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COMPUTING POSITIVE FIXED-POINTS
OF DECREASING HAMMERSTEIN OPERATORS

BY RELAXED ITERATIONS

ALVISE SOMMARIVA AND MARCO VIANELLO

ABSTRACT. We prove global convergence of (under)relaxed
Picard-like methods for fixed-point equations u = A(u), A :
C+(Ω) → C+(Ω), Ω being a compact Hausdorff space. The
operator A is decreasing and completely continuous, and
possesses no pairs of distinct and comparable coupled-fixed
points. Infinite- as well as finite-dimensional Hammerstein
equations of this type arise in transport theory. As a numer-
ical application, we test Picard, updated Picard, Jacobi, and
Gauss-Seidel (under)relaxed iterations on the discrete “de-
creasing” version of Chandrasekhar H-equation. A compar-
ison with popular Newton-like solvers is also presented.

1. Introduction. In this paper we consider as a model problem the
Hammerstein equation

(1) u(x) = A(u)(x) = KN(u)(x), x ∈ Ω,

where K : C+(Ω) → C+(Ω) is (the restriction of) a linear completely
continuous operator, C(Ω) denoting the space of continuous real func-
tions on the compact Hausdorff space Ω (endowed with ‖ · ‖∞), and
C+(Ω) its positive cone; cf. [16, 18]. In (1), N is the Nemytskii oper-
ator

(2) N(u)(x) = f(x, u(x)), x ∈ Ω,
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associated with the continuous scalar function

(3) f(x, u) =
1

σ(x, u)
, x ∈ Ω, u ≥ 0,

where σ is strictly positive and continuous, with σ(x, ·) nondecreasing,
and sublinear, i.e.,

(4) σ(x, τu) ≥ τσ(x, u),

for every τ ∈ (0, 1), x ∈ Ω, u > 0. Observe that the operator
A = KN : C+(Ω) → C+(Ω) turns out to be completely continuous and
decreasing, and possesses no pairs of distinct and comparable coupled
fixed-points, cf. [10, 15, 16, 24, 26].

Integral equations of this type arise in nuclear physics and in the
theory of radiative transfer, where some quadratic integral models
can be transformed into (1), with K a linear and compact Fredholm
operator with a nonnegative kernel, like

(5) K(φ) =
∫

Ω

k(·, t)φ(t) dt, Ω ⊂ Rd closed and bounded,

such that

(6) lim
x→x0

∫
Ω

|k(x, t)− k(x0, t)| dt = 0,

for every x0 ∈ Ω, cf. [16, 20, 27]. We recall, for example, the well-
known Chandrasekhar H-equation, modeling heat transfer in semi-
infinite atmospheres, which can be rewritten in the form

(7) h(x) =
λ

1− 2λ

∫ 1

0

tψ(t)
x+ t

1
1 + h(t)

dt, x ∈ [0, 1],

where λ ∈ (0, 1/2), ψ(t) ≥ 0 and
∫ 1

0
ψ(t) dt = 1, cf. [8, 27]. Equation

(7) does fit (1) (6), taking σ(x, u) ≡ 1 + u, cf. [16, Theorem 3.3.5] for
the compactness of the relevant linear integral operator. The constant
2λ is a physical parameter of the model, termed the albedo, which
measures the fraction of radiation lost due to scattering: the case
λ < 1/2 amounts to nonconservative instances, cf. [7]. It is worth
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reminding that there exists also a discrete version of Chandrasekhar H-
equation, which deserves to be studied and solved numerically in view
of its own physical meaning [8, 17]. On the other hand, discretizations
of (7) naturally appear within numerical solution methods, cf., e.g.,
[7] and the survey [2] for a general treatment of nonlinear integral
equations.

Observe that the general formulation (1) (4) above embodies infinite-
dimensional instances, as well as their finite-dimensional versions: in
the latter simply Ω = {1, . . . ,m}, u ∈ Rm

+ = C+(Ω) and K = {kij} ∈
Rm×m

+ , i.e., (1) reads as the nonlinear system

(8) ui = Ai(u) =
m∑

j=1

kijfj(uj), i = 1, . . . ,m.

Indeed, if we discretize (1) (6) by means of a quadrature formula with
m nodes {xj} and positive weights {wj}, then

(9)
kij = wjk(xi, xj)/w(xj), fj(uj) = Nj(u) = f(xj , uj),

1 ≤ i, j ≤ m,

where w(x) is the corresponding weight function. The same finite-
dimensional structure appears after discretization of certain purely in-
tegral Boltzmann models (via reduction to a Hammerstein formulation)
[4, 5, 25], where on the contrary the integration domain is unbounded,
and infinite-dimensional compactness may fail [14].

Existence and uniqueness of positive continuous solutions to (7) has
been studied by various authors, cf. [6, 16, 20, 21, 27]. More generally,
in [12], recalling some arguments that are present also in [20], it has
been shown that (1) (4), in the infinite dimensional instance (5), has
a unique positive and continuous solution. This result is achieved by a
constructive theorem on decreasing operators in ordered Banach spaces,
the core of its proof being Picard method, together with the fact that the
nonlinear operator A does not possess distinct and comparable coupled
fixed-points.

It is worth noting that mere existence of a solution to (8) is easily
obtained by Brouwer fixed-point theorem, as the order interval {u ∈
Rm : 0 ≤ ui ≤ Ai(0, . . . , 0), 1 ≤ i ≤ m} is mapped into itself by the
decreasing and continuous operator A. The same observation applies



98 A. SOMMARIVA AND M. VIANELLO

to the infinite-dimensional case (5) (6), the nonlinear integral operator
being completely continuous from C+(Ω) into C+(Ω), as Schauder
fixed-point theorem can be invoked, with reference to the closed convex
{u ∈ C+(Ω) : 0 ≤ u(x) ≤ ∫ 1

0
k(x, t)f(t, 0) dt, x ∈ Ω}.

In this paper we solve numerically (8) by stationary underrelaxation
of Picard and updated Picard methods, and of Jacobi and Gauss-Seidel
methods [22, 23], producing respectively the iterative processes

(Pω)
{
(un+1/2)i =

∑m
j=1 kijfj((un)j), i = 1, . . . ,m

un+1 = (1− ω)un + ωun+1/2,

(UPω)



(un+1/2)i =

∑
j<i kijfj((un+1/2)j)

+
∑

j≥i kijfj((un)j), i = 1, . . . ,m,
un+1 = (1− ω)un + ωun+1/2,

(Jω)



(un+1/2)i = kiifi((un+1/2)i)
+

∑
j �=i kijfj((un)j), i = 1, . . . ,m,

un+1 = (1− ω)un + ωun+1/2,

(SOR)



(un+1/2)i =

∑
j≤i kijfj((un+1/2)j)

+
∑

j>i kijfj((un)j), i = 1, . . . ,m,
un+1 = (1− ω)un + ωun+1/2,

where (u0)i ∈ [0, Ai(0, . . . , 0)], 1 ≤ i ≤ m, cf. (8), and ω ∈ (0, 1].

Some questions arise quite naturally:

(i) Does the system (8) have a unique positive solution?

(ii) In such a case, are the relaxed methods Pω, UPω, Jω, SOR globally
convergent to the unique positive solution?

(iii) Are their performances comparable with other classical methods,
e.g., inexact- and quasi-Newton methods, when the parameter ω is
suitably chosen?

In the next sections we’ll give an affirmative answer to all of these
questions, embedding the problem in the general framework of fixed-
point approximation for positive decreasing operators in ordered Ba-
nach spaces [16]. Note that global convergence of relaxed Jacobi and
SOR processes cannot be recovered by classical results; in fact, the
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mapping I −KN is in general neither a gradient mapping nor an M -
function, nor strictly diagonally dominant [23, Theorem 6.12]. More-
over, our result gives a sound theoretical basis to the updated iterative
method effectively used in [7] for the Chandrasekhar H-equation and
in [5] for the Boltzmann equation.

The paper is organized as follows. In Section 2 we analyze global
convergence of relaxed Picard-like iterations for compact decreasing
operators: the main convergence theorem is stated and proved in Sec-
tion 2.1, in the general setting of abstract cones, and in Section 2.2 such
a result is applied to the Hammerstein equation (1) (6), with special
attention to the finite-dimensional case (8) (9). In Section 3 some nu-
merical examples are presented concerning the discrete version of the
Chandrasekhar H-equation in the “decreasing” form (7). The conver-
gence behavior varying the relaxation parameter is exhibited, and the
remarkable speedup given by “optimal” relaxation is pointed out. The
key property of mesh-independence is also experimentally shown and
discussed. Finally, the performance of optimally relaxed Picard-like
methods is compared to that of popular Newton-like methods.

2. Convergence of relaxed Picard-like iterations.

2.1 The abstract setting. Before proving our main theorem, we
introduce some basic definitions and a technical lemma. For the theory
of monotone operators in partially ordered Banach spaces, we refer the
reader to [16] and to the classics [18, 19].

Let X be a real Banach space, P ⊂ X a cone and 
 the partial
ordering defined by P . Hereafter θ denotes the zero element of X;
moreover, following [16], the “order interval” {z ∈ X : u 
 z 
 v} will
be denoted as [u, v].

(i) An operator A : D ⊆ X → X is said to be increasing, or isotone,
when

s1, s2 ∈ D, s1 
 s2 =⇒ A(s1) 
 A(s2),
and decreasing, or antitone, if

s1, s2 ∈ D, s1 
 s2 =⇒ A(s2) 
 A(s1);
(ii) two points s∗, t∗ ∈ D are called coupled fixed-points of A if

t∗ = A(s∗) and s∗ = A(t∗);
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(iii) P is normal if and only if xn 
 zn 
 yn, ‖xn − x‖ → 0,
‖yn − x‖ → 0, imply ‖zn − x‖ → 0, i.e., the two militia men rule
holds;

(iv) P is regular if and only if every increasing (decreasing) and
bounded in order from above (below) sequence in X has a limit.

We recall that every regular cone is normal, the converse being true
in reflexive ordered spaces, e.g., in finite-dimensional ordered spaces.
As a classical example of a normal but nonregular cone, which is of
interest in the present paper, we quote P = C+[0, 1] = {u ∈ C[0, 1] :
u(x) ≥ 0, ∀x ∈ [0, 1]} in X = C[0, 1], endowed with ‖ · ‖∞.

Lemma 2.1. Let X be a Banach space partially ordered by a normal
cone P and A : P → P a completely continuous and decreasing
operator. Let {sn}, {tn}, {sn+1/2}, {tn+1/2} be defined recursively by

(10)



t0 = A(θ)
tn+1/2 = A(tn)
sn+1 = (1− ω)sn + ωtn+1/2,

(11)



s0 = θ
sn+1/2 = A(sn)
tn+1 = (1− ω)tn + ωsn+1/2,

where ω ∈ (0, 1]. Then there exist limn sn = s∗ ∈ P , limn tn = t∗ ∈ P
and the following chain of inequalities holds

(12) θ = s0 
 s1 
 · · · 
 sn 
 s∗ 
 t∗ 
 tn 
 · · · 
 t1 = t0.

Proof. First we observe that the operator (u, v) �→ (1− ω)u+ ωA(v)
is mixed-monotone on P × P , i.e., it is increasing in u and decreasing
in v. Following the reasoning developed in [13], cf. also [16, Theorem
2.1.7], it is not difficult to show that

θ 
 s0 
 s1 
 · · · 
 sn 
 tn 
 · · · 
 t1 = t0 = A(θ).
Now the operator from P × P into P × P defined by

(u, v) �−→ ((1− ω)u+ ωA(v), (1− ω)v + ωA(u))
= (1− ω)(u, v) + ω(A(v), A(u))
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being the sum of a contractive operator, with constant 1 − ω, and a
completely continuous operator on the product space, is condensing, cf.
[28, Example 11.7]. By a standard argument [16, Theorem 2.1.1], we
obtain that the Kuratowski measure of noncompactness of the bounded
sequence (sn, tn) is zero, i.e., that {(sn, tn)} is relatively compact, which
implies existence of a convergent subsequence (snk

, tnk
) → (s∗, t∗),

k → ∞. By normality of P and monotonicity of sn and tn, it follows
that sn ↑ s∗, tn ↓ t∗, n→ ∞.

We are now ready to state and prove the following:

Theorem 2.2. Let X be a Banach space with a normal cone P and
A,E, F : P → P decreasing operators, with A = E + F completely
continuous. Assume that the fixed-point equation u = E(u) + b has
a unique solution in P for every b ∈ [θ, F (θ)] ⊆ [θ,A(θ)]. Then the
sequences {sn}, {tn}, {un}, defined recursively by

(13)



t0 = A(θ)
tn+1/2 = E(tn) + F (tn) = A(tn)
sn+1 = (1− ω)sn + ωtn+1/2,

(14)



s0 = θ
sn+1/2 = E(sn) + F (sn) = A(sn)
tn+1 = (1− ω)tn + ωsn+1/2,

(15)



u0 ∈ [θ,A(θ)]
un+1/2 = E(un+1/2) + F (un)
un+1 = (1− ω)un + ωun+1/2,

where ω ∈ (0, 1] satisfy

(16)
θ = s0 
 s1 
 · · · 
 sn 
 un 
 tn 
 · · · 
 t1 
 t0,

n = 0, 1, 2, . . . .

If, in addition, A has no distinct comparable coupled fixed-points in
[θ,A(θ)] ⊂ P , then A has a unique fixed-point in P , say u∗, and the
sequences {sn}, {tn}, {un} converge to u∗.
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Proof. Note first that the sequence {un} is well-defined, since u =
E(u) + b has a unique solution in P , for each b ∈ [θ, F (θ)].

We prove now by induction that

(17) sn 
 un 
 tn, n = 0, 1, 2, . . . ,

which is trivially verified for n = 0. Assume that (17) holds for a fixed
n ≥ 0. Our basic step consists in proving

(18) tm+1/2 
 un+1/2 
 sm+1/2,

form = 0, 1, . . . , n. Again, we proceed by induction (onm). Form = 0,
by (13) (15) we have un+1/2 = E(un+1/2)+F (un) 
 E(θ)+F (θ) = s1/2

and t1/2 = E(A(θ)) + F (A(θ)) 
 E(un+1/2) + F (un) = un+1/2, i.e.,
the basis of the induction is verified. Assume that (18) holds for
a fixed m < n. By the main inductive assumption (17) and (12),
we get sm 
 un 
 tm and thus, using (13) (15), the inequalities
sm+1 
 un+1/2 
 tm+1 are derived. Moreover, (17) and (12) also give
immediately sm 
 sm+1 
 un 
 tm+1 
 tm. Finally, by monotonicity
of E, F and (13) (15), we have

(19)
tm+3/2 = E(tm+1) + F (tm+1) 
 E(un+1/2) + F (un) = un+1/2,

un+1/2 = E(un+1/2) + F (un) 
 E(sm+1) + F (sm+1) = sm+3/2,

i.e., the inner induction is completed. In particular, for m = n we
have tn+1/2 
 un+1/2 
 sn+1/2. This latter, together with the main
inductive assumption sn 
 un 
 tn and the definition of the iterative
schemes (13) (15), finally provides the inequalities sn+1 
 un+1 

tn+1, i.e., also the outer induction is completed.

Now, from (13), (14) and (12), taking the limit as n → ∞, we get
s∗ = (1− ω)s∗ + ωA(t∗) and t∗ = (1− ω)t∗ + ωA(s∗), i.e., s∗ = A(t∗),
t∗ = A(s∗). But A has no distinct comparable fixed-points, hence
s∗ = t∗ = u∗. Being the cone P normal, we can apply the “two militia
men rule”, obtaining un → u∗ as n→ ∞.

Concerning uniqueness of the fixed-points of A in P , it is easy to
show that if there exists û ∈ P such that û = A(û), then A2n(θ) 

û 
 A2n+1(θ) for every n ∈ N. Taking E ≡ 0 and ω = 1 in (15),
i.e., the standard Picard method, and starting from u0 = θ we obtain
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un = An(θ) → u∗, n → ∞; the two militia men rule allows us finally
to conclude that û = u∗.

Remark 2.3. The proof of Theorem 2.2 does not seem to provide a way
to estimate the effective convergence rate of the relaxed schemes, being
essentially based on the qualitative property of decreasing monotonicity
of all the operators involved. On the other hand, in Section 3,
the convergence behavior varying the relaxation parameter, and the
optimal choice of such a parameter, which are commonly recognized
as difficult theoretical topics even in the linear case, will be analyzed
“experimentally” on the decreasing version (7) of the Chandrasekhar
H-equation.

Remark 2.4. The thesis of Theorem 2.2 can be proved also assuming
that the operator A is merely demicontinuous, i.e., xn → x strongly
implies A(xn) → A(x) weakly, provided that the cone P is regular. In
fact, existence of the limits s∗ and t∗ in point (a) of Lemma 2.1 becomes
trivial, while the fact that s∗ = A(t∗) and t∗ = A(s∗) can be recovered
even when A is demicontinuous, cf. [16, Theorem 2.1.7].

Remark 2.5. A sufficient condition ensuring nonexistence of distinct
and comparable coupled fixed-points is given by uniqueness of (posi-
tive) fixed-points for A2 = A ◦A. In fact, coupled fixed-points of A are
separately fixed-points of A2.

2.2. Application to Hammerstein integral equations. In the
present section we focus our attention on the discrete Hammerstein
equation (8) (9), and on its approximate solution by the stationary
(under)relaxed iterative processes Pω, UPω, Jω and SOR described in
the introduction. Writing the matrix K in (8) as

(20) K = D + L+ U,

D, L and U being its diagonal, lower and upper triangular parts,
respectively, such processes correspond to the following splittings A =
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KN = E + F of the nonlinear operator in (8):

(21)

(Pω) E = 0, F = KN ;
(UPω) E = LN, F = (U +D)N ;
(Jω) E = DN, F = (L+ U)N ;

(SOR) E = (L+D)N, F = UN.

The operators A, E and F are decreasing and (completely) continuous
from Rm

+ into Rm
+ as kij ≥ 0 for all i, j and the fj : R+ → R+

are decreasing and continuous scalar functions. Moreover, the system
u = E(u) + b has a unique solution in Rm

+ for any b ∈ Rm
+ ; this

is trivial for Pω and UPω, such methods being indeed explicit, it is
immediate for Jω, since the mapping E is decreasing and diagonal, while
it can be easily proved via backward substitution for SOR. In both the
latter cases we use the fact that a positive decreasing and continuous
scalar function defined on R+ has a unique fixed-point. Thus, taking
X = (Rm, ‖ · ‖∞), P = Rm

+ = [0,+∞)m, the general result given
by Theorem 2.2 ensures global convergence of all of the four relaxed
methods above to the unique positive solution of (8), provided that the
operator A = KN does not possess distinct and comparable positive
coupled fixed-points.

Note that this is equivalent to nonexistence of such a pair in [θ,A(θ)],
as required in the statement of the theorem, since positive coupled
fixed-points belong necessarily to [θ,A(θ)], A being decreasing. Such a
requirement is trivially satisfied, for example, when A is a contraction
on [θ,A(θ)]. In the case of the (discrete) Chandrasekhar H-equation
(7), (23), this amounts to the constraint λ < 1/3, while instances of
the equation with λ close to 1/2 are physically meaningful.

On the other hand, as already pointed out in the introduction,
nonexistence of coupled fixed-points in C+(Ω) can be proved directly for
the general formulation (1) (4), applying essentially the same technique
of [10], cf. also [24, 26]. As for Chandrasekhar H-equation, we are
then entitled to apply the relaxed Picard-like methods for any value of
λ ∈ (0, 1/2).

Remark 2.6. It is worth pointing out that, besides Picard, also
updated Picard and Gauss-Seidel iterations have a plain infinite-
dimensional counterpart, in the case of one-dimensional Hammerstein
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integral equations. Indeed, consider equation (1) (6) on a real inter-
val Ω = [α, β]. Taking X = (C[α, β], ‖ · ‖∞), P = C+[α, β], updated
Picared and SOR both correspond to the infinite-dimensional splitting

(22)
E =

∫ x

α

k(x, t)f(t, u(t)) dt,

F =
∫ β

x

k(x, t)f(t, u(t)) dt,

in Theorem 2.2, which is applicable in any dimension. The only deli-
cate point concerns existence and uniqueness of a positive continuous
solution to the Volterra-Hammerstein equation u = E(u) + b for ev-
ery b ∈ [θ, F (θ)]. Observing that, by (6) and the Ascoli-Arzelà theo-
rem [11], E is itself completely continuous, the required existence and
uniqueness become again a consequence of the basic fixed-point theo-
rem for decreasing operators in [16, Theorem 2.1.5].

3. Numerical examples. In this section we test the relaxed
iterations Pω, UPω, Jω and SOR, see (20) (21), on the following
discretization of the Chandrasekhar H-equation in its decreasing form
(7)

(23) ui =
λ

1− 2λ

m∑
j=1

wj
k(xi, xj)
1 + uj

, 1 ≤ i ≤ m,

for some values of the parameter λ ∈ (0, 1/2), where the {wj} are
the weights of the trapezoidal quadrature formula with constant step
h = 1/(m − 1), and xj = (j − 1)h for j = 1, . . . ,m; moreover,
k(x, t) = t/(x + t) for 0 ≤ t ≤ 1, 0 < x ≤ 1, and k(0, 0) = 1,
which corresponds physically to the case of isotropic scattering, cf. [7].
The four relaxed methods have been implemented in the MATLAB
environment, choosing the null vector as starting approximation, and
Newton method as scalar solver for Jω and SOR. As termination
criterion we used the simple relative step in the ∞-norm, i.e., iterations
are stopped as soon as

(24) ‖un − un−1‖∞ ≤ ‖un‖∞ · rtol, n = 1, 2, . . . ,

where rtol is a relative error tolerance. Such criterion is indeed reliable
in the present applications, since all of the relaxed methods above
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turn out to be linearly convergent, with asymptotic error constants
well bounded away from 1, cf. [17, Section 5.2].

In Tables 1 3 below, we illustrate the performance of the relaxed
methods on system (23) with m = 100 and three values of λ in the
neighborhood of 1/2, for the set of discrete values ω = 0.1, 0.2, . . . , 1.
For each value of ω and each method, we reported the number of
iterations and of Kflops required to satisfy the termination test (24)
with rtol = 10−6. Such quantities exhibit an apparently convex
dependence on ω with internal minimum for Pω and Jω, and with a
decreasing behavior for UPω and SOR (with minimum at ω = 1, i.e.,
for the unrelaxed versions UP and GS). Relatively small oscillations
appear on finer ω-discretizations, in particular for Jacobi method,
but still a quasi-optimal parameter can be recovered by a simple
bisection procedure. Comparison with the unrelaxed Picard and Jacobi
iterations shows a remarkable speedup even for rough approximations
of the optimal parameters. For example, in the case λ = 0.4999995, the
relaxed Picard method for ω = 0.6 is more than 50 times faster than
the unrelaxed one, see Table 3.

In Tables 4 6 we compare the four relaxed methods with Newton-
GMRES and Broyden solvers on system (23), for the three values
of λ above, and m = 10, 50, 100, 200, 400. All methods start
from u0 = θ = (0, . . . , 0) and stop as soon as (24) is satisfied with
rtol = 10−6; we recall that such a termination criterion is reliable

TABLE 1. Number of iterations and Kflops for the relaxed methods, λ = 0.45.

ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
it. Pω 78 42 28 21 16 13 11 10 15 22
Kfl. Pω 1706 928 625 474 366 301 258 236 344 479
it. UPω 104 53 235 25 20 16 13 10 8 8
Kfl. UPω 2269 1166 777 560 452 366 301 236 193 187
it. Jω 80 43 29 21 17 13 11 10 15 21
Kfl. Jω 2109 1136 769 560 455 354 304 282 412 562
it. SOR 104 53 35 25 20 16 13 10 8 8
Kfl. SOR 2773 1420 944 680 547 441 362 284 232 225
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TABLE 2. Number of iterations and Kflops for the relaxed methods, λ = 0.49995.

ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

it. Pω 100 54 37 27 21 17 18 29 59 660

Kfl. Pω 2182 1187 820 604 474 387 409 647 1295 13821

it. UPω 108 60 43 32 25 20 17 14 13 12

Kfl. UPω 2355 1317 950 712 560 452 387 323 301 271

it. Jω 99 54 37 28 22 17 18 27 53 298

Kfl. Jω 2631 1453 1006 767 608 479 506 740 1417 7779

it. SOR 109 60 43 32 25 20 17 14 13 12

Kfl. SOR 2937 1632 1174 881 693 559 478 398 369 331

TABLE 3. Number of iterations and Kflops for the relaxed methods, λ = 0.4999995.

ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

it. Pω 122 65 43 32 25 20 20 31 66 > 1000

Kfl. Pω 2657 1425 949 712 560 452 452 690 1447 > 20000

it. UPω 132 74 50 37 28 22 19 16 14 12

Kfl. UPω 2874 1620 1101 820 625 496 431 366 323 271

it. Jω 121 64 43 32 25 20 20 29 58 497

Kfl. Jω 3350 1801 1225 920 725 586 582 809 1564 12951

it. SOR 132 74 50 37 29 23 19 16 14 12

Kfl. SOR 3613 2029 1378 1026 809 646 537 456 399 332

also for Newton-like solvers, cf. [17, Section 5.2]. The basic MATLAB
implementations of Newton-GMRES and Broyden methods are taken
from the electronically available packages accompanying [17]. Very
similar numerical results are obtained correspondingly to the other
natural choices, u0 = A(θ) = KN(θ) = Ke, e = (1, . . . , 1), cf. (1),
(8) and (23), or u0 = A(θ)/2, recall that necessarily [θ,A(θ)] � u∗.
First we stress the fact that the quasi-optimal relaxation parameters,

computed by a bisection algorithm, are essentially mesh-independent.
In particular, it is experimentally confirmed that the optimal parameter
is ω = 1 for updated Picard and SOR methods. As for Picard and
Jacobi methods, this suggests that a quasi-optimal parameter can be
computed cheaply on a rough discretization and conveniently used on
a finer one.
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This (asymptotic) mesh-independence is also evident concerning the
number of iterations, for all the six methods. Mesh-independence prin-
ciples for Newton-like solvers are well-known and have been deeply in-
vestigated, cf., e.g., [1]. It is noteworthy that such principles arise also
in the context of relaxed Picard-like methods: as a possible qualitative
interpretation, we can reasonably expect that the convergence proper-
ties of (optimally) relaxed Picard, updated Picard and SOR methods
on the discretizations become close to those of their infinite-dimensional
counterparts, cf. Remark 2.6, for m sufficiently large. This is confirmed
by the fact that in Tables 4 6, the methods UP and GS exhibit the
same number of iterations on large m.

It should also be noticed that the number of iterations of the re-
laxed methods stabilizes as λ approaches 1/2, while that of Newton-
GMRES and Broyden methods increases. Such a worsening of Newton-
like solvers near λ = 1/2 has already been observed in the applications
to the standard, increasing, form of the discrete Chandrasekhar H-
equation, cf. [17], and is there ascribed, essentially, to the fact that the
Jacobian matrix of the system becomes nearly singular. The singularity
disappears in the present “decreasing” Hammerstein formulation, and
the convergence slowing down could be overcome by suitably improving
the initial approximation. A hybrid Picard-Newton solver could then
represent an appealing choice in order to exploit local superlinearity
of Newton-like methods together with global convergence of optimally
relaxed Picard-like iterations, in particular for λ close to 1/2. Numer-
ical experiments, however, have shown that such hybrid methods do
not exhibit a substantial improving with respect to the corresponding
Picard-like iterations, in the precision range considered.

We stress that, indeed, UP and GS work satisfactorily for any value
of λ ∈ (0, 1/2), and for any nonnegative starting vector. There is
numerical evidence of the good performance of UP , GS and optimally
relaxed Picard, especially for λ close to 1/2, where they overcome even
Broyden method (Newton-GMRES turns out to be the worst method
in the present context). In particular, UP appears the best choice
with the present implementations and in the (relative) precision range
considered.

It should be recalled that the good performance of updated Picard
iterations UP , has already been experimentally recognized in the phys-
ical literature, cf. [5, 7], where the unrelaxed method is applied directly
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to the original quadratic integral models. Indeed, [7] considers accurate
numerical computation of H-functions for various types of scattering,
resorting to the Chandrasekhar H-equation in its “decreasing” form
(7). On the other hand, [5] concerns the numerical solution of certain
purely integral instances of the Boltzmann equation by means of Pi-
card and updated Picard iterations. Performance of UP , however, is
there only compared with that of the basic Picard method, and con-
vergence is proved only for the latter. Our Theorem 2.2, via reduction
to Hammerstein form, now gives a theoretical basis to such a method,
inserting it in the more general context of relaxed Picard-like solvers
for “decreasing” fixed-point problems. We omit, for brevity, the details
concerning equivalence of the updated iterations in the quadratic and
in the Hammerstein setting, cf., e.g., [16, Theorem 3.3.5] and [25] for
the basic transformation procedure.

TABLE 4. Number of iterations and Kflops for “optimally” relaxed

and N-type methods, λ = 0.45.

m P0.760 UP J0.760 GS Ngmres Bro

10 9 4 9 3 10 9 8 7 6 12 6 3

50 9 57 9 54 9 77 8 68 6 122 7 48

100 9 214 8 187 9 253 8 225 6 423 7 177

200 9 828 8 735 9 906 8 810 6 1564 7 673

400 9 3257 8 2910 9 3405 8 3050 6 6007 7 2627

TABLE 5. Number of iterations and Kflops for “optimally” relaxed
and N-type methods, λ = 0.49995.

m P0.647 UP J0.635 GS Ngmres Bro

10 14 5 13 4 17 17 11 10 10 17 14 9

50 14 86 12 70 16 141 12 101 10 183 14 102

100 14 322 12 271 16 448 12 331 10 635 14 354

200 14 1244 12 1062 16 1571 12 1180 10 2348 14 1307

400 14 4889 12 4204 16 5857 12 4436 10 8673 14 5013
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TABLE 6. Number of iterations and Kflops for “optimally” relaxed
and N-type methods, λ = 0.4999995.

m P0.708 UP J0.650 GS Ngmres Bro

10 17 6 14 4 19 22 11 10 13 19 18 13

50 15 92 12 70 18 171 12 102 13 209 18 137

100 15 344 12 271 18 527 12 332 13 725 18 464

200 15 1328 12 1062 18 1805 12 1181 13 2688 18 1686

400 15 5215 12 4204 18 6633 12 4438 13 10334 18 6412

As a final remark, concerning storage allocation, we recall that the
Broyden method requires at least n + 3 vectors at the nth iteration,
so that it has to be restarted in the presence of large dimension
and/or large number of iterations [17]. We note that Picard and
Jacobi methods use essentially two vectors while UP and GS can be
implemented even with one vector (there is no need to precompute the
kernel matrix when the analytic expression of the kernel is at hand).
This feature makes the updated Picard method even more attractive
at large dimension, for example, in the numerical treatment of the 3D
purely integral Boltzmann models described in [4] (stationary, space
homogeneous, forceless case of the “scattering-kernel” formulation of
the Boltzmann equation).
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