
j. differential geometry

85 (2010) 461-477

AN INTEGRAL FORMULA FOR THE VOLUME

ENTROPY WITH APPLICATIONS TO RIGIDITY

François Ledrappier & Xiaodong Wang

1. Introduction

Let Mn be a compact Riemannian manifold and π : M̃ → M its

universal covering. The fundamental group G = π1 (M) acts on M̃

as isometries such that M = M̃/G. Associated to M̃ are several as-
ymptotic invariants. In this paper we are primarily concerned with the
volume entropy v defined by

v = lim
r→∞

ln volB
M̃

(x, r)

r
,

where B
M̃

(x, r) is the ball of radius r centered at x in M̃ . It is proved
by Manning [M] and Freire-Mañé [FM] that

• the limit exists and is independent of the center x ∈ M̃ ,
• v ≤ H, the topological entropy of the geodesic flow on M ,
• v = H if M has no conjugate points.

There has been a lot of work on understanding the volume entropy
of which we only mention the celebrated paper of Besson, Courtois, and
Gallot [BCG1], where one can find other results and references. But
the volume entropy still remains a subtle invariant. If M is negatively
curved, it is better understood due to the existence of the so-called

Patterson-Sullivan measure on the ideal boundary. Let ∂M̃ be the ideal

boundary of M̃ defined as equivalence classes of geodesic rays. We

fix a base point o ∈ M̃ and for ξ ∈ ∂M̃ we denote Bξ the associated
Busemann function, i.e.,

Bξ (x) = lim
t→∞

d (x, γ (t))− t,

where γ is the geodesic ray initiating from o and representing ξ. It is
well known that Bξ is smooth and its gradient is of length one. The

Patterson-Sullivan measure [P, S, K] is a family
{
νx : x ∈ M̃

}
of mea-

sures on ∂M̃ such that

• for any pair x, y ∈ M̃ , the two measures νx, νy are equivalent with

dνx
dνy

(ξ) = e−v(Bξ(x)−Bξ(y));
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• for any g ∈ G,
g∗νx = νgx.

The Patterson-Sullivan measure contains a lot of information and
plays an important role in [BCG2]. Moreover, it is proved by Knieper,
Ledrappier, and Yue ([K, L2, Y1]) that the following integral formula
for the volume entropy holds in terms of the Patterson-Sullivan measure:

(1.1) v =
1

C

∫

M

(∫

∂M̃

∆Bξ (x) dνx (ξ)

)
dx,

where C =
∫
M

νx

(
∂M̃

)
dx. (To interpret the formula properly, notice

after integrating over ∂M̃ we get a function on M̃ which is G-invariant
and hence descends to M .) This formula shows how v interacts with
local geometry.

In this paper, we will extend the theory of the Patterson-Sullivan
measure to any manifold without the negative curvature assumption.

More generally, let π : M̃ → M be a regular Riemannian covering of
a compact manifold M and G the discrete group of deck transforma-

tions. We will consider the Busemann compactification of M̃ , denoted

by M̂ . On the Busemann boundary ∂M̂ we will construct a Patterson-
Sullivan measure which retains the essential features of the classical
theory. Namely:

Theorem 1. There exists a probability measure ν on the laminated

space XM =
(
M̃ × ∂M̂

)
/G such that for any continuous vector field Y

on XM which is C1 along the leaves,∫
divWY dν = v

∫ 〈
Y,∇Wξ

〉
dν,

where divW and ∇W are laminated divergence and gradient, respectively.

As an application of the above theorem, we will prove the following
rigidity theorem.

Theorem 2. Let Mn be a compact Riemannian manifold with Ric ≥
− (n− 1) and π : M̃ → M a regular covering. Then the volume en-

tropy of M̃ satisfies v ≤ (n− 1) and equality holds if and only if M is
hyperbolic.

The inequality v ≤ (n− 1) is of course well known and follows easily
from the volume comparison theorem. What is new is the rigidity part.
For some perspective on this result, recall another invariant: the bottom

spectrum of the Laplacian on M̃ , denoted by λ0 and defined as

λ0 = inf
f∈C1

c (M̃)

∫
M̃

|∇f |2∫
M̃

f2
.



VOLUME ENTROPY AND RIGIDITY 463

It is a well-known fact that λ0 ≤ v2/4. Therefore as an immediate
corollary of Theorem 2 we have the following result previously proved
by the second author [W].

Corollary 1. Let (Mn, g) be a compact Riemannian manifold with

Ric ≥ − (n− 1) and π : M̃ → M a regular covering. If λ0 = (n− 1)2 /4,

then M̃ is isometric to the hyperbolic space H
n.

Clearly the asymptotic invariant v is much weaker than λ0. It is
somewhat surprising that we still have a rigidity theorem for v. If M is
negatively curved, Theorem 2 is proved by Knieper [K] using (1.1). The
proof in the general case is more subtle due to the fact the Busemann
functions are only Lipschitz. In fact, it is partly to prove this rigidity
result that we are led to the construction of the measure ν and the
formula in Theorem 1.

We will also discuss the Kähler and quaternionic Kähler analogue of
Theorem 2. In the Kähler case, our method yields the following:

Theorem 3. Let M be a compact Kähler manifold with dimCM =

m and π : M̃ → M a regular covering. If the bisectional curvature
KC ≥ −2, then the volume entropy v satisfies v ≤ 2m. Moreover,
equality holds if and only if M is complex hyperbolic (normalized to
have constant holomorphic sectional curvature −4).

To clarify the statement, the condition KC ≥ −2 means that for any
two vectors X,Y ,

R (X,Y,X, Y )+R (X,JY,X, JY ) ≥ −2
(
|X|2 |Y |2 + 〈X,Y 〉2 + 〈X,JY 〉2

)
,

where J is the complex structure.
In the quaternionic Kähler case we have:

Theorem 4. Let M be a compact quaternionic Kähler manifold of
dim = 4m with m ≥ 2 and scalar curvature −16m (m+ 2). Let π :

M̃ → M be a regular covering. Then the volume entropy v satisfies v ≤
2 (2m+ 1). Moreover, equality holds if and only if M is quaternionic
hyperbolic.

The paper is organized as follows. In Section 2, we discuss the Buse-
mann compactification and construct the Patterson-Sullivan measure
and prove Theorem 1. Theorem 2 will be proved in Section 3. We will
discuss the Kähler case and the quaternionic Kähler case in Section 4.

Acknowledgments. The first author was partially supported by NSF
grant DMS-0801127. The second author was partially supported by
NSF grant DMS-0905904.
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2. Construction of the measure

Let M̃ be a noncompact, complete Riemannian manifold. Fix a point

o ∈ M̃ and define, for x ∈ M̃ , the function ξx(z) on M̃ by

ξx(z) = d(x, z) − d(x, o).

The assignment x 7→ ξx is continuous, one-to-one, and takes values
in a relatively compact set of functions for the topology of uniform

convergence on compact subsets of M̃ . The Busemann compactification

M̂ of M̃ is the closure of M̃ for that topology. The space M̂ is a compact

separable space. The Busemann boundary ∂M̂ := M̂ \ M̃ is made of

Lipschitz continuous functions ξ on M̃ such that ξ(o) = 0. Elements of

∂M̂ are called horofunctions.
First we collect some general facts about horofunctions; see, e.g.,

[SY, Pe]. Suppose ξ ∈ M̂ is the limit of {ak} ⊂ M̃ with d (o, ak) → ∞,
i.e.,

(2.1) ξ (x) = lim
k→∞

fk (x) ,

where fk (x) = ξak (x) = d (x, ak)−d (o, ak). The convergence is uniform

over compact sets. We fix a point p ∈ M̃ and for each k let γk be a min-
imizing geodesic from p to ak. Passing to a subsequence, we can assume
that γk converges to a geodesic ray γ starting from p. Let bγ be the Buse-
mann function associated to γ, i.e., bγ (x) = lims→+∞ d (x, γ (s))− s.

Lemma 1. We have

1) ξ ◦ γ (s) = ξ (p)− s for s ≥ 0;
2) ξ (x) ≤ ξ (p) + d (x, γ (s))− s for s ≥ 0;
3) ξ (x) ≤ ξ (p) + bγ (x).

Proof. For any s > 0 and ε > 0, we have d (γk (s) , γ (s)) ≤ ε for k
sufficiently large. Then

fk ◦ γ (s)− fk (p) = d (γ (s) , ak)− d (p, ak)

= d (γ (s) , ak)− d (γk (s) , ak) + d (γk (s) , ak)− d (p, ak)

≤ d (γ (s) , γk (s)) + d (γk (s) , ak)− d (p, ak)

= d (γ (s) , γk (s))− s

≤ ε− s.

Taking limit yields ξ ◦ γ (s)− ξ (p) ≤ ε− s. Hence ξ ◦ γ (s) ≤ ξ (p)− s.
On the other hand, we have the reversed inequality ξ ◦ γ (s) ≥ ξ (p)− s
as ξ is Lipschitz with Lipschitz constant 1.

To prove the second part, we have for s ≥ 0,

fk (x) = d (x, ak)− d (o, ak)

≤ d (x, γ (s)) + d (ak, γ (s))− d (o, ak) .
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Letting k → ∞ yields

ξ (x) ≤ d (x, γ (s)) + ξ ◦ γ (s)
= d (x, γ (s))− s+ ξ (p) .

Taking limit as s → ∞ yields the third part. q.e.d.

It follows that if ξ is differentiable at x, then |∇ξ (x)| = 1. Therefore

|∇ξ| = 1 almost everywhere on M̃ .

Proposition 1. M̃ is open in its Busemann compactification M̂ .

Hence the Busemann boundary ∂M̂ is compact.

Proof. Suppose otherwise and p ∈ M̃ is the limit of a sequence {ak} ⊂
M̃ with d (o, ak) → ∞, i.e., ξp (x) = limk→∞ ξak (x) and the convergence
is uniform over compact sets. Then by Lemma 1 there is a geodesic ray
γ starting from p such that ξp ◦ γ (s) = ξp (p) − s = −s − d (o, p) for
s ≥ 0. But

ξp ◦ γ (s) = d (γ (s) , p)− d (o, p)

= s− d (o, p) ,

Clearly a contradiction. q.e.d.

We now further assume that M̃ is a regular Riemannian covering of

a compact manifold M , i.e., M̃ is a Riemannian manifold and there is

a discrete group G of isometries of M̃ acting freely and such that the

quotient M = M̃/G is a compact manifold. The quotient metric makes
M a compact Riemannian manifold. We recall the construction of the
laminated space XM ([L1]). Observe that we may extend by continuity

the action of G from M̃ to M̂ , in such a way that for ξ in M̂ and g in
G,

g.ξ(z) = ξ(g−1z)− ξ(g−1o).

We define now the horospheric suspension XM of M as the quotient

of the space M̃ × M̂ by the diagonal action of G. The projection onto

the first component in M̃ × M̂ factors into a projection from XM to M

so that the fibers are isometric to M̂ . It is clear that the space XM is

metric compact. If M0 ⊂ M̃ is a fundamental domain for M , one can

represent XM as M0 × M̂ in a natural way.

To each point ξ ∈ M̂ is associated the projection Wξ of M̃ × {ξ}.
As a subgroup of G, the stabilizer Gξ of the point ξ acts discretely

on M̃ and the space Wξ is homeomorphic to the quotient of M̃ by
Gξ. We put on each Wξ the smooth structure and the metric inherited

from M̃ . The manifold Wξ and its metric vary continuously on XM .

The collection of all Wξ, ξ ∈ M̂ form a continuous lamination WM with

leaves which are manifolds locally modeled on M̃ . In particular, it makes
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sense to differentiate along the leaves of the lamination, and we denote
∇W and divW the associated gradient and divergence operators: ∇W

acts on continuous functions which are C1 along the leaves of W, divW

on continuous vector fields in TW which are of class C1 along the leaves
of W. We want to construct a measure on XM which would behave as
the Knieper measure ν =

∫
M

(∫
∂M̃

dνx (ξ)
)
dx in the negatively curved

case. The construction follows Patterson’s in the Fuchsian case.
Let v be the volume entropy of M̃

v = lim
r→∞

ln volB
M̃

(x, r)

r
,

where B
M̃

(x, r) is the ball of radius r centered at x in M̃ .

Let us consider the Poincaré series of M̃ :

P (s) :=
∑

g∈G

e−sd(o,go).

Proposition 2. The series P (s) converges for s > v, and diverges
to +∞ for s < v.

Proof. This is classical and for completeness we recall the proof. Take

M0 a fundamental domain in M̃ containing o in its interior, and positive
constants d,D such that B(o, d) ⊂ M0 ⊂ B(o,D).

Define π(R) := ♯ {g ∈ G : d (o, go) ≤ R}. We have π(R+S) ≤ π(R+
D)π(S +D), which implies π(R+ S + 2D) ≤ π(R+ 2D)π(S + 2D). It
follows that the following limit exists:

lim
R→∞

1

R
lnπ(R+ 2D) = inf

R

1

R
lnπ(R + 2D).

The above limit is the critical exponent of the Poincaré series. Since

π(R)volB(o, d) ≤ volB(o,R+ d) ≤ π(R+D)volM,

the above limit is also limR→∞
ln volB

M̃
(x,R)

R
= v. q.e.d.

As in the classical case, a distinction has to be made between the case
that P (s) diverges at v and the case that it converges. The following
lemma is due to Patterson [P] (see also [N]).

Lemma 2. There exists a function h : R+ → R
+ which is continuous,

non-decreasing, and

1) the series P ∗ (s) :=
∑

g∈G e−sd(o,go)h
(
ed(o,go)

)
converges for s > v

and diverges for s ≤ v,
2) if ε > 0 is given, there exists r0 such that for r > r0, t > 1,

h (rt) ≤ tεh (r).



VOLUME ENTROPY AND RIGIDITY 467

If P (s) diverges at v, we will simply take h to be identically 1. As
a consequence of property (2) above, we note that for t in a bounded
interval

h
(
er+t

)

h (er)
→ 1

uniformly as r → ∞.

For x ∈ M̃, s > v, we define a finite measure νx,s by setting, for all f

continuous on M̂ ,

∫
f(ξ)dνx,s(ξ) :=

1

P ∗ (s)

∑

g∈G

e−sd(x,go)h
(
ed(x,go)

)
f(ξgo).

Clearly, for g ∈ G, g∗νx,s = νgx,s, so that the measure ν̃s :=
∫
νx,sdx

is G-invariant on M̃×M̂ . We write νs for the corresponding measure on

XM = M̃×M̂/G. Choose a sequence sk > v and sk → v as k → ∞ such
that the probability measures νo,sk converge towards some probability
measure νo. Since limk→∞ P ∗ (sk) = ∞, the measure νo is supported on

∂M̂ .

Proposition 3. For any x ∈ M̃ , the measures νx,sk converge to a

measure νx on ∂M̂ . Moreover,

dνx (ξ) = e−vξ(x)dνo (ξ) .

In particular, for any g ∈ G, we have

d (g∗νo) (ξ) = dνgo (ξ) = e−vξ(go)dνo (ξ) , d (g∗νx) (ξ) = dνgx (ξ) ,

and the limit of the measures νsk on XM is a measure ν on XM which

can be written, in the M0 × M̂ representation of XM , as

(2.2) ν = e−vξ(x)dνo (ξ) dx.

Proof. Observe first that for a fixed x, νx,s(M̂ ) ≤ e(v+s)d(o,x), so that

the νx,s form a bounded family of measures on M̂ . Let f be a continuous

function on M̂ . We may write
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∫
f (ξ) e−vξ(x)dνo (ξ)

= lim
k→∞

∫
f (ξ) e−vξ(x)dνo,sk (ξ)

= lim
k→∞

1

P ∗ (sk)

∑

g∈G

f (ξgo) e
−v(d(x,go)−d(o,go))e−skd(o,go)h

(
ed(o,go)

)

= lim
k→∞

1

P ∗ (sk)

∑

g∈G

f (ξgo) e
(sk−v)ξgo(x)

h
(
ed(o,go)

)

h
(
ed(x,go)

)e−skd(x,go)h
(
ed(x,go)

)

= lim
k→∞

(∫
f (ξ) e(sk−v)ξ(x)dνx,sk (ξ) + εk

)
,

where

εk =
1

P ∗ (sk)

∑

g∈G

f (x, ξgo) e
(sk−v)ξgo(x)

(
h
(
ed(o,go)

)

h
(
ed(x,go)

) − 1

)

e−skd(x,go)h
(
ed(x,go)

)
.

Suppose lim εk = 0. Then, for a fixed x, e(sk−v)ξ(x) converges to 1
and, therefore, the limit exists and is

∫
fe−vξ(x)dνo, as claimed. It only

remains to show that lim εk = 0. Indeed, for any δ > 0 and any x, there
exists a finite set E ⊂ G such that for any g ∈ G\E

∣∣∣∣∣
h
(
ed(o,go)

)

h
(
ed(x,go)

) − 1

∣∣∣∣∣ < δ.

Then

|εk| ≤
1

P ∗ (sk)

∑

g∈E

f (ξgo) e
(sk−v)ξgo(x)

∣∣∣∣∣
h
(
ed(o,go)

)

h
(
ed(x,go)

) − 1

∣∣∣∣∣ e
−skd(x,go)h

(
ed(x,go)

)

+ δ
1

P ∗ (sk)

∑

g∈G\E

f (ξgo) e
(sk−v)ξgo(x)e−skd(x,go)h

(
ed(x,go)

)

≤ 1

P ∗ (sk)

∑

g∈E

f (ξgo) e
(sk−v)ξgo(x)

∣∣∣∣∣
h
(
ed(o,go)

)

h
(
ed(x,go)

) − 1

∣∣∣∣∣ e
−skd(x,go)h

(
ed(x,go)

)

+ δ

∫
f (ξ) e(sk−v)ξ(x)dνx,sk (ξ) .

Taking limit yields

lim
k→∞

|εk| ≤ δ‖f‖∞evd(o,x).

Therefore lim εk = 0. q.e.d.
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We can integrate by parts along each M0 × {ξ}, for νo-almost every
ξ, and get the following for any function f which is C2 along the leaves

of the lamination W and has a support contained in M0 × M̂ :
∫

∆Wfdν =

∫ (∫

M0

∆Wfe−vξ(x)dx

)
dνo (ξ)

= v

∫ (∫

M0

〈
∇Wf,∇Wξ

〉
e−vξ(x)dx

)
dνo (ξ)

= v

∫ 〈
∇Wf,∇Wξ

〉
dν.

The integral makes sense because ∇Wξ is defined Lebesgue almost
everywhere on the leaves and because, by (2.2), the measure ν has
absolutely continuous conditional measures along the leaves W. By
choosing the fundamental domain M0, we get the same formula for any
function which is C2 along the leaves of the lamination W and has a
small support. Using a partition of unity on M , we see that for all
functions on XM which are C2 along the leaves of the lamination W,
we have ∫

∆Wfdν = v

∫ 〈
∇Wf,∇Wξ

〉
dν.

In the same way, one gets the following for all continuous functions
f1, f2 which are smooth along the leaves of the lamination W:∫

divW(f1∇Wf2)dν = v

∫
f1
〈
∇Wf2,∇Wξ

〉
dν.

By approximation, we have for all W vector field Y which is C1 along
the leaves and globally continuous,

(2.3)

∫
divWY dν = v

∫ 〈
Y,∇Wξ

〉
dν.

Since the measure ν gives full measure to M̃ × ∂M̂ , Theorem 1 is
proven.

3. The rigidity theorem

In this section we prove the rigidity theorem.

Theorem 5. Let Mn be a compact Riemannian manifold with Ric ≥
− (n− 1) and π : M̃ → M its universal covering. Then the volume

entropy of M̃ satisfies v ≤ (n− 1) and equality holds if and only if M
is hyperbolic.

Observe that this proves Theorem 2, since the volume entropy of
the universal covering is not smaller than the volume entropy of an
intermediate covering space. First we have:
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Proposition 4. For any ξ ∈ ∂M̂ , we have ∆
(
e−(n−1)ξ

)
≥ 0 in the

sense of distribution.

Proof. It is well known that ∆ξ ≤ n− 1 in the distribution sense for

any ξ ∈ ∂M̂ . Indeed, suppose ξ is given as in formula (2.1). By the
Laplacian comparison theorem,

∆fk (x) ≤ (n− 1)
cosh (d (x, ak))

sinh (d (x, ak))

in the distribution sense. Taking limit then yields ∆ξ ≤ n−1. Therefore

∆
(
e−(n−1)ξ

)
= − (n− 1) e−(n−1)ξ

(
∆ξ − (n− 1) |∇ξ|2

)

= − (n− 1) e−(n−1)ξ (∆ξ − (n− 1))

≥ 0,

all understood in the sense of distribution. q.e.d.

Let pt (x, y) be the heat kernel on M̃ . For any function f on M̃ , we
define

Ptf (x) =

∫

M̃

pt (x, y) f (y) dy.

We have Pt (g · f) = g · Ptf for any g ∈ G.
We now proceed to prove Theorem 5. We consider the following

vector field on M̃ × M̂ :

Yt (x, ξ) = ∇ (Ptξ) (x) .

It is easy to see that Yt descends to XM , i.e., for any g ∈ G we have
Yt (gx, g · ξ) = g∗Yt (x, ξ). By Theorem 1,

v

∫

XM

〈∇wξ, Yt〉 dν

=

∫

XM

divwYtdν

=

∫

M

(∫

∂M̂

divwYte
−vξ(x)dνo (ξ)

)
dx

=

∫

M

(∫

∂M̂

(
divw

(
Yte

−vξ(x)
)
+ v 〈∇wξ, Yt〉 e−vξ(x)

)
dνo (ξ)

)
dx

=

∫

M

(∫

∂M̂

divw
(
Yte

−vξ(x)
)
dνo (ξ)

)
dx+ v

∫

XM

〈∇wξ, Yt〉 dν,

whence ∫

M

(∫

∂M̂

divw
(
Yte

−vξ(x)
)
dνo (ξ)

)
dx = 0.

We now cover M by finitely many open sets {Ui : 1 ≤ i ≤ k} such that
each Ui is so small that π−1 (Ui) is the disjoint union of open sets each
diffeomorphic to Ui via π. Let {χi} be a partition of unity subordinating
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to {Ui}. For each Ui, let Ũi be one of the components of π−1 (Ui) and

let χ̃i be the lifting of χi to Ũi. Then

0 =

∫

M

(∫

∂M̂

divw
(
Yte

−vξ(x)
)
dνo (ξ)

)
dx

=
∑

i

∫

M

(∫

∂M̂

divw
(
Yte

−vξ(x)
)
χi ◦ π (x) dνo (ξ)

)
dx

=
∑

i

∫

Ui

(∫

∂M̂

divw
(
Yte

−vξ(x)
)
χi ◦ π (x) dνo (ξ)

)
dx

=
∑

i

∫

Ũi

(∫

∂M̂

divw
(
Yte

−vξ(x)
)
χi ◦ π (x) dνo (ξ)

)
dx

=
∑

i

∫

∂M̂

(∫

Ũi

divw
(
Yte

−vξ(x)
)
χ̃idx

)
dνo (ξ)

= −
∑

i

∫

∂M̂

(∫

Ũi

〈Yt,∇χ̃i〉 e−vξ(x)dx

)
dνo (ξ) .

Letting t → 0 yields

∑

i

∫

∂M̂

(∫

Ũi

〈∇ξ,∇χ̃i〉 e−vξ(x)dx

)
dνo (ξ) = 0.

Integrating by parts again, we obtain

∑

i

∫

∂M̂

(∫

Ũi

e−vξ(x)∆χ̃idx

)
dνo (ξ)

= −
∑

i

∫

∂M̂

(∫

Ũi

〈
∇
(
e−vξ(x)

)
,∇χ̃i

〉
dx

)
dνo (ξ)

= v
∑

i

∫

∂M̂

(∫

Ũi

〈∇ξ,∇χ̃i〉 e−vξ(x)dx

)
dνo (ξ) .

Therefore
∫

∂M̂

∑

i

(∫

Ũi

e−vξ(x)∆χ̃idx

)
dνo (ξ) = 0.

We now assume v = n− 1. By Proposition 4, ∆e−vξ(x) ≥ 0 in the sense

of distribution for all ξ ∈ ∂M̂ and hence
∫
Ũi

e−vξ(x)∆χ̃idx ≥ 0 for all i.

Therefore we conclude for νo-a.e. ξ ∈ ∂M̂ ,

∫

Ũi

e−vξ(x)∆χ̃idx = 0
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for all i. In this discussion we can replace Ũi by gŨi and χ̃i by g · χ̃i

for any g ∈ G. Since G is countable we conclude for νo-a.e. ξ ∈ M̂∫

gŨi

e−vξ(x)∆(g · χ̃i) dx = 0

for all i and g ∈ G.
We claim that ∆e−vξ(x) = 0 in the sense of distribution. Indeed,

denote the distribution ∆e−vξ(x) simply by T , i.e.,

T (f) =

∫

M̃

e−vξ(x)∆f (x) dx

for f ∈ C∞
c

(
M̃
)
. We know that T (f) ≥ 0 if f ≥ 0. We observe that

{g · χ̃i : 1 ≤ i ≤ k, g ∈ G} is a partition of unity on M̃ subordinating to

the open cover
{
gŨi : 1 ≤ i ≤ k, g ∈ G

}
. Hence for any f ∈ C∞

c

(
M̃
)

with f ≥ 0 we have

0 ≤ f ≤ C
∑

gŨi∩sptf 6=∅

g · χ̃i,

with C = sup f . Notice that the right-hand side is a finite sum as the
support sptf is compact. Then

0 ≤ T (f) ≤ T


C

∑

gŨi∩sptf

g · χ̃i




= C
∑

gŨi∩sptf 6=∅

T (g · χ̃i)

= 0.

Hence T (f) = 0, i.e., ∆e−vξ(x) = 0 in the sense of distribution. By

elliptic regularity, φ = e−vξ(x) is then a smooth harmonic function and
obviously |∇ log φ| = n− 1. The rigidity now follows from the following
result.

Theorem 6. Let Nn be a complete, simply connected Riemannian
manifold such that

1) Ric ≥ − (n− 1);
2) the sectional curvature is bounded.

If there is a positive harmonic function φ on N such that |∇ log φ| =
n− 1, then N is isometric to the hyperbolic space H

n.

Remark 1. Without assuming bounded sectional curvature, the sec-
ond author [W] proved that N is isometric to the hyperbolic space H

n

provided that there are two such special harmonic functions. We thank
Ovidiu Munteanu for pointing out that one such special harmonic func-
tion is enough if the sectional curvature is bounded.
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Proof. The first step is to show that φ satisfies an over-determined
system which then leads to the splitting of N as a warped product.
This is standard and we outline the argument. Let f = log φ. We have
∆f = − |∇f |2 = − (n− 1)2. Since

D2f (∇f,∇f) =
1

2

〈
∇f,∇ |∇f |2

〉
= 0,

we have by Cauchy-Schwarz

(3.1)
∣∣D2f

∣∣2 ≥ (∆f)2

n− 1
= (n− 1)3

with equality if and only if

D2f = − (n− 1)

[
g − 1

(n− 1)2
df ⊗ df

]
.

On the other hand, by the Bochner formula, we have

0 =
1

2
∆ |∇f |2

=
∣∣D2f

∣∣2 + 〈∇f,∇∆f〉+Ric (∇f,∇f)

≥
∣∣D2f

∣∣2 − (n− 1) |∇f |2

=
∣∣D2f

∣∣2 − (n− 1)3 ,

i.e.,
∣∣D2f

∣∣2 ≤ (n− 1)3. This shows that (3.1) is in fact an equality.

Therefore we have D2f = − (n− 1)
[
g − 1

(n−1)2
df ⊗ df

]
. From this one

can show that N = R×Σn−1 with the metric g = dt2 + e2th, where h is
a Riemannian metric on Σ. For more detail, see [LW3].

For any p ∈ Σ let {ei} be an orthogonal basis on (TpΣ, h). By a simple
calculation using the Gauss equation, the curvature of N is given by

R
(
e−tei, e

−tej , e
−tei, e

−tej
)
= e−4tRh (ei, ej , ei, ej)−

(
δiiδjj − δ2ij

)
,

where Rh is the curvature tensor of (Σ, h). Since N has bounded sec-
tional curvature, the left-hand side is bounded in t. Therefore Rh = 0,
i.e., Σ is flat. Since Σ is also simply connected as N is simply connected,
it is isometric to R

n−1. It follows that N is the hyperbolic space. q.e.d.

4. The Kähler and quaternionic Kähler cases

In this Section, we first discuss the Kähler case.

Theorem 7. Let M be a compact Kähler manifold with dimCM = m

and π : M̃ → M the universal covering. If the bisectional curvature
KC ≥ −2, then the volume entropy v satisfies v ≤ 2m. Moreover,
equality holds if and only if M is complex hyperbolic (normalized to
have constant holomorphic sectional curvature −4).
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The inequality follows from the comparison theorem in [LW2]. In-
deed, under the curvature assumption KC ≥ −2, Li and J. Wang [LW2]
proved

volB
M̃

(x, r) ≤ VCH
m (r) = τ2m−1

∫ r

0
sinh (2t) sinh2(m−1) (t) dt,

where τ2m−1 is the volume of the unit sphere in R
2m. It follows that

v ≤ 2m. Another consequence of the comparison theorem is that for

ξ ∈ ∂M̂ ,

∆ξ ≤ 2m

in the distribution sense. It follows as in the Riemannian case that
∆e−2mξ ≥ 0 in the distribution sense.

We now assume that v = 2m. By the argument in Section 3, we
conclude that ξ is smooth and

∆ξ = 2m, |∇ξ| = 1

for νo-a.e. ξ ∈ ∂M̂ . Take such a function ξ. We choose a local unitary
frame

{
Xi,X i

}
.

Lemma 3. We have

ξij = δij , ξij = −2ξiξj .

Proof. We can assume that X1 =
(
∇ξ −

√
−1J∇ξ

)
/
√
2 without loss

of generality. Therefore

ξ1 =
1√
2
, ξi = 0 for i ≥ 2.

Suppose ξ is given as in (2.1). Let p ∈ M̃ , and we use the construction
preceding Lemma 1. By the second part of that Lemma, we see that
for any s > 0 the function us (x) = ξ (p) + d (x, γ (s)) − s is a support
function for ξ from above at p. Moreover us is clearly smooth at p.
Therefore at p we have

D2ξ ≤ D2us.

By the comparison theorem in [LW2], we have

ξ11 ≤ (us)11 ≤
cosh 2s

sinh 2s
,

ξii ≤ (us)ii ≤
cosh s

sinh s
for i ≥ 2.

Taking limit as s → ∞ yields ξii ≤ 1. On the other hand, we have∑m
i=1 ξii =

1
2∆ξ = m. Therefore we must have

(4.1) ξii = 1.
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By the Bochner formula we have

0 =
1

2
∆ |∇ξ|2 =

∣∣D2ξ
∣∣2 + 〈∇ξ,∇∆ξ〉+Ric (∇ξ,∇ξ)

≥
∣∣D2ξ

∣∣2 − 2 (m+ 1) .

Therefore

(4.2)
∣∣∣ξij
∣∣∣
2
+ |ξij |2 ≤ m+ 1.

We have

0 ≤ |ξij + 2ξiξj|2 = |ξij|2 + 2ξijξiξj + 2ξijξiξj + 1.

By differentiating ξjξj =
1
2 , we obtain ξijξj + ξjξij = 0, ξijξj + ξjξij = 0.

Hence from the previous inequality we obtain

(4.3) |ξij|2 ≥ 4ξijξiξj − 1 = 2ξ11 − 1.

On the other hand,

∣∣∣ξij
∣∣∣
2
≥ 1

m

(
1

2
∆ξ

)2

= m.

Combining this inequality with (4.2) and (4.3) yields

ξ11 ≤ 1.

However, we already proved that equality holds (4.1). By inspecting
the argument we conclude that ξ satisfies the following over-determined
system:

ξij = δij , ξij = −2ξiξj .

q.e.d.

With such a function, it is proved by Li and J. Wang [LW1] that M̃
is isometric to R×N2m−1 with the metric

g = dt2 + e−4tθ20 + e−2t

2(m−1)∑

i=1

θ2i ,

where
{
θ0, θ1, · · · , θ2(m−1)

}
is an orthonormal frame for T ∗N . More-

over, since our M̃ is simply connected and has bounded curvature, N

is isometric to the Heisenberg group by their theorem. Therefore M̃ is
isometric to the complex hyperbolic space CH

m.
Theorem 4 for quaternionic Kähler manifolds is proved in the same

way, using the work of Kong, Li, and Zhou [KLZ] in which they proved
a Laplacian comparison theorem for quaternionic Kähler manifolds.

We close with some remarks. An obvious question is whether The-
orem 7 for Kähler manifolds remains true if the curvature condition is
relaxed to Ric ≥ −2 (m+ 1). This seems a very subtle question. It is
quite unlikely that the comparison theorem for Kähler manifolds could



476 F. LEDRAPPIER & X. WANG

still hold in this case. On the other hand, it is conceivable that Theorem
7 will remain valid due to some global reason. This hope is partly based
on the recent work of Munteanu [Mu] in which a sharp estimate for the
Kaimanovich entropy is derived under the condition Ric ≥ −2 (m+ 1).
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