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MOTIVIC AND QUANTUM INVARIANCE
UNDER

STRATIFIED MUKAI FLOPS

Baohua Fu & Chin-Lung Wang

Abstract

For stratified Mukai flops of type An,k,D2k+1 and E6,I , it is
shown that the fiber product induces isomorphisms on Chow mo-
tives.

In contrast to (standard) Mukai flops, the cup product is gen-
erally not preserved. For An,2, D5 and E6,I flops, quantum cor-
rections are found through degeneration/deformation to ordinary
flops.

1. Introduction

1.1. Backgroumd. Two smooth projective varieties (over C) are K
equivalent if there are birational morphisms φ : Y → X and φ′ : Y → X ′

such that φ∗KX = φ′∗KX′ . This basic equivalence relation had caught
considerable attention in recent years through its appearance in minimal
model theory and crepant resolutions, as well as other related fields.

The conjectural behavior of K equivalence has been formulated in
[W]. A canonical correspondence F ∈ A∗(X × X ′) should exist and
gives an isomorphism of Chow motives [X] ∼= [X ′]. Under F, X and X ′

should have isomorphic B-models (complex moduli with Hodge theory
on it) as well as A-models (quantum cohomology ring up to analytic
continuations over the extended Kähler moduli space).

Basic examples of K equivalence are flops (with exceptional loci
Z,Z ′, S)

(X,Z)
ψ

$$IIIIIIIII

f
// (X ′, Z ′)

ψ′

yyttttttttt

(X̄, S)

.

Among them the ordinary flops had been studied in [LLW1], where
the equivalence of motives and A-models was proved. In that case F

is the graph closure F0 := Γ̄f . In general, F must contain degenerate

correspondences.
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The typical examples are Mukai flops. They had been extensively
studied in the literature in hyper-Kähler geometry. Over a general
base S, they had also been studied in [LLW1], where the invariance of
Gromov-Witten theory was proved. In that case F = X×X̄X

′ = F0+F1

with F1 = Z ×S Z
′. We expect that for flops F should be basically

X ×X̄ X ′.
To understand the general picture we are led to study flops with

F consisting of many components. The stratified Mukai flops provide
such examples. They appear naturally in the study of symplectic res-
olutions [Fu], [Na2] and they should play important roles in higher
dimensional birational geometry. For hyper-Kähler manifolds, see for
example [Mar].

In this paper, we study general stratified Mukai flops without any
assumptions on the global structure of X and X ′. By way of it, we
hope to develop tools with perspective on future studies.

1.2. Stratified Mukai flops. Fix two natural numbers n, k such that
2k < n + 1. Consider two smooth projective varieties X and X ′. Let
Fk ⊂ Fk−1 ⊂ · · ·F1 ⊂ X and F ′

k ⊂ F ′
k−1 ⊂ · · ·F

′
1 ⊂ X ′ be two col-

lections of closed subvarieties. Assume that there exist two birational

morphisms X
ψ
−→ X̄

ψ′

←− X ′. The induced birational map f : X 99K X ′

is called a (stratified ) Mukai flop of type An,k over X̄ if the following
conditions are satisfied:

(i) The map f induces an isomorphism X \ F1
∼
−→X ′ \ F ′

1.
(ii) ψ(Fj) = ψ′(F ′

j) =: Sj for 1 ≤ j ≤ k.

(iii) Sk is smooth and there exists a vector bundle V of rank n + 1
over it such that Fk is isomorphic to the relative Grassmanian
GSk

(k, V ) of k-planes over Sk and the restriction ψ|Fk
: Fk → Sk is

the natural projection. Furthermore, the normal bundle NFk/X is
isomorphic to the relative cotangent bundle T ∗

Fk/Sk
. The analogue

property holds for F ′
k and ψ′ with V replaced by its dual V ∗.

(iv) If k = 1, we require that f is a usual Mukai flop along Fk. When
k ≥ 2, let Y (resp. Y ′, Ȳ ) be the blow-up of X (resp. X ′, X̄) along
Fk (resp. F ′

k, Sk). By the universal property of the blow-ups, we
obtain morphisms Y → Ȳ ← Y ′. The proper transforms of Fj ,
F ′
j give collections of subvarieties on Y , Y ′. We require that the

birational map Y 99K Y ′ is a Mukai flop of type An−2,k−1.

We define a Mukai flop of type D2k+1 in a similar way with the follow-
ing changes: (1) one requires that Sk is simply connected; (2) the vector
bundle V is of rank 4k + 2 with a fiber-wise non-degenerate symmet-
ric 2-form. Then the relative Grassmanians of k-dimensional isotropic
subspaces of V over Sk has two components G+

iso and G−
iso. We require

that Fk (resp. F ′
k) is isomorphic to G+

iso (resp. G−
iso); (3) when k = 1, f

is a usual Mukai flop.
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Similarly, one can define a Mukai flop of type E6,I by taking k = 2
with V being an E6-vector bundle of rank 27 over S2 and F2 being
the relative E6/P1-bundle over S2 in P(V ). The dual variety F ′

2 is
given by the relative E6/P6-bundle in P(V ∗), where P1, P6 are maximal
standard parabolic subgroup in E6 corresponding to the simple roots
α1, α6 respectively. By [CF], when we blow up the smallest strata of
the flop, we obtain a usual Mukai flop.

1.3. Main results. Our main objective of this work is to prove the
following theorems.

Theorem 1.1. Let f : X 99K X ′ be a Mukai flop of type An,k, D2k+1

or E6,I over X̄. Let F be the correspondence X ×X̄ X ′. Then X and

X ′ have isomorphic Chow motives under F. Moreover, F preserves the

Poincaré pairing of cohomology.

Note that the flops of type An,1 and D3, i.e., k = 1, are the usual
Mukai flops, and in these cases the theorem has been proven in [LLW1].
Our proof uses an induction on k (for all n) via (iv). We shall give
details of the proof for An,k flops, while omitting the proof of the other
two types, since the argument is essentially the same.

For k = 1 (i.e., the usual Mukai flops), the cohomology ring as well as
the Gromov-Witten theory are also invariant under F [LLW1]. How-
ever, the general situation is more subtle:

Theorem 1.2. When k ≥ 2, the cup product is generally not pre-

served under F. For An,2, D5 and E6,I flops the defect is corrected by

the genus zero Gromov-Witten invariants attached to the extremal ray,

up to analytic continuations.

While Theorem 1.1 is as expected, Theorem 1.2 is somehow surpris-
ing, since stratified Mukai flops are in some sense locally (holomorphi-
cally) symplectic and it is somehow expected that there are no quan-
tum corrections for flops of these types. Indeed, stratified Mukai flops
among hyper-Kähler manifolds can always be deformed into isomor-
phisms [Huy] hence there is no quantum correction. As it turns out,
the key point is that for the projective local models of general stratified
Mukai flops, in contrast to the case k = 1, we cannot deform them into
isomorphisms!

1.4. Outline of the contents. In Section 2, the existence of An,k flops
in the projective category is proved via the cone theorem. In Section 3,
a general criterion on equivalence of Chow motives via graph closure is
established for strictly semi-small flops. While a given flop may not be
so, generic deformations of it may sometimes be. When this works, we
then restrict the graph closure of the one parameter deformation back
to the central fiber to get the correspondence, which is necessarily the
fiber product.
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It is thus crucial to study deformations of flops. Global deformations
are usually obstructed, so instead we study in Section 4 the deformations

of projective local models of An,k flops. While open local models can
be deformed into isomorphisms, the projective local models cannot be
deformed into isomorphisms in general but only be deformed into certain
A∗
n−2,k−1 flops. These flops, which we call symmetric stratified ordinary

flops, do not seem to be studied before in the literature. Nevertheless,
this deformation is good enough for applying the equivalence criterion
of motives.

To handle global situations, we consider degenerations to the normal

cone to reduce problems on An,k flops to problems on An−2,k−1 flops and
on local models of An,k flops. This is carried out for correspondences in
Section 5. This makes inductive argument work since local models are
already well handled. We also carry out this for cup product by proving
an orthogonal decomposition under degenerations to the normal cone.
This in particular applies to the Poincaré pairing and completes the
proof of Theorem 1.1.

In Section 6 we prove Theorem 1.2 for An,2 flops. We apply the
degeneration formula for GW invariants [LR], [Li] to split the absolute

GW invariants into the relative ones. After degenerations, the flop is
split into two simpler flops; one is a Mukai flop and another one can
be deformed into an ordinary Pn−2 flop. It turns out that each GW

invariant attached to the extremal ray must go to one of these two factors
completely, for the former the extremal invariants indeed vanish. For the
latter we use a recent result on ordinary flop with general base [LLW2]
to achieve the quantum corrections up to analytic continuations. This
then completes the proof.

At the end we compare Theorem 1.2 with the hyper-Kähler case,
where the ring structure is preserved and there are no non-trivial Gro-
mov-Witten invariants. When f is not standard Mukai, all these may
fail without the global hyper-Kähler condition. A careful comparison of
the degeneration analysis in this case with the local model case leads to
some new topological constraint on hyper-Kähler manifolds (c.f. Propo-
sition 6.4).

Acknowledgements. B. Fu is grateful to the Department of Mathe-
matics and National Central University (Jhongli, Taiwan) for providing
an excellent environment which makes the collaboration possible.

C.-L. Wang is partially supported by the National Science Coun-
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Loire for the invitation to Nantes.



STRATIFIED MUKAI FLOPS 265

2. Existence of (twisted) An,k flops

Given k, n ∈ N, 2k < n + 1, a flopping contraction ψ : (X,F ) →
(X̄, S) is of type An,k if it admits the following inductive structure:
There is a filtration F = F1 ⊃ · · · ⊃ Fk with induced filtration S =
S1 ⊃ · · · ⊃ Sk, Sj := ψ(Fj) such that ψSk

: Fk ∼= GSk
(k, V ) → Sk is a

G(k, n+ 1) bundle for some vector bundle V → Sk of rank n+ 1 with

NFk/X
∼= T ∗

Fk/Sk
⊗ ψ∗

Sk
Lk for some Lk ∈ PicSk.

Moreover, the blow-up maps φ, φ̄ fit into a cartesian diagram

Y = BlFk
X ⊃ E

φ

��

ψ̄

))SSSSSSSSSSSSSS

X

ψ
))SSSSSSSSSSSSSSSSSSSS Ȳ = BlSk
X̄ ⊃ Ē

φ̄

��

X̄

such that the induced contractions ψ̄ : (Y, F̃ ) → (Ȳ , S̃) with filtra-

tions F̃ = F̃1 ⊃ · · · ⊃ F̃k−1, F̃j := φ−1
∗ (Fj), S̃ = S̃1 ⊃ · · · ⊃ S̃k−1,

S̃j = φ̄−1
∗ (Sj), 1 ≤ j ≤ k − 1 are of type An−2,k−1. Here we use the

convention that an An,0 contraction is an isomorphism. By definition,
An,1 contractions are twisted Mukai contractions.

The main results of this paper are all concerned with the (untwisted)
stratified Mukai flops, namely Lk ∼= OSk

. The starting basic existence
theorem of flops does, however, hold for the twisted case too.

Proposition 2.1. Given any An,k contraction ψ, the corresponding

An,k flop

(X,F )

ψ
$$IIIIIIIII

f
// (X ′, F ′)

ψ′

yyttttttttt

(X̄, S)

exists with ψ′ being an An,k contraction.

Proof. We construct the flop by induction on k. The case k = 1 has
been done in [LLW1], Section 6, so we let k ≥ 2 and n + 1 > 2k. By
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induction we have a diagram

Y

φ

��

ψ̄

��@
@@

@@
@@

@

g
// Y ′

ψ̄′

~~}}
}}

}}
}}

? φ′

��

X

ψ
��@

@@
@@

@@
@ Ȳ

φ̄
��

X ′

X̄

where g : (Y, F̃ ) 99K (Y ′, F̃ ′) is an An−2,k−1 flop and ψ̄′ : (Y ′, F̃ ′) →

(Ȳ , S̃) is an An−2,k−1 contraction.
Let C ⊂ E be a φ-exceptional curve and C ′ = g∗C be its proper

transform in E′ = g∗E. We shall construct a blow-down map φ′ : Y ′ →
X ′ for C ′. Let γ (resp. γ′) be the flopping curve for ψ̄ (resp. ψ̄′).

Since the Poincaré pairing is trivially preserved by the graph corre-
spondence F0 of g in the divisor/curve level, and F0C = C ′ + aγ′ for
some a ∈ N (in fact a = 1), we compute

(KY ′ .C ′) = (KY ′ .F0C) = (KY .C) < 0.

To show that C ′ is an Mori (negative) extremal curve, it is thus sufficient
to find a supporting divisor for it.

Let L̄ be a supporting divisor for C̄ = ψ̄(C) in Ȳ . Then ψ̄′∗L̄ is a
supporting divisor for the extremal face spanned by C ′ and γ′. The idea
is to perturb it to make it positive along γ′, while keeping it vanishing
along C ′.

Let D be a supporting divisor for C in Y with λ := (D.γ) > 0. Let
D′ = g∗D = F0D. Since F0γ = −γ′, we compute

(D′.γ′) = −(D, γ) = −λ < 0,

(D′.C ′) = (D′.F0C)− a(D′, γ′) = (D.C) + aλ = aλ.

Let H ′ be a supporting divisor for γ′ in Y ′ with c′ := (H ′.C ′) > 0.
Then

W := aλH ′ − c′D′

has the property that (W.γ′) > 0 and (W.C ′) = 0.
Now for m large enough, the perturbation

L′ := mψ̄′∗L̄+W

is a supporting divisor for C ′. Indeed, L′ takes the same values as W
on γ′ and C ′, while (L′.β′) > 0 for other curve classes β′ in Y ′. That is,
L′ is big and nef which vanishes precisely on the ray Z+[C ′].
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By the (relative) cone theorem applying to φ̄ ◦ ψ̄′ : Y ′ → X̄, we
complete the diagram and achieve the flop f : X 99K X ′:

Y

φ

��

ψ̄

��@
@@

@@
@@

@

g
// Y ′

ψ̄′

~~}}
}}

}}
}}

φ′

��

X

ψ
��@

@@
@@

@@
@

//Ȳ

φ̄
��

X ′

ψ′

~~}}
}}

}}
}}

X̄

It remains to show that the contraction ψ′ : X ′ → X̄ is of type
An,k. By construction, it amounts to analyze the local structure of
F ′
k := φ′(E′). Since the flop f is unique and local with respect to X̄, it

is enough to determine its structure in a neighborhood of Sk. This can
be achieved by explicit constructions.

Suppose that Fk = GSk
(k, V ). We consider the pair of spaces (X̃ ′, F̃ ′

k)

defined by duality. Namely F̃ ′
k := GSk

(k, V ∗) and

X̃ ′ is the total space of T ∗
F̃k/Sk

⊗ ψ∗
Sk
Lk.

It is well-known that, in a neighborhood of Sk, X 99K X ′
0 is an An,k

flop. Thus the local structure of (X ′, F ′
k) must agree with (X̃ ′, F̃ ′

k). The
proof is complete. q.e.d.

Remark 2.2. In the definition of An,k contractions, the restriction

to exceptional divisors ψ̄|E : (E, F̃ |E) → (Ē, S̃|Ē) is also an An−2,k−1

contraction. Moreover, in the proposition the restriction

(E, F̃ |E)
g|E

//

ψ̄|E

%%KKKKKKKKKK
(E′, F̃ ′|E′)

ψ̄′|E′

xxrrrrrrrrrr

(Ē, S̃|Ē)

is also an An−2,k−1 flop.

3. Equivalence criteria of motives

Let X
ψ
−→ X̄

ψ′

←− X ′ be two projective resolutions of a quasi-projective
normal variety X̄, and f : X 99K X ′ the induced birational map. Con-

sider the graph closure Γ of f and X
φ
←− Γ

φ′
−→ X ′, the two graph

projections. Then we obtain a morphism between Chow groups:

F := φ′∗φ
∗ : A∗(X)→ A∗(X ′).

For any i, we will consider the closed subvariety

Ei = {x ∈ X | dimx ψ
−1(ψ(x)) ≥ i}.
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In a similar way we define the subvariety E′
i on X ′. By Zariski’s main

theorem, ψ is an isomorphism over X \E1, and thus ψ(E1) = ψ′(E′
1) =

X̄sing.
The following criterion generalizes the one for ordinary flops in

[LLW1]:

Proposition 3.1. If for any irreducible component D, D′ of Ei and

E′
i respectively, we have

2 codimD > codimψ(D), and 2 codimD′ > codimψ′(D′),

then F is an isomorphism on Chow groups which preserves the Poincaré

pairing on cohomology groups.

Moreover, the correspondence [Γ] induces an isomorphism between

Chow motives: [X] ≃ [X ′].

Proof. For any smooth T , f × idT : X × T 99K X ′ × T is also a
birational map with the same condition. Thus, by the identity principle
we only need to prove the equivalence of Chow groups under F.

For any α ∈ Ak(X), up to replacing by an equivalent cycle, we may
assume that α intersects E :=

∑

i≥1Ei properly. Then we have Fα = α′,

where α′ is the proper transform of α under f . If we denote by α̃ the
proper transform of α in A∗(Γ), then we have

φ′∗α′ = α̃+
∑

C

aCFC ,

where FC are some irreducible k-dimensional subvariety in Γ and aC ∈
Z.

For any C, note that φ′(FC) is contained in the support of α′∩E′
1. As

ψ′(α′∩E′
1) = ψ(α)∩X̄sing = ψ(α∩E1), FC is contained in φ−1ψ−1(BC),

where BC := ψφ(FC) ⊂ ψ(α ∩ E1). Take the largest i such that there
exists an irreducible component D of Ei with BC ⊂ ψ(α ∩ D). For a
general point s ∈ BC , we denote by FC,s its fiber by the map ψ ◦ φ.
Then we have

dimFC,s ≥ dimFC − dimBC ≥ dimFC − dim(α ∩D) = codimD.

By our assumption, we have codimD > dimD − dimψ(D), the lat-
ter being the dimension of a general fiber of ψ−1(BC) → BC . Thus
the general fiber of the map φ|FC

has positive dimension, which gives
that φ∗(FC) = 0. This gives that F′ ◦ F = Id, where F′ = φ∗φ

′∗. A
similar argument then shows that F ◦ F′ = Id, and thus F and F′ are
isomorphisms.

Since FC has positive fiber dimension in both φ and φ′ directions, the
statement on Poincaré pairing follows easily as in [LLW1], Corollary
2.3. q.e.d.
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Now consider two (holomorphic) symplectic resolutions: X
ψ
−→ X̄

ψ′

←−
X ′. A conjecture in [FN] asserts that ψ and ψ′ are deformation equiv-

alent, i.e., there exist deformations of ψ and ψ′ over C: X
Ψ
−→ X̄

Ψ′

←− X′,
such that for any t 6= 0, the morphisms Ψt,Ψ

′
t are isomorphisms. This

conjecture has been proved in various situations, such as nilpotent orbit
closures of classical type [FN] [Na2], or when W is projective [Na1].

Assume this conjecture and consider the birational map F : X 99K X′.
Recall that every symplectic resolution is automatically semi-small by
the work of Kaledin [Ka] and Namikawa [Na1]. We obtain that the
deformed resolutions Ψ and Ψ′ satisfy the condition of the precedent
proposition. As a consequence, we obtain:

Theorem 3.2. Consider two symplectic resolutions X
ψ
−→ X̄

ψ′

←− X ′.

Suppose that they are deformation equivalent (say, given by F : X 99K

X′). If we denote by Γ the graph of F and Γ0 its central fiber, then the

correspondence [Γ0] induces an isomorphism of motives [X] ≃ [X ′] that

preserves also the Poincaré pairing.

4. Deformations of local models

From now on all the stratified Mukai flops are untwisted.

4.1. Deformations of open local models. Let S be a smooth variety
and V → S a vector bundle of rank n + 1. The relative Grassmanian
bundle of k-planes in V is denoted by ψ : F := GS(k, V )→ S. Let T be
the universal sub-bundle of rank k on F and Q the universal quotient
bundle of rank n+1−k. As is well-known, the relative cotangent bundle
T ∗
F/S is isomorphic to HomF (Q,T ). Thus, it is natural to construct

deformations of T ∗
F/S inside the endomorphism bundle EndF ψ

∗V =

ψ∗ EndS V .
Consider the vector bundle E over F defined as follows: For x ∈ F ,

Ex := {(p, t) ∈ EndVψ(x) × C | Im p ⊂ Tx, p|Tx = t IdTx}.

We have an inclusion T ∗
F/S,x = Hom(Qx, Tx) → Ex which sends q ∈

Hom(Qx, Tx) to (q̃, 0) ∈ Ex, where q̃ is the composition

q̃ : Vψ(x) → Qx
q
−→ Tx →֒ Vψ(x).

The projection to the second factor π : E→ C is then an one-dimensional
deformation of π−1(0) = T ∗

F/S .

Equivalently, the Euler sequence 0→ T → ψ∗V → Q→ 0 leads to

0→ T ∗
F/S = HomF (Q,T )→ HomF (ψ∗V, T )→ EndF T → 0.

The deformation is simply the inverse image of C IdF T ∼= C.
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The projection to the first factor, followed by ψ∗

E

$$JJJJJJJJJJJ // ψ∗ EndS V
ψ∗

//

��

EndS V

��

F
ψ

// S

gives rise to a map E→ EndS V , which is a birational morphism onto its
image Ē. Indeed, Ψ : E→ Ē is isomorphic over the loci with rank p = k.
In particular, it is isomorphic outside π−1(0). For any s ∈ S,

Ēs := { p ∈ EndVs | rank p = k and p2 = tp for some t ∈ C }

is the cone of scaled projectors with rank at most k. Thus, π = π̄ ◦ Ψ,
where

π̄ : Ē→ C via φ 7→
1

k
Trφ.

For t 6= 0, Ψt : Et
∼
→ Ēt. For t = 0, ψ := Ψ0 : T ∗

F/S = E0 → Ē0 is the

open local model of an An,k contraction.
We do a similar construction for the dual bundle V ∗ → S. Under the

canonical isomorphism EndS V ≃ EndS V
∗, we see that Ē is identified

with Ē′ = Ē(V ∗). Thus we get a birational map F : E 99K E′ over Ē.
This proves

Proposition 4.1. The birational map F over C:

E

Ψ

��
>>

>>
>>

>>

π

��
..

..
..

..
..

..
..

.
F

//
E′

Ψ′

����
��

��
��

π′

����
��
��
��
��
��
��
�

Ē

��

C

deforms the birational map (An,k flop) f : T ∗
F/S 99K T ∗

F ′/S into isomor-

phisms.

Let Γ be the graph closure of F : E 99K E′ and Γ0 be its central fiber.
By Proposition 3.1, the map Γ∗ : A∗(E) → A∗(E′) is an isomorphism.
Since Γ→ E×

Ē
E′ is birational, (E×

Ē
E′)∗ : A∗(E)→ A∗(E′) is again an

isomorphism. It follows that its central fiber Fopen := T ∗
F/S ×Ē0

T ∗
F ′/S

induces an isomorphism A∗(T ∗
F/S)→ A∗(T ∗

F ′/S).

Consider the fiber product

Floc := PF (T ∗
F/S ⊕ O)×

PS(Ē0×C) PF ′(T ∗
F ′/S ⊕ O)

and F∞ := PF (T ∗
F/S) ×

PS(Ē0) PF ′(T ∗
F ′/S). Note that the push-forward

map A∗(PF (T ∗
F/S))→ A∗(PF (T ∗

F/S ⊕ O)) is injective.
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Proposition 4.2. We have the following commutative diagrams with
exact horizontal rows (induced by the localization formula in Chow
groups):

0−−−−→ A∗(P(T ∗

F/S)) −−−−→ A∗(P(T ∗

F/S ⊕ O)) −−−−→ A∗(T
∗

F/S) −−−−→ 0

F∞





y

Floc





y

Fopen





y

0−−−−→ A∗(P(T ∗

F ′/S)) −−−−→ A∗(P(T ∗

F ′/S ⊕ O)) −−−−→ A∗(T
∗

F ′/S) −−−−→ 0

Thus if F∞ is an isomorphism, so is Floc.

Note that PF (T ∗
F/S) 99K PF ′(T ∗

F ′/S) is a stratified Mukai flop of type

An−2,k−1. This allows us to perform an inductive argument later.

4.2. Deformations of projective local models. Consider the ratio-
nal map π : P(E ⊕ O) 99K P1 which extends the map π : E → C and
maps P(E) to ∞. The map π is undefined exactly along E := P(E0).
Blow-up P(E ⊕ O) along E resolves the map π, and thus we obtain
π̂ : X := BlEP(E⊕ O)→ P1.

Since E is a divisor of the central fiber P(E ⊕ O)0 = P(T ∗
F/S ⊕ O),

we have π̂−1(0) ≃ P(T ∗
F/S ⊕ O). When t 6= 0, Xt ≃ P(E), which is

the compactification of Et by E ∼= P(E0) = P(T ∗
F/S). This gives a

deformation of P(T ∗
F/S ⊕ O) over P1 with other fibers isomorphic to

P(E).
We do a similar construction on the dual side, which gives a deforma-

tion of P(T ∗
F ′/S ⊕O) by π̂′ : X′ → P1. We get also an induced birational

map F : X 99K X′ over X̄ extending F : E 99K E′ over Ē.
The flop Ft : Xt 99K X′

t for t 6= 0 has the property that there are
smooth divisors E ⊂ Xt and E′ ⊂ X′

t such that (i) the exceptional loci
Z ⊂ Xt (resp. Z ′ ⊂ X′

t) are contained in E (resp. E′), (ii) Ft|E : E 99K

E′ is a stratified Mukai flop. We call such flops symmetric stratified

ordinary flops if furthermore (iii) NE/Xt
|P1
∼= O and NE′/X′

t
|P1
∼= O

along the flopping extremal rays.
If Ft|E is of type A, D or E, then we say Ft is of type A∗, D∗ or E∗

respectively. Notice that (symmetric) stratified ordinary flops of type
A∗
m,1 are precisely ordinary Pm flops with V ′ = V ∗, which explains the

choice of terminology.

Proposition 4.3. The birational map F over P1:

X

Ψ

��@
@@

@@
@@

@

π̂

��
//

//
//

//
//

//
//

/
F

// X′

Ψ′

~~}}
}}

}}
}}

π̂′

����
��
��
��
��
��
��
�

X̄

��

P1
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deforms the An,k flop f = F0 : P(T ∗
F/S ⊕ O) 99K P(T ∗

F ′/S ⊕ O) into

A∗
n−2,k−1 flops Ft : P(E) 99K P(E′) for t 6= 0.

Proof. It remains to check condition (iii), which is equivalent to that
(E.C) = 0 for any flopping curve C ∼= P1. Since (E.C) is independent of
t ∈ P1 we may compute it at t = 0. As a projective bundle ρ : X0 → F
it is clear that

KX0
= −(2 dimF/S + 2)E + ρ∗KX0

|F .

Since (KX0
.C) = 0 by the definition of flops, we get (E.C) = 0 as well.

q.e.d.

Clearly for t 6= 0, the map Ft : P(E) 99K P(E′) is an isomorphism only
for the case of ordinary Mukai flop, i.e., k = 1.

Remark 4.4. For An,2 flops, the deformed flop Ft is a family of ordi-
nary flop, which has defect of cup product by [LLW1]. As the classical
cohomology ring is invariant under deformations, the fiber product of
f does not preserve the ring structure. This implies that we cannot
deform a projective local stratified Mukai flop of type An,2 into isomor-
phisms, which is a crucial difference to usual Mukai flops. Thus, there
exist quantum corrections even in this local case.

Corollary 4.5. For projective local model of An,k flops X
ψ
−→ X̄

ψ′

←−
X ′, the correspondence defined by fiber product F = X×X̄X

′ induces iso-

morphism of Chow motives [X] ∼= [X ′] which preserves also the Poincaré

pairing.

Proof. By definition, the An,k contraction satisfies

2 codimD = codimψ(D)

for each irreducible component D of Ei. The deformation

X
Ψ
−→ X̄

Ψ′

←− X′

constructed by Proposition 4.3 is not isomorphic on general fibers; in-
stead, it gives A∗

n−2,k−1 flops. Thus, the additional deformation di-
mension makes it satisfy the assumption of Proposition 3.1. The result
follows by noticing that the graph closure restricts to F on the central
fiber. q.e.d.

Remark 4.6. Proposition 4.3 suggests certain inductive structure on
An,k flops. It will become more useful (e.g., for the discussion of global
An,k flops or Gromov-Witten theory) after we develop detailed analysis
on correspondences.



STRATIFIED MUKAI FLOPS 273

5. Degeneration of correspondences

5.1. Setup of degeneration. Let f : X 99K X ′ be a stratified Mukai
flop, say of type An,k with 2k < n+1. The aim of the following theorem
is to show that the degeneration to normal cone for (X,Fk) and (X ′, F ′

k)

splits the correspondence Ff defined by X×X̄X
′ into the one Fg defined

by Y ×Ȳ Y
′ of type An−2,k−1 and its version F

f
loc on projectivized local

models relative to Fk and Fk′ . Conversely, we may define F inductively
by gluing these two parts. Here is the blow-up diagram

Y = BlFk
X

φ

��

g
//

''OOOOOOOOOOOO
Y ′ = BlF ′

k
X ′

φ′

��wwooooooooooo

X //

ψ

''PPPPPPPPPPPPPPPP Ȳ = BlSk
X̄

��

X ′

ψ′

vvnnnnnnnnnnnnnnnn

X̄

with g : Y 99K Y ′ being the induced An−2,k−1 flop. To save the notations

we use the same symbol F for Ff and its local models as well if no
confusion is likely to arise.

We consider degenerations to the normal cone W → A1 of X, where
W is the blow-up of X ×A1 along Fk ×{0}. Similarly we get W ′ → A1

for X ′.
Note that the central fiber

W0 := Y1 ∪ Y2 = Y ∪Xloc, W ′
0 := Y ′

1 ∪ Y
′
2 = Y ′ ∪X ′

loc,

where Xloc = P(T ∗
Fk/S

⊕O) and X ′
loc = P(T ∗

F ′

k
/S ⊕O). The intersections

E := Y ∩ Xloc and E′ := Y ′ ∩ X ′
loc are isomorphic respectively to

P(T ∗
Fk/S

) and P(T ∗
F ′

k
/S). The map f : X 99K X ′ induces the Mukai flop

of the same type for local models: f : Xloc 99K X ′
loc and Mukai flop

g : Y 99K Y ′ of type An−2,k−1. Let p : Xloc → Fk be the projection and
similarly we get p′.

5.2. Correspondences. A lifting of an element a ∈ A∗(X) is a couple
(a1, a2) with a1 ∈ A

∗(Y ) and a2 ∈ A
∗(Xloc) such that φ∗a1 + p∗a2 = a

and a1|E = a2|E . Similarly, one defines the lifting of an element in
A∗(X ′).

Theorem 5.1. Let a ∈ A∗(X) with (a1, a2) and (a′1, a
′
2) be liftings of

a and Fa respectively. Then

Fa1 = a′1 ⇐⇒ Fa2 = a′2.

Moreover, it is always possible to pick such liftings.

It is instructive to re-examine the Mukai case (k = 1) first. In this
case Y = Y ′ and f is an isomorphism outside the blow-up loci Z = F1
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and Z ′ = F ′
1. Let us denote F = F0 + F1 with F0 = [Γ̄f ] = φ′∗φ

∗ and F1

the degenerate correspondence [Z ×S Z
′].

By Lemma 4.2 in [LLW1], it is enough to prove the result for any
single choice of a1 = a′1. Consider the standard liftings

a(0) = (a1, a2) = (φ∗a, p∗(a|Z)),

(Fa)(0) = (φ′∗Fa, p′∗(Fa|Z′)).

Since φ′∗Fa = φ∗a + λ with λ supported on E′ = E, we may select
lifting (a′1, a

′
2) with a′1 = a1. In that case,

(Fa2 − a
′
2)|E′ = a2|E − a

′
2|E′ = a1|E − a

′
1|E = 0

by the compatibility constraint on E and the fact that F restricts to
an isomorphism on E. Hence Fa2 − a

′
2 = ι∗(z

′), for some z′ ∈ A∗(Z ′),
where ι : Z ′ → X ′

loc is the natural inclusion.
To prove that z′ = 0, consider

z′ = p′∗ι∗z
′ = p′∗Fa2 − p

′
∗a

′
2.

By substituting φ′∗a
′
1 + p′∗a

′
2 = Fa, a′1 = φ∗a and a2 = p∗(a|Z), we get

p′∗a
′
2 = Fa− φ′∗φ

∗a = F1a.

Let q, q′ be the projections of Z ×S Z
′ to the two factors and

j : Xloc ×X̄loc
X ′

loc → Z ×S Z
′

the natural morphism. Then

z′ = p′∗Flocp
∗(a|Z)− F1a = q′∗j∗j

∗q∗(a|Z)− q′∗q
∗(a|Z).

Note that there exists a unique irreducible component in Xloc ×X̄loc

X ′
loc birational to Z ×S Z

′ via j, so j∗j
∗ = Id, which gives z′ = 0.

Now we proceed for general An,k flops. It is enough to prove the
result for any single choice of a1 and a′1, since other choices differ from
this one by elements supported on E and E′ where the theorem holds
by induction on k. To make a′1 = Fa1, notice that g is an isomorphism

outside F̃1 = φ−1
∗ (F1) and F̃ ′

1 = φ′−1
∗ (F ′

1) but we may adjust the stan-
dard lifting φ′∗Ff a only by elements lying over F ′

k, namely classes in
E′ = P(T ∗

F ′

k
/Sk

).

The following simple observation resolves this as well as later difficul-
ties. Recall that F =

∑

j Fj with Fj = [Fj ×Sj
F ′
j ].

Lemma 5.2. We have decomposition of correspondences:

F
f = φ′∗F

g φ∗ + F
f
k .

In particular, φ′∗Ff = Fg φ∗ modulo A∗(E′).

Proof. This follows from the definition and the base change property
of fiber product. q.e.d.
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Thus, we may pick

a1 = φ∗a, a′1 = F
g (φ∗a) = Fa1.

Then

(Fa2 − a
′
2)|E′ = F(a2|E)− a′2|E′

= F(a1|E)− a′1|E′ = (Fa1 − a
′
1)|E′ = 0

and so Fa2 − a
′
2 = ι∗(z

′), for some z′ ∈ A∗(F ′
k), where ι : Z ′ → X ′

loc is
the natural inclusion.

To prove that z′ = 0, consider

z′ = p′∗ι∗z
′ = p′∗Fa2 − p

′
∗a

′
2.

By substituting φ′∗a
′
1 + p′∗a

′
2 = Fa, a′1 = Fφ∗a and a2 = p∗(a|Fk

), we get

p′∗a
′
2 = Fa− φ′∗Fφ

∗a = Fka

by the above lemma.
Let q, q′ be the projections of Fk ×Sk

F ′
k to the two factors and

j : Xloc ×X̄loc
X ′

loc → Fk ×Sk
F ′
k

the natural morphism. Then

z′ = p′∗Flocp
∗(a|Fk

)− Fka = q′∗j∗j
∗q∗(a|Fk

)− q′∗q
∗(a|Fk

).

Note that there exists a unique irreducible component in Xloc ×X̄loc

X ′
loc birational to Fk×Sk

F ′
k via j, so j∗j

∗ = Id, which gives z′ = 0. The
proof is complete.

5.3. Cup product and the Poincaré pairing. Besides correspon-
dences, we also need to understand the effect on the Poincaré pairing
under degeneration. We will in fact degenerate classical cup product
and this works for any degenerations to normal cones W → X × A1

with respect to Z ⊂ X. Let W0 = Y1 ∪ Y2, where φ : Y1 = Y → X
is the blow up along Z, p : Y2 = Ẽ = PZ(NZ/X ⊕ O) → Z is the local
model, and Y1 ∩ Y2 = E is the φ exceptional divisor. Let i1 : E →֒ Y1,
i2 : E →֒ Y2.

Lemma 5.3. Let a, b ∈ H∗(X). Then for any lifting (a1, a2) of a
and any lifting (b1, b2) of b, the pair (a1b1, a2b2) is a lifting of ab.

In particular, if a, b are of complementary degree, then we have an or-

thogonal splitting of the Poincaré pairing: (a.b)X = (a1.b1)Y1
+(a2.b2)Y2

.

Proof. We compute

a.b = φ∗a1.b+ p∗a2.b = φ∗(a1.φ
∗b) + p∗(a2.p

∗(b|Z)).

Since a1.φ
∗b|E = a2.p

∗(b|Z)|E , (a1b1, a2b2) is a lifting of ab for the
special lifting (b1, b2) = (φ∗b, p∗(b|Z)) of b. By [LLW1], Lemma 4.2,
any other lifting of b is of the form (b1 + i1∗e, b2− i2∗e) for some class e
in E.
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Since i∗1a1.e = i∗2a2.e is a class e′ ∈ H∗(E), the correction terms are

a1.i1∗e = i1∗(i
∗
1a1.e) = i1∗e

′, −a2.i2∗e = −i2∗(i
∗
2a2.e) = −i2∗e

′.

The lemma then follows from

i∗1(i1∗e
′) = e′.c1(NE/Y1

) = −e′.c1(NE/Y2
) = i∗2(−i2∗e

′)

and φ∗i1∗e
′ − p∗i2∗e

′ = (φ|E)∗e
′ − (φ|E)∗e

′ = 0. q.e.d.

Theorem 5.4 (= Theorem 1.1). For An,k flops, F induces an

isomorphism on Chow motives and the Poincaré pairing.

Proof. If f : X 99K X ′ is an An,k flop, f × id : X × T 99K X ′ × T is
also an An,k flop. Thus, by the identity principle, to prove [X] ∼= [X ′]
we only need to prove the equivalence of Chow groups under F for any
An,k flop.

We prove this for all n with n+ 1 > 2k by induction on k. We start
with k = 0, which is trivial.

Given k ≥ 1, by Theorem 5.1, the equivalence of Chow groups is
reduced to the An−2,k−1 case and the local An,k case. The former is
true by induction. The later follows from Corollary 4.5 directly.

The same procedure proves the isomorphism of Poincare pairings by
using Theorem 5.1, Lemma 5.3, and Corollary 4.5. q.e.d.

For cohomology rings we need to proceed carefully. In order to run
induction on k, using Theorem 5.1, Lemma 5.3 we must first consider
the local An,k case. By Remark 4.4, for k = 2, the classical cup product
is not preserved by the correspondence F! This is analyzed in the next
section.

6. Quantum corrections

6.1. The proof of Theorem 1.2. We now prove the invariance of
big quantum product attached to the extremal rays, up to analytic
continuations, under An,2 flops.

As in the precedent section, we consider degenerations to the normal
cone W → A1 of X and W ′ → A1 of X ′. Note that the map f :
X 99K X ′ induces the Mukai flop of the same type for local models:
f : Xloc 99K X ′

loc and Mukai flop g : Y 99K Y ′ of type An−2,1.
By the degeneration formula (for the algebraic version used here,

c.f. [Li]), any Gromov-Witten invariant on X splits into products of
relative invariants of (Y,E) and (Xloc, E). Let a ∈ H∗(X)⊕m with
lifting (a1, a2):

〈a〉Xg,m,β =
∑

η∈Ω(g,β)

Cη

(

〈a1〉
•(Y,E)
Γ1

.〈a2〉
•(Xloc,E)
Γ2

)Eρ

.

Here ρ is the number of gluing points (in E) and Γ1 ∪ Γ2 forms a con-
nected graph. Thus ρ = 0 if and only if one of the Γi is empty.
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The relative invariants take values in H∗(Eρ) and the formula is in
terms of the Poincaré pairing of Eρ.

We apply it to X ′ as well and get:

〈Fa〉X
′

g,m,Fβ =
∑

η′∈Ω(g,Fβ)

Cη′
(

〈a′1〉
•(Y ′,E′)
Γ′

1

.〈a′2〉
•(X′

loc
,E′)

Γ′

2

)E′ρ

.

There is a one-to-one correspondence between admissible triples η =
(Γ1,Γ2, Iρ) and η′ = (Γ′

1,Γ
′
2, Iρ′) via η′ := Fη. The combinatorial struc-

ture is kept the same, while the curve classes are related by F. We do
still need the cohomology class splitting on X and X ′ to be compatible.

By Theorem 5.1 we may split the cohomology classes a ∈ H∗(X)⊕m

into (a1, a2) with ai ∈ H
∗(Yi)

⊕m and Fa ∈ H∗(X ′)⊕m into (a′1, a
′
2) with

a′i ∈ H
∗(Y ′

i )
⊕m, such that

Fa1 = a′1, Fa2 = a′2.

By Theorem 5.4, the Poincaré pairing is preserved by F under strat-
ified Mukai flops E 99K E′; the same holds true for Eρ 99K E′ρ by Fρ,
which for simplicity is still denoted by F. Thus, by the degeneration
formula the problem is reduced to showing that F maps the relative
invariants of (Y,E) and (Xloc, E) to the corresponding ones of (Y ′, E′)
and (X ′

loc, E
′).

Since we are only interested in invariants attached to the extremal
ray β = dℓ, for any splitting β = (β1, β2) = (d1ℓ, d2ℓ), we must have
ρ = (E.β2) = d2(E.ℓ) = 0 (since ℓ can be represented by a curve in
F2). But this implies that β is not split at all and in the degeneration
formula the invariant 〈a〉Xg,m,dℓ goes to Y or Xloc completely:

〈a〉Xg,m,dℓ = 〈a1〉
Y
g,m,dℓ + 〈a2〉

Xloc

g,m,dℓ.

Lemma 6.1. F maps isomorphically the cup product and full Gro-

mov-Witten theory of Y to those of Y ′. Moreover, 〈a1〉
Y
g,m,dℓ = 0 for all

d ∈ N.

Proof. The birational map g : Y 99K Y ′ is a Mukai flop of type An−2,1.
Hence, this follows from [LLW1], Theorem 6.3.

Indeed this follows from Lemma 5.3 and the above degeneration for-
mula by applying it to the Mukai flop Y 99K Y ′. Here we use the facts
that projective local models of Mukai flops gloc : Yloc 99K Y ′

loc can be

deformed into isomorphisms gt : Yt
∼
→Y ′

t and that the cup product as
well as the Gromov-Witten theory are both invariant under deforma-
tions. For ℓ being the extremal ray of gloc, if dℓ ∼ Ct for t 6= 0 then
C ′
t
∼= gt(Ct) ∼ Fdℓ = −dℓ′, which is impossible. Thus 〈a1〉

Y
g,m,dℓ = 0 for

all d ∈ N. q.e.d.

Denote by 〈a〉f =
∑∞

d=0〈a〉0,m,dℓ q
dℓ the generating function of g =

0 Gromov-Witten invariants attached to the extremal ray. Then the
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degeneration formula and Lemma 6.1 lead to

〈a〉Xf = δn3〈a1〉
Y
0,3,0 + 〈a2〉

Xloc

f .

The correspondence F acts on qβ by Fqβ = qFβ . In particular, for
the extremal rays ℓ and ℓ′ we have Fqdℓ = q−dℓ

′

. If we regard qℓ =
e−2π(ω.ℓ) as an analytic function on ω ∈ H1,1

R
(X), then it is known that

〈a〉Xf converges in the Kähler cone KX of X. Under the identification

H1,1
R

(X) ∼= FH1,1
R

(X) = H1,1
R

(X ′), it makes sense to compare F〈a〉Xf
with 〈Fa〉X

′

f as analytic functions on KX ∪ KX′ ⊂ H1,1
R

up to analytic
continuations.

Lemma 6.2. For m ≥ 3, F〈a2〉
Xloc

f
∼= 〈Fa2〉

X′

loc

f up to analytic con-

tinuations.

Proof. By Proposition 4.3, the An,2 flop f : Xloc 99K X ′
loc can be

projectively deformed into ordinary Pn−2 flops. By the deformation
invariance of Gromov-Witten theory, the lemma is reduced to the case
of ordinary flops (with non-trivial base). For simple ordinary flops the
invariance

F〈a2〉
Xloc

f
∼= 〈Fa2〉

X′

loc

f

up to analytic continuations is proved in [LLW1]. It has been extended
to general ordinary flops with base in [LLW2]. Hence, the lemma fol-
lows. q.e.d.

Notice that the g = 0, d = 0 invariants are non-zero if and only
if m = 3 and they are given by the cubic product. By Lemma 6.1,
〈a11, a12, a13〉

Y
0,3,0 = 〈Fa11,Fa12,Fa13〉

Y ′

0,3,0. From Lemma 6.2 we get

F〈a〉Xf = 〈Fa〉X
′

f for m ≥ 3.
Together with the F invariance of Poncaré pairing, the big quantum

product attached to the extremal ray is invariant under F. This com-
pletes the proof of Theorem 1.2 for type An,2. The cases of type D5 and
E6,I are completely similar, since the geometric picture in Proposition
4.3 is the same by [CF]. The proof is complete.

Remark 6.3. The degeneration formula is in terms of the Poincaré
pairing of relative GW invariants. Thus invariance of the Poincaré

pairing is crucial in our study. Indeed, the Poincaré pairing together
with 3-point functions determine the (small) quantum product. So far
this is the only constraint we have found for the correspondence F under
K equivalence to be canonical.

6.2. A new topological constraint. Consider stratified Mukai flops
of type An,2, f : X 99K X ′ with i : F2 →֒ X, such that F preserves
the cup product (e.g., for X and X ′ being hyper-Kähler manifolds). By
Proposition 4.3 and Remark 4.4, there exists a defect of cup product on
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Xloc. A priori there seems to be a contradiction. A closer look at them
leads to

Proposition 6.4. For a Mukai flop f : X 99K X ′ of type An,2, D5 or

E6,I , if the restriction map i∗ : H∗(X,Q)→ H∗(F2,Q) is surjective then

F does not preserve the cup product. In particular, if X is hyper-Kähler,

then i∗ is not surjective.

Proof. We shall investigate the degeneration analysis on cup product
for an arbitrary An,2 flop f as presented above. The other cases are
similar.

Let a = (a1, a2) and b = (b1, b2) be two elements in H∗(X) with their
lifting. By Lemma 5.3, ab = (a1b1, a2b2). Then Theorem 5.1 implies
that F(ab) = (F(a1b1),F(a2b2)). By Lemma 5.3 again

F(a)F(b) = (F(a1)F(b1),F(a2)F(b2)) = (F(a1b1),F(a2)F(b2)),

where the last equality follows from Lemma 6.1 applied to g : Y 99K Y ′.
So

F(ab) = F(a)F(b) ⇐⇒ F(a2b2) = F(a2)F(b2).

That is, the invariance of cup product on H∗(X) is equivalent to the
invariance on elements in H∗(Xloc) which come from lifting of elements
in H∗(X). Indeed let i : F2 →֒ X and p : Xloc → F2 be the projection,
and we may choose standard lifting a2 = p∗i∗a. Such elements form a
subring

∆f := p∗i∗H∗(X) ⊂ p∗H∗(F2) ⊂ H
∗(Xloc).

By applying this analysis to the case X = Xloc = PF2
(T ∗
F2/S

⊕ O)

where the cup product is not preserved under F, we find that the defect
of cup product is completely realized in the subring p∗H∗(F2) since

i∗H∗(Xloc) = H∗(F2).

For general X, if i∗ : H∗(X,Q)→ H∗(F2,Q) is surjective, then ∆f ⊗
Q = p∗H∗(F2) ⊗ Q must contain the defect on Xloc; hence the ring
structure on H∗(X) is not preserved under F. This completes the proof.

q.e.d.

Example 6.5. Consider a simple A4,2 flop on hyper-Kähler manifold
X of dimension 12, where F2 = G(2, 5) is of dimension 6. The divisor
c1(G) = i∗H for some H ∈ H2(X,Q). But c2(G) 6∈ i∗H4(X,Q).
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