt0,t+r(x)− ϕt0,t(x)), ϕt0,t+r(x)− ϕt0,t(x))
(1−δ)/2]

≤
√
E[exp(β(At−At0))(Q(ϕt0,t+r(x)ϕt0,t(x)), ϕt0,t+r(x)−ϕt0,t(x))1−δ]

×
√
E exp(−β(At −At0))

≤
√
23−2δ(Qx, x)(1−δ)/2

√
E exp(−β(At −At0)).

By the dominated convergence theorem we now have

lim
t→∞E exp(−β(At −At0)) = 0.

Now for ε = (1− δ)/2, r ≥ 0, and every compact K, we have

(2.30) lim
t→∞ sup

x∈K
E|ϕt0,t+r(x)− ϕt0,t(x)|ε = 0.

Lemma 2.11. Assume that (a, b, At) ∈ B0.1
ub , (B.1) holds, and that

limt→∞At = ∞ a.s. If ϕt0,t is a solution to the stochastic differential
equation

ϕt0,t = x+
∫ t

t0

F (ϕt0,s, ds),

then, for every compact K ⊂ Rd,

(2.31) lim
t→∞ sup

x,y∈K
E|ϕt0,t(x)− ϕt0,t(y)|ε = 0,

where 0 < ε < 1.

Proof. We again go to the time change, as in the proof of the
previous lemma. It now follows from (2.11), that the solution ϕ̃t0,t(x) =
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ϕτt0 ,τt
(x) to the stochastic differential equation governed by F̃ , satisfies

the following inequality

(2.32) E[exp(λ(t−t0))(Q(ϕ̃t0,t(x)−ϕ̃t0,t(y)), ϕ̃t0,t(x)−ϕ̃t0,t(y))1−δ]

≤ (Q(x− y), x− y)1−δ.

Thus, we have for t > t0,

(2.33)

E[exp(λ(At−At0))(Q(ϕt0,t(x)−ϕt0,t(y)), ϕt0,t(x)−ϕt0,t(y))1−δ]

≤ (Q(x− y), x− y)1−δ.

Next

E[(Q(ϕt0,t(x)− ϕt0,t(y)), ϕt0,t(x)− ϕt0,t(y))
(1−δ)/2]

≤
√
E[exp(λ(At−At0))(Q(ϕt0,t(x)−ϕt0,t(y)), ϕt0,t(x)− ϕt0,t(y))1−δ]

×
√
E exp(−λ(At −At0))

≤ (Q(x− y), x− y)(1−δ)/2
√
E exp(−λ(At −At0)).

The dominated convergence theorem now gives

lim
t→∞E exp(−λ(At −At0)) = 0.

Now for ε(= (1− δ)/2), and every compact K, we have

(2.34) lim
t→∞ sup

x,y∈K
E|ϕt0,t(x)− ϕt0,t(y)|ε = 0.

We are now ready to prove Theorem 2.7.

Proof. From Lemma 2.8, Lemma 2.10, Lemma 2.11 and following the
steps similar to those in the proof of Theorem 2.5, we obtain that
{p(t0, t;x, dy) : t ≥ 0} is Cauchy in the metric dBL . Its limiting
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probability πt0 = π is independent of the initial point, initial moment
t0, and is unique. That is,

(2.35) sup{‖pt0,t(x, y)− π(dy)‖BL : x ∈ K} −→ 0, as t → ∞,

for every compact K.

Remark 2.12. If there exist constants γ1 > 0 and δ1 > 0 such that,
for all s ≥ 0,

At −As ≥ γ1(t− s)δ1 , a.s. for sufficiently large t,

then the convergence in Theorem 2.7 is exponentially fast.

Finally we discuss the stability in distribution of the flows governed
by equation (1.1) when the local characteristic of F is in B0,1

b . Toward
this end, we use the fact that a B0,1

b -local characteristic is equivalent
to a B0,1

ub local characteristic.

Assumptions.

• Set W (t) = ‖a(t)‖˜
1 + ‖b(t)‖1.

• (B.3) There is a symmetric positive definite matrix Q and a
constant γ > 0 such that

2((x−y), Qb(x, y, t))−2
(x−y,QA(x, y, t)Q(x−y))

((x− y), Q(x− y))
+Tr (A(x, y, t)Q)

≤ − γ(Q(x−y), x−y)(1 +W (t)),

holds for all x, y ∈ Rd, x �= y, ω ∈ Ω.

• (B.4) The following condition holds for some symmetric positive
definite matrix C and all ω ∈ Ω.

2(x,Cb(x, t))− 2
(x,Ca(x, x, t)Cx)

(x,Cx)
+ Tr (a(x, x, t)C)

≤ −α(Cx, x)(1 +W (t)),

for all sufficiently large |x| and some α > 0.
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From Assumption (A.1) we know that, for each t > 0 and all ω ∈ Ω,

‖a(x, x, t)−2a(x, y, t) +a(y, y, t)‖ ≤ |x−y|2‖a(t)‖˜1, ∀x, y ∈ Rd,

‖a(x, x, t)‖ ≤ L1|x|2‖a(t)‖˜1, ∀x ∈ Rd,

where 0 <
∫ ∞
0

‖a(t)‖˜1 dAt < ∞, a.s., and L1 > 0 is a constant.

Similarly, the assumption (A.2) is equivalent to

|b(x, t)−b(y, t)| ≤ |x− y|‖b(t)‖1, ∀x, y ∈ Rd, ω ∈ Ω;
|b(x, t)| ≤ L1|x|‖b(t)‖1, ∀x ∈ Rd, ω ∈ Ω.

Here 0 <
∫ ∞
0

‖b(t)‖1 dAt < ∞, a.s., and L1 > 0 is a constant.

Remark 2.13. Notice that the assumptions (a, b, A) ∈ B0,1
b and (B.3)

imply (B.4) for Q = C and every α ∈ (0, γ).

Theorem 2.14. Assume that the local characteristic (a, b, A) of
F belongs to B0,1

b and that (B.3) holds. Then there exists a unique
probability π such that

sup{‖p(t;x, y)− π(dy)‖BL : x ∈ K} −→ 0, as t → ∞,

for every compact K. The limit probability π is independent of the
initial moment and initial position.

Proof. Let b′(x, t) = (b(x, t))/(1+W (t)), a′(x, y, t) = (a(x, y, t))/(1+
W (t)), and A′

t =
∫ t

0
(1+W (s)) dAs. From [7] we know that (a′, b′, A′) ∈

B0,1
ub , and it is equivalent to the local characteristic (a, b, A). It is easy

to see that (a′, b′, A′) satisfies (A.3). Also, (B.3) implies (B.1) in terms
of (a′, b′, A′). By Theorem 2.7, we know that {p(t;x, dy) : t ≥ t0} is
Cauchy in the metric dBL. Its limiting probability π is independent of
the initial position and initial moment, and

sup{‖p(t;x, y)− π(dy)‖BL : x ∈ K} −→ 0, as t → ∞,

for every compact K.



140 D. KANNAN AND H. ZHANG

REFERENCES

1. L. Arnold, Stochastic differential equations: Theory and applications, John
Wiley and Sons, Inc., New York, 1973.

2. G.K. Basak, A class of limit theorems for singular diffusions, J. Multivariate
Anal. 39 (1991), 44 59.

3. G.K. Basak and D. Kannan, On the singular N-point motion of a Brownian
flow: Asymptotic flatness and invariant measure, Stochastic Anal. Appl. 11 (1993),
369 397.

4. G.K. Basak, D. Kannan and H. Zhang, Stability in distribution and volume
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