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ON THE ALMOST SURE SPIRALING OF GEODESICS
IN NEGATIVELY CURVED MANIFOLDS

SA’AR HERSONSKY & FREDERIC PAULIN

Abstract

Given a negatively curved geodesic metric space M, we study
the almost sure asymptotic penetration behavior of (locally) ge-
odesic lines of M into small neighborhoods of points, of closed
geodesics, and of other compact (locally) convex subsets of M.
We prove Khintchine-type and logarithm law-type results for the
spiraling of geodesic lines around these objets. As a consequence
in the tree setting, we obtain Diophantine approximation results
of elements of non-archimedian local fields by quadratic irrational
ones.

1. Introduction

Let M be a compact connected Riemannian manifold with negative
sectional curvature. Endow the total space of the unit tangent bundle
7 :T'M — M with the Bowen-Margulis measure p, which is the maxi-
mal entropy probability measure for the geodesic flow (¢)ier on T M.
Let h be the topological entropy of (¢;)icr. In this paper, we study the
almost sure asymptotic penetration behavior of (locally) geodesic lines
into various objets in M, as tubular neighborhoods of closed geodesic,
tubular neighborhoods of compact embedded totally geodesic submani-
folds, and other convex subsets. In this introduction, we fix a Lipschitz
map g : Ry — Rj.

We first consider a closed geodesic C'in M, and study the spiraling of
geodesics lines around C'. As the geodesic flow is ergodic with respect
to p, almost every orbit in 7'M is dense. Two geodesic lines, having at
some time their unit tangent vectors close, follow themselves closely a
long time. Hence almost every geodesic line will stay for arbitrarily long
periods of times in a given small neighborhood of C. In this paper, we
make this behaviour quantitative. For that, we prove a Khintchine-type
theorem, and a logarithm law-type corollary, for geodesic lines spiraling
around C. Fix a small enough ¢ > 0, and let 4.C be the (closed)
e-neighborhood of C.
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Theorem 1.1. If f1+°° e~ "9M dt converges (resp. diverges), then for
p-almost no (resp. every) v € T'M, there exist positive times (t,)nen
converging to +oo such that w o ¢¢(v) belongs to NcC for every t in
[tnstn + g(tn)]-

Define the penetration map p : T'M x R — [0, +o00] into A.C by
p(v,t) = 0 if mo ¢y(v) ¢ AC, and otherwise p(v,t) is the maximal
length of an interval I in R containing ¢ such that 7 o ¢5(v) € AcC for
every s in I. We refer to [PP1] for (many) other ways to measure the
penetration of a geodesic line in the e-neighborhood of C.

Corollary 1.2. For u-almost every v € T'M,
p(o,t) 1

lim su = —.
t—)-‘,—oop 10gt h

When M has constant curvature, and after a geometric translation,
Theorem 1.1 and Corollary 1.2 follow from known results (see for in-
stance [DMPV], as well as the recent [BV], where the methods are
very different).

We also prove a Khintchine-type theorem for geodesic lines spiraling
around totally geodesic submanifolds. For the sake of simplicity in this
introduction, we only formulate it for real hyperbolic manifolds, see
Theorem 5.3 for a more general statement.

Theorem 1.3. Assume furthermore that M is a real hyperbolic n-
manifold, and let C be a closed embedded totally geodesic submanifold
of dimension k > 1. Let € > 0 be small enough.

If f1+oo e~ (=k)9(t) qt converges (resp. diverges), then for p-almost no
(resp. every) v € T'M, there exist positive times (t,)nen converging to
+oo such that mo ¢i(v) belongs to NC' for every t in [t,,t, + g(t,)].

Besides totally geodesic submanifolds, one could also measure the
asymptotic spiraling of geodesic lines around other convex subsets, in
particular in hyperbolic 3-manifolds.

Theorem 1.4. Assume furthermore that M =T \H% 18 a hyperbolic
3-manifold, and let I'y be a quasi-fuschian subgroup of I'. Let &g be the
Hausdorff dimension of the limit set A'g of g, and let C be the image in
M of the convex hull € ATy of Ay in H%. Assume that v¢ ATgNE ALy
is empty for every v € I' — I'g. Let € > 0 be small enough.

If f1+°O e~ (270009 dt converges (resp. diverges), then for p-almost no
(resp. every) v € TYM, there exist positive times (t,)nen converging to
+00 such that 7o ¢¢(v) belongs to NeC' for every t in [ty tn + g(tn)].

All these results follow from our main result, Theorem 5.3, which is
much stronger than the above ones. We do not require M to be compact.
The first two statements above remain valid when M is complete, non
elementary, with a negative upper bound on its sectional curvature, up
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to replacing h by the critical exponent ¢ of the fundamental group I
of M acting on a universal Riemannian covering M of M, and under
some assumptions on I'. Under these hypotheses on M, Theorem 1.4 is
still valid, up to replacing H% by M, I'g by a malnormal infinite index
convex-cocompact subgroup of I' with critical exponent Jy, and 2 — §g
by § — §g. We may also replace the Bowen-Margulis measure on 7'M
by some other measures, see the comment after Lemma 2.4.
Furthermore, we do not need M to be a manifold, Theorem 5.3 is
valid in general CAT(—1) spaces, for instance in hyperbolic buildings
(i.e. Tits buildings modeled on a hyperbolic reflection group), see [Bou2,
GP, HaP)] for examples. Corollary 5.5 is an example of an application.
In this introduction, we quote two results in the setting of trees. The
first one will be proved in Section 5. Let E[] be the integer part map.

Proposition 1.5. Let T be a locally finite tree, and Aut(T) be its
locally compact group of automorphisms, such that Aut(T)\T is finite.
Let T be a lattice in Aut(T) acting without inversion on T. Let T\YT
be the quotient by I' of the space 4T of isometric maps ¢ : R — T,
endowed with its geodesic flow (¢y)ier (the action of R by translations
at the source). Let pu be the Bowen-Margulis measure for the action of
(¢¢)ter on T\YT', and h be the Hausdorff dimension of the space of ends
of T. Let C be a cycle in the graph T\T with L edges.

If f+oo —£9®) gt converges (resp. diverges), then for u-almost no
(resp. every) £ € T\YT, there exist positive times (t,)nen converging to

+oo such that the path t — ((t), starting at time t,,, turns around C' at
least E[g(t,)] times.

The next result (see Section 6) uses the Bruhat-Tits tree of the alge-
braic group SLy over the local field K = F,((X1)) of formal Laurent
series in the variable X' over the finite field F,. Let pu be a Haar
measure of K. Let | - |~ be the absolute value of K. Recall that an
clement of K is irrational if it does not belong to the subfield Fq(X) of
rational fractions over [Fy, and is quadratic if it is a solution of a qua-
dratic equation with coefficients in F,(X). The group SLy(F,[X]) acts
by homographies on the set of quadratic irrational elements of K , and
two of these are congruent if they are in the same orbit. For every irra-
tional quadratic element o in K, define h(a) = |a — a*|Z}, where o is
the Galois conjugate of a, which measures the complexity of « (see Sec-
tion 6). In [HP5], we proved a 0-1 measure result for the Diophantine
approximation of elements of K by rational ones. The following result
(see Section 6) is an analogous one for the Diophantine approximation
of elements of K by quadratic irrational ones.

Theorem 1.6. Let ¢ : R+ — R be a map with u — logp(e")
Lipschitz. If the integral f p(t)/t dt diverges (resp. converges), then
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for p-almost every x € [?,

h(B)
e(h(B))
where the lower limit is taken over the quadratic irrational elements 3
in IA(, in any congruence class, with h(f) — +o0.

lim inf |z — Bloo = 0 (resp. = +00) ,

For other number theoretic applications of the results of this paper
and of [PP1], we refer to [PP2].

We first start in Section 2 by recalling properties of the CAT(—1)-
spaces X and their spaces at infinity 0., X. We introduce, for every non
empty closed convex subset C of X, a nice new distance-like map d¢c on
OsoX — O5oC'. It generalizes Gromov’s distance when C' is reduced to a
point (see for instance [Boul]), or Hamenstadt’s distance when C' is a
horoball (see [Ham][HP1, Appendix]).

In Section 3, we present the main technical tool of this paper, a
geometric avatar of the Borel-Cantelli lemma.

This tool will also be used in Appendix A, which is joint work with
C. S. Aravinda, to prove other approximation results, both of Khintchi-
ne-type and logarithm law-type, expressing how exactly close to a given
point almost every geodesic line passes. In particular, we give in the
appendix a new proof of the following result by F. Maucourant [Maul]

Theorem 1.7 (Maucourant). Assume furthermore that M has con-
stant curvature —1 and dimension n, and let xo € M. Then for Liouville-
almost every v in T'M,

_ logd(rog(v),m) 1
lim sup = .
t—+00 logt n—1

See Theorem A.3 in the appendix for a more general statement (valid
in variable negative curvature) about the approximation of given points
by almost every geodesic lines. The appendix can be read independently
of the sections 4, 5, 6.

In Section 4, we start by explaining the general situation covering all
results 1.1-1.6. We prove some new estimates on the relative geome-
try of the convex hulls of subgroups of a discrete group of isometries
of a CAT(—1) metric space X. Among the new geometric information
(possibly useful for later applications), we give in Theorem 4.4 a fluc-
tuating density result. It explains the variation in e of the mass for a
conformal density of the e-neighborhood of the limit set of a convex-
cocompact subgroup. In Section 5, we then prove our main result,
Theorem 5.3, as a geometric consequence of Theorem 4.6. This last
result describes approximation properties of limit points in the sphere
at infinity of X by various invariant subsets, and could have other ap-
plications.
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Khintchine-type theorems and their logarithm law-type corollaries for
the spiraling of geodesic lines around cusps were obtained by D. Sullivan
[Sul] when M has finite volume and constant curvature (see the nice
complements by A. Haas [Haal, Haa2] for surfaces), by D. Kleinbock
and G. Margulis [KM] if M is a finite volume locally symmetric space,
by B. Stratmann and S. L. Velani [SV] (see also for instance [DMPV,
BV]) if M is geometrically finite with constant curvature, and by the
authors [HP4] if M is geometrically finite with variable curvature. In
this paper, which requires many new geometric inputs, our intellectual
debt to D. Sullivan’s work is still important.

Acknowledgements. The second author acknowledges the support of
the University of Georgia at Athens for fruitful visits. We also thank
V. Kleptsyn and M. Pollicott for their comments, F. Haglund for Re-
mark 5.4, and the referee for many improvements in the writing of this

paper.

2. On convexity properties of CAT(-1)-spaces and their
discrete subgroups

We refer for instance to [Boul, BH] for the definitions and basic
properties of CAT(—1) metric spaces, their horospheres and their dis-
crete groups of isometries. The new result in this section is the con-
truction of the distance-like map d¢ for a convex subset C' in subsection
2.2.

2.1. Generalities. Let X be a proper CAT(—1) geodesic metric space.
Its boundary at infinity is denoted by 0,.X. The space of geodesic
lines £ : R — X in X, with the compact-open topology, is denoted by
4 X. The geodesic flow on ¥ X is the action of R by translation at
the source. For every base point xg in X, the space ¥ X identifies with
(050X X 0 X)—A) xR, where A is the diagonal in 05X X 05X, by the
map which associates to a geodesic line /¢ the triple (£(—o0), {(+00),t) of
the points at infinity of £ and the algebraic distance ¢ on ¢ (oriented from
{(—0) to £(+00)) between £(0) and the closest point of ¢ to xg. This
parametrization (called Hopf’s) differs from the one defined by another
base point z(, only by an additive term on the third factor (invariant
under the geodesic flow). When X is a Riemannian manifold, the map
T'X — 9 X which associates to v € T1 X the geodesic line t — mo¢;(v),
with 7 : T'X — X the canonical projection, is an homeomorphism
equivariant with respect to the actions of the isometry group of X and
of the geodesic flows on T'X and 4X.

For every ¢ in 05X, the Buseman function at £ is the map 3¢ from
X x X to R defined by

Be(w,y) = Jim_d(w,&) - d(y. &)
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for any geodesic ray t — & ending at £. For every subset A of X and
every point x in X U0, X, we denote by &, A the shadow of A seen from
x, i.e. the set of points at infinity of the geodesic rays or lines starting
from = and meeting A.

The following result, needed only in Appendix A, is Proposition 3.1
of [HP2] (whose proof of the left inclusion is valid under the only as-
sumptions below).

Lemma 2.1. Let p be a geodesic ray in X, with x = p(0) and & =
p(+00).

(1) For every c,t > 0, the ball By, (&, ce™") for the visual distance (see
Ezample 1 below) dy on 0 X is contained in the shadow O, (B(p(t),c)).

(2) If X is a Riemannian manifold with sectional curvature —a? <
K < —1, where a > 1, then there exists k1, ks, k3 > 0 such that for every
¢ €0,k3] and every t > Ky, the shadow O (B(p(t),c)) is contained in

the ball By, (£, k1 ca e7t).

Given a point at infinity £ € 0, X and a horosphere H centered
at &, let dep,di pr (0o X — {¢})? — R be the following maps. Let
7,1 € 0cX — {&}. Let t — n and t — 7; be the geodesic lines
starting from &, crossing through H at time ¢ = 0, and converging to n
and 7/, respectively. Define the Hamenstdadt distance (see [Ham][HP1,
Appendix])

de 1 (n, n') = t_l)iinoo o3 dnem)—t 7

which is a distance inducing the original topology on 0, X — {{}. The
cuspidal distance (see [HP3]) df ;; is defined as follows: If n # 1,
then — log (2 dlg,H(U, 77’)) is the signed distance, along the geodesic line
1€, n] oriented from & to n, from H to the horosphere centered at 7
and meeting the geodesic line ¢, 7| in exactly one point. Though not
necessarily an actual distance, d’& g 1s equivalent to the Hamenstadt
distance (see [HP3, Rem. 2.6]).

2.2. A distance-like map at infinity relative to a convex subset.
Let C be a non empty closed convex subset of X. (Recall that a subset C
in a CAT(—1) metric space is convez if C' contains the geodesic segment
between any two points in C.) We denote by 0, C' its set of points at
infinity (the intersection with J., X of the closure of C'in X U0 X), and
by OC its boundary in X. For every £ in X U0, X, we define the closest
point to & on the convex set C', denoted by wc(§), to be the following
point p in C'U 0, C: If £ € X, then p belongs to C' and minimizes the
distance between x and a point of C'; if £ € 9, X — J5C, then p belongs
to C and the (closed) horoball centered at & whose horosphere contains
p meets C exactly at p; if £ € 05,C, then we define p = £&. The point
p exists, is unique, and o 1 X U 0o X — C U 0, C' is continuous, by
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the properties of CAT(—1)-spaces. For every isometry v of X, we have
TyC = 7Y O T O 7~'. When X is a Riemannian manifold, ¢ is (outside
0C') the orthogonal projection on C.

Let us define a distance-like map dgo on 0y X — 05,C. For every &, n
in 0po X — 0oC, let t +— & and t — 1 be geodesic rays, starting at time
0 from the closest points to £ and 1 on C, and converging to £ and 7
respectively. Define

do(6m) = Tim e3d€m—t — iy o3 (d€m)=dEmc©)~dmmem))
t——+o0 t——+o0
Note that these limits exist, and the second equality holds for all geo-
desic rays t — & and t — 1 converging to & and 7, respectively. For
every isometry v of X, we have

dyo(v€,ym) = dc(&,m) .

In particular, any isometry of X preserving C' preserves d¢c. For every
e > 0, the (closed) e-neighborhood A4C of C' in X is still convex with

dy.o(§m) = e do(&n) -

Examples. (1) If C is reduced to a point x in X, then do = d is
the usual visual distance seen from x on 0o, X (see for instance [Boul]).

(2) If C is a (closed) ball of center x and radius r, then do = €” d,
as C' = M {x}.

(3) If C is a (closed) horoball with point at infinity £ and boundary
horosphere H, then dc = d¢  is the Hamenstédt distance on 0o X —{¢}
as recalled above. If (C},)nen is a sequence of balls converging uniformly
on compact subsets of X to an horoball C', then the maps d¢, converge
uniformly on compact subsets of 0X — {¢} to dc.

(4) If X is a metric tree, then it is easy to prove that, for every &,n
N Ope X — 0x0C,

ez dmc©:mc) if () # mo(n)
(1)  do(&n) =1 e if 14(€) = mc(n) and
[770(5)7 5[ N [770(77)7 77[ = [ﬂ-C(g)v Q] .

In particular, in a sufficiently small neighborhood of any point & in
O X —0C', the map d¢ then coincides with the visual distance dr, (¢,)-

(5) Let X be the real hyperbolic n-space Hft, and let C' be a complete
totally geodesic submanifold of dimension k£ with 0 < & < n. Let g be a
point in C, and S,,(C*) be the sphere of unit tangent vectors at xo that
are perpendicular to C, endowed with the angular distance (v,v) —

Zgo(v,0"). Note that the standard Euclidean distance on S,,(Ct) is

given by (v,v") — 2sin %vv,) For every £ € 0uoX — 05C, let m(§)

be the parallel transport to xg, along a geodesic line through zy and
mc(§), of the unit tangent vector at m(§) of the geodesic ray [ro(€), ]
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We thus get a map 7 : 9o X — 9ocC — Sy (CF). In particular, the
map (¢, ) : 00X — 00oC — C X Sy, (CL) is a homeomorphism.

Lemma 2.2. For every £,1 in 0xX — 0C),

2 2

Proof. Let p = d(mc(§),mc(n)) and let § = Ly (7 (E), 7 (n)). We
have to prove that do(§,n) = %\/ eP + e=P — 2cosf. This last formula
follows from an easy computation using the picture below. Recall that
sinhb = 1/tana, where b is the hyperbolic length of the arc of any
half-circle perpendicular to the horizontal plane between the angles «
and Z in the upper halfspace model of H} (see [Bea, page 145]).

de(&,m) = ¢ g2 Wc@.met) |y Zao (o). me ()

Take a copy of H% containing &, n and a geodesic line passing through
mc(€),mo(n). Use the upper halfspace model of H where this geo-
desic line is a vertical line between 0 and oo, with 7o (n) above w¢(€).
Scale such that the Euclidean distance between 0 and & is 1. Consider
the points 7%, ns, &L, &s at Euclidean height s close to 0 on respectively
[re(n), ], J,€[ close to 5, [ro(€), €], I, €[ close to &, so that (€, )
is equal to
1 (d(sme)—d(€me (©)—d0rmo )

lim e

s—0
Now just use several times the previously mentionned formula sinh b =
1/tan a. q.e.d.

In particular, if X = HZ2, if C is a geodesic line and if £, 7 are in the
same component of Js X — J5cC', then

d
dc(é’n) — ginh (ﬂ-C(g)Qv WC(U)) )
By taking a,b,c in the same component of J,,X — 0,,C such that
d(rc(a),mc(b)) = d(rc(b),mc(c)) = jd(nc(a),mc(c)) are big enough,
we see that dco does not satisfy the triangle inequality, hence is not a
distance.
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After these examples, let us go back to the general situation on X, C,
and let us prove some results saying that at least on compact subsets,
the map d¢ behaves quite like a distance.

Lemma 2.3. (1) For every zq in X, for every compact subset K of
Oso X — 0xcC, there exists a constant cx > 0 such that for every £,m in
K, we have

oy () < de(Em) < i dug(m)
CK

(2) For every £ in 0o X — 05C, the map n — dc(&,m) is proper on
O X — 05C.
(8) For every £,m in 0o X — 0soC,

(3 — 2v/2) e2d(rc@mc(m) (~d(C.16n) < g (g, n) < ez¥Tc@mc()

(4) There exist universal constants ¢, > 0 such that for every £,m in
0o X — 05C, if do(&,m) < ¢, then C and the geodesic line |§,n[ are
disjoint, and

L —dciend < go(e,n) < o e~ Ien)

C/
Note that by hyperbolicity, min{d(7c (&), mc(n)),d(C,]¢,n[)} is, for
every &, 1, less than a universal constant.

Proof. For every xg in the convex subset C' and £ in 0,0 X — 05C, by
the triangle inequality and the CAT(—1) inequality, we have

(&, o) < d(&,me(€)) + d(wo, mo(€)) < d(&, o) + 2log (1 + V2)
with & as above. Hence for every &, 7 in 0s X — 05C,
(2)
(8= 2v2) dyy (€. 1) < do(€,m) e 3 W0 @ diennc) < g, (¢m).

The first result easily follows. By taking o = m¢(€) in the lower bound
of Equation (2), the second assertion also follows. The upper bound in
the third assertion follows by the definition of do (€, n) and the triangular
inequality.

By the triangle inequality, d,(&,1) > e~ %0 1610 Hence, by taking
xo in Equation (2) to be the closest point of C to |¢,n] if C and ], 7|
are disjoint, or any point in CNJ¢, n| otherwise, and by using again the
triangle inequality, the lower bound in the third assertion follows.

The last assertion follows by standard techniques of approximation
by trees (see for example [GH, page 33]). q.e.d.

In particular, the non negative symmetric map d¢o vanishes on and
only on the diagonal of (95X — 05C)?. But as mentioned above, d¢ is
not always a distance.

It also follows from Lemma 2.3 (1) that the uniform structure (see for
instance [Bou]) defined (restricted to compact subsets) by the family
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({(2,9) € (050X — 05cC)? = dc(&,m) < e})6>0 is isomorphic (on com-
pacts subsets) to the uniform structure defined by the distance dg,.

Remark. Though we will not need it in this paper, we prove a formula
expressing the distance-like map d¢o, when C = L is a geodesic line with
endpoints L_, L., in terms of the Hamenstadt distance and the cuspidal
distance: For every &,m in 0o X — {L_, L.}, for every horosphere H
small enough centered at L_,

d
dc(f,n) _ L,,H(£777)

2d) (& Ly)dy y(nLs))?

Proof. Let H¢ (resp. H,) be the horosphere centered at { (resp. n)
passing through w¢(§) (resp. mo(n)). Let he (resp. hy) be the intersec-
tion point of He (resp. H,) with the geodesic line |&, L_[ (resp. |n, L_[).
Then

de(§,m) = lim e%(d(ft’"t)_d(ﬁtvhg)—d(nt,hy,))

t——+o0

=dr_ (& n) o3 (dlhe, ) +d(hy 1)

)

which proves the result. q.e.d.

2.3. Patterson-Sullivan-Bowen-Margulis measures. Let ' be a
discrete group of isometries of X. Its limit set is denoted by AT, and
if AT" contains at least two points, then the convex hull of AT is de-
noted by €T. Recall that 0,,4T = AI'. The critical exponent of
I’ is the unique number dr in [0, 4+o00] such that the Poincaré series
P,r(s) = Ewer e~s dz0720) of T converges for s > o and diverges
for s < ép, where x( is any point in X. The group I' is called of di-
vergence type if its Poincaré series diverges at s = dp. The group I is
non elementary if AI' contains at least three points, and we have then
or > 0. Note that when X is a Riemannian manifold and I" is torsion
free with compact quotient I'\ X, then the critical exponent dp of T" is
the topological entropy of the geodesic flow of I'\X (see for instance
[Man)]).

If § € ]0, +00[, a conformal (or Patterson-Sullivan) density of dimen-
sion ¢ for T is a family (u,)zex of finite Borel measures on 0o X, such
that

e VyeET, Yatly = pya,

e Va,yeX, VEEDX, P =e ),

Using Hopf’s parametrization with respect to any base point zg of X, the
(Patterson-Sullivan-) Bowen-Margulis measure associated to this family
is the measure jigy on 4 X given by

gy (€) dptay () d
i = = d(i)w?@g =2
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This measure on 4X is independent of g, invariant by the action of I"
and by the geodesic flow (and by the time reversal ¢ — {t — ((—t)}),
hence defines a measure pgy on I'\Y X which is invariant by the quotient
geodesic flow (see for instance [Boul, Rob]). Note that if ugy is finite,
then § = dr and T is of divergence type (see [Rob, page 18-19]).

If T' is of divergence type with a finite non zero critical exponent
J, then (see for instance [Boul]) there exists a conformal density of
dimension § for I', which is unique up to a positive scalar factor, and
which is ergodic with respect to the action of I' on J,X. The Bowen-
Margulis measure associated to any such conformal family (both on X
and on I'"\¥ X)) will be called a Bowen-Margulis measure of T' (it is also
uniquely defined up to a positive scalar factor). When X is a manifold
and ' acts freely on X with compact quotient, the Bowen-Margulis
measure on the unit tangent bundle of the compact negatively curved
manifold M = T'\X, normalized to be a probability measure, is the
maximal entropy probability measure for the geodesic flow of M (via
the canonical identification of ¥X and T'X), see for instance [Kail.
When furthermore X has constant curvature, then the Bowen-Margulis
measure and the Liouville measure (when both are normalized) coincide
on T'M.

The following result, which is obvious by definition of the Bowen-
Margulis measure, will be used in Section 5 and Appendix A.

Lemma 2.4. Let 74 : 9X — 00X be the continuous map € +—
0(+00). Let gy be the Bowen-Margulis measure on 4 X associated to
a conformal family (py)zex for T'. Then the preimage by w4 of a set of
measure 0 (resp. > 0) for u, (for some (equivalently for any) z in X)
has measure 0 (resp. > 0) for [ipyy.

Besides its invariance under I' and the geodesic flow, and its ergodicity
on I'\¥ X, this is the only property of the Bowen-Margulis measure figy
on 4 X that will be used in this paper. In particular, we may replace
M by any other measure satisfying these invariance properties and
this lemma, as for instance the Knieper measure (see [Kni).

2.4. Convex-cocompact subgroups. The group I' is said to be con-
vex-cocompact if A" contains at least two points, and if the action of I"
on 1" has compact quotient. In particular, the group generated by a
hyperbolic isometry of X is convex-cocompact, with critical exponent
0. In fact, if I is convex-cocompact, then its critical exponent is 0 if and
only if I' has an index two subgroup generated by a hyperbolic isometry
of X. Note that if I' is convex-cocompact then I' is of divergence type
(see for instance [Boul, Rob]).
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For every f,g : N — [0, +oco[, write f =< g if there exists a constant
¢ > 1 such that %f < g < c¢f. For every zg in X, if I' is convex-
cocompact and non elementary, with critical exponent dr, then

Card(B(zg,n) NTag) = €T

(see for instance [Rob], where others, much more general, assumptions
on I' are given for this property to hold. This is the case for example
when the Bowen-Margulis measure pgy of I' is finite (and the length
spectrum is non arithmetic), see [Rob, page 56]).

Lemma 2.5. Let I'g be a convex-cocompact subgroup with infinite
index in a discrete group of isometries I' of X. Let &y and & be the
critical exponents of I'g and I' respectively. Then oy < 6.

Proof. This is well-known (see for instance [Fur] in a special case).
q.e.d.

Recall that the wirtual normalizer NI'g of a convex-cocompact sub-
group [y of T is the stabilizer in T" of the limit set AT'g. It contains
the normalizer of T'y in T', and it contains I'y with finite index (see for
instance [KS, Arz]).

Recall that a subgroup H of a group G is malnormal if, for every g
in G— H, we have gHg~' N H = {1}. We will say that a subgroup H of
a group G is almost malnormal if, for every g in G — H, the subgroup
gHg™' N H is finite. Note that malnormal implies almost malnormal,
and that the converse is true if the ambient group is torsion free.

The following result is folklore, we provide a proof because we couldn’t
find a precise reference.

Proposition 2.6. Let I'y be a convex-cocompact subgroup of a dis-
crete group 1" of isometries of X, then the following assertions are equiv-
alent.

(1) Ty is almost malnormal in T';

(2) the limit set of Ty is precisely invariant, i.e. for everyy € I' — T,
the set AT'g N yAT g is empty;

(3) €Ty N~ETy is compact for every v € I' — Ty;

(4) for every e > 0, there exists k = k(e) > 0 such that, for every
v eIl =Ty, we have diam(%(ffo N %/VE%FO) <k.

The convex hull in X of the limit set of a convex-cocompact sub-
group is non compact. Hence an almost malnormal convex-cocompact
subgroup of T" is equal to its virtual normalizer, by (2).

Proof. As 05,6To = ATy and yATg = A(yTgy 1), it is clear that (4)
implies (3), which implies (2), which implies (1).

Let us prove that (1) implies (4). Let Cp = €Ty and € > 0. Assume

by absurd that for every n in N, there exists v, in I' — I'g and x,,, yn
in 4Cy N Y MeCo with d(zy,yn) > n. As To\ACp is compact and
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the action of 'y is isometric, there exists R > 0 such that I'oB(x, R)
contains A.Cy for every x in A.Cy. As 7, is an isometry, we also have
that [0y, ' B(y, R) contains v,.4.Cy, for every y in ~,.4#.Cj.

Up to conjugating 7, by an element of I'g, we may assume that x,
stays in a compact subset K of X, and we define K’ = A K, which is
compact. As T is discrete, the number N of elements + in T', such that
~vK' N K’ is non empty, is finite.

As Ty is convex-cocompact (and discrete), the upper bound of the
cardinals of the finite subgroups of I'y is finite. Hence, as 'y is almost
malnormal, there exists N’ € N such that for every v in I' — Ty, the
cardinal of Yoy~ N Ty is at most N/ — 2.

Take n in N with n > NN’ diam K’. Subdivide the segment between
xn and Y, in points ug = zp, U1, ..., UNN’ = Yn, such that d(ug, ug11) >
diam K’ for 0 < k < NN’ — 1. As K’ contains B(z,, R) and x,,y,
belong to the convex subset A.Cy N v, A4:Cy, for 0 < k < NN’, there
exist ag, B, in [g such that up € ap K’ and uy, € v,8,7;, ' K’. Note that
ap # o if k # j, as d(ug,u;) > diam K’. By the definition of N, there
exists (kj)1<j<n with a,;jlfynﬂkj’ygl = a,;l’ynﬁklfygl for 1 < j < N’
Hence ’ynﬂkjﬁk_llfygl = akja,;l, for 2 < j < N’. This contradicts the
fact that the cardinal of 4, g7y, ' NI is at most N’ —2, since the ay; a;ll
for 2 < j < N’ are pairwise distinct. q.e.d.

Remark. The fact that the first two assertions are equivalent follows
also from the well-known equality

Ao NyAT o = AT NyToy ™),

see for instance [SS, Coro. 3| for a proof in a special case.

3. A geometric avatar of the Borel-Cantelli lemma

The main technical tool of this paper is the following result, which is
a suitable enhancement of the Borel-Cantelli Lemma.

Theorem 3.1. Let (Z, ) be a measured space with u(Z) finite, and
(Bi(€))ier, e 10,+00] @ family of measurable subsets in Z, non-decreasing
in € (for the inclusion), endowed with a map i +— n; from I to N such
that I, = {i € I : n; = n} is finite for every n. Let fi, fa, f3, fa be
maps from N to ] 0,400 and let f5 be a map from |0, 4o00[ to itself. Let
E be the (measurable) set of points in Z belonging to infinitely many
subsets B;(fs(n;)) for i in I.

[A] Assume that f3 < fo and that there exists ¢ > 1 such that, for
every n in N, i in I and € € ]0, fa(n;)], one has Card I,, < cfi(n)

and p(Bi(€)) < cfa(ni)fs(e). If the series 322 fi(n)fa(n) fs(f3(n))
converges, then p(E) = 0.

[B] Assume that there exists ¢ > 1 such that
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(1) f3 < fo.

(2) 77 < fuh1,

(3) there exist ¢/, " > 1 such that for every e, > 0, if € < e, then
f5(€') < " f5(e),

(4) for every n in N, one has L fi(n) < Card I, < cfi(n),

(5) for every i in I and € € ]0, fa(n;)], we have

%f4(ni)f5(€) < u(Bi(e)) < cfa(ni)fs(e) ,

(6) for every m in N, the subsets B;(fa(n)) for i in I, are pairwise
disjoint,

(7) for every i and j in I such that n; < nj, if the intersection of
Bj(fs(nj)) and Bi(f3(n;)) is non empty, then Bj(fa(n;)) is con-
tained in B;(cfs(n;)).

If the series Y 7 fi(n) fa(n) f5(f3(n)) diverges, then p(E) > 0.

Note that (except for the convergence of the series) every hypothesis
of Case [A] is part of a hypothesis (1)-(5) of Case [B]. Hence when check-
ing the hypotheses when we want to apply both cases of this theorem,
we will only check the ones of Case [B].

Proof. For i in I and n in N, let B; = B;(f3(n;)) and A, = U;e;. Bi,

so that E' = (e Up>n Ak-

Under the assumptions of [A], by the subadditivity of p, we have
the inequality u(A4,) < c2fi(n)fi(n)fs5(fs(n)). Therefore the end of
the proof is standard: If the series Y ° | f1(n)fa(n) f5(f3(n)) converges,
then the sequence uy = > o2, fi(n)fa(n)f5(f3(n)) tends to 0, therefore

n—oo

= i < lim Zu, =
w(E) hm“(UAk)—,}l_{goCU” 0.

k=n
Assume now that the assumptions of [B] hold. We first claim that

fi(n) fa(n) f5(f3(n)) < u(An) . (%)

Indeed, the balls B; for i in I,, are pairwise disjoint by (1) and (6), since
the subsets B;(r) are non-decreasing in r. By the additivity of u, by
the lower bounds in (4) and (5), the inequality (*) hence follows.

In particular, > u(A,) diverges if > f1(n)fa(n)f5(fs(n)) diverges.

Now, let n, m be in N with n < m. By the properties (6) and (7), for
every 7 in I,, we have

p(Bi(efs(ni))) = Card{j € In : B; N B; # 0} ;Ielilgu(Bj(fz(m))) :

Hence by (5)

cfa(n)fs(cf3(n))

Card{j € I, : BjNB; # 0} < L fa(m) f5(f2(m))

o (%)
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Therefore
(A NV AR) <> Yo ulBy)
i€ln  j€lm, BjNB;#D

n cfs(n)f5(cfs(n))
< cfi(n) x L £1(m) f5(f2(m))
)

< AT £ (n) fan) o Fa(n)) fu(m) fa(m) fi(Fa(m)

A )1°g°/+ 1(An ) (Am) -

The second inequality follows from (4), (**) and (5), the third inequality
follows from (2) and an iterated application of (3), and the last one from

(*)-
The following Borel-Cantelli Lemma is well-known (see for instance
[Spr]).

Theorem 3.2. Let (Z,v) be a probability space. Let (Ap)nen be

a sequence of measurable subsets of Z such that there exists a constant

c> 0 withv(A,NAy) < cv(A,) v(Ay) for every distinct integers n, m.
o0

Let A = Npeny Ursn Ak Then v(As) > 0 if and only z'fZV(An)
n=0

x cfa(m) f5(f3(m))

A

IN

diverges.

The assertion [B] of Theorem 3.1 then follows. q.e.d.

4. Approximation of limit points

In this section, we start by describing our general framework: a nice
subgroup T’y of a discrete group of isometries I' of a CAT(—1) space.
The main result of this section, Theorem 4.6, explains in a quantitative
way the approximation of the limit points of I' by the orbits under I' of
the limit points of I'g. To prove it, we will check, in a series of results
of independent interests, the hypotheses (1)-(7) of Theorem 3.1, our
geometric avatar of the Borel-Cantelli Lemma.

Let X be a proper CAT(—1) geodesic metric space. Let I' be a
non elementary discrete group of isometries of X, with finite critical
exponent 0. Let I'g be an almost malnormal convex-cocompact subgroup
of infinite index in I" with critical exponent &g, and let Cy = €T. It
is likely that the hypothesis “convex-cocompact” could be replaced by
“geometrically finite” up to some adaptations, but this would surely
make the statements and proofs much more technical, hence we prefer
to work under our hypotheses. Let mc, : X U 0sc X — Cp U 05Cp be
the closest point map. By Lemma 2.5, the number dy belongs to [0, d].
Moreover, it follows from Section 2 that Cy is non compact and that 'y
is the stabilizer in I' of Cj.
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Examples. (1) Let 7y be a hyperbolic element of T', let Cyy be its
translation axis and let I'g be the stabilizer of Cy (which is virtually
infinite cyclic, and infinite cyclic when T' is torsion free). Since T is
non elementary, the subgroup I'y has infinite index. Furthermore, if
v € I and 7Tgy~! NIy is infinite, then 7 conjugates some hyperbolic
element of I'y to another one. The image by an element v in I' of the
translation axis of a hyperbolic element « of I' is the translation axis of
yay~t. Hence v preserves Cy, therefore belongs to I'g. Therefore I'g is
an almost malnormal convex-cocompact subgroup of infinite index in I
with critical exponent dy = 0.

(2) Let M be a complete Riemannian manifold with dimension n > 2
and sectional curvature at most —1, and 7 : X — M be a universal
Riemannian covering, with covering group I'. Let M, be a compact
connected embedded totally geodesic submanifold in M of dimension &
with 1 < k <n-—1, let Cy be a connected component of the preimage of
My in X, and let I'y be the stabilizer of Cy in I" (with good choices of base
points, I' can be identified with the fundamental group of M, and [y
with the image in the fundamental group of M of the fundamental group
of Mp). Then Ty is an almost malnormal (for instance by Proposition
2.6 (3)) convex-cocompact subgroup of I'. If for instance M has finite
volume, then I' is non elementary and I'y has infinite index in I'. If M
has constant sectional curvature —1, then d =n — 1 and §g = k — 1.

(3) Let X = H% be the real hyperbolic space of dimension 3, and I’
be a Kleinian group. If I'g is a precisely invariant quasi-fuschian sub-
group, without parabolic elements, of infinite index in I', then I'y is an
almost malnormal (by Proposition 2.6 (2)) convex-cocompact subgroup
of infinite index in I

After these examples, let us proceed. Denote by Ry the set of double
cosets
Ry =To\(I' =Ty)/Ty .
For every r = [y] in Ry, define
D(?") = d(C(]v’yCO) € [07 +OO[ 5
which does not depend on the representative v of r. The next result

says that the subset {D(r) : r € Ry} of [0, 400 is discrete, with finite
multiplicities.

Lemma 4.1. For every ¢ > 0, the set of elements r in Ry such that
D(r) < c is finite.

Proof. For every ¢ > 0, assume that there exists a sequence of pairwise
distinct elements ([7y;])ieny in Rp such that D([v;]) < ¢ for every i. Fix
x4 in Cpy, and let D be the diameter of I'y\Cy. For every ¢ in N, let
x; in Cy and y; in v;Cy be any points such that d(z;,y;) < c+ 1. Up
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to replacing ~; by another representative of [y;], we may assume that
d(z;,xy) < D and d(y;, vix«) < D. Hence d(xy,vizs) < 2D + c+ 1 for
every i, which contradicts the discreteness of I'. q.e.d.

Proposition 4.2. Assume that Card Tz N B(z,n) =< €™ for some
(hence every) x in X. Then there exists N in N — {0} such that

Card {r€ Ry : n < D(r) <n+ N} =e™m.

Proof. Since 0y < 0, the proof is the same as the proof of [HP4,
Theo. 3.4], up to replacing the horoball HBy by Cjp. q.e.d.

Define Xy = I'p\ X, and 0ocXo = T\ (0o X — ATlg). Since [')\Cy is
compact, and since the closest point map is a proper continuous I'g-
equivariant map from 0., X — Al'g to Cp, the space JxX( is compact.
The distance-like map d¢, on 0, X — Al is invariant under I'g, and we
denote by dy the quotient distance-like map on 0s Xy, i.€.

(3) dO(fv g) = l_nf _ dCO (:Evy) :
TET, Y€y

)

Let 7 = [y] be an element in Ry. Define A, (which does not depend
on the representative v of r) as the image of yAI'g by the canonical
projection 0o X — ATy — 000 Xo. By Proposition 2.6 (2), it follows that
(Ay)rer, is a family of pairwise disjoint compact subsets of 05 Xy. For
every € > 0, define .4, (¢) as the e-neighborhood of A, in 0, Xy for the
distance-like map dy. Note that A7 (e) C A (€') if € < €.

Let (uz)zex be a conformal density of dimension § for I'. Fix a base
point zo in Cy. Define a map firyz, : Z — [0,+00], where A is the
o-algebra of Borel subsets of 0,,X — Al'g, by

HTozg = E Koz -
a€cly

Lemma 4.3. The map [ir,q, 5 a locally finite positive Borel measure
on 0xc X — Al'g, which is invariant under Iy, and absolutely continuous
with respect to the restriction to 0 X — Al'g of py for every x in X.

We denote by pir,z, the finite Borel measure on the compact quotient
00X Of 05X — AL’y defined by fir,q4,-

Proof. Denote by s — Pryry(s) = > er, e~sd(ew0,20) the Poincaré
series of I'g with base point xg.
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Let € be in 05X — Al'g and « be in I'g. The point axg belongs to Cj.
Hence the horosphere centered at £ passing through 7c,(€) meets the
geodesic ray from azg to £ in a point u. As Cj is convex and 7¢, () is
the closed point in Cj to £, by an easy CAT(—1) comparison argument,

the distance d(u,m¢,(§)) is at most 1 (and even at most log 3+—2‘/5 ). By
the triangle inequality,

Be(axo, mc, (§)) = dawo, u) = d(awo, mc,y (§)) — d(u, mc, (€)) -
Therefore
Be(axo, x0) = Be(axo, mcy (§)) — Be(wo, mey (€))
> d(azo, mcy (§)) — 1 — d(zo, mc, (€))
> d(azg, o) — 1 = 2d(zo, 7¢;, ()
where the last inequality is again obtained by the triangle inequality.
Hence

Z Czuamo (f) _ Z 6—555((1:20@0) < 65(1+2d(mo,7rco(5))) Pxo,f‘o(é) )
Hao

aely a€cl’p

The right hand side, as & > §p, is a positive continuous map of £ €
0o X —AL'g. Hence fir,z, is a locally finite Borel measure on 0, X —AT.
It is clearly invariant under I'y by construction and the equivariance
property of (uz)zex. As Be(awo, x0) < d(awxg,xo), we have, for every &
in E?OOX — AF(),

diiryz
@) Pany() < B g < S0y (9),
o
hence fir,z, and jiz, have the same measure class on 0, X — AT'.

q.e.d.

The next result, of independent interest, is a fluctuating density result
a la Sullivan, where the parabolic subgroup (as in for instance [HP4])
has been replaced by a convex-cocompact subgroup. It will be used in
this paper to check Assumption (5) in Theorem 3.1.

Theorem 4.4. There exist two constants ¢ > 1 and ¢ > 0 such that,
for every r in Ry and € in ] O,C’e_D(T’)],

1
- e—&gD(r)€5—50 < :ul—‘oro(‘/%“(e)) <ec e—éoD(r)€5—50 )
C

Proof. For every double coset r in Ry, choose a representative ~, of
r such that

d(zo,vr0) = alg}ienro d(x, ayra’zo) .

Denote by ¢ 4(A) the (closed) €-neighborhood of a given subset
A for a distance or a distance-like map d’. By Lemma 2.3, the subset
e/Ve,ch (7 ALg) of 0o X — 05Cp is compact, and its diameter for the
distance-like map d¢, tends to 0 as D(r) tends to +o00 and € tends to 0.
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Recall that I'g acts isometrically and properly with compact quotient on
oo X — 005Cp for the distance-like map d¢,. Hence there exists N/ € N
and ) > 0 such that for every € in |0, ¢}], for every r in Ry, we have

Card{a €Ty : « Nede, (1AL0) N A e, (7+ATg) # 0} < N'.

By the construction of pr,s,, we have, for every r in Ry and € in
10, 11,
(5)1

N AT (‘/Vﬁ,dco (7AL0)) < prgz (A7 (€)) < Broz, (*/Vﬁ,dco (v+ALo)) -

As Tp\Cy is compact and by the definition of the representatives 7,
there exists ¢, > 0 such that, for every r in Ry, for every element z in
7 (Co U 05Ch), the closest point to z on Cj is at distance at most ¢
from xq (see also [HP4, Lem. 3.5]).

Hence, there exists a compact subset K of 050X — 0,,Cp which con-
tains v, ATo for every r in Ry. By Lemma 2.3 (2), there exists a compact
subset K’ of 00X — 05Cp which contains ‘/Vﬁ,dco (7-AT) for every € in
10,¢}] and every r in Ryp. Hence by Lemma 2.3 (1), there exist two
constants cét > 0 such that for every r in Ry and € € 10, ¢}],

(6) N e, (AT0) C Acac, (wATo) © Aop g (v-ATo) -

As K' and 0,,Cp are compact and disjoint, if ¢} is small enough,
then there exists a compact subset K” of 05X — 05Co containing
C/VC;deo (7+ATlg) (and hence ‘/che,dzo (7+ATg)) for every r in Ry and

€ in |0, ¢}]. By the continuity of m¢,, there exists a constant ¢j > 0 such
that for every r in Ry and € in ]0, ¢}], the subsets m¢, (C/I/Cétﬁdzo (7ATy))

are contained in the ball of center zy and radius ¢}.

By the definition of the representatives ~,., for every r in Ry, for every
£ € 7:05C, the point v,z is at distance at most a constant from the
geodesic between xp and § (see also [HP4, Lem. 3.5]). Recall that
for every n,n" in 0,X, if dyy(n,n') < €, then the geodesic rays [zg,n|
and [z, n’[ remain at distance bounded by a universal constant at least
during a time — log ¢’. Hence, if ¢ < ¢} is small enough and € < e~
then every geodesic ray from g to a point £ in ./, e dng (7-AT) passes
at distance less than a constant from +,xg. This has two consequences.

e First, using the change of base point formula for the visual distances,

there exist two constants cgt > 0 such that for every e < ¢/ e=P("),
(7) ‘/chs,dxo (yALg) C ’/Vc;eD(T)E,d.WxO (AT) and
(8) JI/CgED(T)evd’W-xO (fYTAPO) - ’/1/03757de (’YT’AFO) .

e Second, for every ¢ in ,/chte dag (7 ALg), the number |Be(zo,vrx0) —

d(x0, vr20)| is bounded by a constant. Hence there exist constants g >
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0 such that for every r in Ry and for every £ in JI/Céte day (7-ATy),

dp
9 cx e—éD(r) < alac I E < C—l— e—JD(T) )
( ) 6 d:u“frwo( ) 6
By the Radon-Nykodim derivative estimates in Equation (4) and the
definition of ¢, there exist constants ¢= > 0 such that for every e in
10, ], every 7 in Ry, and every ¢ in (/chtﬁdzo (7+ATy),

— dﬁf T
10 cr < M) <
(10) R G
By Sullivan’s shadow lemma (see for instance [Rob, Lem. 1.3]), for
every constant ¢ > 0 big enough, there exist constants cgt > 0 such
that, for every v in I,

(11) Cge_éd(moﬁmo) < Nmo(ﬁmoB(%’EO,Cé)) < CJE_M(%’“O) .

For every t in R, define I'g[t] = {ao € Ty : d(zo, axg) < t}. For every
¢ €]0,1] and x > 0, define

Af  =To[~loge + K] — o[~ loge — ] and

A7, =To[—log€ +2k] —Ty[—loge + K] .

Let € €]0,1], n € ATy and 7' € 05X be such that d,,(n,n') < €. Let
u be the point of [zg,n[ at distance —log €’ from xy. By the definition
of dg, and the properties of the geodesic rays in a CAT(—1) metric
space, there exists a universal constant ¢§ > 0 such that 7" belongs to
OryB(u, ). Let ¢y > 0 be strictly bigger than the (finite) diameter of
[p\Cy. Since 0Cy = AT’y and by convexity, the geodesic ray [xg,n][ is
contained in Cp. Hence there exists a in I'g such that d(u,azg) < cfo.
Let ¢ be big enough (at least ¢f+c, and such that Equation (11) holds).
Then, by the triangle inequality, B(u,c}) is contained in B(awzo,cg).
Note that again by the triangle inequality, —log €’ — cfy < d(z¢, axg) <
—log € + . Therefore, for every ¢ in ]0, 1], we have

(12) Ji/E/,de (AFO) - U ﬁmoB(Oél’o, Cé) .
aeAt 4

€10
As Ty is convex-cocompact, there exists a constant ¢§’ > 0 such that
for every « in Ty, the segment [z, axo] is at distance at most cg’ from
a geodesic ray starting from xg and contained in Cp. Let c¢j; > 0 be at

least ¢g' + c§. Let € €]0,1], a € A _ and 1 € Oy B(awo, cg). Let v
€5C10

be a point on [zg, 7| at distance at most ¢ from axg. Let n € 0ocCp and
u € [z, n] be such that d(u, azg) < ¢, which exist by the definition of

¢f'. Then by the definition of d,, and the triangle inequality, we have

dwo (777 77/) < e%(d(%v)—d(aco,u)—d(gco,v)) < 60,8‘1'0,8,,—5[(900704900) < ¢ ’
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since a € AE_, o Therefore, for every ¢ in ]0, 1], we have
»~10
(13) U Oro B(axo, c§) C Ner dyy (AT0) -
aEAj _
€10

If cfo and then cj, are big enough, as I'g is convex-cocompact with
critical exponent dy (by for instance [Rob] if T'y is non elementary, and
even if §o = 0, since then, by the assumptions, I'y contains a hyperbolic
element generating a finite index (infinite cyclic) subgroup), there exist
constants ci > 0 such that for every € in |0, 1], we have

14 Card A~ _ >cpy (€ =% and Card AT e —do
, 11 e 11

€5C10 10

Let A, be a maximal subset of Ae_, - such that, when « ranges over
710

A%, the shadows 0, B(axg, cg) are pairwise disjoint. By maximality,

for every « in Ae_ there exists o/ in AY, such that azg and o’z are

-
"e10

at bounded distance. Hence there exists a constant ¢y > 0 such that
Card A%, > ¢}, Card 47,

Let us now prove the upper bound in Theorem 4.4. Let ¢ > 0,
r € Ry and € € ]0,¢ e P("]. Fix ¢ small enough so that ¢ < ¢} and
cgt ePe < 05jE c < 1. We have

HT oz ('/VT’(G)) < IEFOQCO (’/VE’ doy (%“APO)) < ’EPOxO (C/VC:J{E’de (VTAPO))
by (5) and (6),
< ¢F pao (A g, q,, (wAT0)) by (10),

< P g (Ngepio ., ., (7ATD))
by (9) and (7),

_ 4 +,—0D : :
=clicie ") 1 (‘/Vcs*ef’(”s,dxo (ATy)) by invariance,

< C;_Cg_e_éD(r) Z Hao (O B(auxo, Cé))

+
acA
c;eD(T')s, CTO

by (12) with ¢ = ¢ eP™e,
< clege P ef e log(cgemr)g)_cfo)cﬁ(CgreD(r)E)_éo
by (11) and (14),

_ .+ _—b60D(r) _6—6
=cjze 0D(r) ¢ o

for some constant cfg > (0, which proves the upper bound.
Similarly for the lower bound,
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KT oo (A7(€))

1

~ 1
2 N7 HTozo (</V5,dc0 (vALo)) = N7 HTozo (%;Qdm (vATo))

Cr Cq  _
;V/6 e 5D(7‘),um0(¢/cheD(T-)€7d10 (ATy))

C7 Cs  _sD(r
Tl U oo )

[ eD(r) e
5

CCq  _sD(r
=% D0 N, (04, Blaxo, b))

N’
aeAcgeD(T)e

v

v

> 7% ,—0D(r) .~ ,—3(—log(cs ePMe)+2c7)
= N/ 9
e—(SoD(T’) 66_60

¢y 1y (c5 eP ey

= Cy3 )

for some constant cj; > 0, which proves the result. q.e.d.

Lemma 4.5. For every N € N—{0}, there exists ¢" > 0 such that for
every n in N, for every distinct r and ' in Ry such that D(r) and D(r")
belong to [nN, (n+1)N|, the subsets A (" e ™) and N (" e ™N) are
disjoint.

Proof. Let N € N—{0}, and ¢’ < 1 be small enough, to be determined
during the proof. Assume by absurd that there exists n in N, distinct r
and " in Ry such that D(r), D(r") € [nN, (n+ 1)N[, and that the sub-
sets A;.(c" e7™V) and A5 (" e7™V) have non empty intersection. Then,
there exist representatives 7,~’ of the double cosets r,r" and points &, £’
in yAT'g, 7' AT'g respectively, and an element 1 in 0, X — 05 Co which
is different from &, &', such that de,(§,n) and de,(¢,n) are at most
d" e N and in particular at most ¢”.

Since there are only finitely many 7’s with D(r) less than a constant
(by Lemma 4.1), and since the subsets yAT'y for v in (I' — T'y) /Ty are
pairwise disjoint (by Proposition 2.6 (2)) closed subsets, we may assume
that D(r) and D(r’) are bigger than any given constant ¢/ > 0. In
particular, D(r) and D(r’) are positive.

By Lemma 2.3 (4), there exists a universal constant ¢§ > 1 such that
if dey(n',n") < 1/¢j, then the geodesic line between 7" and 7" is disjoint
from Cj, and the length of the shortest segment between |r’,n”[ and
Cy is at most —logde, (n',n") + ¢4 and at least —logdc, (7', n") — c.
Assume that ¢/ < 1/d.
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pe Py De Co
:L‘g-xgz

Let pe, per, py be the closest point on Cy to &, &', n respectively. Let
[z,y] (resp. [/, y']; [ze,yel; [xer,yer]) be the shortest segment between
Co and vCy (resp. Cp and +'Cp; Cy and |€,n[; Cp and ]¢',n[), with
z, 2’ x¢, xer in Cp. Let z, 2" be the closest point to y,y’ on [pe, &, [per, €[
respectively. Let v,u,v’,u be the closest points to ye,ye, yer, yer on
e, &l ysnls [pers &', [Py, m| respectively (see the above picture). We
have d(z,y) = D(r), d(z',y") = D(r’).

Assume that ¢’ < e~ so that d(¢, ye) is at least — log(c”)—cly >
/. By the convexity of Cj and quasi-geodesic arguments, if ¢/ is bigger
than some universal constant, then there exists a universal constant ¢j >
0 such that the distances d(z,y), d(z,pe), d(',v'), d(z’,pe), d(v,ye),
d(u, y£)7 d(’Ul, yf’)7 d(u’, yf’)’ d(pf’ xﬁ)v d(pn, l‘g), d(pn, ‘/Ef’)v d(p£’7 ‘/Ef’) are
at most ¢5. By convexity of Cp, the point z¢ is the closest point to pg
on [x¢,ye]. Since the closest point maps do not increase distances, we
have d(pe,z) < d(z,y), and similarly d(pe,2") < d(z',y’). Hence

d(?}, Z) > d(?),p&) - d(pfvz) > d(‘r&yﬁ) - 2Cg - d(ajay)
> (—log(c"e ™) — ) —2d§ — N(n +1)

= —logd" — N — ¢y —2d; .

If ¢ is small, this implies that the points pg,z,v are in this order on
[pe, €[, and, with v, the closest point to v on [y,&[, that d(y,vy) >
d(z,v) —df > —logd” — N — cj — 3c4 is big.

Up to permuting ¢ and &', we may assume that p,,u,u’,n are in
this order on the geodesic ray [p,,n[. By the convexity properties of
the distance, since d(u’,v") < 2¢§ and d(py,pe) < 2¢3, we have, with
w the closest point to u on [pg,&’[, that d(u,w) < 2¢5. Hence, since
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d(z',y') < N(n+1) <d(z,y) + N, we have
d(w7 Z,) > d(vaﬁ’) - d(p§’7 Z/)

> ( - d(w7y§) + d(yﬁaxﬁ) - d(x§7p§’)) - d(x/7y/)
> d(ye,z¢) — d(z,y) — 65 — N > —logc” — 2N — cy — 6¢f .

If ¢’ is small, this implies that the points per, 2/, w are in this order on
[per, €[, so that the point w’ in [y, &'[, whose closest point on [2/, '] is
w, exists and satisfies d(w,w’) < d(y/,2") < ¢4 by convexity, and that
d(y',w') > d(z',w) > —log” — 2N — ¢ — 64 is big.

In the geodesic quadrilateral with vertices p¢,per, v and w, we have
d(pe,per) < 4cf and d(v, w) < 4cf. Hence, by convexity, 2’ is at distance
at most 4¢j from [pe, v], and by the triangular inequality,

d(z,2") < |d(pe, z) — d(pe, =) + 8¢5 .

Since |d(pe, 2)—d(z, )| < 264, ld(per, #) —d(@', /)| < 26, and |d(, )~
d(z',y")| < N, we then have d(z,2") < 12¢§ + N. Therefore

(15) d(y,y) <d(y,2) +d(z,2") +d(',y') < 14c¢5 + N .

Now, the geodesic segments [y, v,] and [y, w'], contained respectively
in vCy and +'Cy, are arbitrarily long if ¢ is small enough. Moreover
their first endpoints y,y" and last endpoints v, w are at bounded dis-
tance, by Equation (15) and since d(vy,w’) < 6¢5. Let ¢ = 1 and
k(€e) be given by Proposition 2.6 (4). Hence by hyperbolicity, the e-
neighborhoods of 7Cy and 7'Cy meet in a segment of length that can
be made bigger than k(e) if ¢’ is small enough. This is a contradiction
to Proposition 2.6 (4). q.e.d.

A map 1) : [0, +00[ — |0, 4+00[ is called slowly varying (see [Sul]) if it
is measurable and if there exist constants B > 0 and A > 1 such that
for every z,y in Ry, if [z — y| < B, then ¢(y) < A¢(z). Recall (see
for instance [HP4, Sec. 5]) that this implies that 1 is locally bounded,
hence it is locally integrable; also, if log 1) is Lipschitz, then v is slowly
varying; and for every N € N — {0} and € > 0, the series Y -~ ;¢ (Nn)*
converges if and only if the integral fooo P (t)€dt converges.

The following statement, which could also have other applications, is
the main step towards our Khintchine-type theorem for the spiraling of
geodesic rays in I'\ X around I'g\Cj. It gives a 0-1 measure result for
the approximation of points in the limit set of I' by points of the orbit
under I' of the limit set of Iy, and seems to be the first such result when
I"p is non elementary.

Theorem 4.6. Let X,T', Ty, 0,00, (1tz)zex be as above. Assume fur-
thermore, for some (hence any) x in X, that u, is ergodic for the action
of T', and that Card Tz N B(z,n) =< €. Let f : [0, +oo] — ]0, +o0[ be a
slowly varying map.
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If the integral f;roo f(#)2=% dt converges (resp. diverges), then pirye,-
almost no (resp. every) point of OsoXo belongs to infinitely many subsets
JI/T(f(D(r))e_D(T)) where r € Ry.

Remark. In addition to the hypotheses on X in this theorem, assume
in this remark that X is a Riemannian manifold with constant sectional
curvature —1, that I' is convex-cocompact and that I'y is the stabilizer
of a geodesic line. Then up to some rewriting, this result is already
known, see for instance [DMPV] or the recent [BV]. But even in
this particular case, our techniques are very different from the ones of
[DMPYV, BV]|.

Proof. By a similar reduction as in [HP4, Lem. 5.2], we may assume
that f < 1. Define g = —log f : [0, +oo[ — [0, +o0].

We apply Theorem 3.1 with Z = 0,Xo, tt = pryze, I = Ro, and,
for every r in Ro, n € N and € > 0, with B,(e) = A, (e), I, = {r €
Ry : Nn < D(r) < N(n+ 1)} where N is as in Proposition 4.2, and
ny = E[%] where E denotes the integer part. Define, for every n in
N and € > 0,

filn) =N, fon) = coe ™, f3(n) = cg e (PNFIN))

do—0 _—donN 6—9
f4(n) :CQO € or ) f5(6) =€ 07
where ¢o is a small enough positive constant. In particular, we assume

that ¢y is less than e, where ¢ is the constant defined in Theorem
4.4, and less than the constant ¢’ defined in Lemma 4.5. Note that

Fi(n) fa(n) f5(f3(n)) = e~ 000N — f(Np)o=00

Hence, as f is slowly varying, the series ) f1(n)fa(n) f5(f3(n)) con-
verges if and only if the integral f1+°° f9=% converges.

Note that B, (e) is measurable and non-decreasing in €, and that I,
is finite by Lemma 4.1. Assumption (1) of Theorem 3.1 is satisfied
since g is non negative. The assumptions (2) and (3) are easily verified.
Assumption (4) follows from Proposition 4.2. Assumption (5) follows
from Theorem 4.4 and the first assumption on cp. Assumption (6) is
satisfied by Lemma 4.5 and the second assumption on co. Let us check
that Assumption (7) of Theorem 3.1 is also satisfied.

Let r,7’ € Ry with n = n, < m = n, such that A4.(f3(n)) and
N7:(f3(m)) meet. Hence, there exists two representatives 7,7 of r,r/
and two points &, & in yAlg, v ATy respectively, as well as a point 7
in 0o X — AL, such that dc,(§,7) < f3(n) and de,(&',n) < f3(m).
Let us prove that there exists a big enough constant A > 0 such that
Ny (fa(m)) is contained in A (Af3(n)).

Recall that there are only finitely many r’s with D(r) less than a
constant. As dy (defined in Equation (3)) is bounded on 0, X X 000 X0,
the e-neighborhood for dy of any non-empty set covers 0, X if € is big



296 S. HERSONSKY & F. PAULIN

enough. Hence we may assume, if \ is big enough, that D(r) and D(r')
are bigger than any given constant ¢; > 0. In particular, D(r) and
D(r') are positive.

Let Pe; Pe's Py X5 Y, 33]7 ylv Te, Yey ety Yers 2 Zl) v, U, ’U,7 ulv Uy be as in the
proof of Lemma 4.5 and its picture. Let v, be the closest point to v’
on [y, &'[.

As in the proof of Lemma 4.5, if ¢; is bigger than a universal constant
and if ¢ is small enough, then there exists a universal constant c¢g such
that the following distances d(z,y), d(x, pe), d(2',y'), d(2, per), d(v,ye),
d(u,ye), d(v',ye), d(u',ye), dpe,xe), d(py, z¢), d(py,xer), dper,zer),
d(v,vy), d(v',vy) are at most cg. Furthermore, pe, z, v, are in this
order on [pg,{[ and similarly pe, 2’,v', & are in this order on [per,£'[,
and d(y,v,), d(y',v,) may be taken bigger than any given constant if
¢ is small enough.

Say that a point p is above g (resp. below q by at most some con-
stant h > 0) with respect to Cy if d(p, Co) > d(q,Cp) (resp. d(q,Cp) >
d(p,Co) > d(q,Co) — h). As m > n, the point 3/ is above y or below
y by at most some universal constant. If the point y’ was below u by
more than some big constant, then, if ¢y is small enough, some long
subsegment of [/, v,/] would have its endpoints at distance at most a
few c3’s from the endpoints of some subsegment of [y, v,], and as in the
end of the proof of Lemma 4.5, this would contradict Proposition 2.6
(4). Therefore the point ¢’ is either above, or below only by a some
constant, the point u and hence y¢. So that for every \” > 0, there
exists A’ > 0 such that the shadow (seen from p¢) of the ball of center
ye and radius A > 0 contains the shadow of the ball of center y" and
radius \” > 0. Note that if \” is big enough and if ¢ is small enough,
then the shadow of B(y’, \”) contains A,/(fa(m)), as seen in the proof
of Lemma 4.5. But if A is big enough, then .4, (Af3(n)) contains the
shadow of B(yg, \'). Hence Assumption (7) of Theorem 3.1 follows.

Let Ey be the set of points of J., X which belong to infinitely many

B, (f3(n;)) = J%(@ e_NE[%} f(NE[%]D

for r in Ry, and similarly let E} be the set of points of 0, Xy which

belong to infinitely many ,/ﬂ(f(D(r)) e_D(’")). As f is slowly varying,

there exists a constant ¢4 > 1 such that F 1 f C E} C E., . Hence in
4

order to prove Theorem 4.6, we only have to prove that if f1+°O fo-%

converges (resp. diverges), then yir ., (Ef) = 0 (vesp. pirgz, (“Er) = 0). If
this integral converges, then the result follows from Part [A] of Theorem
3.1.

In the divergence case, Part [B] of Theorem 3.1 implies that jira, (Ef)
is positive. Using the ergodicity of u, in a similar way to the end of



ON THE ALMOST SURE SPIRALING OF GEODESICS 297

the proof of Theorem 5.1 of [HP4], and the fact that p,(ATg) = 0 as
dp < 0, it follows that E has full measure. q.e.d.

5. Spiraling geodesics

Let us now proceed towards our main result, Theorem 5.3, which is
a geometric version of Theorem 4.6, and its first applications. We keep
the notation X,T", Ty, 4, g, Co, (itz)zex of the previous section.

Let € be a positive real number and let g : [0, +00[ — [0,400[ be a
map such that t — f(t) = e 91 is slowly varying. A geodesic line ¢
in X will be called (e, g)-Liouville with respect to (I',I'g) if there exist
a sequence (t,)nen of positive times converging to +oo and a sequence
(n)nen of elements of T" such that ¢(¢) belongs to A¢(y,Co) for every ¢ in
[tn, tn+g(tn)]. The following remark implies that up to changing g by an
additive constant (or equivalently up to changing f by a multiplicative
constant), being (¢, g)-Liouville does not depend on €, and depends only
on the asymptotic class of /. We emphasize that the subsets A¢(vCp)
as y ranges over [ are not assumed to be pairwise disjoint.

Remark 5.1. (1) Note that if ¢ > € and ¢’ < g, then a geodesic line
which is (e, g)-Liouville is (¢, ¢')-Liouville.

(2) Note that by the hyperbolicity properties of X, for every € in
10, €], there exists a constant c(e,e¢’) > 0 such that for every convex
subset C' of X and every geodesic line ¢ in X, if the length A of the
intersection of ¢ and A4C is at least c(e, €’'), then the length of the
intersection of £ and AL C' is at least h — c(e,€') (see [PP1] for precise
estimates). In particular, if g > c(e,€'), then a geodesic line which is
(€, g)-Liouville is (¢/, g — c(e, €'))-Liouville.

(3) Recall that two geodesic lines ¢, ¢ in X are asymptotic if d(¢(t), ")
(or equivalently d(¢'(t),¢)) is bounded (or equivalently tends to 0) as ¢
tends to +oo. Note that £,/ are asymptotic if and only if their points
at infinity ¢(+00), ¢/ (+00) are equal.

By the strict convexity of e-neighborhoods of convex subsets of X, if
¢ is an (e, g)-Liouville geodesic line, and ¢ is a geodesic line which is
asymptotic to ¢, then ¢’ is (2, g)-Liouville, as well as (e, g — n)-Liouville
for every constant 1 > 0 such that g > 7.

(4) Let p : X — I'\X be the canonical projection, and endow I'\ X
with the quotient distance. If a geodesic line £ in X is (e, g)-Liouville
with respect to (I',Ty), then there exists a sequence (t,)nen of positive
times converging to 400 such that po/(t) belongs to A4¢(p(Cp)) for every
tin [t,,t, + g(tn)]. But the converse is not true in general (for instance
if '\ X is compact and e is its diameter).

The converse is true if € is small enough, when p induces an injection
from 'p\Cy into T'\ X, i.e. when 7yCyNCy =0 for v € T' — T'y. Indeed,
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since I'g is convex-cocompact, there exists g > 0 such that if € < &g,
we have v A4.CoNAN:Cy = ) for v € ' —T'g. This is for instance the case
when X is a manifold, T" acts freely on X, and I'y\Cy is a totally geodesic
embedded submanifold (¢ (T'y\Cp) is then a tubular neighborhood).

When X is a manifold, I" acts freely on X, and Cj is a geodesic line
(even when the closed geodesic a = I'g\Cy is not simple), if g > 1, and
if € is small enough (in particular compared to the angles of « at the
self-intersection points), if there exists a sequence (t,)nen of positive
times converging to +oo such that p o ¢(t) belongs to A/ (p(Cp)) for
every t € [tn,tn + g(tn)], then £ is (e,g — 1)-Liouville with respect to
(Pa FO) :

After these remarks, let mp : X U (0o X — 050Co) — Xo U 0 X be
the canonical projection. The next lemma shows the relation between
the (geometric) Liouville property of a geodesic line and the fact that
its point at infinity belongs to a limsup subset considered in Theorem
4.6.

Lemma 5.2. There exists ¢’ > 0 such that for every geodesic line {

in X such that {(+00) ¢ U, er v 950Co,
(1) if € is (e, g)-Liouville, then the point mo(¢(+00)) belongs to infin-
itely many subsets N, (<" f(D(r)) e P")) for r in Ry;
(2) conversely, if the point mo(¢(4+00)) belongs to infinitely many sub-
sets (7 f(D(r)) e~PU)Y for v in Ry, then £ is (e, g)-Liouville.

Proof. (1) Assume that ¢ is (e, g)-Liouville. Up to replacing e by 2e
and ¢ by an asymptotic line, as £(+00) ¢ 0-Cpy and by Remark 5.1 (3),
we may assume that £(0) is the closest point in Cy to ¢(+00).

0(400)

Let (t,)nen be a sequence of positive times, converging to +o0o. Let
(Yn)nen in T" be such that £(t) € A¢(71,Co) for every t € [tn, tn + g(tn)].
As I' acts properly on X, and as its subgroup Iy acts cocompactly
on Co, the family (vCo),er—ry)/r, 18 locally finite. Hence d(7,Co, Co)
tends to +00 as n — 400 (otherwise ¢(+o00) would belong to v s Co
for some v € T'). In particular, up to extracting a subsequence, =, ¢ I'y
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and with r, = [y,] € Ry, the r,’s are pairwise distinct. Furthermore,
we may assume that ¢ enters A¢(y,Co) at the time ¢,. Let [pn,q]
be the shortest segment between Cy and ~,Cp, with p, € Cp, so that
D(r,) = d(pn,qn). Let z, (resp. y,) be a point of ~,Cy such that
d(xn, (tn)) < € (vesp. d(yn, Lty + g(tn))) < €).

As we have already seen (in the proofs of Theorem 4.4 after Equation
(12) and of Lemma 4.5), there exists a constant ¢}’ > 0 such that
[qn,Yn] is contained in the ¢/’-neighborhood of a geodesic ray [gn, &
with &, € 71,0,Co, and such that for n big enough, d(p,,¢(0)) < /.
By hyperbolicity, the distance between p, and the closest point of Cy
to &, is at most a constant. By arguments similar to the ones in the
proof of Lemma 4.5, it is easy to prove that there exists a constant
¢y’ > 0 such that —logdc, (&, £(+00)) > t, + g(tn) — ¢4 and (using
the fact that ¢ enters in A¢(y,Cy) at time t,) that |t, — d(pn,qn)| <
). As f is slowly varying, there exists a constant ¢ > 1 such that

dcy (&, 0(400)) < & f(D(ry)) e P, This proves the first assertion.

(2) Assume now that there exist a sequence (1, = [n])nen of pairwise
distinct elements in Ry and &, € 7,0-Cp such that

dcy (§n, €(+00)) < % (D(ry)) e—D(rn)

for every n, for some ¢’/ > 1 big enough, to be determined later on. Let
us prove that £ is (e, g)-Liouville. Up to replacing € by § and £ by an
asymptotic line, we may assume as above that £(0) is the closest point
in Cp to £(400).

By Lemma 4.1, we have that D(r,) = d(Cp,v,Cp) tends to +o00 as
n — +oo (hence is positive for n big enough). As above, by hyper-
bolicity, the closest point of Cjy to &, is at distance at most a constant
from the closest point of Cy to v,Cy. By hyperbolicity and the def-
inition of d¢,, there exists a constant cg’ > (0 such that between the
times ¢t = D(ry,) and t = D(ry,) + g(D(ry)) + log " — &', the geodesic
ray ¢ is at distance at most ¢4’ from ~,Cy. Hence, as in Remark 5.1
(2), there exists a constant ¢’ > 0 such that both ¢(D(ry,) + ¢J’) and
U(D(rp) + g(D(ry)) + log " — ' — ¢f’) are at distance at most € from
7 Co. Hence if ¢ is big enough, by setting ¢, = D(ry,) + ¢ and as f
is slowly varying, the second assertion follows. q.e.d.

Theorem 5.3. Let X be a proper CAT(—1) geodesic metric space.
Let T" be a non elementary discrete group of isometries of X, with finite
critical exponent 8, of divergence type. Let figy be its Bowen-Margulis
measure. Assume that Card Tz N B(z,n) < ™, for some v € X. Let
(T')ier be a family of almost malnormal convex-cocompact subgroups of
infinite index in T with critical exponents (8;)ier. Let 0 = sup;c;d;
and 0, = inf;crd;. Let g : [0,400[ — [0,+00] be a map such that
t f(t) = e 9 is slowly varying, and for everyi € I, let ¢; > 0.
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If [[7°° f(t)2=% at diverges (resp. [ F(#)5=% dt converges), then
Lpa-almost every (resp. no) element of 4 X is (e;,g)-Liouville with re-
spect to (I,T;) for every (resp. some) i € I.

Remark. (1) There are examples of I'\X with X and I" as in the
above theorem, such that the upper bound of the critical exponents
of the infinite index subgroups in I' is equal to (resp. is strictly less
than) the critical exponent of I', as for instance the closed real hyper-
bolic 3-manifolds fibering over the circle (resp. the closed quaternionic
hyperbolic manifolds, see for instance [Leu]).

(2) Assume in this remark that X is a Riemannian manifold, that I’
is cocompact and torsion free, and that I'; is the stabilizer of a geodesic
line. This corresponds to the hypotheses of Theorem 1.1 (that appear
above it). Then there might be a simpler proof using symbolic coding,
as indicated to us by V. Kleptsyn, using the fact that the geodesic flow
of '\ X is then conjugated to a suspension of a Bernoulli shift. But this
requires some serious amount of work, since some geometric features
are difficult, to say the least, to translate by the coding. In our general
situation, no such coding is possible anyway.

Proof. Note that I' is countable and that any convex-cocompact sub-
group of I' is finitely generated. Hence I' contains only countably many
convex-cocompact subgroups. So that we may assume that the index
set [ is countable.

Note that the divergence (resp. convergence) of the integral in the
statement is unchanged if one replaces f by a positive scalar multiple
of it. Also recall that p,,(yAT';) = 0 for every ¢ € [ and v € T,
since §; < ¢ (see Lemma 2.5). As I and I' are countable, we have
Haqo (Uie[, vel YAL;) = 0.

When the index set I has only one element, the result follows from
Theorem 4.6, by considering the conformal density (1)zex of dimension
0 for I' that is used in the construction (recalled in Section 2) of fipym
(which is ergodic since T is of divergence type), and by the lemmas 5.2,
4.3, 2.4.

Using the fact that finite or countable unions of sets of measure 0
have measure 0, the result for general I follows, since

+00 B +oo +o0 i
/ o3 S/ o6 S/ £ qed.
1 1 1

Using the three examples at the beginning of Section 4 and Remark
5.1 (4), the theorems 1.1, 1.3, 1.4 in the introduction follow.

Similarly, to prove Proposition 1.5 of the introduction, we apply The-
orem 5.3 to X = T the tree in the statement of Proposition 1.5, with
I = {0} and T’y the stabilizer in " of a geodesic line in 7" mapping to
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the cycle C' in the statement of Proposition 1.5. For the map ¢ in The-
orem 5.3, we take g/L where g is the map in Proposition 1.5 (the map
t — exp(—g(t)/L) is still slowly varying). When I' is cocompact and
torsion-free (anyone of these two assumptions may be not satisfied),
then the symbolic dynamics argument alluded to above works easily,
and gives an alternative proof. But no such coding is easy in general,
even for lattices as simple as PSLy(Fy[X]) in PSLy(Fq((X 1)), see for
instance [BP].

Many other applications are possible, we will only give the next one.

We refer to [GP] (see also [Bou2, HaP)) for the definitions and ba-
sic properties of a hyperbolic building, which in particular, when locally
finite, is a proper CAT(—1) geodesic metric space. For instance, for ev-
ery integers p > 5,q > 3, let (W, S,) be the hyperbolic Coxeter system
generated by the reflections on the sides of a right angled regular real
hyperbolic p-gon; Bourdon’s building I, , is (see for instance [Bou2])
the unique (up to isomorphism) hyperbolic building of dimension 2,
modeled on (W), S,), and whose links of vertices are bipartite graphs
on g + g vertices. It has a cocompact lattice I', ; with presentation

(s1,..,8p | Vi€ Z/PZ sT=1,[s;,8i41] = 1),

where 51, ..., s, are generators of the pointwise stabilizers of the p panels
of a fundamental chamber € of I, ,. If ¢ is even, let I'g be the subgroup

q
(isomorphic to W),) generated by the elements s? for 1 <4 < p, which
is, by the simple transitivity of the action of I', ; on the set of chambers,
the stabilizer of a (unique) apartment A¢ in I, , containing €.

Remark 5.4. If ¢ is even, then the subgroup 'y is almost malnormal
inI'y,.

Proof. (F. Haglund) Let V' be the union of the closed chambers of
I,,; meeting A¢, which is invariant by I'y. By convexity (and arguments
as in Poincaré’s theorem about reflection groups), the subgroup H of
I' = T’y 4 generated by the pointwise stabilizers of the edges contained
in the boundary of V has V as a (strict) fundamental domain, and is
normalized by I'g.

Let TV be the subgroup of I' generated by H and I'g, which is iso-
morphic to their semi-direct product. Since V is a fundamental domain
for H and since I'y acts transitively on the chambers of Ag, for every
closed chamber C' in Ag, for every g in I, there exists h in H and 7 in
T'g such that vohgC meets C'. Since I' is discrete and acts transitively
on the chambers, let d1,...,d; be the elements in I" such that the set
of closed chambers meeting C' is {01C,...,0C}. Since I' acts simply
transitively on the chambers, we then have I' C IV6; U - - - UTV§,,, hence
I has finite index in T'.



302 S. HERSONSKY & F. PAULIN

Let I be a finite index torsion free subgroup of IV (which exists for
instance since I'y, ; is finitely generated and linear in characteristic 0, see
for example [Kap]).

Let us prove that the stabilizer S = I'"" N Ty of Ag in I'” is malnormal
in I'”, which proves the result. Assume by absurd that there exists 7 in
I — S and s in S — {e} such that ysy~! preserves A¢. By construction,
two distinct translates of Ag¢ by elements of I' are disjoint. Hence v~ Ag
and Ag are disjoint, and both preserved by s. The (unique) shortest
segment between v 'A¢ and Ag is then fixed by s, which contradicts
the fact that I'” is torsion free. q.e.d.

Corollary 5.5. Let X be a locally finite thick hyperbolic building
modeled on a hyperbolic Coxeter system (W,S). Let T' be a cocompact
lattice in the automorphism group of X with Bowen-Margulis measure (.
Let A be an appartment in X whose stabilizer I' 4 in I' acts cocompactly
on A and is almost malnormal in I'. Denote by k > 1 the dimension
of A (hence of X ), and by 6 the Hausdorff dimension of 0xX (for any
visual distance). Let f <1 be a slowly varying map, and € > 0.

If f1+°O f&)OFTL at converges (resp. diverges), then for p-almost no
(resp. every) ¢ in 4 X, there exist a sequence of positive times (tp)neN
converging to +o0o and a sequence (Yp)nen in I' such that (t) belongs
to Y ANA for every time t in [ty,t, — log f(t,)].

Proof. The apartments in a hyperbolic building are convex (for the
CAT(—1) metric), hence I'4 is convex-cocompact with critical exponent
k—1. As X is thick, I' 4 has infinite index in I'. The result follows from
Theorem 5.3 (with I a singleton). q.e.d.

Let us go back to the general situation of Theorem 5.3. The following
result is a logarithm law-type result for the spiraling of geodesic lines
in T\ X around T'o\Cy. For every € > 0 fixed, define the penetration
map p = proyc, : YX x [0, +o00[ = [0, 400 in T A.C) of the geodesic
lines in X, in the following way. For (¢,t) € 4 X x [0, +oo[, if £(t) does
not belong to I'#¢Cy, then let p(¢,t) = 0. Otherwise, let p(¢,¢) be the
upper bound of the lengths of the intervals I in R containing ¢ such that
there exists v in I" with ¢(I) contained in y.4.Cp.

Theorem 5.6. Let X be a proper CAT(—1) geodesic metric space.
Let T be a non elementary discrete group of isometries of X, with fi-
nite critical exponent &, of divergence type, and let jigy be the Bowen-
Margulis measure of . Assume that Card Tz N B(x,n) < e, for some
x € X. Let Ty be an almost malnormal convex-cocompact subgroup of
infinite index in I' with critical exponent d&g.

Then for every € > 0, for figy-almost every ¢ in 4 X, we have

p(l,t) 1

lim su = .
aies logt  6—dy
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Proof. For every ~ in I' such that a geodesic line ¢ enters the e-
neighborhood of yCy, let ¢y, be the entering time of £ in this neighbor-
hood.

We apply Theorem 5.3 with g : t — k log(1+1t), which is a Lipschitz
map RT — R, for every x > 0. Note that the integral f;roo t—(0=00)k gy
diverges if and only if k < ﬁ. If ky, = ﬁ + 1 for n € N— {0}, then
the convergence part of Theorem 5.3 implies that for jigy-almost every
¢ in 94X, for every 7 in I' such that ¢ meets .4.Cq with t; , big enough,
we have p({,ts) < g, (tr). Hence

0t
lim sup P t) = lim su 713( 1 tes) <
t—too logt log(1 +t¢ )

mn

where the upper limit is taken on the v € I'—I"g such that £ meets v.4.Cy
and ty, tends to +00. As n — +o0, we get that limsup, ,, plf)ég,tt) <

ﬁ. Similarly, using the divergence part of Theorem 5.3 with the

function g = g, where k = ﬁ, we get that for ppy-almost every £ in

p(6,t) 1
Togt = 383"

9 X, limsup,_, | o q.e.d.

Corollary 1.2 in the introduction follows immediately.

6. Non-archimedean Diophantine approximation by
quadratic irrational numbers

Let us now give an application of our results to Diophantine approx-
imation in non-archimedian local fields.

Let K = F,((X1)) be the field of formal Laurent series in the vari-
able X1 over the finite field F,. Recall the definition of the absolute
value of an clement f € K —{0}. Let f = S a; X" where n € Z and
an # 0. Then we define v(f) = n and |f|e = ¢~*). Endow the locally
compact additive group K with its (unique up to a constant factor)
Haar measure p. Let K =F,(X).

Let T, be the Bruhat-Tits tree of SLy over K; we refer to [Ser]
for any background on T,. Identify as usual 0T, and KU {0}, so
that the action of SLo (I? ) on T, extends continuously by the action by
homographies of SLy(K) on K U {oo}. Let xo be the standard base
point in T,. Note that the Hausdorff dimension of the visual distance
dy, is logq, as T, is a regular tree of degree g + 1.

We refer for instance to [Las, Sch] for nice surveys of the Diophan-
tine approximation properties of elements in K by elements in K, a
geometric interpretation of which is given in [Pau]. Here, we are in-
terested in approximating elements of K by elements in the set K5 of
irrational quadratic elements in K over K. For every « in Ko, let o
be its Galois conjugate (the other root of its minimal polynomial), and
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define its height by
* -1
ha) =la—a|w .

We will not make precise here the (loose) relationship with the standard
height (see for instance [HS]) of an element of the projective line over
the algebraic closure of K.

Let I' = PSLy(F,[X]) = SLo(IF,[X])/{=£id}, which is a (non-uniform)
lattice of T, (see for instance [Ser]), hence a non-elementary discrete
group of isometries of T,, whose critical exponent  is equal to the
Hausdorff dimension of d,, that is § = logq. See for instance [BP] for
a (well known) proof that the restrictions to 0Ty — {o0} = K of the
Patterson-Sullivan measures of I' have the same measure class as the
Haar measure p of K.

Proof of Theorem 1.6. Let 7y be a hyperbolic element of I'; Cy be
its translation axis in Ty, and I'g be the stabilizer of Cy in I', which
is convex-cocompact with critical exponent dy = 0. It is easy to verify
that the set of points at infinity of C is {, a*} for some « in Ks; and
that any such pair is the set of endpoints of some hyperbolic element
of I (one can for instance use the fact that Artin’s continued fraction
expansion of an element in K is eventually periodic (see for example
Las])).

Note that for every v € I' and o € K, the element ya is still in Ko,
(ya)* = vya* and y{a, a*} N {a,a*} # 0 if and only if v € Ty.

Denote by do the Hamenstadt distance on 05T, —{oo} = K defined
by the horosphere centered at co and passins%); through xg. It is proved

in [Pau, Coro. 5.2] that dug(£,&') = |€ — /|87, for every £,¢ in K.

Lemma 6.1. For every & in K- {a, a}, there exists a neighborhood
V of & and a constant ¢, > 0 such that for every £,& in'V,

1

dey(§:€) = ¢ d(6,€) = e |6~ €127 .

Furthermore, for every v in I' — Iy such that vya and vy belong to V,
we have

1

e PD = ¢, |lya — yar|iEe .
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o0
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o q0
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Proof. Let pg be the intersection of the geodesic line |oo, &[ in T, with
the horosphere centered at oo passing through zq. Let ¢y = m¢,(§o), and
up € X such that &, 0o N [0, q0] = |€0, uo]- In the above picture, we
assume that Cp and Joo,§y| are disjoint, and that py € [ug,oc0[. But
the following reasoning is independent of these assumptions. Let ¢, =
e Peo(@0po) Tf £ ¢ are close enough to &, and |¢, oo N 1€, 00| = [p, 0o,
then po,uo € [p,o0[, 7, (§) = 7, (€) = o, Beo(q0,p0) = d(qo,p) —
d(po, p), deo(£,€") = e~ ¥PoP) and dg, (&,€) = e~ 4%P) hence the first
result follows.

As de, (ya, va*) = e P if ya, va* are closed enough to & (see

Equation (1)), the second result follows from the first one. q.e.d.

Let ¢ : [1,+00] — ]0,1] be a map with ¢ — f(t) = cp(qt)@ slowly
varying, and let g : t — —log f(t) = —log,p(q %), so that ¢(t) =
g 90°%t) By an easy change of variable, the integral fl o(t)/t dt
diverges if and only if f bg 9 dt diverges.

By the above lemma and as f is slowly varying, for every compact
subset A of K — {a, ..}, there exist positive constants ¢, (small enough)
and ¢ (big enough) such that for every & in A,

o if (r, = [n])nen is a sequence in Ry with D(r,) — +oo as n —
+00 and dg, (€, ) < &, f(D(ry)) e P for every n big enough,
then h(y,a) — +o0o0 as n — 400 and, for every n big enough,

1 1

€~y B < B D) |y o 0t B

9

that is

o elhtua)
€ — Mmoo < h(’Yna) ;

e conversely, if (7,)nen 18 a sequence in I' with h(y,a) — 400 as
n — 4oo (in particular v,, ¢ Ty for n big enough) and | —7, |0 <

p(h(yn))
h(ma)

D(ryp) — +o0 as n — 400 and dg, (€, yna) < ¢! f(D(ry,)) e Pm)
for every n big enough.

for every n big enough, then with r, = [v,], we have
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Hence by Theorem 4.6, if f (t)/t dt diverges, then for u-almost
every £ in K there exist a sequence (Bn)neN in the congruence class of

a in Ky, with h(83,) — 400 as n — +oo, such that |£ — |0 < w(}z(%)),

This can be written as liminf w?h(ﬁﬁ |€ — Bloo < 1, where the lower
limit is taken over § in the congruence class of o with h(8) — 4o0.
Replacing ¢ by %90 and letting k go to 400, this proves the divergence
part of Theorem 1.6 in the introduction. The convergence part follows

similarly. q.e.d.

By taking ¢ : t +— ¢t7° in Theorem 1.6 with s > 0, the next result,
which in particular says that almost every element of K is badly ap-
proximable by quadratic irrational elements of K, follows immediatly.

Corollary 6.2. For p-almost every z in K, lim inf h(B)|z—Blec =0,
and, for every s > 0, lim h(B)'**|z — B|o = +00, where the lower limit
and limit are taken over the quadratic irrational elements (3 in K , in
any congruence class, with h(B) — +oo.

Appendix A. Approximating points
by C. S. Aravinda, S. Hersonsky and F. Paulin

Let X be a proper CAT(—1) geodesic metric space. Let I be a non
elementary discrete group of isometries of X, with finite critical expo-
nent 0. In this appendix, we will again apply the geometric avatar of the
Borel-Cantelli Lemma, Theorem 3.1, this time to prove a Khintchine-
type result for the approximation of a point by geodesic lines in X.

Let g € X be a base point. For every C' > 0, a point £ in J, X will
be called a C-strongly conical limit point if there exist a geodesic line
p with p(+o00) = £ and a sequence (Y, )nen in I, such that (v,z0)nen
converges to &, d(vnxo,p) < C and d(V,Zo, Vnt120) < C. Note that
if £ is a C-strongly conical limit point with respect to zg, then £ is a
C’-strongly conical limit point with respect to any other base point x,
for C" = C'+2d(zp,x(). And if £ is a C-strongly conical limit point for
the geodesic line p, then £ is a (C' + €)-strongly conical limit point with
respect to any other geodesic line p’ asymptotic to p, for every € > 0.

Examples. (1) If ¢ is a fixed point of a hyperbolic element « of
I', then £ is a C-strongly conical limit point with C' = max{d(zo, A,),
d(xo,vwo)}, where A, is the translation axis of 7.

(2) If T is convex-cocompact, then there exists a constant C' > 0 such
that any limit point of I" is a C-strongly conical limit point.

The following result is (a slight adaptation of) Sullivan’s well-known
shadow lemma, see for instance [Boul, page 93].

Lemma A.1l. For every conformal density (u,).cx of dimension §
for T, for every C > 0, there exists ¢ > 1 such that for every C-strongly
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conical limit point &, for every e € 10,1],

1
= € < iy (B, (€ ) S e

The following result is the main tool from which Theorem A.3 will
follow.

Theorem A.2. Let X be a CAT(—1) proper geodesic metric space.
Let x,y be points in X. Let I" be a non elementary discrete subgroup of
isometries of X. Let (u,).ex be a conformal density of dimension & for
T, for some § in ]0,+00[. Assume that Card {y €T : d(z,vy) <n} =<
e and that there exists C > 0 such that for all but finitely many z in
Ty, there exists a geodesic ray p, starting from x, passing through z and
ending at a C-strongly conical limit point. Let f : [0,+oo] = |0, 400
be a slowly varying map, with f(t) converging to 0 as t — +oo. Let
E; be the set of points in 0, X which belong to infinitely many balls

Ba, (py(+00), f(d(x,~y)) e~ =) for ~ in T.
[A] If ffo f(t)0dt converges, then pa(Ef) = 0.
[B] If there exists ¢ in R and a sequence (tp)nen in R, such that

tn, — 400 as n — +oo, such that t,4q1 > t, — log f(t,) — ¢ for every n,
and such that 3", o f(tn)® diverges, then py(Ef) > 0.

Proof. We first start by defining the constants that will be used in
this proof.

By an easy geometric series argument, and since the stabilizer of y
in T is finite, there exist N € N — {0} and ¢y > 0 such that Ne " <1
and, for every t > 0, if J; ={z €Ty : t <d(z,z) <t+ N}, then

(16) ci e < Card J; < ¢g e .
0

Since f is slowly varying, there exists ¢; > 1 such that f(y) < ¢1f(x)
if [y — x| < N. Let ¢o = min{N, é} e~™, which belongs to ] 0,1]. Note
that the constant ¢;, and hence c9, is unchanged if one replaces f by a
scalar multiple of it.

Let ¢, > 0 be big enough so that f(t) < e N=¢ for t > ty, and that
for every z in I'y such that d(z, z) > t,, the geodesic ray p, is defined.

We now define the various objects needed to apply Theorem 3.1.

In Case [A], define ty = t, and by induction t,4+1 = t,, + N for every
n in N. In Case [B], as t, — 400, we may assume, up to shifting the
indices, that to > t{,.

Recall that, for every € > 0, a subset S of a metric space is called
e-separated if for every s # s in S, we have d(s,s’) > e. Endow the
(discrete) orbit I'y with the induced metric. For every n in N, let I,, be
a maximal 4N-separated subset of J;, and I = |Jo~,I,. The subsets
Jy, for n in N, and hence the I,,’s, are pairwise disjoint, in Case [A] by
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the definition of (¢, )nen, and in Case [B] since by induction ¢,, > ¢, and
tny1 >ty —log f(ty) —c>t, + N.
For every n in N and € > 0, define

fl(n) = e5tn7 f2(n) = C2 e_tnv f3(n) =C2 f(tn) e_tn )

fan) = 5%, fsle) =€ .
The series 3, o f1(n) fa(n) f5(f3(n)) converges if and only if the series
> nen f(tn)? converges, which in Case [A] is true if and only if the
integral f1+°O f9 converges, as f is slowly varying.
For every z in I and ¢ > 0, let B,(¢) = By, (p.(+00),€), which is
measurable and non-decreasing in e.

Let us prove that the finite measured space (OsX, itz), the family
(B.(€))zer, e>0, the finite-to-one map I — N defined by z — n, = n if
z € I, and the above maps f1, fo, f3, f1, f5 satisfy the assumptions of
Theorem 3.1.

Assumption (1) of Theorem 3.1 is satisfied since f(¢,) < 1 for every n.
Assumption (2) is satisfied by the definition of (f;)i<i<5. Assumption
(3) holds true with (for instance) ¢ = 2,¢” = 29. Assumption (5) is
satisfied by Lemma A.1, since fo <1 and fy is constant.

Let us prove that Assumption (4) of Theorem 3.1 holds. By the
maximality of I, for every 2’ in J;,, there exists z € I, such that
d(z,2') <4N. Hence

Card I, < Card J;, < (Card B(y,4N)NTy) (Card I,,) .
By Equation (16), we have Card I,, < e’ as wanted.

Let us prove that Assumption (6) of Theorem 3.1 holds. Given n
in N and distinct z,2" in I,,, assume by contradiction that B,(f2(n))
intersects B,/(f2(n)) non trivially. By Lemma 2.1 (1), for every v € T,
the ball By, (pyy(+00), N e~ @) is contained in €,B(yy,N). As
d(z,z) < t, + N and ¢; < Ne N, we have fo(n) < Ne 4*2) and
similarly for z/. Therefore 0,B(z, N) intersects 0,B(z', N) non triv-
ially. Hence there exists a geodesic ray p starting from = and passing at
distance at most N from both 2z and z’. Let p,p’ be the closest point of
z, 2" respectively on p, with (up to permuting z and 2’) p’ € [z,p]. As
2,2 € I,, and since the closest point maps do not increase distances, we
have

d(z,7') <d(p,p') +2N =d(z,p) — d(x,p) + 2N
<d(z,z) —d(z,2')+3N <4N .
This contradicts the fact that I,, is 4N-separated.

Finally, let us prove that Assumption (7) of Theorem 3.1 holds under
the hypotheses of Case [B]|. For m > n, take (z,2') in I,, x I,, and
assume that B,(f3(n)) intersects B./(f3(m)) in at least one point &.



ON THE ALMOST SURE SPIRALING OF GEODESICS 309

Since f < fa, tm > tgs a0d bysy > by —log f(t) — ¢, we have fy(m) <
fa(m) < fa(n+1) < e f3(n). Then, for every n in B,/(fa(m)), we have

(1, p=(+00)) < di(n, por (+00)) + di(pr (+00),§) + dz (€, p2(+00))
< fa(m) + f3(m) + f3(n) < (2e° + 1) f3(n) .

Therefore B,/(f2(m)) is contained in B,((2e 4+ 1) f3(n)), which proves
the claim.

Let E} be the subset of points of 0, X which, as z ranges over I,
belong to infinitely many balls B,(f3(n;)). As 0 < d(z,z) —t, < N if

z € I, and since co < é e N, we have, for every z in I,

(A7) Bo(fs(m) € Ba, (p=(+o0). f(d(x,2) =) € B-(T fom))

In Case [B], it follows from Theorem 3.1 that i, (E%) > 0. By the
first inclusion in Equation (17), we have . (Ef) > 0.
In Case [A], if g = 2—; f, then f;roo ¢° also converges. Hence Theorem

3.1 implies that i, (Ej) = 0. Tt follows from the second inclusion in
Equation (17) that p,(Ef) = 0. q.e.d.

Given a complete Riemannian manifold M and a map f : [0, +oo[ —
10, +-00[, say that an element v in 7'M, or its associated geodesic line
pin M, is f-well approzimating xo (we said v is f-Liouville at xo in
[HP1]) if there exists a sequence of times (,)nen tending to +oo such
that d(p(t,),zo) < f(t,) for every n.

When M is a finite volume negatively curved locally symmetric space
of dimension n, F. Maucourant [Mau] proved that if f is decreasing to 0,
then for the Liouville measure (which in general strongly differs from the
maximal entropy measure), almost every (respectively almost no) v €
T'M is f-well approximating o if and only if floo f&)"1 dt diverges
(respectively converges). Hence in constant curvature, the following
result is weaker than Maucourant’s theorem.

Theorem A.3. Let M be a closed manifold with sectional curvature
at most —1, let xg be a point in M, and let u be the maximal entropy
probability measure for the geodesic flow of M, with h its topological
entropy. Let f : [0,400[ — ]0,400[ be a non increasing and slowly
varying map.

(1) If f(t) and e t/f(t) converge to 0 as t — +oo, if the integral
fuoo % dt diverges (for some wu big enough), then u-almost every
geodesic line is f-well approrimating .

(2) If the sectional curvature of M satisfies —a® < K < —1, and if
floo f(t)% dt converges, then p-almost no geodesic line is f-well approx-
mmating xg.
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Note that in Case (1), the assumptions that f(t) and e~*/f(t) con-
verge to 0 are not very important. If f(¢) is at least a positive constant,
then simply by ergodicity, p-almost every geodesic line is f-well ap-
proximating xg. And if e7!/f(t) is a least a positive constant, then the

integral f bhg 7 converges for u big enough.

Proof. Let X — M be a universal covering of M, with covering group
I' (which is non elementary), let = be a lift of 2, and take y = z. For
every z in I'y — {y}, let p, be the geodesic ray starting from = through
z, which ends at a (uniformly) strongly conical limit point, since M is
compact. Let (u,).cx be the (unique up to positive scalar multiple)
ergodic conformal density of dimension equal to the critical exponent
0 of T' (which is equal to h, as M is compact). Since M is compact,
we have Card {y € T' : d(z,7y) < n} =< €. Hence the general
hypotheses of Theorem A.2 on X, T, (1u,).cx are satisfied.

Let us prove the first assertion of Theorem A.3. Fix a slowly varying

non increasing map f, : [0, +oo] — ]0,1] such that f((t)) tends to 0

‘e
as t — +oo (so that in particular f. converges to 0 at +o00) and the

oo _ fe(®)h
—log f«(t)
tnt1 = tn, —log fi(ty). In particular, the sequence (t,)nen converges to

+00. As f, is non increasing, we have
tnt1 8 t ) 8 tn )
[ Ly )

b —log fu(t) —log fu(tn

Hence Y, c f+(tn)° diverges. Therefore the hypotheses of Theorem A.2
[B] are satisfied for f,.

integral f dt still diverges. Let ty = 1. Define by induction

) (tn—l-l ) f*(tn)

Denote by . the measurable set of elements £ in 0., X which belong
to infinitely many visual balls Bg, (pyz(+00), fi(d(z,vx)) e‘d(m’”fm)) as
v ranges over I'. By Lemma 2.1 (1), this ball is contained in the shadow
Oy (B(yz, f.(d(z,v2)))). For every ¢ in .7, let pe be the geodesic ray
starting from x and ending at £. Since f, is slowly varying, there exists
c1 > 0 such that f.(t) < c1fu(s) if [t —s| < 1. As fi(t) < 1, there
exist a sequence (s )nen in [0, +00[ converging to +0o and a sequence
(Yn)nen in I' such that d(pe(sn), 7nx) < c1 fi(sn) for every n. For every
§ in .7, let .7¢ be the set of elements v in T'M such that the point
at infinity of the geodesic line p,, which is some lift by X — M of the
geodesic line in M associated to v, is equal to £. Since X is CAT(-1),
if p, p’ are asymptotic geodesic rays, then there exists ¢ > 0 and 7 € R
such that d(p(t),p/(t + 7)) < ce™t for every t > max{0,—7}. Since f.
is slowly varying, for every v € .7, there exist hence a constant ¢ > 0
and sequences (s],)nen in [0, +00[ converging to +oo and (v, )nen in I'
such that

!

d(po(sp), @) < ¢ (fu(sp) +e7m) -
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The right hand side is at most f(s,,) for n big enough, since ’;*((tt)) and

e/ f(t) tend to 0 as t — +oo. Hence every v € .7 is f-well approxi-
mating xg, for every { € .. By Theorem A.2 [B], the set .¥ has positive
measure for p,. Hence the set %" = Uge.r ¢ (which is measurable, as
the direct image by the covering map 7' X — T'M of the preimage by
the continuous endpoint map 7' X — 0, X of .#) has positive measure
for p, by Lemma 2.4. As .’ is invariant under the geodesic flow by
construction, and by ergodicity, it has full measure. This proves the
result.

Let us now prove the assertion (2) of Theorem A.3. As f is slowly

varying, the convergence of the integral floo f . implies that f converges
to 0 as t — +o00. For every v in T'M, let p, be a lift by X — M of the
geodesic line in M associated to v, let &, = p,(+00) and let p! be the
geodesic ray from x to &,. If v is f-well approximating xg, then there
exist a sequence (sp)nen in [0, 400[ converging to +oo and a sequence
(Yn)nen in I such that d(py(sn), Tnz) < f(s,) for every n. Since f is
slowly varying and since p), and p, are asymptotic, as above, there exist
k in N — {0}, a sequence (s})nen in [0,400[ converging to +oo, and
a sequence (Y )nen in T, such that d(p,(s)), ynz) < k(f(s,) 4+ e~*n)
for every n. In particular, as f(¢) < 1 if ¢ is big enough, if v is f-well
approximating xo, then there exists k' in N — {0} such that &, belongs

to infinitely many shadows 0, (B (va, K (f(d(z,vz)) + e_d(m’“)))) as y

ranges over I'. By Lemma 2.1 (2), this shadow is contained, except for
finitely many v € I, in the ball

By = Bq, (Pw(—koo), K" (f(d(z,yzx)) + e_d(x’vx))% e‘d(x’W)) ,

for some positive integer k”. If u, v, w > 0, recall that (u4v)"* < 2“’( “’+
v"). Hence since [;° fe converges, the integral S (K (ft)+et)a ) dt
also converges. The map t — k”(f(t) + et) is slowly varying. By
Theorem A.2 [A], the measure of the set of points in 0, X which belong
to infinitely many balls %, 1, as vy ranges over I', has measure 0 for ji,.
By Lemma 2.4, and since a countable union of measure zero subsets is
a measure zero subset, the result follows. q.e.d.

For every o« > 0, let f, : t — which is slowly varying, with

1
@+t
f(t) and e_t/f( ) converging to 0 as t — —|—oo For every h > 0, the

integral fl 10 A diverges if and only if o < & 5 and the integral floo fh

converges if and only if a > % By applylng Theorem A.3 with M

having constant curvature —1, so that h =n— 1, with f = f 141 where
n — 400, Theorem 1.7 of the introduction follows, in the standard
way one deduces a logarithm law-type theorem from a Khintchine-type
theorem.
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